The THUMOS challenge on action recognition for videos “in the wild”
•THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition.•In this paper we describe the THUMOS benchmark in detail.•Give an overview of data collection and annotation procedures.•Present results of submissions to the THUMOS 2015 challenge and review the participating a...
Saved in:
Published in | Computer vision and image understanding Vol. 155; pp. 1 - 23 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition.•In this paper we describe the THUMOS benchmark in detail.•Give an overview of data collection and annotation procedures.•Present results of submissions to the THUMOS 2015 challenge and review the participating approaches.•We conclude by proposing several directions and improvements for future THUMOS challenges.
Automatically recognizing and localizing wide ranges of human actions are crucial for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include ‘background videos’ which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013–2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world.
In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal action detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges. |
---|---|
AbstractList | Automatically recognizing and localizing wide ranges of human actions are crucial for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition , including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include 'background videos' which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013–2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal action detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and $ www.thumos.info untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges. •THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition.•In this paper we describe the THUMOS benchmark in detail.•Give an overview of data collection and annotation procedures.•Present results of submissions to the THUMOS 2015 challenge and review the participating approaches.•We conclude by proposing several directions and improvements for future THUMOS challenges. Automatically recognizing and localizing wide ranges of human actions are crucial for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include ‘background videos’ which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013–2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal action detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges. |
Author | Laptev, Ivan Shah, Mubarak Jiang, Yu-Gang Zamir, Amir R. Idrees, Haroon Gorban, Alex Sukthankar, Rahul |
Author_xml | – sequence: 1 givenname: Haroon orcidid: 0000-0002-9613-6580 surname: Idrees fullname: Idrees, Haroon email: haroon@cs.ucf.edu organization: Center for Research in Computer Vision, University of Central Florida, Orlando, FL, USA – sequence: 2 givenname: Amir R. surname: Zamir fullname: Zamir, Amir R. organization: Department of Computer Science, Stanford University, Stanford, CA, USA – sequence: 3 givenname: Yu-Gang surname: Jiang fullname: Jiang, Yu-Gang organization: School of Computer Science, Fudan University, Shanghai, China – sequence: 4 givenname: Alex surname: Gorban fullname: Gorban, Alex organization: Google Research, Mountain View, CA, USA – sequence: 5 givenname: Ivan surname: Laptev fullname: Laptev, Ivan organization: INRIA-Paris, WILLOW project-team, ENS/INRIA/CNRS UMR 8548, Paris, France – sequence: 6 givenname: Rahul surname: Sukthankar fullname: Sukthankar, Rahul organization: Google Research, Mountain View, CA, USA – sequence: 7 givenname: Mubarak surname: Shah fullname: Shah, Mubarak organization: Center for Research in Computer Vision, University of Central Florida, Orlando, FL, USA |
BackLink | https://inria.hal.science/hal-01431525$$DView record in HAL |
BookMark | eNp9kLFOwzAQhi1UJNrCCzBlZUg423HrSCxVBS1SUQdaic1ybKd1FWLkhCC2Pgi8XJ8Eh8LCwHS_TvfZd98A9SpXGYQuMSQY8Oh6l6jWviYk5NBIAPMT1MeQQUwoe-p1eTyOKU7JGRrU9Q4A4zTDfTRbbU20mq8flo-R2sqyNNXGRK6KpGpsKN4ot6nsdy6cj1qrjaujw_7DVlET2Ddb6sP-8xydFrKszcVPHaL13e1qOo8Xy9n9dLKIVQrQxHTEOdUFVhwg12EfDkypnCuiU8UMlWQUAqcyY0ynjOc8H0sJmYa8KDBRdIiuju-GXcWLt8_SvwsnrZhPFqLrAU4pZoS1OMzy46zyrq69KYSyjexOaby0pcAgOnliJzp5opPX9YK8gJI_6O9f_0I3R8gEAa01XtTKmkoZbYPGRmhn_8O_AKvvi6I |
CitedBy_id | crossref_primary_10_1016_j_future_2024_107668 crossref_primary_10_1109_TNNLS_2017_2740318 crossref_primary_10_1167_jov_24_11_6 crossref_primary_10_1109_TPAMI_2018_2868668 crossref_primary_10_1145_3466181 crossref_primary_10_12677_CSA_2023_133062 crossref_primary_10_1007_s11042_024_18554_9 crossref_primary_10_1016_j_ins_2023_02_047 crossref_primary_10_1109_TMM_2022_3232034 crossref_primary_10_1016_j_cviu_2018_09_006 crossref_primary_10_1186_s40537_021_00526_7 crossref_primary_10_1007_s11760_021_02039_5 crossref_primary_10_1109_TIP_2021_3099407 crossref_primary_10_1016_j_patcog_2023_109426 crossref_primary_10_1109_TCSVT_2023_3341881 crossref_primary_10_1007_s11042_023_17461_9 crossref_primary_10_1016_j_imavis_2022_104589 crossref_primary_10_1109_TCSVT_2018_2882061 crossref_primary_10_32604_cmc_2022_020655 crossref_primary_10_1109_TCSVT_2023_3283430 crossref_primary_10_1109_TMM_2024_3367599 crossref_primary_10_1007_s11063_022_11138_4 crossref_primary_10_1016_j_patcog_2023_110087 crossref_primary_10_1145_3567828 crossref_primary_10_1109_JIOT_2023_3345376 crossref_primary_10_1145_3567827 crossref_primary_10_2139_ssrn_4179223 crossref_primary_10_1016_j_neucom_2021_07_059 crossref_primary_10_1016_j_neucom_2024_129246 crossref_primary_10_1109_TPAMI_2022_3193611 crossref_primary_10_1007_s00521_022_07102_x crossref_primary_10_1016_j_jvcir_2024_104090 crossref_primary_10_1016_j_compeleceng_2022_108250 crossref_primary_10_1007_s00170_021_08319_1 crossref_primary_10_1162_pres_a_00408 crossref_primary_10_3390_jimaging11010017 crossref_primary_10_1177_09610006211063201 crossref_primary_10_1007_s10489_024_05664_y crossref_primary_10_1038_s41598_023_41231_0 crossref_primary_10_1109_TIP_2022_3195321 crossref_primary_10_1109_TPAMI_2022_3200399 crossref_primary_10_1016_j_neucom_2022_12_049 crossref_primary_10_1016_j_neunet_2022_06_032 crossref_primary_10_1016_j_neucom_2021_01_036 crossref_primary_10_1007_s00530_024_01445_2 crossref_primary_10_1109_TMM_2023_3333206 crossref_primary_10_1111_mice_12695 crossref_primary_10_1016_j_neucom_2024_128688 crossref_primary_10_3390_s21062227 crossref_primary_10_1007_s11042_023_15196_1 crossref_primary_10_1145_3596909 crossref_primary_10_1016_j_imavis_2021_104247 crossref_primary_10_1109_TIP_2020_3007826 crossref_primary_10_1109_TIP_2018_2877936 crossref_primary_10_1016_j_knosys_2024_112264 crossref_primary_10_1177_0954406220915210 crossref_primary_10_3390_electronics13204110 crossref_primary_10_1007_s11063_024_11598_w crossref_primary_10_1109_ACCESS_2021_3115476 crossref_primary_10_3390_s21030768 crossref_primary_10_2139_ssrn_4105116 crossref_primary_10_2339_politeknik_775185 crossref_primary_10_1007_s00146_022_01625_6 crossref_primary_10_3390_make3040051 crossref_primary_10_1109_TNNLS_2024_3377468 crossref_primary_10_1109_TCSVT_2023_3326692 crossref_primary_10_3390_s23177563 crossref_primary_10_1109_TIP_2021_3089361 crossref_primary_10_1587_transinf_2019MVP0008 crossref_primary_10_1016_j_patrec_2018_05_018 crossref_primary_10_1109_TCSVT_2021_3125701 crossref_primary_10_1109_TMM_2022_3163459 crossref_primary_10_3390_electronics11172674 crossref_primary_10_1145_3592096 crossref_primary_10_1109_TCSVT_2024_3414275 crossref_primary_10_1109_TPAMI_2023_3308571 crossref_primary_10_1007_s11042_021_11768_1 crossref_primary_10_1109_TMM_2022_3174344 crossref_primary_10_1109_TCSVT_2022_3201540 crossref_primary_10_1145_3402447 crossref_primary_10_1142_S1793351X2140002X crossref_primary_10_1109_TCAD_2022_3197536 crossref_primary_10_3390_s22218396 crossref_primary_10_1007_s11704_022_1154_1 crossref_primary_10_1109_ACCESS_2019_2940510 crossref_primary_10_1109_LSP_2020_3018914 crossref_primary_10_1016_j_cviu_2018_08_003 crossref_primary_10_1109_TMM_2023_3338082 crossref_primary_10_12677_CSA_2024_142019 crossref_primary_10_1016_j_cviu_2022_103416 crossref_primary_10_1016_j_cviu_2024_104109 crossref_primary_10_1016_j_neunet_2025_107140 crossref_primary_10_1016_j_patcog_2025_111421 crossref_primary_10_1109_ACCESS_2019_2961383 crossref_primary_10_1007_s10845_020_01606_w crossref_primary_10_1007_s11554_024_01454_4 crossref_primary_10_1109_TPAMI_2024_3356548 crossref_primary_10_1109_TMM_2024_3521799 crossref_primary_10_1109_TMM_2024_3379887 crossref_primary_10_1007_s11227_024_06138_1 crossref_primary_10_1109_TIP_2021_3125258 crossref_primary_10_3390_electronics12234884 crossref_primary_10_3390_make3040049 crossref_primary_10_1109_TVCG_2024_3388521 crossref_primary_10_1016_j_biosystemseng_2020_04_005 crossref_primary_10_1016_j_patcog_2020_107686 crossref_primary_10_1016_j_knosys_2024_112523 crossref_primary_10_1109_TMM_2020_3014555 crossref_primary_10_1080_21681163_2022_2152377 crossref_primary_10_1016_j_cviu_2017_08_006 crossref_primary_10_1109_ACCESS_2018_2869751 crossref_primary_10_1109_TMM_2023_3338084 crossref_primary_10_1109_TIP_2022_3193752 crossref_primary_10_3390_electronics13061099 crossref_primary_10_1007_s10462_018_9651_1 crossref_primary_10_1109_TCSS_2024_3383270 crossref_primary_10_1109_TIP_2023_3328471 crossref_primary_10_1016_j_jvcir_2019_102628 crossref_primary_10_1145_3696415 crossref_primary_10_1109_TPAMI_2023_3311447 crossref_primary_10_3390_app12178557 crossref_primary_10_1007_s12652_020_02157_x crossref_primary_10_1016_j_cviu_2021_103242 crossref_primary_10_1007_s11227_022_04973_8 crossref_primary_10_1145_3587931 crossref_primary_10_1177_30504554241301394 crossref_primary_10_1109_ACCESS_2024_3431227 crossref_primary_10_1109_TIP_2022_3191841 crossref_primary_10_1109_TVCG_2024_3456164 crossref_primary_10_1016_j_patcog_2023_109684 crossref_primary_10_1016_j_engappai_2022_105055 crossref_primary_10_1142_S0219467822500516 crossref_primary_10_1142_S0219691323500662 crossref_primary_10_1109_JIOT_2019_2911669 crossref_primary_10_1109_TPAMI_2020_3045007 crossref_primary_10_1109_TPAMI_2024_3395778 crossref_primary_10_3390_jimaging10090216 crossref_primary_10_1007_s00530_019_00635_7 crossref_primary_10_1016_j_neucom_2023_126617 crossref_primary_10_1109_TMM_2021_3058050 crossref_primary_10_1016_j_eswa_2022_118965 crossref_primary_10_1016_j_cviu_2024_104081 crossref_primary_10_1007_s40747_024_01343_0 crossref_primary_10_1109_TIP_2022_3217368 crossref_primary_10_1109_TPAMI_2023_3284853 crossref_primary_10_1109_TPAMI_2023_3287208 crossref_primary_10_1109_TNNLS_2022_3175480 crossref_primary_10_1007_s11063_022_11042_x crossref_primary_10_1007_s11063_023_11156_w crossref_primary_10_1016_j_jvcir_2021_103276 crossref_primary_10_1007_s00530_024_01511_9 crossref_primary_10_1016_j_eswa_2023_121330 crossref_primary_10_1109_ACCESS_2024_3438546 crossref_primary_10_1109_THMS_2023_3266037 crossref_primary_10_3390_jimaging10120307 crossref_primary_10_1016_j_patcog_2022_108718 crossref_primary_10_1061__ASCE_CP_1943_5487_0001024 crossref_primary_10_3390_jimaging8080207 crossref_primary_10_1007_s13735_019_00183_w crossref_primary_10_1109_TMM_2024_3405710 crossref_primary_10_12677_CSA_2023_134065 crossref_primary_10_1016_j_autcon_2024_105933 crossref_primary_10_1109_TMM_2024_3355628 crossref_primary_10_1109_JIOT_2022_3210378 crossref_primary_10_1109_TMM_2023_3313258 crossref_primary_10_1007_s11263_024_02279_1 crossref_primary_10_3390_app13127176 crossref_primary_10_1007_s10462_024_10934_9 crossref_primary_10_1109_TPAMI_2021_3100277 crossref_primary_10_1007_s00521_020_05587_y crossref_primary_10_1016_j_patcog_2023_109713 crossref_primary_10_1016_j_cviu_2023_103818 crossref_primary_10_1109_TMM_2018_2887021 crossref_primary_10_1007_s00530_023_01128_4 crossref_primary_10_1007_s11042_021_11093_7 crossref_primary_10_3390_data6020012 |
Cites_doi | 10.1007/s11263-013-0636-x 10.1007/s00138-012-0450-4 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.cviu.2016.10.018 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1090-235X |
EndPage | 23 |
ExternalDocumentID | oai_HAL_hal_01431525v1 10_1016_j_cviu_2016_10_018 S1077314216301710 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SST 1XC AFXIZ EFKBS VOOES |
ID | FETCH-LOGICAL-c400t-36883df1c800bd314805ccb8c2d4c5e3a26d4c83a955d458b8b7aa09d0bff12c3 |
IEDL.DBID | .~1 |
ISSN | 1077-3142 |
IngestDate | Wed Jul 23 06:30:31 EDT 2025 Tue Jul 01 04:32:05 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Fri Feb 23 02:26:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Action recognition THUMOS Dataset UCF101 Action localization Untrimmed videos Benchmark Action detection Untrimmed Videos Action Recognition Action Localization Action Detection |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-36883df1c800bd314805ccb8c2d4c5e3a26d4c83a955d458b8b7aa09d0bff12c3 |
ORCID | 0000-0002-9613-6580 |
OpenAccessLink | https://inria.hal.science/hal-01431525 |
PageCount | 23 |
ParticipantIDs | hal_primary_oai_HAL_hal_01431525v1 crossref_citationtrail_10_1016_j_cviu_2016_10_018 crossref_primary_10_1016_j_cviu_2016_10_018 elsevier_sciencedirect_doi_10_1016_j_cviu_2016_10_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computer vision and image understanding |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Wang, Schmid (bib0055) 2013 Tang, Fei-Fei, Koller (bib0052) 2012 Sánchez, Perronnin, Mensink, Verbeek (bib0041) 2013; 105 Satkin, Hebert (bib0042) 2010 Ke, Sukthankar, Hebert (bib0016) 2005 Ning, Wu (bib0027) 2015 Laptev, Marszalek, Schmid, Rozenfeld (bib0021) 2008 Liu, Luo, Shah (bib0023) 2009 Ryoo, Matthies (bib0040) 2013 Shou, Wang, Chang (bib0044) 2016 Qiu, Li, Yao, Mei, Rui (bib0035) 2015 Yu, Jiang, Mao, Chang, Du, Gan, Lan, Xu, Li, Cai (bib0061) 2014 Yuan, Pei, Ni, Moulin, Kassim (bib0063) 2015 Oneata, Verbeek, Schmid (bib0030) 2014 Pirsiavash, Ramanan (bib0034) 2014 Jiang, Liu, Zamir, Laptev, Piccardi, Shah, Sukthankar (bib0013) 2013 Peng, Schmid (bib0031) 2015 Simonyan, Zisserman (bib0046) 2014 Yuan, Liu, Wu (bib0062) 2009 Laptev, Pérez (bib0022) 2007 Marszałek, Laptev, Schmid (bib0025) 2009 Soomro, Zamir, Shah (bib0049) 2012 Ke, Sukthankar, Hebert (bib0017) 2007 Tian, Sukthankar, Shah (bib0053) 2013 Bojanowski, Lajugie, Bach, Laptev, Ponce, Schmid, Sivic (bib0003) 2014 Klaser, Marszałek, Schmid, Zisserman (bib0018) 2010 Soomro, Idrees, Shah (bib0047) 2015 Jain, van Gemert, Mettes, Snoek, ISLA (bib0011) 2015 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0051) 2015 Ayache, Quénot (bib0001) 2008 Niebles, Chen, Li (bib0026) 2010 Chatfield, Simonyan, Vedaldi, Zisserman (bib0006) 2014 Jiang, Liu, Zamir, Toderici, Laptev, Shah, Sukthankar (bib0014) 2014 Gorban, Idrees, Jiang, Roshan Zamir, Laptev, Shah, Sukthankar (bib0009) 2015 Cai, Tian (bib0005) 2015 Lan, Lin, Li, Hauptmann, Raj (bib0020) 2015 Oneata, Verbeek, Schmid (bib0029) 2013 Zeiler, Fergus (bib0064) 2014 Weinland, Boyer, Ronfard (bib0057) 2007 Yilmaz, Aslam (bib0060) 2006 Hoai, Lan, De la Torre (bib0010) 2011 Perronnin, Sánchez, Mensink (bib0032) 2010 Soomro, Idrees, Shah (bib0048) 2016 Pirsiavash, Ramanan (bib0033) 2012 Blank, Gorelick, Shechtman, Irani, Basri (bib0002) 2005 Duchenne, Laptev, Sivic, Bach, Ponce (bib0007) 2009 Xu, Yang, Hauptmann (bib0058) 2015 Simonyan, Zisserman (bib0045) 2014 Caba Heilbron, Escorcia, Ghanem, Carlos Niebles (bib0004) 2015 Xu, Zhu, Yang, Hauptmann (bib0059) 2015 Liu, Fan, Zhao, Xu, Han (bib0024) 2015 Reddy, Shah (bib0037) 2013; 24 Wang, Wang, Xiong, Qiao (bib0056) 2015 Ohnishi, Harada (bib0028) 2015 Kuehne, Jhuang, Garrote, Poggio, Serre (bib0019) 2011 Jégou, Douze, Schmid, Pérez (bib0012) 2010 Rodriguez, Ahmed, Shah (bib0039) 2008 Gan, Sun, Kovvuri, Nevatia (bib0008) 2015 Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei (bib0015) 2014 Raptis, Sigal (bib0036) 2013 Schuldt, Laptev, Caputo (bib0043) 2004 Richard, Gall (bib0038) 2016 Tran, Bourdev, Fergus, Torresani, Paluri (bib0054) 2015 Strassel, Morris, Fiscus, Caruso, Lee, Over, Fiumara, Shaw, Antonishek, Michel (bib0050) 2012 Peng (10.1016/j.cviu.2016.10.018_bib0031) 2015 Gorban (10.1016/j.cviu.2016.10.018_sbref0009) 2015 Oneata (10.1016/j.cviu.2016.10.018_bib0029) 2013 Reddy (10.1016/j.cviu.2016.10.018_bib0037) 2013; 24 Soomro (10.1016/j.cviu.2016.10.018_bib0047) 2015 Simonyan (10.1016/j.cviu.2016.10.018_bib0046) 2014 Pirsiavash (10.1016/j.cviu.2016.10.018_bib0033) 2012 Wang (10.1016/j.cviu.2016.10.018_bib0055) 2013 Bojanowski (10.1016/j.cviu.2016.10.018_bib0003) 2014 Ohnishi (10.1016/j.cviu.2016.10.018_bib0028) 2015 Tang (10.1016/j.cviu.2016.10.018_bib0052) 2012 Jiang (10.1016/j.cviu.2016.10.018_sbref0013) 2013 Gan (10.1016/j.cviu.2016.10.018_bib0008) 2015 Shou (10.1016/j.cviu.2016.10.018_bib0044) 2016 Zeiler (10.1016/j.cviu.2016.10.018_bib0064) 2014 Cai (10.1016/j.cviu.2016.10.018_bib0005) 2015 Ryoo (10.1016/j.cviu.2016.10.018_bib0040) 2013 Liu (10.1016/j.cviu.2016.10.018_bib0024) 2015 Szegedy (10.1016/j.cviu.2016.10.018_bib0051) 2015 Lan (10.1016/j.cviu.2016.10.018_bib0020) 2015 Pirsiavash (10.1016/j.cviu.2016.10.018_bib0034) 2014 Laptev (10.1016/j.cviu.2016.10.018_bib0022) 2007 Satkin (10.1016/j.cviu.2016.10.018_bib0042) 2010 Duchenne (10.1016/j.cviu.2016.10.018_bib0007) 2009 Perronnin (10.1016/j.cviu.2016.10.018_bib0032) 2010 Raptis (10.1016/j.cviu.2016.10.018_bib0036) 2013 Xu (10.1016/j.cviu.2016.10.018_bib0058) 2015 Yuan (10.1016/j.cviu.2016.10.018_bib0062) 2009 Wang (10.1016/j.cviu.2016.10.018_bib0056) 2015 Tian (10.1016/j.cviu.2016.10.018_bib0053) 2013 Jégou (10.1016/j.cviu.2016.10.018_bib0012) 2010 Yu (10.1016/j.cviu.2016.10.018_bib0061) 2014 Yuan (10.1016/j.cviu.2016.10.018_bib0063) 2015 Marszałek (10.1016/j.cviu.2016.10.018_bib0025) 2009 Chatfield (10.1016/j.cviu.2016.10.018_bib0006) 2014 Ayache (10.1016/j.cviu.2016.10.018_bib0001) 2008 Schuldt (10.1016/j.cviu.2016.10.018_bib0043) 2004 Ke (10.1016/j.cviu.2016.10.018_bib0016) 2005 Strassel (10.1016/j.cviu.2016.10.018_bib0050) 2012 Klaser (10.1016/j.cviu.2016.10.018_bib0018) 2010 Sánchez (10.1016/j.cviu.2016.10.018_bib0041) 2013; 105 Tran (10.1016/j.cviu.2016.10.018_bib0054) 2015 Xu (10.1016/j.cviu.2016.10.018_bib0059) 2015 Blank (10.1016/j.cviu.2016.10.018_bib0002) 2005 Jain (10.1016/j.cviu.2016.10.018_bib0011) 2015 Soomro (10.1016/j.cviu.2016.10.018_bib0048) 2016 Ning (10.1016/j.cviu.2016.10.018_bib0027) 2015 Liu (10.1016/j.cviu.2016.10.018_bib0023) 2009 Simonyan (10.1016/j.cviu.2016.10.018_bib0045) 2014 Caba Heilbron (10.1016/j.cviu.2016.10.018_bib0004) 2015 Rodriguez (10.1016/j.cviu.2016.10.018_bib0039) 2008 Karpathy (10.1016/j.cviu.2016.10.018_bib0015) 2014 Yilmaz (10.1016/j.cviu.2016.10.018_bib0060) 2006 Weinland (10.1016/j.cviu.2016.10.018_bib0057) 2007 Qiu (10.1016/j.cviu.2016.10.018_bib0035) 2015 Laptev (10.1016/j.cviu.2016.10.018_bib0021) 2008 Kuehne (10.1016/j.cviu.2016.10.018_bib0019) 2011 Ke (10.1016/j.cviu.2016.10.018_bib0017) 2007 Niebles (10.1016/j.cviu.2016.10.018_bib0026) 2010 Hoai (10.1016/j.cviu.2016.10.018_bib0010) 2011 Jiang (10.1016/j.cviu.2016.10.018_sbref0014) 2014 Richard (10.1016/j.cviu.2016.10.018_bib0038) 2016 Soomro (10.1016/j.cviu.2016.10.018_bib0049) 2012 Oneata (10.1016/j.cviu.2016.10.018_bib0030) 2014 |
References_xml | – year: 2014 ident: bib0006 article-title: Return of the devil in the details: Delving deep into convolutional nets publication-title: BMVC – year: 2013 ident: bib0029 article-title: Action and event recognition with Fisher vectors on a compact feature set publication-title: IEEE ICCV – year: 2013 ident: bib0013 article-title: THUMOS’13: ICCV workshop on action recognition with a large number of classes – year: 2014 ident: bib0015 article-title: Large-scale video classification with convolutional neural networks publication-title: IEEE CVPR – start-page: 187 year: 2008 end-page: 198 ident: bib0001 article-title: Video corpus annotation using active learning publication-title: European Conference on Information Retrieval – year: 2014 ident: bib0046 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – year: 2012 ident: bib0052 article-title: Learning latent temporal structure for complex event detection publication-title: IEEE CVPR – year: 2006 ident: bib0060 article-title: Estimating average precision with incomplete and imperfect judgments publication-title: Proceedings of the 15th ACM International Conference on Information and Knowledge Management – year: 2015 ident: bib0035 article-title: MSR Asia MSM at THUMOS challenge 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2014 ident: bib0030 article-title: Efficient action localization with approximately normalized fisher vectors publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2016 ident: bib0044 article-title: Action temporal localization in untrimmed videos via multi-stage cnns publication-title: IEEE CVPR – year: 2015 ident: bib0059 article-title: UTS-CMU at THUMOS 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2014 ident: bib0061 article-title: Informedia@ trecvid 2014 med and mer publication-title: NIST TRECVID Video Retrieval Evaluation Workshop – year: 2012 ident: bib0050 article-title: Creating havic: Heterogeneous audio visual internet collection publication-title: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12) – year: 2012 ident: bib0033 article-title: Detecting activities of daily living in first-person camera views publication-title: IEEE CVPR – year: 2013 ident: bib0036 article-title: Poselet key-framing: a model for human activity recognition publication-title: IEEE CVPR – year: 2005 ident: bib0016 article-title: Efficient visual event detection using volumetric features publication-title: IEEE ICCV – year: 2015 ident: bib0008 article-title: USC & THU at THUMOS 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2015 ident: bib0054 article-title: Learning spatiotemporal features with 3d convolutional networks publication-title: ICCV – year: 2015 ident: bib0020 article-title: Beyond gaussian pyramid: multi-skip feature stacking for action recognition publication-title: IEEE CVPR – year: 2011 ident: bib0010 article-title: Joint segmentation and classification of human actions in video publication-title: IEEE CVPR – volume: 105 start-page: 222 year: 2013 end-page: 245 ident: bib0041 article-title: Image classification with the fisher vector: theory and practice publication-title: IJCV – year: 2015 ident: bib0011 article-title: University of Amsterdam at THUMOS 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2010 ident: bib0032 article-title: Improving the fisher kernel for large-scale image classification publication-title: ECCV – year: 2007 ident: bib0017 article-title: Event detection in crowded videos publication-title: IEEE ICCV – year: 2009 ident: bib0023 article-title: Recognizing realistic actions from videos “in the wild” publication-title: IEEE CVPR – year: 2015 ident: bib0027 article-title: ZJUDCD submission at THUMOS challenge 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2014 ident: bib0034 article-title: Parsing videos of actions with segmental grammars publication-title: IEEE CVPR – year: 2015 ident: bib0005 article-title: UTSA submission to THUMOS 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2015 ident: bib0051 article-title: Going deeper with convolutions publication-title: IEEE CVPR – year: 2015 ident: bib0024 article-title: Tianjin University submission at THUMOS challenge 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2016 ident: bib0038 article-title: Temporal action detection using a statistical language model – year: 2010 ident: bib0042 article-title: Modeling the temporal extent of actions publication-title: ECCV – year: 2014 ident: bib0045 article-title: Two-stream convolutional networks for action recognition in videos publication-title: NIPS – year: 2015 ident: bib0063 article-title: Adsc submission at thumos challenge 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2009 ident: bib0007 article-title: Automatic annotation of human actions in video publication-title: IEEE ICCV – year: 2015 ident: bib0028 article-title: Mil-utokyo at thumos challenge 2015 publication-title: THUMOS’15 Action Recognition Challenge – year: 2013 ident: bib0053 article-title: Spatiotemporal deformable part models for action detection publication-title: IEEE CVPR – year: 2011 ident: bib0019 article-title: HMDB: a large video database for human motion recognition publication-title: IEEE ICCV – year: 2015 ident: bib0047 article-title: Action localization in videos through context walk publication-title: IEEE ICCV – year: 2013 ident: bib0040 article-title: First-person activity recognition: what are they doing to me? publication-title: IEEE CVPR – year: 2014 ident: bib0064 article-title: Visualizing and understanding convolutional networks publication-title: ECCV – year: 2014 ident: bib0014 article-title: THUMOS’14: ECCV workshop on action recognition with a large number of classes – year: 2009 ident: bib0025 article-title: Actions in context publication-title: IEEE CVPR – year: 2007 ident: bib0022 article-title: Retrieving actions in movies publication-title: IEEE ICCV – year: 2010 ident: bib0012 article-title: Aggregating local descriptors into a compact image representation publication-title: IEEE CVPR – volume: 24 start-page: 971 year: 2013 end-page: 981 ident: bib0037 article-title: Recognizing 50 human action categories of web videos publication-title: Mach. Vis Appl. – year: 2016 ident: bib0048 article-title: Predicting the where and what of actors and actions through online action localization publication-title: CVPR – year: 2015 ident: bib0009 article-title: THUMOS challenge: action recognition with a large number of classes – year: 2015 ident: bib0031 article-title: Encoding feature maps of CNNs for action recognition publication-title: THUMOS’15 Action Recognition Challenge – year: 2009 ident: bib0062 article-title: Discriminative subvolume search for efficient action detection publication-title: IEEE CVPR – year: 2015 ident: bib0058 article-title: A discriminative cnn video representation for event detection publication-title: IEEE CVPR – year: 2014 ident: bib0003 article-title: Weakly supervised action labeling in videos under ordering constraints publication-title: ECCV – start-page: 1 year: 2007 end-page: 7 ident: bib0057 article-title: Action recognition from arbitrary views using 3d exemplars publication-title: 2007 IEEE 11th International Conference on Computer Vision – year: 2012 ident: bib0049 article-title: UCF101: A Dataset of 101 Human Action Classes from Videos in the Wild publication-title: Technical Report CRCV-TR-12-01 – year: 2015 ident: bib0056 article-title: CUHK&SIAT submission for THUMOS’15 action recognition challenge publication-title: THUMOS’15 Action Recognition Challenge – year: 2015 ident: bib0004 article-title: Activitynet: a large-scale video benchmark for human activity understanding publication-title: IEEE CVPR – year: 2008 ident: bib0039 article-title: Action MACH: a spatio-temporal maximum average correlation height filter for action recognition publication-title: IEEE CVPR – year: 2013 ident: bib0055 article-title: Action recognition with improved trajectories publication-title: IEEE ICCV – year: 2008 ident: bib0021 article-title: Learning realistic human actions from movies publication-title: IEEE CVPR – year: 2010 ident: bib0026 article-title: Modeling temporal structure of decomposable motion segments for activity classification publication-title: ECCV – year: 2004 ident: bib0043 article-title: Recognizing human actions: a local SVM approach publication-title: ICPR – year: 2005 ident: bib0002 article-title: Actions as space-time shapes publication-title: IEEE ICCV – year: 2010 ident: bib0018 article-title: Human focused action localization in video publication-title: International Workshop on Sign, Gesture, and Activity (SGA), ECCV Workshops – year: 2010 ident: 10.1016/j.cviu.2016.10.018_bib0012 article-title: Aggregating local descriptors into a compact image representation – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0045 article-title: Two-stream convolutional networks for action recognition in videos – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0028 article-title: Mil-utokyo at thumos challenge 2015 – year: 2012 ident: 10.1016/j.cviu.2016.10.018_bib0050 article-title: Creating havic: Heterogeneous audio visual internet collection – year: 2007 ident: 10.1016/j.cviu.2016.10.018_bib0022 article-title: Retrieving actions in movies – start-page: 1 year: 2007 ident: 10.1016/j.cviu.2016.10.018_bib0057 article-title: Action recognition from arbitrary views using 3d exemplars – year: 2009 ident: 10.1016/j.cviu.2016.10.018_bib0025 article-title: Actions in context – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0054 article-title: Learning spatiotemporal features with 3d convolutional networks – year: 2009 ident: 10.1016/j.cviu.2016.10.018_bib0023 article-title: Recognizing realistic actions from videos “in the wild” – year: 2012 ident: 10.1016/j.cviu.2016.10.018_bib0052 article-title: Learning latent temporal structure for complex event detection – year: 2010 ident: 10.1016/j.cviu.2016.10.018_bib0032 article-title: Improving the fisher kernel for large-scale image classification – year: 2008 ident: 10.1016/j.cviu.2016.10.018_bib0021 article-title: Learning realistic human actions from movies – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0031 article-title: Encoding feature maps of CNNs for action recognition – year: 2011 ident: 10.1016/j.cviu.2016.10.018_bib0019 article-title: HMDB: a large video database for human motion recognition – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0035 article-title: MSR Asia MSM at THUMOS challenge 2015 – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0003 article-title: Weakly supervised action labeling in videos under ordering constraints – year: 2013 ident: 10.1016/j.cviu.2016.10.018_bib0036 article-title: Poselet key-framing: a model for human activity recognition – year: 2015 ident: 10.1016/j.cviu.2016.10.018_sbref0009 – year: 2007 ident: 10.1016/j.cviu.2016.10.018_bib0017 article-title: Event detection in crowded videos – year: 2013 ident: 10.1016/j.cviu.2016.10.018_bib0040 article-title: First-person activity recognition: what are they doing to me? – year: 2010 ident: 10.1016/j.cviu.2016.10.018_bib0042 article-title: Modeling the temporal extent of actions – year: 2004 ident: 10.1016/j.cviu.2016.10.018_bib0043 article-title: Recognizing human actions: a local SVM approach – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0051 article-title: Going deeper with convolutions – year: 2013 ident: 10.1016/j.cviu.2016.10.018_bib0029 article-title: Action and event recognition with Fisher vectors on a compact feature set – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0030 article-title: Efficient action localization with approximately normalized fisher vectors – year: 2011 ident: 10.1016/j.cviu.2016.10.018_bib0010 article-title: Joint segmentation and classification of human actions in video – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0011 article-title: University of Amsterdam at THUMOS 2015 – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0008 article-title: USC & THU at THUMOS 2015 – year: 2012 ident: 10.1016/j.cviu.2016.10.018_bib0033 article-title: Detecting activities of daily living in first-person camera views – year: 2016 ident: 10.1016/j.cviu.2016.10.018_bib0048 article-title: Predicting the where and what of actors and actions through online action localization – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0034 article-title: Parsing videos of actions with segmental grammars – year: 2010 ident: 10.1016/j.cviu.2016.10.018_bib0018 article-title: Human focused action localization in video – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0005 article-title: UTSA submission to THUMOS 2015 – year: 2012 ident: 10.1016/j.cviu.2016.10.018_bib0049 article-title: UCF101: A Dataset of 101 Human Action Classes from Videos in the Wild – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0058 article-title: A discriminative cnn video representation for event detection – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0006 article-title: Return of the devil in the details: Delving deep into convolutional nets – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0004 article-title: Activitynet: a large-scale video benchmark for human activity understanding – year: 2016 ident: 10.1016/j.cviu.2016.10.018_bib0038 – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0059 article-title: UTS-CMU at THUMOS 2015 – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0047 article-title: Action localization in videos through context walk – year: 2010 ident: 10.1016/j.cviu.2016.10.018_bib0026 article-title: Modeling temporal structure of decomposable motion segments for activity classification – start-page: 187 year: 2008 ident: 10.1016/j.cviu.2016.10.018_bib0001 article-title: Video corpus annotation using active learning – year: 2009 ident: 10.1016/j.cviu.2016.10.018_bib0062 article-title: Discriminative subvolume search for efficient action detection – year: 2016 ident: 10.1016/j.cviu.2016.10.018_bib0044 article-title: Action temporal localization in untrimmed videos via multi-stage cnns – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0063 article-title: Adsc submission at thumos challenge 2015 – year: 2006 ident: 10.1016/j.cviu.2016.10.018_bib0060 article-title: Estimating average precision with incomplete and imperfect judgments – year: 2014 ident: 10.1016/j.cviu.2016.10.018_sbref0014 – volume: 105 start-page: 222 issue: 3 year: 2013 ident: 10.1016/j.cviu.2016.10.018_bib0041 article-title: Image classification with the fisher vector: theory and practice publication-title: IJCV doi: 10.1007/s11263-013-0636-x – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0061 article-title: Informedia@ trecvid 2014 med and mer – year: 2009 ident: 10.1016/j.cviu.2016.10.018_bib0007 article-title: Automatic annotation of human actions in video – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0046 article-title: Very deep convolutional networks for large-scale image recognition – volume: 24 start-page: 971 issue: 5 year: 2013 ident: 10.1016/j.cviu.2016.10.018_bib0037 article-title: Recognizing 50 human action categories of web videos publication-title: Mach. Vis Appl. doi: 10.1007/s00138-012-0450-4 – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0015 article-title: Large-scale video classification with convolutional neural networks – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0027 article-title: ZJUDCD submission at THUMOS challenge 2015 – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0056 article-title: CUHK&SIAT submission for THUMOS’15 action recognition challenge – year: 2008 ident: 10.1016/j.cviu.2016.10.018_bib0039 article-title: Action MACH: a spatio-temporal maximum average correlation height filter for action recognition – year: 2013 ident: 10.1016/j.cviu.2016.10.018_bib0053 article-title: Spatiotemporal deformable part models for action detection – year: 2013 ident: 10.1016/j.cviu.2016.10.018_bib0055 article-title: Action recognition with improved trajectories – year: 2005 ident: 10.1016/j.cviu.2016.10.018_bib0002 article-title: Actions as space-time shapes – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0020 article-title: Beyond gaussian pyramid: multi-skip feature stacking for action recognition – year: 2014 ident: 10.1016/j.cviu.2016.10.018_bib0064 article-title: Visualizing and understanding convolutional networks – year: 2013 ident: 10.1016/j.cviu.2016.10.018_sbref0013 – year: 2005 ident: 10.1016/j.cviu.2016.10.018_bib0016 article-title: Efficient visual event detection using volumetric features – year: 2015 ident: 10.1016/j.cviu.2016.10.018_bib0024 article-title: Tianjin University submission at THUMOS challenge 2015 |
SSID | ssj0011491 |
Score | 2.6572232 |
Snippet | •THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition.•In this paper we describe the THUMOS benchmark in detail.•Give an... Automatically recognizing and localizing wide ranges of human actions are crucial for video understanding. Towards this goal, the THUMOS challenge was... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Action detection Action localization Action recognition Benchmark Computer Science Computer Vision and Pattern Recognition Dataset THUMOS UCF101 Untrimmed videos |
Title | The THUMOS challenge on action recognition for videos “in the wild” |
URI | https://dx.doi.org/10.1016/j.cviu.2016.10.018 https://inria.hal.science/hal-01431525 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gXvTgAzXig2yMN1PoY1u2R0LE-gAPQMKt6e6WiDGFyONo-CH65_glzrRboonh4G0z2W2b2dmdb5pvZgi5BifhDj1PGqZvK4MJXxnCVcwYWjIWSihTOZjv3O54QZ89DNxBgTTzXBikVeq7P7vT09taS2pam7XJaFTrQuBSdyxmA6LAoi8YtzNWRyuvfqxpHgD30655ONnA2TpxJuN4ycVojvQur4oML2z88bdz2nrJf7Ombqd1QPY0XqSN7JMOSSFOSmRfY0eqT-YURHl7hlxWIrs_ag0ekTswCNoL-u3nLpV5BxU6TmiW2UDXTCIYA5ClmJ83ntLV8nOUUECJFEC1Wi2_jkm_ddtrBobuomBIOJ8zw_E4dxToHqChUKACbrpSCi5txaQbO5HtwYA7ke_CJrlccFGPItNXphgOLVs6J6SYjJP4lFDOuM9jL1ZpnUAmhSUhAOKmVPXIh1CsTKxcfaHUJcax08VbmHPJXkNUeYgqRxmovExu1msmWYGNjbPdfFfCX2YSggfYuO4KNLt-AdbUDhpPIcqwwCE2gVpYZ_98-DnZsdHZp1zuC1Kcvc_jS4AqM1FJbbFCthv3j0HnGzOF5-Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6KsFoITCs1e58ABsQVo4UArcQuxnYoilCK6IC6ID4Gv4I_4EmYSpwIJcUDiZo1ixxpPxm-iNzMAm3hJeE3fl4YZ2MpwRaAM4SnXaFoyEUooUzmU71w798OGe3rlXQ3Be5ELQ7RK7ftzn555ay0pa22W71ut8iUGLhXHcm1EFFT0xdTMyrPk6RHjts7uyQEe8pZtHx3W90NDtxYwJBpt13B8zh2FG0K8JBSuwk1PSsGlrVzpJU5s-zjgThx4uHOPCy4qcWwGyhTNpmVLB9cdhlEX3QW1Tdh5HvBKML7I2vTR7gzans7UyUllst_qEZ_M3yFKGXUa-fk2HL4p_utm99zRNExqgMr2ch3MwFCSzsKUBqtMu4IOiop-EIVsFia-FDecg2O0QFYPG7WLSyaLli2snbI8lYINqEs4RuTMKCGw3WEfL6-tlCEsZYji1cfL2zw0_kW3CzCSttNkERh3ecATP1FZYUJXCktixMVNqSpxgLFfCaxCfZHUNc2ptcZdVJDXbiNSeUQqJxmqvATbgzn3eUWPX5_2ilOJvtllhFfOr_M2ULODF1AR73CvGpGMKipS16m-tfTHxddhLKzXqlH15PxsGcZtQhoZkXwFRroPvWQVcVJXrGV2yeD6vz-ETzoXI_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+THUMOS+challenge+on+action+recognition+for+videos+%22in+the+wild%22&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Idrees%2C+Haroon+R&rft.au=Zamir%2C+Amir+R&rft.au=Jiang%2C+Yu-Gang&rft.au=Gorban%2C+Alex+R&rft.date=2017-02-01&rft.pub=Elsevier&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016%2Fj.cviu.2016.10.018&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01431525v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |