Single-domain antibody C7b for address delivery of nanoparticles to HER2-positive cancers

Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal al...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 42; pp. 21885 - 21894
Main Authors Vorotnikov, Yuri A, Novikova, Evgeniya D, Solovieva, Anastasiya O, Shanshin, Daniil V, Tsygankova, Alphiya R, Shcherbakov, Dmitrii N, Efremova, Olga A, Shestopalov, Michael A
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 05.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo 6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents. Single-domain antibody C7b is benchmarked against trastuzumab for targeted delivery of photoactive silica nanoparticles to a HER2 overexpressing cancer cell line and tissue.
AbstractList Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo 6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents.
Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents.Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents.
Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents.
Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the targeted delivery of multicomponent therapeutic or diagnostic systems. Nevertheless, the large physical size, poor stability of mAbs and abnormal allergic reactions still remain the main issues affecting their generalised use. Single-domain antibodies (sdAb) are seen as the next generation of antibody derived therapeutics and diagnostics. This work presents the optimised production method for HER2-specific sdAb C7b, which led to an ∼11-fold increase in protein yield. In addition, the in vitro and in vivo efficiencies of the targeted delivery of a model nanoparticle cargo (50 nm silica particles doped with Mo 6 phosphorescent clusters) conjugated to C7b against those conjugated to HER2-specific trastuzumab is benchmarked. Specifically, this paper demonstrates the significantly higher rate of accumulation in and excretion from xenograft cancer tissue of nanoparticles with C7b, which is of particular importance for diagnostics, i.e. delivery of imaging agents. Single-domain antibody C7b is benchmarked against trastuzumab for targeted delivery of photoactive silica nanoparticles to a HER2 overexpressing cancer cell line and tissue.
Author Shestopalov, Michael A
Solovieva, Anastasiya O
Shanshin, Daniil V
Novikova, Evgeniya D
Vorotnikov, Yuri A
Tsygankova, Alphiya R
Shcherbakov, Dmitrii N
Efremova, Olga A
AuthorAffiliation Russian-American Anti-Cancer Center
University of Hull
The Federal Research Center of Fundamental and Translational Medicine
Altai State University
Department of Chemistry and Biochemistry
State Research Center of Virology and Biotechnology VECTOR
Nikolaev Institute of Inorganic Chemistry SB RAS
Research Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS
AuthorAffiliation_xml – name: Altai State University
– name: State Research Center of Virology and Biotechnology VECTOR
– name: Research Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS
– name: Russian-American Anti-Cancer Center
– name: Nikolaev Institute of Inorganic Chemistry SB RAS
– name: University of Hull
– name: The Federal Research Center of Fundamental and Translational Medicine
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Yuri A
  surname: Vorotnikov
  fullname: Vorotnikov, Yuri A
– sequence: 2
  givenname: Evgeniya D
  surname: Novikova
  fullname: Novikova, Evgeniya D
– sequence: 3
  givenname: Anastasiya O
  surname: Solovieva
  fullname: Solovieva, Anastasiya O
– sequence: 4
  givenname: Daniil V
  surname: Shanshin
  fullname: Shanshin, Daniil V
– sequence: 5
  givenname: Alphiya R
  surname: Tsygankova
  fullname: Tsygankova, Alphiya R
– sequence: 6
  givenname: Dmitrii N
  surname: Shcherbakov
  fullname: Shcherbakov, Dmitrii N
– sequence: 7
  givenname: Olga A
  surname: Efremova
  fullname: Efremova, Olga A
– sequence: 8
  givenname: Michael A
  surname: Shestopalov
  fullname: Shestopalov, Michael A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33107540$$D View this record in MEDLINE/PubMed
BookMark eNp90cuLFDEQBvAgK-5DL96ViBcRWqtT6ddRx30Ii8KqB0-hOklLlp6kTTLC_PdmnX3AIntKHX71UeQ7ZHs-eMvY8xre1YDDewM-guyHYXzEDgRIqBA7sXc7t3KfHaZ0CdAO2OITto9YQ9dIOGA_vzn_a7aVCWtynpPPbgxmy1fdyKcQORkTbUrc2Nn9sXHLw8Q9-bBQzE7PNvEc-NnxhaiWkFwuhmvy2sb0lD2eaE722fV7xH6cHH9fnVXnX08_rz6cV1oC5AoJpl621IsewYoBu6aX_WS0sWIcjW6xo9pMVmg0hlqQ9YBUU99gmbQgPGJvdrlLDL83NmW1dknbeSZvwyYpIRvZNiUYCn19j16GTfTluivVNQ0K2Rb18lptxrU1aoluTXGrbj6tANgBHUNK0U5Ku0zZBZ8juVnVoK56UZ_gy8W_Xj6Wlbf3Vm5S_4tf7XBM-tbdlawWMxXz4iGDfwHTjaFB
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215048
crossref_primary_10_1016_j_ccr_2023_215543
crossref_primary_10_1007_s11172_024_4272_0
crossref_primary_10_1039_D1CC03347F
crossref_primary_10_1002_wnan_1697
crossref_primary_10_1002_adma_202109210
crossref_primary_10_1016_j_poly_2021_115282
crossref_primary_10_3390_cancers14030622
crossref_primary_10_1016_j_ica_2025_122652
crossref_primary_10_1016_j_ijpharm_2021_120763
crossref_primary_10_1063_5_0049769
crossref_primary_10_1080_14686996_2022_2119101
crossref_primary_10_3390_ma16175869
crossref_primary_10_15407_Surface_2024_16_074
crossref_primary_10_3390_cancers14102424
crossref_primary_10_1016_j_apsusc_2022_155738
crossref_primary_10_3390_life14040489
crossref_primary_10_3390_sym14102117
crossref_primary_10_1016_j_ica_2023_121819
crossref_primary_10_1016_j_apsb_2024_03_016
crossref_primary_10_3390_ijms241210010
Cites_doi 10.1039/c005279e
10.1038/227680a0
10.1016/j.ddtec.2018.10.002
10.1039/C3DT53126K
10.1007/978-1-4939-1280-3_10
10.1039/C2MB25063B
10.1039/C6TB00723F
10.1021/acssynbio.5b00068
10.1016/j.mtbio.2019.100035
10.1016/j.biotechadv.2011.09.013
10.1093/nar/gkg306
10.1016/0022-2836(86)90385-2
10.1016/j.hoc.2012.02.013
10.3389/fimmu.2017.01603
10.1039/C6CP05290H
10.1155/2014/852748
10.1002/cmmi.1611
10.2217/nnm.13.86
10.1016/B978-0-08-100736-5.00019-3
10.1016/j.ebiom.2016.04.028
10.1016/j.msec.2018.11.056
10.1016/B978-0-12-407722-5.00020-7
10.1039/C6RA04321F
10.1038/nbt1142
10.1039/C7QM00153C
10.1021/ja057254a
10.1007/978-981-10-0818-4_7
10.1515/pp-2018-0124
10.3390/cancers9020019
10.3390/membranes4030424
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr04899b
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 21894
ExternalDocumentID 33107540
10_1039_D0NR04899B
d0nr04899b
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c400t-3a0f846a82830e29375848fdcde2bbdc637a1dfe2c3dda604193a1a853419c2a3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 06:31:21 EDT 2025
Mon Jun 30 06:48:59 EDT 2025
Thu Apr 03 07:07:13 EDT 2025
Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 01:14:02 EDT 2025
Wed Nov 11 00:36:14 EST 2020
Sat Jan 08 03:54:43 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-3a0f846a82830e29375848fdcde2bbdc637a1dfe2c3dda604193a1a853419c2a3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0nr04899b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9833-6060
0000-0002-7807-4697
0000-0001-7126-276X
0000-0002-5676-6262
PMID 33107540
PQID 2457553246
PQPubID 2047485
PageCount 1
ParticipantIDs proquest_miscellaneous_2454652930
pubmed_primary_33107540
crossref_citationtrail_10_1039_D0NR04899B
crossref_primary_10_1039_D0NR04899B
rsc_primary_d0nr04899b
proquest_journals_2457553246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201105
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 20201105
  day: 5
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Thermo Fisher Scientific (D0NR04899B-(cit21)/*[position()=1])
Studier (D0NR04899B-(cit27)/*[position()=1]) 1986; 189
(D0NR04899B-(cit4)/*[position()=1]) 1988
Solovieva (D0NR04899B-(cit31)/*[position()=1]) 2016; 4
Souris (D0NR04899B-(cit30)/*[position()=1]) 2014
Huang (D0NR04899B-(cit7)/*[position()=1]) 2006; 128
Adler (D0NR04899B-(cit1)/*[position()=1]) 2012; 26
van Straten (D0NR04899B-(cit6)/*[position()=1]) 2017; 9
Kumari (D0NR04899B-(cit33)/*[position()=1]) 2016
Efremova (D0NR04899B-(cit17)/*[position()=1]) 2014; 43
Jack (D0NR04899B-(cit19)/*[position()=1]) 2015; 4
Bertelsen (D0NR04899B-(cit34)/*[position()=1]) 2014; 4
Neaime (D0NR04899B-(cit16)/*[position()=1]) 2016; 18
Laemmli (D0NR04899B-(cit23)/*[position()=1]) 1970; 227
Pinto (D0NR04899B-(cit5)/*[position()=1]) 2018; 3
Xu (D0NR04899B-(cit28)/*[position()=1]) 2017; 1
Even-Desrumeaux (D0NR04899B-(cit12)/*[position()=1]) 2012; 8
Iqbal (D0NR04899B-(cit13)/*[position()=1]) 2014; 2014
Bannas (D0NR04899B-(cit9)/*[position()=1]) 2017; 8
Barrick Lab (D0NR04899B-(cit20)/*[position()=1])
Chen (D0NR04899B-(cit24)/*[position()=1]) 2012; 30
Morais (D0NR04899B-(cit3)/*[position()=1]) 2018; 30
Jansen (D0NR04899B-(cit26)/*[position()=1]) 2003; 31
Maniatis (D0NR04899B-(cit22)/*[position()=1]) 1982
Shirshahi (D0NR04899B-(cit29)/*[position()=1]) 2015; 10
Hassanzadeh-Ghassabeh (D0NR04899B-(cit10)/*[position()=1]) 2013; 8
Van Audenhove (D0NR04899B-(cit2)/*[position()=1]) 2016; 8
Vorotnikov (D0NR04899B-(cit18)/*[position()=1]) 2016; 6
Brazhnik (D0NR04899B-(cit32)/*[position()=1]) 2014; 1199
Gao (D0NR04899B-(cit8)/*[position()=1]) 2020; 5
Holliger (D0NR04899B-(cit11)/*[position()=1]) 2005; 23
Vorotnikov (D0NR04899B-(cit15)/*[position()=1]) 2019; 96
Okarvi (D0NR04899B-(cit35)/*[position()=1]) 2018
Even-Desrumeaux (D0NR04899B-(cit14)/*[position()=1]) 2010; 6
References_xml – doi: Barrick Lab
– publication-title: GenScript Rare Codon Analysis Tool
  doi: GenScript Biotech Corporation
– issn: 2018
  end-page: 431-483
  publication-title: Peptide Applications in Biomedicine, Biotechnology and Bioengineering
  doi: Okarvi Maecke
– issn: 1982
  end-page: 250-251
  publication-title: Molecular Cloning: A Laboratory Manual
  doi: Maniatis Fritsch Sambrook
– issn: 2014
  end-page: 363-391
  publication-title: Cancer Theranostics
  doi: Souris Chen Cheng Chen Lo
– issn: 2016
  end-page: 153-172
  publication-title: Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration
  doi: Kumari Singla Guliani Acharya Yadav
– issn: 1988
  publication-title: Radiolabeled Monoclonal Antibodies for Imaging and Therapy
– doi: Thermo Fisher Scientific
– volume: 6
  start-page: 2241
  year: 2010
  ident: D0NR04899B-(cit14)/*[position()=1]
  publication-title: Mol. Biosyst.
  doi: 10.1039/c005279e
– volume: 227
  start-page: 680
  year: 1970
  ident: D0NR04899B-(cit23)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/227680a0
– volume: 30
  start-page: 91
  year: 2018
  ident: D0NR04899B-(cit3)/*[position()=1]
  publication-title: Drug Discovery Today: Technol.
  doi: 10.1016/j.ddtec.2018.10.002
– volume: 43
  start-page: 6021
  year: 2014
  ident: D0NR04899B-(cit17)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C3DT53126K
– volume: 1199
  start-page: 129
  year: 2014
  ident: D0NR04899B-(cit32)/*[position()=1]
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-1280-3_10
– volume: 8
  start-page: 2385
  year: 2012
  ident: D0NR04899B-(cit12)/*[position()=1]
  publication-title: Mol. Biosyst.
  doi: 10.1039/C2MB25063B
– volume: 4
  start-page: 4839
  year: 2016
  ident: D0NR04899B-(cit31)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB00723F
– volume: 4
  start-page: 939
  year: 2015
  ident: D0NR04899B-(cit19)/*[position()=1]
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.5b00068
– volume: 5
  start-page: 100035
  year: 2020
  ident: D0NR04899B-(cit8)/*[position()=1]
  publication-title: Mater. Today Bio
  doi: 10.1016/j.mtbio.2019.100035
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1982
  ident: D0NR04899B-(cit22)/*[position()=1]
– volume: 30
  start-page: 1102
  year: 2012
  ident: D0NR04899B-(cit24)/*[position()=1]
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.09.013
– volume: 31
  start-page: 2242
  year: 2003
  ident: D0NR04899B-(cit26)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg306
– volume: 189
  start-page: 113
  year: 1986
  ident: D0NR04899B-(cit27)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(86)90385-2
– ident: D0NR04899B-(cit21)/*[position()=1]
– volume: 26
  start-page: 447
  year: 2012
  ident: D0NR04899B-(cit1)/*[position()=1]
  publication-title: Hematol. Oncol. Clin. North Am.
  doi: 10.1016/j.hoc.2012.02.013
– volume: 8
  start-page: 1603
  year: 2017
  ident: D0NR04899B-(cit9)/*[position()=1]
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01603
– volume: 18
  start-page: 30166
  year: 2016
  ident: D0NR04899B-(cit16)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05290H
– volume: 2014
  start-page: 852748
  year: 2014
  ident: D0NR04899B-(cit13)/*[position()=1]
  publication-title: Mol. Biol. Int.
  doi: 10.1155/2014/852748
– volume: 10
  start-page: 1
  year: 2015
  ident: D0NR04899B-(cit29)/*[position()=1]
  publication-title: Contrast Media Mol. Imaging
  doi: 10.1002/cmmi.1611
– volume: 8
  start-page: 1013
  year: 2013
  ident: D0NR04899B-(cit10)/*[position()=1]
  publication-title: Nanomedicine
  doi: 10.2217/nnm.13.86
– volume-title: Peptide Applications in Biomedicine, Biotechnology and Bioengineering
  year: 2018
  ident: D0NR04899B-(cit35)/*[position()=1]
  doi: 10.1016/B978-0-08-100736-5.00019-3
– volume: 8
  start-page: 40
  year: 2016
  ident: D0NR04899B-(cit2)/*[position()=1]
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.04.028
– volume: 96
  start-page: 530
  year: 2019
  ident: D0NR04899B-(cit15)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2018.11.056
– volume-title: Cancer Theranostics
  year: 2014
  ident: D0NR04899B-(cit30)/*[position()=1]
  doi: 10.1016/B978-0-12-407722-5.00020-7
– volume: 6
  start-page: 43367
  year: 2016
  ident: D0NR04899B-(cit18)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04321F
– volume: 23
  start-page: 1126
  year: 2005
  ident: D0NR04899B-(cit11)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1142
– volume: 1
  start-page: 1257
  year: 2017
  ident: D0NR04899B-(cit28)/*[position()=1]
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00153C
– volume: 128
  start-page: 2115
  year: 2006
  ident: D0NR04899B-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057254a
– volume-title: Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration
  year: 2016
  ident: D0NR04899B-(cit33)/*[position()=1]
  doi: 10.1007/978-981-10-0818-4_7
– volume-title: Radiolabeled Monoclonal Antibodies for Imaging and Therapy
  year: 1988
  ident: D0NR04899B-(cit4)/*[position()=1]
– ident: D0NR04899B-(cit20)/*[position()=1]
– volume: 3
  start-page: 20180124
  issue: 4
  year: 2018
  ident: D0NR04899B-(cit5)/*[position()=1]
  publication-title: Pleura Peritoneum
  doi: 10.1515/pp-2018-0124
– volume: 9
  start-page: 19
  year: 2017
  ident: D0NR04899B-(cit6)/*[position()=1]
  publication-title: Cancers
  doi: 10.3390/cancers9020019
– volume: 4
  start-page: 424
  year: 2014
  ident: D0NR04899B-(cit34)/*[position()=1]
  publication-title: Membranes
  doi: 10.3390/membranes4030424
SSID ssj0069363
Score 2.4364278
Snippet Monoclonal antibodies (mAb) demonstrate great potential as immunotherapy agents for the treatment of diseases such as cancer as well as tagging for the...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21885
SubjectTerms Allergic reactions
Breast Neoplasms - diagnosis
Breast Neoplasms - drug therapy
Cancer
Cell Line, Tumor
Diagnostic systems
Domains
Humans
Monoclonal antibodies
Nanoparticles
Phosphorescence
Production methods
Receptor, ErbB-2
Silicon dioxide
Single-Domain Antibodies
Targeted cancer therapy
Trastuzumab
Xenotransplantation
Title Single-domain antibody C7b for address delivery of nanoparticles to HER2-positive cancers
URI https://www.ncbi.nlm.nih.gov/pubmed/33107540
https://www.proquest.com/docview/2457553246
https://www.proquest.com/docview/2454652930
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgk9D2gPgadAxkBC8IBdI4n48dFCoQRRobjKfIiR1RrYurNq0Ev57jxE4bViTgJUpj56M-xzfnOtfXhDzLiiiTANpJRJw5fh6HDk9EgJ-hkKJfeHGm5w5_HIejM__9eXC-jlWtZ5dU2cv859Z5Jf-DKo4BVz1L9h-QbS-KA9gHvtgCYWz_CuPPeO9MpSPUJfz7F2ijSaYE-niUNcGRQtQTQYSc6uiLJnc0L-Emm2g4LTxHwxPPaUK3VnUMWG5i4q1khf1VCyDZMuCLmquqnFyoVW2_l_PJekB0rFa6oFakwxUefPKDbwQVw9LiPdwUD0oOZbrQFT61Fb5zHT5W2snvk6kJwjXjEnBC9Vhr84Fa1vbL08GKjEVdY-ttkKrJq9WazrhZvOeKUXeZzokq3HIOc5MkHcsPQGaXNbwMQjUKmtxPv6XQtkXXya4HbwLmcHfw4fjdV_vKDhMWMpu7liWv1rfaIzfsyV3hcsUbgTaZ2zVjam1yeovcNE4FHTSw3ibXZHmH7G-kmrxLvnW4Qi1XKLhCwRVquEItV6gqaIcrtFK0wxVquHKPnL0dnr4eOWZZDSeHwa4cxt0CqpPHOvebhNyDy-jHhciF9LJM5CGLeF8U0suZEDx0fWh83ufQddjLPc4OyE6pSvmAUGjnhEeBiFjB_MjPeBHJAud7ecB4Ebo98ty2WZqbnPN66ZNpWsc-sCR9445P6qY-7pGnbd1Zk2lla60j2_Sp6YmL1PPhdARwDcIeedIWw07qj1-8lGpZ1_HDAP8WD3W_gay9jYW4Rw6AYXt4TYMeOdxekM5EcfjH6z0ke-uecUR2qvlSPoKGrbLHhoG_AMbdnXE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-domain+antibody+C7b+for+address+delivery+of+nanoparticles+to+HER2-positive+cancers&rft.jtitle=Nanoscale&rft.au=Vorotnikov%2C+Yuri+A&rft.au=Novikova%2C+Evgeniya+D&rft.au=Solovieva%2C+Anastasiya+O&rft.au=Shanshin%2C+Daniil+V&rft.date=2020-11-05&rft.eissn=2040-3372&rft.volume=12&rft.issue=42&rft.spage=21885&rft_id=info:doi/10.1039%2Fd0nr04899b&rft_id=info%3Apmid%2F33107540&rft.externalDocID=33107540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon