Single-domain antibody C7b for address delivery of nanoparticles to HER2-positive cancers
Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal al...
Saved in:
Published in | Nanoscale Vol. 12; no. 42; pp. 21885 - 21894 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
05.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the
in vitro
and
in vivo
efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo
6
phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics,
i.e.
delivery of imaging agents.
Single-domain antibody C7b is benchmarked against trastuzumab for targeted delivery of photoactive silica nanoparticles to a HER2 overexpressing cancer cell line and tissue. |
---|---|
AbstractList | Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the
in vitro
and
in vivo
efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo
6
phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics,
i.e.
delivery of imaging agents. Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents.Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents. Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents. Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo 6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents. Single-domain antibody C7b is benchmarked against trastuzumab for targeted delivery of photoactive silica nanoparticles to a HER2 overexpressing cancer cell line and tissue. |
Author | Shestopalov, Michael A Solovieva, Anastasiya O Shanshin, Daniil V Novikova, Evgeniya D Vorotnikov, Yuri A Tsygankova, Alphiya R Shcherbakov, Dmitrii N Efremova, Olga A |
AuthorAffiliation | Russian-American Anti-Cancer Center University of Hull The Federal Research Center of Fundamental and Translational Medicine Altai State University Department of Chemistry and Biochemistry State Research Center of Virology and Biotechnology VECTOR Nikolaev Institute of Inorganic Chemistry SB RAS Research Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS |
AuthorAffiliation_xml | – name: Altai State University – name: State Research Center of Virology and Biotechnology VECTOR – name: Research Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS – name: Russian-American Anti-Cancer Center – name: Nikolaev Institute of Inorganic Chemistry SB RAS – name: University of Hull – name: The Federal Research Center of Fundamental and Translational Medicine – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Yuri A surname: Vorotnikov fullname: Vorotnikov, Yuri A – sequence: 2 givenname: Evgeniya D surname: Novikova fullname: Novikova, Evgeniya D – sequence: 3 givenname: Anastasiya O surname: Solovieva fullname: Solovieva, Anastasiya O – sequence: 4 givenname: Daniil V surname: Shanshin fullname: Shanshin, Daniil V – sequence: 5 givenname: Alphiya R surname: Tsygankova fullname: Tsygankova, Alphiya R – sequence: 6 givenname: Dmitrii N surname: Shcherbakov fullname: Shcherbakov, Dmitrii N – sequence: 7 givenname: Olga A surname: Efremova fullname: Efremova, Olga A – sequence: 8 givenname: Michael A surname: Shestopalov fullname: Shestopalov, Michael A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33107540$$D View this record in MEDLINE/PubMed |
BookMark | eNp90cuLFDEQBvAgK-5DL96ViBcRWqtT6ddRx30Ii8KqB0-hOklLlp6kTTLC_PdmnX3AIntKHX71UeQ7ZHs-eMvY8xre1YDDewM-guyHYXzEDgRIqBA7sXc7t3KfHaZ0CdAO2OITto9YQ9dIOGA_vzn_a7aVCWtynpPPbgxmy1fdyKcQORkTbUrc2Nn9sXHLw8Q9-bBQzE7PNvEc-NnxhaiWkFwuhmvy2sb0lD2eaE722fV7xH6cHH9fnVXnX08_rz6cV1oC5AoJpl621IsewYoBu6aX_WS0sWIcjW6xo9pMVmg0hlqQ9YBUU99gmbQgPGJvdrlLDL83NmW1dknbeSZvwyYpIRvZNiUYCn19j16GTfTluivVNQ0K2Rb18lptxrU1aoluTXGrbj6tANgBHUNK0U5Ku0zZBZ8juVnVoK56UZ_gy8W_Xj6Wlbf3Vm5S_4tf7XBM-tbdlawWMxXz4iGDfwHTjaFB |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215048 crossref_primary_10_1016_j_ccr_2023_215543 crossref_primary_10_1007_s11172_024_4272_0 crossref_primary_10_1039_D1CC03347F crossref_primary_10_1002_wnan_1697 crossref_primary_10_1002_adma_202109210 crossref_primary_10_1016_j_poly_2021_115282 crossref_primary_10_3390_cancers14030622 crossref_primary_10_1016_j_ica_2025_122652 crossref_primary_10_1016_j_ijpharm_2021_120763 crossref_primary_10_1063_5_0049769 crossref_primary_10_1080_14686996_2022_2119101 crossref_primary_10_3390_ma16175869 crossref_primary_10_15407_Surface_2024_16_074 crossref_primary_10_3390_cancers14102424 crossref_primary_10_1016_j_apsusc_2022_155738 crossref_primary_10_3390_life14040489 crossref_primary_10_3390_sym14102117 crossref_primary_10_1016_j_ica_2023_121819 crossref_primary_10_1016_j_apsb_2024_03_016 crossref_primary_10_3390_ijms241210010 |
Cites_doi | 10.1039/c005279e 10.1038/227680a0 10.1016/j.ddtec.2018.10.002 10.1039/C3DT53126K 10.1007/978-1-4939-1280-3_10 10.1039/C2MB25063B 10.1039/C6TB00723F 10.1021/acssynbio.5b00068 10.1016/j.mtbio.2019.100035 10.1016/j.biotechadv.2011.09.013 10.1093/nar/gkg306 10.1016/0022-2836(86)90385-2 10.1016/j.hoc.2012.02.013 10.3389/fimmu.2017.01603 10.1039/C6CP05290H 10.1155/2014/852748 10.1002/cmmi.1611 10.2217/nnm.13.86 10.1016/B978-0-08-100736-5.00019-3 10.1016/j.ebiom.2016.04.028 10.1016/j.msec.2018.11.056 10.1016/B978-0-12-407722-5.00020-7 10.1039/C6RA04321F 10.1038/nbt1142 10.1039/C7QM00153C 10.1021/ja057254a 10.1007/978-981-10-0818-4_7 10.1515/pp-2018-0124 10.3390/cancers9020019 10.3390/membranes4030424 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d0nr04899b |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 21894 |
ExternalDocumentID | 33107540 10_1039_D0NR04899B d0nr04899b |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c400t-3a0f846a82830e29375848fdcde2bbdc637a1dfe2c3dda604193a1a853419c2a3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 06:31:21 EDT 2025 Mon Jun 30 06:48:59 EDT 2025 Thu Apr 03 07:07:13 EDT 2025 Thu Apr 24 23:05:42 EDT 2025 Tue Jul 01 01:14:02 EDT 2025 Wed Nov 11 00:36:14 EST 2020 Sat Jan 08 03:54:43 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-3a0f846a82830e29375848fdcde2bbdc637a1dfe2c3dda604193a1a853419c2a3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0nr04899b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9833-6060 0000-0002-7807-4697 0000-0001-7126-276X 0000-0002-5676-6262 |
PMID | 33107540 |
PQID | 2457553246 |
PQPubID | 2047485 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2454652930 pubmed_primary_33107540 crossref_citationtrail_10_1039_D0NR04899B crossref_primary_10_1039_D0NR04899B rsc_primary_d0nr04899b proquest_journals_2457553246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201105 |
PublicationDateYYYYMMDD | 2020-11-05 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201105 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Thermo Fisher Scientific (D0NR04899B-(cit21)/*[position()=1]) Studier (D0NR04899B-(cit27)/*[position()=1]) 1986; 189 (D0NR04899B-(cit4)/*[position()=1]) 1988 Solovieva (D0NR04899B-(cit31)/*[position()=1]) 2016; 4 Souris (D0NR04899B-(cit30)/*[position()=1]) 2014 Huang (D0NR04899B-(cit7)/*[position()=1]) 2006; 128 Adler (D0NR04899B-(cit1)/*[position()=1]) 2012; 26 van Straten (D0NR04899B-(cit6)/*[position()=1]) 2017; 9 Kumari (D0NR04899B-(cit33)/*[position()=1]) 2016 Efremova (D0NR04899B-(cit17)/*[position()=1]) 2014; 43 Jack (D0NR04899B-(cit19)/*[position()=1]) 2015; 4 Bertelsen (D0NR04899B-(cit34)/*[position()=1]) 2014; 4 Neaime (D0NR04899B-(cit16)/*[position()=1]) 2016; 18 Laemmli (D0NR04899B-(cit23)/*[position()=1]) 1970; 227 Pinto (D0NR04899B-(cit5)/*[position()=1]) 2018; 3 Xu (D0NR04899B-(cit28)/*[position()=1]) 2017; 1 Even-Desrumeaux (D0NR04899B-(cit12)/*[position()=1]) 2012; 8 Iqbal (D0NR04899B-(cit13)/*[position()=1]) 2014; 2014 Bannas (D0NR04899B-(cit9)/*[position()=1]) 2017; 8 Barrick Lab (D0NR04899B-(cit20)/*[position()=1]) Chen (D0NR04899B-(cit24)/*[position()=1]) 2012; 30 Morais (D0NR04899B-(cit3)/*[position()=1]) 2018; 30 Jansen (D0NR04899B-(cit26)/*[position()=1]) 2003; 31 Maniatis (D0NR04899B-(cit22)/*[position()=1]) 1982 Shirshahi (D0NR04899B-(cit29)/*[position()=1]) 2015; 10 Hassanzadeh-Ghassabeh (D0NR04899B-(cit10)/*[position()=1]) 2013; 8 Van Audenhove (D0NR04899B-(cit2)/*[position()=1]) 2016; 8 Vorotnikov (D0NR04899B-(cit18)/*[position()=1]) 2016; 6 Brazhnik (D0NR04899B-(cit32)/*[position()=1]) 2014; 1199 Gao (D0NR04899B-(cit8)/*[position()=1]) 2020; 5 Holliger (D0NR04899B-(cit11)/*[position()=1]) 2005; 23 Vorotnikov (D0NR04899B-(cit15)/*[position()=1]) 2019; 96 Okarvi (D0NR04899B-(cit35)/*[position()=1]) 2018 Even-Desrumeaux (D0NR04899B-(cit14)/*[position()=1]) 2010; 6 |
References_xml | – doi: Barrick Lab – publication-title: GenScript Rare Codon Analysis Tool doi: GenScript Biotech Corporation – issn: 2018 end-page: 431-483 publication-title: Peptide Applications in Biomedicine, Biotechnology and Bioengineering doi: Okarvi Maecke – issn: 1982 end-page: 250-251 publication-title: Molecular Cloning: A Laboratory Manual doi: Maniatis Fritsch Sambrook – issn: 2014 end-page: 363-391 publication-title: Cancer Theranostics doi: Souris Chen Cheng Chen Lo – issn: 2016 end-page: 153-172 publication-title: Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration doi: Kumari Singla Guliani Acharya Yadav – issn: 1988 publication-title: Radiolabeled Monoclonal Antibodies for Imaging and Therapy – doi: Thermo Fisher Scientific – volume: 6 start-page: 2241 year: 2010 ident: D0NR04899B-(cit14)/*[position()=1] publication-title: Mol. Biosyst. doi: 10.1039/c005279e – volume: 227 start-page: 680 year: 1970 ident: D0NR04899B-(cit23)/*[position()=1] publication-title: Nature doi: 10.1038/227680a0 – volume: 30 start-page: 91 year: 2018 ident: D0NR04899B-(cit3)/*[position()=1] publication-title: Drug Discovery Today: Technol. doi: 10.1016/j.ddtec.2018.10.002 – volume: 43 start-page: 6021 year: 2014 ident: D0NR04899B-(cit17)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C3DT53126K – volume: 1199 start-page: 129 year: 2014 ident: D0NR04899B-(cit32)/*[position()=1] publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-1280-3_10 – volume: 8 start-page: 2385 year: 2012 ident: D0NR04899B-(cit12)/*[position()=1] publication-title: Mol. Biosyst. doi: 10.1039/C2MB25063B – volume: 4 start-page: 4839 year: 2016 ident: D0NR04899B-(cit31)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C6TB00723F – volume: 4 start-page: 939 year: 2015 ident: D0NR04899B-(cit19)/*[position()=1] publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.5b00068 – volume: 5 start-page: 100035 year: 2020 ident: D0NR04899B-(cit8)/*[position()=1] publication-title: Mater. Today Bio doi: 10.1016/j.mtbio.2019.100035 – volume-title: Molecular Cloning: A Laboratory Manual year: 1982 ident: D0NR04899B-(cit22)/*[position()=1] – volume: 30 start-page: 1102 year: 2012 ident: D0NR04899B-(cit24)/*[position()=1] publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.09.013 – volume: 31 start-page: 2242 year: 2003 ident: D0NR04899B-(cit26)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg306 – volume: 189 start-page: 113 year: 1986 ident: D0NR04899B-(cit27)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(86)90385-2 – ident: D0NR04899B-(cit21)/*[position()=1] – volume: 26 start-page: 447 year: 2012 ident: D0NR04899B-(cit1)/*[position()=1] publication-title: Hematol. Oncol. Clin. North Am. doi: 10.1016/j.hoc.2012.02.013 – volume: 8 start-page: 1603 year: 2017 ident: D0NR04899B-(cit9)/*[position()=1] publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01603 – volume: 18 start-page: 30166 year: 2016 ident: D0NR04899B-(cit16)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05290H – volume: 2014 start-page: 852748 year: 2014 ident: D0NR04899B-(cit13)/*[position()=1] publication-title: Mol. Biol. Int. doi: 10.1155/2014/852748 – volume: 10 start-page: 1 year: 2015 ident: D0NR04899B-(cit29)/*[position()=1] publication-title: Contrast Media Mol. Imaging doi: 10.1002/cmmi.1611 – volume: 8 start-page: 1013 year: 2013 ident: D0NR04899B-(cit10)/*[position()=1] publication-title: Nanomedicine doi: 10.2217/nnm.13.86 – volume-title: Peptide Applications in Biomedicine, Biotechnology and Bioengineering year: 2018 ident: D0NR04899B-(cit35)/*[position()=1] doi: 10.1016/B978-0-08-100736-5.00019-3 – volume: 8 start-page: 40 year: 2016 ident: D0NR04899B-(cit2)/*[position()=1] publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.04.028 – volume: 96 start-page: 530 year: 2019 ident: D0NR04899B-(cit15)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2018.11.056 – volume-title: Cancer Theranostics year: 2014 ident: D0NR04899B-(cit30)/*[position()=1] doi: 10.1016/B978-0-12-407722-5.00020-7 – volume: 6 start-page: 43367 year: 2016 ident: D0NR04899B-(cit18)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA04321F – volume: 23 start-page: 1126 year: 2005 ident: D0NR04899B-(cit11)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt1142 – volume: 1 start-page: 1257 year: 2017 ident: D0NR04899B-(cit28)/*[position()=1] publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00153C – volume: 128 start-page: 2115 year: 2006 ident: D0NR04899B-(cit7)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057254a – volume-title: Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration year: 2016 ident: D0NR04899B-(cit33)/*[position()=1] doi: 10.1007/978-981-10-0818-4_7 – volume-title: Radiolabeled Monoclonal Antibodies for Imaging and Therapy year: 1988 ident: D0NR04899B-(cit4)/*[position()=1] – ident: D0NR04899B-(cit20)/*[position()=1] – volume: 3 start-page: 20180124 issue: 4 year: 2018 ident: D0NR04899B-(cit5)/*[position()=1] publication-title: Pleura Peritoneum doi: 10.1515/pp-2018-0124 – volume: 9 start-page: 19 year: 2017 ident: D0NR04899B-(cit6)/*[position()=1] publication-title: Cancers doi: 10.3390/cancers9020019 – volume: 4 start-page: 424 year: 2014 ident: D0NR04899B-(cit34)/*[position()=1] publication-title: Membranes doi: 10.3390/membranes4030424 |
SSID | ssj0069363 |
Score | 2.4364278 |
Snippet | Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21885 |
SubjectTerms | Allergic reactions Breast Neoplasms - diagnosis Breast Neoplasms - drug therapy Cancer Cell Line, Tumor Diagnostic systems Domains Humans Monoclonal antibodies Nanoparticles Phosphorescence Production methods Receptor, ErbB-2 Silicon dioxide Single-Domain Antibodies Targeted cancer therapy Trastuzumab Xenotransplantation |
Title | Single-domain antibody C7b for address delivery of nanoparticles to HER2-positive cancers |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33107540 https://www.proquest.com/docview/2457553246 https://www.proquest.com/docview/2454652930 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgk9D2gPgadAxkBC8IBdI4n48dFCoQRRobjKfIiR1RrYurNq0Ev57jxE4bViTgJUpj56M-xzfnOtfXhDzLiiiTANpJRJw5fh6HDk9EgJ-hkKJfeHGm5w5_HIejM__9eXC-jlWtZ5dU2cv859Z5Jf-DKo4BVz1L9h-QbS-KA9gHvtgCYWz_CuPPeO9MpSPUJfz7F2ijSaYE-niUNcGRQtQTQYSc6uiLJnc0L-Emm2g4LTxHwxPPaUK3VnUMWG5i4q1khf1VCyDZMuCLmquqnFyoVW2_l_PJekB0rFa6oFakwxUefPKDbwQVw9LiPdwUD0oOZbrQFT61Fb5zHT5W2snvk6kJwjXjEnBC9Vhr84Fa1vbL08GKjEVdY-ttkKrJq9WazrhZvOeKUXeZzokq3HIOc5MkHcsPQGaXNbwMQjUKmtxPv6XQtkXXya4HbwLmcHfw4fjdV_vKDhMWMpu7liWv1rfaIzfsyV3hcsUbgTaZ2zVjam1yeovcNE4FHTSw3ibXZHmH7G-kmrxLvnW4Qi1XKLhCwRVquEItV6gqaIcrtFK0wxVquHKPnL0dnr4eOWZZDSeHwa4cxt0CqpPHOvebhNyDy-jHhciF9LJM5CGLeF8U0suZEDx0fWh83ufQddjLPc4OyE6pSvmAUGjnhEeBiFjB_MjPeBHJAud7ecB4Ebo98ty2WZqbnPN66ZNpWsc-sCR9445P6qY-7pGnbd1Zk2lla60j2_Sp6YmL1PPhdARwDcIeedIWw07qj1-8lGpZ1_HDAP8WD3W_gay9jYW4Rw6AYXt4TYMeOdxekM5EcfjH6z0ke-uecUR2qvlSPoKGrbLHhoG_AMbdnXE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-domain+antibody+C7b+for+address+delivery+of+nanoparticles+to+HER2-positive+cancers&rft.jtitle=Nanoscale&rft.au=Vorotnikov%2C+Yuri+A&rft.au=Novikova%2C+Evgeniya+D&rft.au=Solovieva%2C+Anastasiya+O&rft.au=Shanshin%2C+Daniil+V&rft.date=2020-11-05&rft.eissn=2040-3372&rft.volume=12&rft.issue=42&rft.spage=21885&rft_id=info:doi/10.1039%2Fd0nr04899b&rft_id=info%3Apmid%2F33107540&rft.externalDocID=33107540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |