The THUMOS challenge on action recognition for videos “in the wild”

•THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition.•In this paper we describe the THUMOS benchmark in detail.•Give an overview of data collection and annotation procedures.•Present results of submissions to the THUMOS 2015 challenge and review the participating a...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 155; pp. 1 - 23
Main Authors Idrees, Haroon, Zamir, Amir R., Jiang, Yu-Gang, Gorban, Alex, Laptev, Ivan, Sukthankar, Rahul, Shah, Mubarak
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition.•In this paper we describe the THUMOS benchmark in detail.•Give an overview of data collection and annotation procedures.•Present results of submissions to the THUMOS 2015 challenge and review the participating approaches.•We conclude by proposing several directions and improvements for future THUMOS challenges. Automatically recognizing and localizing wide ranges of human actions are crucial for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include ‘background videos’ which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013–2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal action detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges.
AbstractList Automatically recognizing and localizing wide ranges of human actions are crucial for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition , including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include 'background videos' which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013–2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal action detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and $ www.thumos.info untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges.
•THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition.•In this paper we describe the THUMOS benchmark in detail.•Give an overview of data collection and annotation procedures.•Present results of submissions to the THUMOS 2015 challenge and review the participating approaches.•We conclude by proposing several directions and improvements for future THUMOS challenges. Automatically recognizing and localizing wide ranges of human actions are crucial for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include ‘background videos’ which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013–2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal action detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges.
Author Laptev, Ivan
Shah, Mubarak
Jiang, Yu-Gang
Zamir, Amir R.
Idrees, Haroon
Gorban, Alex
Sukthankar, Rahul
Author_xml – sequence: 1
  givenname: Haroon
  orcidid: 0000-0002-9613-6580
  surname: Idrees
  fullname: Idrees, Haroon
  email: haroon@cs.ucf.edu
  organization: Center for Research in Computer Vision, University of Central Florida, Orlando, FL, USA
– sequence: 2
  givenname: Amir R.
  surname: Zamir
  fullname: Zamir, Amir R.
  organization: Department of Computer Science, Stanford University, Stanford, CA, USA
– sequence: 3
  givenname: Yu-Gang
  surname: Jiang
  fullname: Jiang, Yu-Gang
  organization: School of Computer Science, Fudan University, Shanghai, China
– sequence: 4
  givenname: Alex
  surname: Gorban
  fullname: Gorban, Alex
  organization: Google Research, Mountain View, CA, USA
– sequence: 5
  givenname: Ivan
  surname: Laptev
  fullname: Laptev, Ivan
  organization: INRIA-Paris, WILLOW project-team, ENS/INRIA/CNRS UMR 8548, Paris, France
– sequence: 6
  givenname: Rahul
  surname: Sukthankar
  fullname: Sukthankar, Rahul
  organization: Google Research, Mountain View, CA, USA
– sequence: 7
  givenname: Mubarak
  surname: Shah
  fullname: Shah, Mubarak
  organization: Center for Research in Computer Vision, University of Central Florida, Orlando, FL, USA
BackLink https://inria.hal.science/hal-01431525$$DView record in HAL
BookMark eNp9kLFOwzAQhi1UJNrCCzBlZUg423HrSCxVBS1SUQdaic1ybKd1FWLkhCC2Pgi8XJ8Eh8LCwHS_TvfZd98A9SpXGYQuMSQY8Oh6l6jWviYk5NBIAPMT1MeQQUwoe-p1eTyOKU7JGRrU9Q4A4zTDfTRbbU20mq8flo-R2sqyNNXGRK6KpGpsKN4ot6nsdy6cj1qrjaujw_7DVlET2Ddb6sP-8xydFrKszcVPHaL13e1qOo8Xy9n9dLKIVQrQxHTEOdUFVhwg12EfDkypnCuiU8UMlWQUAqcyY0ynjOc8H0sJmYa8KDBRdIiuju-GXcWLt8_SvwsnrZhPFqLrAU4pZoS1OMzy46zyrq69KYSyjexOaby0pcAgOnliJzp5opPX9YK8gJI_6O9f_0I3R8gEAa01XtTKmkoZbYPGRmhn_8O_AKvvi6I
CitedBy_id crossref_primary_10_1016_j_future_2024_107668
crossref_primary_10_1109_TNNLS_2017_2740318
crossref_primary_10_1167_jov_24_11_6
crossref_primary_10_1109_TPAMI_2018_2868668
crossref_primary_10_1145_3466181
crossref_primary_10_12677_CSA_2023_133062
crossref_primary_10_1007_s11042_024_18554_9
crossref_primary_10_1016_j_ins_2023_02_047
crossref_primary_10_1109_TMM_2022_3232034
crossref_primary_10_1016_j_cviu_2018_09_006
crossref_primary_10_1186_s40537_021_00526_7
crossref_primary_10_1007_s11760_021_02039_5
crossref_primary_10_1109_TIP_2021_3099407
crossref_primary_10_1016_j_patcog_2023_109426
crossref_primary_10_1109_TCSVT_2023_3341881
crossref_primary_10_1007_s11042_023_17461_9
crossref_primary_10_1016_j_imavis_2022_104589
crossref_primary_10_1109_TCSVT_2018_2882061
crossref_primary_10_32604_cmc_2022_020655
crossref_primary_10_1109_TCSVT_2023_3283430
crossref_primary_10_1109_TMM_2024_3367599
crossref_primary_10_1007_s11063_022_11138_4
crossref_primary_10_1016_j_patcog_2023_110087
crossref_primary_10_1145_3567828
crossref_primary_10_1109_JIOT_2023_3345376
crossref_primary_10_1145_3567827
crossref_primary_10_2139_ssrn_4179223
crossref_primary_10_1016_j_neucom_2021_07_059
crossref_primary_10_1016_j_neucom_2024_129246
crossref_primary_10_1109_TPAMI_2022_3193611
crossref_primary_10_1007_s00521_022_07102_x
crossref_primary_10_1016_j_jvcir_2024_104090
crossref_primary_10_1016_j_compeleceng_2022_108250
crossref_primary_10_1007_s00170_021_08319_1
crossref_primary_10_1162_pres_a_00408
crossref_primary_10_3390_jimaging11010017
crossref_primary_10_1177_09610006211063201
crossref_primary_10_1007_s10489_024_05664_y
crossref_primary_10_1038_s41598_023_41231_0
crossref_primary_10_1109_TIP_2022_3195321
crossref_primary_10_1109_TPAMI_2022_3200399
crossref_primary_10_1016_j_neucom_2022_12_049
crossref_primary_10_1016_j_neunet_2022_06_032
crossref_primary_10_1016_j_neucom_2021_01_036
crossref_primary_10_1007_s00530_024_01445_2
crossref_primary_10_1109_TMM_2023_3333206
crossref_primary_10_1111_mice_12695
crossref_primary_10_1016_j_neucom_2024_128688
crossref_primary_10_3390_s21062227
crossref_primary_10_1007_s11042_023_15196_1
crossref_primary_10_1145_3596909
crossref_primary_10_1016_j_imavis_2021_104247
crossref_primary_10_1109_TIP_2020_3007826
crossref_primary_10_1109_TIP_2018_2877936
crossref_primary_10_1016_j_knosys_2024_112264
crossref_primary_10_1177_0954406220915210
crossref_primary_10_3390_electronics13204110
crossref_primary_10_1007_s11063_024_11598_w
crossref_primary_10_1109_ACCESS_2021_3115476
crossref_primary_10_3390_s21030768
crossref_primary_10_2139_ssrn_4105116
crossref_primary_10_2339_politeknik_775185
crossref_primary_10_1007_s00146_022_01625_6
crossref_primary_10_3390_make3040051
crossref_primary_10_1109_TNNLS_2024_3377468
crossref_primary_10_1109_TCSVT_2023_3326692
crossref_primary_10_3390_s23177563
crossref_primary_10_1109_TIP_2021_3089361
crossref_primary_10_1587_transinf_2019MVP0008
crossref_primary_10_1016_j_patrec_2018_05_018
crossref_primary_10_1109_TCSVT_2021_3125701
crossref_primary_10_1109_TMM_2022_3163459
crossref_primary_10_3390_electronics11172674
crossref_primary_10_1145_3592096
crossref_primary_10_1109_TCSVT_2024_3414275
crossref_primary_10_1109_TPAMI_2023_3308571
crossref_primary_10_1007_s11042_021_11768_1
crossref_primary_10_1109_TMM_2022_3174344
crossref_primary_10_1109_TCSVT_2022_3201540
crossref_primary_10_1145_3402447
crossref_primary_10_1142_S1793351X2140002X
crossref_primary_10_1109_TCAD_2022_3197536
crossref_primary_10_3390_s22218396
crossref_primary_10_1007_s11704_022_1154_1
crossref_primary_10_1109_ACCESS_2019_2940510
crossref_primary_10_1109_LSP_2020_3018914
crossref_primary_10_1016_j_cviu_2018_08_003
crossref_primary_10_1109_TMM_2023_3338082
crossref_primary_10_12677_CSA_2024_142019
crossref_primary_10_1016_j_cviu_2022_103416
crossref_primary_10_1016_j_cviu_2024_104109
crossref_primary_10_1016_j_neunet_2025_107140
crossref_primary_10_1016_j_patcog_2025_111421
crossref_primary_10_1109_ACCESS_2019_2961383
crossref_primary_10_1007_s10845_020_01606_w
crossref_primary_10_1007_s11554_024_01454_4
crossref_primary_10_1109_TPAMI_2024_3356548
crossref_primary_10_1109_TMM_2024_3521799
crossref_primary_10_1109_TMM_2024_3379887
crossref_primary_10_1007_s11227_024_06138_1
crossref_primary_10_1109_TIP_2021_3125258
crossref_primary_10_3390_electronics12234884
crossref_primary_10_3390_make3040049
crossref_primary_10_1109_TVCG_2024_3388521
crossref_primary_10_1016_j_biosystemseng_2020_04_005
crossref_primary_10_1016_j_patcog_2020_107686
crossref_primary_10_1016_j_knosys_2024_112523
crossref_primary_10_1109_TMM_2020_3014555
crossref_primary_10_1080_21681163_2022_2152377
crossref_primary_10_1016_j_cviu_2017_08_006
crossref_primary_10_1109_ACCESS_2018_2869751
crossref_primary_10_1109_TMM_2023_3338084
crossref_primary_10_1109_TIP_2022_3193752
crossref_primary_10_3390_electronics13061099
crossref_primary_10_1007_s10462_018_9651_1
crossref_primary_10_1109_TCSS_2024_3383270
crossref_primary_10_1109_TIP_2023_3328471
crossref_primary_10_1016_j_jvcir_2019_102628
crossref_primary_10_1145_3696415
crossref_primary_10_1109_TPAMI_2023_3311447
crossref_primary_10_3390_app12178557
crossref_primary_10_1007_s12652_020_02157_x
crossref_primary_10_1016_j_cviu_2021_103242
crossref_primary_10_1007_s11227_022_04973_8
crossref_primary_10_1145_3587931
crossref_primary_10_1177_30504554241301394
crossref_primary_10_1109_ACCESS_2024_3431227
crossref_primary_10_1109_TIP_2022_3191841
crossref_primary_10_1109_TVCG_2024_3456164
crossref_primary_10_1016_j_patcog_2023_109684
crossref_primary_10_1016_j_engappai_2022_105055
crossref_primary_10_1142_S0219467822500516
crossref_primary_10_1142_S0219691323500662
crossref_primary_10_1109_JIOT_2019_2911669
crossref_primary_10_1109_TPAMI_2020_3045007
crossref_primary_10_1109_TPAMI_2024_3395778
crossref_primary_10_3390_jimaging10090216
crossref_primary_10_1007_s00530_019_00635_7
crossref_primary_10_1016_j_neucom_2023_126617
crossref_primary_10_1109_TMM_2021_3058050
crossref_primary_10_1016_j_eswa_2022_118965
crossref_primary_10_1016_j_cviu_2024_104081
crossref_primary_10_1007_s40747_024_01343_0
crossref_primary_10_1109_TIP_2022_3217368
crossref_primary_10_1109_TPAMI_2023_3284853
crossref_primary_10_1109_TPAMI_2023_3287208
crossref_primary_10_1109_TNNLS_2022_3175480
crossref_primary_10_1007_s11063_022_11042_x
crossref_primary_10_1007_s11063_023_11156_w
crossref_primary_10_1016_j_jvcir_2021_103276
crossref_primary_10_1007_s00530_024_01511_9
crossref_primary_10_1016_j_eswa_2023_121330
crossref_primary_10_1109_ACCESS_2024_3438546
crossref_primary_10_1109_THMS_2023_3266037
crossref_primary_10_3390_jimaging10120307
crossref_primary_10_1016_j_patcog_2022_108718
crossref_primary_10_1061__ASCE_CP_1943_5487_0001024
crossref_primary_10_3390_jimaging8080207
crossref_primary_10_1007_s13735_019_00183_w
crossref_primary_10_1109_TMM_2024_3405710
crossref_primary_10_12677_CSA_2023_134065
crossref_primary_10_1016_j_autcon_2024_105933
crossref_primary_10_1109_TMM_2024_3355628
crossref_primary_10_1109_JIOT_2022_3210378
crossref_primary_10_1109_TMM_2023_3313258
crossref_primary_10_1007_s11263_024_02279_1
crossref_primary_10_3390_app13127176
crossref_primary_10_1007_s10462_024_10934_9
crossref_primary_10_1109_TPAMI_2021_3100277
crossref_primary_10_1007_s00521_020_05587_y
crossref_primary_10_1016_j_patcog_2023_109713
crossref_primary_10_1016_j_cviu_2023_103818
crossref_primary_10_1109_TMM_2018_2887021
crossref_primary_10_1007_s00530_023_01128_4
crossref_primary_10_1007_s11042_021_11093_7
crossref_primary_10_3390_data6020012
Cites_doi 10.1007/s11263-013-0636-x
10.1007/s00138-012-0450-4
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.cviu.2016.10.018
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
EndPage 23
ExternalDocumentID oai_HAL_hal_01431525v1
10_1016_j_cviu_2016_10_018
S1077314216301710
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SST
1XC
AFXIZ
EFKBS
VOOES
ID FETCH-LOGICAL-c400t-36883df1c800bd314805ccb8c2d4c5e3a26d4c83a955d458b8b7aa09d0bff12c3
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Wed Jul 23 06:30:31 EDT 2025
Tue Jul 01 04:32:05 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Fri Feb 23 02:26:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Action recognition
THUMOS
Dataset
UCF101
Action localization
Untrimmed videos
Benchmark
Action detection
Untrimmed Videos
Action Recognition
Action Localization
Action Detection
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-36883df1c800bd314805ccb8c2d4c5e3a26d4c83a955d458b8b7aa09d0bff12c3
ORCID 0000-0002-9613-6580
OpenAccessLink https://inria.hal.science/hal-01431525
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_01431525v1
crossref_citationtrail_10_1016_j_cviu_2016_10_018
crossref_primary_10_1016_j_cviu_2016_10_018
elsevier_sciencedirect_doi_10_1016_j_cviu_2016_10_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer vision and image understanding
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Wang, Schmid (bib0055) 2013
Tang, Fei-Fei, Koller (bib0052) 2012
Sánchez, Perronnin, Mensink, Verbeek (bib0041) 2013; 105
Satkin, Hebert (bib0042) 2010
Ke, Sukthankar, Hebert (bib0016) 2005
Ning, Wu (bib0027) 2015
Laptev, Marszalek, Schmid, Rozenfeld (bib0021) 2008
Liu, Luo, Shah (bib0023) 2009
Ryoo, Matthies (bib0040) 2013
Shou, Wang, Chang (bib0044) 2016
Qiu, Li, Yao, Mei, Rui (bib0035) 2015
Yu, Jiang, Mao, Chang, Du, Gan, Lan, Xu, Li, Cai (bib0061) 2014
Yuan, Pei, Ni, Moulin, Kassim (bib0063) 2015
Oneata, Verbeek, Schmid (bib0030) 2014
Pirsiavash, Ramanan (bib0034) 2014
Jiang, Liu, Zamir, Laptev, Piccardi, Shah, Sukthankar (bib0013) 2013
Peng, Schmid (bib0031) 2015
Simonyan, Zisserman (bib0046) 2014
Yuan, Liu, Wu (bib0062) 2009
Laptev, Pérez (bib0022) 2007
Marszałek, Laptev, Schmid (bib0025) 2009
Soomro, Zamir, Shah (bib0049) 2012
Ke, Sukthankar, Hebert (bib0017) 2007
Tian, Sukthankar, Shah (bib0053) 2013
Bojanowski, Lajugie, Bach, Laptev, Ponce, Schmid, Sivic (bib0003) 2014
Klaser, Marszałek, Schmid, Zisserman (bib0018) 2010
Soomro, Idrees, Shah (bib0047) 2015
Jain, van Gemert, Mettes, Snoek, ISLA (bib0011) 2015
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0051) 2015
Ayache, Quénot (bib0001) 2008
Niebles, Chen, Li (bib0026) 2010
Chatfield, Simonyan, Vedaldi, Zisserman (bib0006) 2014
Jiang, Liu, Zamir, Toderici, Laptev, Shah, Sukthankar (bib0014) 2014
Gorban, Idrees, Jiang, Roshan Zamir, Laptev, Shah, Sukthankar (bib0009) 2015
Cai, Tian (bib0005) 2015
Lan, Lin, Li, Hauptmann, Raj (bib0020) 2015
Oneata, Verbeek, Schmid (bib0029) 2013
Zeiler, Fergus (bib0064) 2014
Weinland, Boyer, Ronfard (bib0057) 2007
Yilmaz, Aslam (bib0060) 2006
Hoai, Lan, De la Torre (bib0010) 2011
Perronnin, Sánchez, Mensink (bib0032) 2010
Soomro, Idrees, Shah (bib0048) 2016
Pirsiavash, Ramanan (bib0033) 2012
Blank, Gorelick, Shechtman, Irani, Basri (bib0002) 2005
Duchenne, Laptev, Sivic, Bach, Ponce (bib0007) 2009
Xu, Yang, Hauptmann (bib0058) 2015
Simonyan, Zisserman (bib0045) 2014
Caba Heilbron, Escorcia, Ghanem, Carlos Niebles (bib0004) 2015
Xu, Zhu, Yang, Hauptmann (bib0059) 2015
Liu, Fan, Zhao, Xu, Han (bib0024) 2015
Reddy, Shah (bib0037) 2013; 24
Wang, Wang, Xiong, Qiao (bib0056) 2015
Ohnishi, Harada (bib0028) 2015
Kuehne, Jhuang, Garrote, Poggio, Serre (bib0019) 2011
Jégou, Douze, Schmid, Pérez (bib0012) 2010
Rodriguez, Ahmed, Shah (bib0039) 2008
Gan, Sun, Kovvuri, Nevatia (bib0008) 2015
Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei (bib0015) 2014
Raptis, Sigal (bib0036) 2013
Schuldt, Laptev, Caputo (bib0043) 2004
Richard, Gall (bib0038) 2016
Tran, Bourdev, Fergus, Torresani, Paluri (bib0054) 2015
Strassel, Morris, Fiscus, Caruso, Lee, Over, Fiumara, Shaw, Antonishek, Michel (bib0050) 2012
Peng (10.1016/j.cviu.2016.10.018_bib0031) 2015
Gorban (10.1016/j.cviu.2016.10.018_sbref0009) 2015
Oneata (10.1016/j.cviu.2016.10.018_bib0029) 2013
Reddy (10.1016/j.cviu.2016.10.018_bib0037) 2013; 24
Soomro (10.1016/j.cviu.2016.10.018_bib0047) 2015
Simonyan (10.1016/j.cviu.2016.10.018_bib0046) 2014
Pirsiavash (10.1016/j.cviu.2016.10.018_bib0033) 2012
Wang (10.1016/j.cviu.2016.10.018_bib0055) 2013
Bojanowski (10.1016/j.cviu.2016.10.018_bib0003) 2014
Ohnishi (10.1016/j.cviu.2016.10.018_bib0028) 2015
Tang (10.1016/j.cviu.2016.10.018_bib0052) 2012
Jiang (10.1016/j.cviu.2016.10.018_sbref0013) 2013
Gan (10.1016/j.cviu.2016.10.018_bib0008) 2015
Shou (10.1016/j.cviu.2016.10.018_bib0044) 2016
Zeiler (10.1016/j.cviu.2016.10.018_bib0064) 2014
Cai (10.1016/j.cviu.2016.10.018_bib0005) 2015
Ryoo (10.1016/j.cviu.2016.10.018_bib0040) 2013
Liu (10.1016/j.cviu.2016.10.018_bib0024) 2015
Szegedy (10.1016/j.cviu.2016.10.018_bib0051) 2015
Lan (10.1016/j.cviu.2016.10.018_bib0020) 2015
Pirsiavash (10.1016/j.cviu.2016.10.018_bib0034) 2014
Laptev (10.1016/j.cviu.2016.10.018_bib0022) 2007
Satkin (10.1016/j.cviu.2016.10.018_bib0042) 2010
Duchenne (10.1016/j.cviu.2016.10.018_bib0007) 2009
Perronnin (10.1016/j.cviu.2016.10.018_bib0032) 2010
Raptis (10.1016/j.cviu.2016.10.018_bib0036) 2013
Xu (10.1016/j.cviu.2016.10.018_bib0058) 2015
Yuan (10.1016/j.cviu.2016.10.018_bib0062) 2009
Wang (10.1016/j.cviu.2016.10.018_bib0056) 2015
Tian (10.1016/j.cviu.2016.10.018_bib0053) 2013
Jégou (10.1016/j.cviu.2016.10.018_bib0012) 2010
Yu (10.1016/j.cviu.2016.10.018_bib0061) 2014
Yuan (10.1016/j.cviu.2016.10.018_bib0063) 2015
Marszałek (10.1016/j.cviu.2016.10.018_bib0025) 2009
Chatfield (10.1016/j.cviu.2016.10.018_bib0006) 2014
Ayache (10.1016/j.cviu.2016.10.018_bib0001) 2008
Schuldt (10.1016/j.cviu.2016.10.018_bib0043) 2004
Ke (10.1016/j.cviu.2016.10.018_bib0016) 2005
Strassel (10.1016/j.cviu.2016.10.018_bib0050) 2012
Klaser (10.1016/j.cviu.2016.10.018_bib0018) 2010
Sánchez (10.1016/j.cviu.2016.10.018_bib0041) 2013; 105
Tran (10.1016/j.cviu.2016.10.018_bib0054) 2015
Xu (10.1016/j.cviu.2016.10.018_bib0059) 2015
Blank (10.1016/j.cviu.2016.10.018_bib0002) 2005
Jain (10.1016/j.cviu.2016.10.018_bib0011) 2015
Soomro (10.1016/j.cviu.2016.10.018_bib0048) 2016
Ning (10.1016/j.cviu.2016.10.018_bib0027) 2015
Liu (10.1016/j.cviu.2016.10.018_bib0023) 2009
Simonyan (10.1016/j.cviu.2016.10.018_bib0045) 2014
Caba Heilbron (10.1016/j.cviu.2016.10.018_bib0004) 2015
Rodriguez (10.1016/j.cviu.2016.10.018_bib0039) 2008
Karpathy (10.1016/j.cviu.2016.10.018_bib0015) 2014
Yilmaz (10.1016/j.cviu.2016.10.018_bib0060) 2006
Weinland (10.1016/j.cviu.2016.10.018_bib0057) 2007
Qiu (10.1016/j.cviu.2016.10.018_bib0035) 2015
Laptev (10.1016/j.cviu.2016.10.018_bib0021) 2008
Kuehne (10.1016/j.cviu.2016.10.018_bib0019) 2011
Ke (10.1016/j.cviu.2016.10.018_bib0017) 2007
Niebles (10.1016/j.cviu.2016.10.018_bib0026) 2010
Hoai (10.1016/j.cviu.2016.10.018_bib0010) 2011
Jiang (10.1016/j.cviu.2016.10.018_sbref0014) 2014
Richard (10.1016/j.cviu.2016.10.018_bib0038) 2016
Soomro (10.1016/j.cviu.2016.10.018_bib0049) 2012
Oneata (10.1016/j.cviu.2016.10.018_bib0030) 2014
References_xml – year: 2014
  ident: bib0006
  article-title: Return of the devil in the details: Delving deep into convolutional nets
  publication-title: BMVC
– year: 2013
  ident: bib0029
  article-title: Action and event recognition with Fisher vectors on a compact feature set
  publication-title: IEEE ICCV
– year: 2013
  ident: bib0013
  article-title: THUMOS’13: ICCV workshop on action recognition with a large number of classes
– year: 2014
  ident: bib0015
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: IEEE CVPR
– start-page: 187
  year: 2008
  end-page: 198
  ident: bib0001
  article-title: Video corpus annotation using active learning
  publication-title: European Conference on Information Retrieval
– year: 2014
  ident: bib0046
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– year: 2012
  ident: bib0052
  article-title: Learning latent temporal structure for complex event detection
  publication-title: IEEE CVPR
– year: 2006
  ident: bib0060
  article-title: Estimating average precision with incomplete and imperfect judgments
  publication-title: Proceedings of the 15th ACM International Conference on Information and Knowledge Management
– year: 2015
  ident: bib0035
  article-title: MSR Asia MSM at THUMOS challenge 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2014
  ident: bib0030
  article-title: Efficient action localization with approximately normalized fisher vectors
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2016
  ident: bib0044
  article-title: Action temporal localization in untrimmed videos via multi-stage cnns
  publication-title: IEEE CVPR
– year: 2015
  ident: bib0059
  article-title: UTS-CMU at THUMOS 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2014
  ident: bib0061
  article-title: Informedia@ trecvid 2014 med and mer
  publication-title: NIST TRECVID Video Retrieval Evaluation Workshop
– year: 2012
  ident: bib0050
  article-title: Creating havic: Heterogeneous audio visual internet collection
  publication-title: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12)
– year: 2012
  ident: bib0033
  article-title: Detecting activities of daily living in first-person camera views
  publication-title: IEEE CVPR
– year: 2013
  ident: bib0036
  article-title: Poselet key-framing: a model for human activity recognition
  publication-title: IEEE CVPR
– year: 2005
  ident: bib0016
  article-title: Efficient visual event detection using volumetric features
  publication-title: IEEE ICCV
– year: 2015
  ident: bib0008
  article-title: USC & THU at THUMOS 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2015
  ident: bib0054
  article-title: Learning spatiotemporal features with 3d convolutional networks
  publication-title: ICCV
– year: 2015
  ident: bib0020
  article-title: Beyond gaussian pyramid: multi-skip feature stacking for action recognition
  publication-title: IEEE CVPR
– year: 2011
  ident: bib0010
  article-title: Joint segmentation and classification of human actions in video
  publication-title: IEEE CVPR
– volume: 105
  start-page: 222
  year: 2013
  end-page: 245
  ident: bib0041
  article-title: Image classification with the fisher vector: theory and practice
  publication-title: IJCV
– year: 2015
  ident: bib0011
  article-title: University of Amsterdam at THUMOS 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2010
  ident: bib0032
  article-title: Improving the fisher kernel for large-scale image classification
  publication-title: ECCV
– year: 2007
  ident: bib0017
  article-title: Event detection in crowded videos
  publication-title: IEEE ICCV
– year: 2009
  ident: bib0023
  article-title: Recognizing realistic actions from videos “in the wild”
  publication-title: IEEE CVPR
– year: 2015
  ident: bib0027
  article-title: ZJUDCD submission at THUMOS challenge 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2014
  ident: bib0034
  article-title: Parsing videos of actions with segmental grammars
  publication-title: IEEE CVPR
– year: 2015
  ident: bib0005
  article-title: UTSA submission to THUMOS 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2015
  ident: bib0051
  article-title: Going deeper with convolutions
  publication-title: IEEE CVPR
– year: 2015
  ident: bib0024
  article-title: Tianjin University submission at THUMOS challenge 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2016
  ident: bib0038
  article-title: Temporal action detection using a statistical language model
– year: 2010
  ident: bib0042
  article-title: Modeling the temporal extent of actions
  publication-title: ECCV
– year: 2014
  ident: bib0045
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: NIPS
– year: 2015
  ident: bib0063
  article-title: Adsc submission at thumos challenge 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2009
  ident: bib0007
  article-title: Automatic annotation of human actions in video
  publication-title: IEEE ICCV
– year: 2015
  ident: bib0028
  article-title: Mil-utokyo at thumos challenge 2015
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2013
  ident: bib0053
  article-title: Spatiotemporal deformable part models for action detection
  publication-title: IEEE CVPR
– year: 2011
  ident: bib0019
  article-title: HMDB: a large video database for human motion recognition
  publication-title: IEEE ICCV
– year: 2015
  ident: bib0047
  article-title: Action localization in videos through context walk
  publication-title: IEEE ICCV
– year: 2013
  ident: bib0040
  article-title: First-person activity recognition: what are they doing to me?
  publication-title: IEEE CVPR
– year: 2014
  ident: bib0064
  article-title: Visualizing and understanding convolutional networks
  publication-title: ECCV
– year: 2014
  ident: bib0014
  article-title: THUMOS’14: ECCV workshop on action recognition with a large number of classes
– year: 2009
  ident: bib0025
  article-title: Actions in context
  publication-title: IEEE CVPR
– year: 2007
  ident: bib0022
  article-title: Retrieving actions in movies
  publication-title: IEEE ICCV
– year: 2010
  ident: bib0012
  article-title: Aggregating local descriptors into a compact image representation
  publication-title: IEEE CVPR
– volume: 24
  start-page: 971
  year: 2013
  end-page: 981
  ident: bib0037
  article-title: Recognizing 50 human action categories of web videos
  publication-title: Mach. Vis Appl.
– year: 2016
  ident: bib0048
  article-title: Predicting the where and what of actors and actions through online action localization
  publication-title: CVPR
– year: 2015
  ident: bib0009
  article-title: THUMOS challenge: action recognition with a large number of classes
– year: 2015
  ident: bib0031
  article-title: Encoding feature maps of CNNs for action recognition
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2009
  ident: bib0062
  article-title: Discriminative subvolume search for efficient action detection
  publication-title: IEEE CVPR
– year: 2015
  ident: bib0058
  article-title: A discriminative cnn video representation for event detection
  publication-title: IEEE CVPR
– year: 2014
  ident: bib0003
  article-title: Weakly supervised action labeling in videos under ordering constraints
  publication-title: ECCV
– start-page: 1
  year: 2007
  end-page: 7
  ident: bib0057
  article-title: Action recognition from arbitrary views using 3d exemplars
  publication-title: 2007 IEEE 11th International Conference on Computer Vision
– year: 2012
  ident: bib0049
  article-title: UCF101: A Dataset of 101 Human Action Classes from Videos in the Wild
  publication-title: Technical Report CRCV-TR-12-01
– year: 2015
  ident: bib0056
  article-title: CUHK&SIAT submission for THUMOS’15 action recognition challenge
  publication-title: THUMOS’15 Action Recognition Challenge
– year: 2015
  ident: bib0004
  article-title: Activitynet: a large-scale video benchmark for human activity understanding
  publication-title: IEEE CVPR
– year: 2008
  ident: bib0039
  article-title: Action MACH: a spatio-temporal maximum average correlation height filter for action recognition
  publication-title: IEEE CVPR
– year: 2013
  ident: bib0055
  article-title: Action recognition with improved trajectories
  publication-title: IEEE ICCV
– year: 2008
  ident: bib0021
  article-title: Learning realistic human actions from movies
  publication-title: IEEE CVPR
– year: 2010
  ident: bib0026
  article-title: Modeling temporal structure of decomposable motion segments for activity classification
  publication-title: ECCV
– year: 2004
  ident: bib0043
  article-title: Recognizing human actions: a local SVM approach
  publication-title: ICPR
– year: 2005
  ident: bib0002
  article-title: Actions as space-time shapes
  publication-title: IEEE ICCV
– year: 2010
  ident: bib0018
  article-title: Human focused action localization in video
  publication-title: International Workshop on Sign, Gesture, and Activity (SGA), ECCV Workshops
– year: 2010
  ident: 10.1016/j.cviu.2016.10.018_bib0012
  article-title: Aggregating local descriptors into a compact image representation
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0045
  article-title: Two-stream convolutional networks for action recognition in videos
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0028
  article-title: Mil-utokyo at thumos challenge 2015
– year: 2012
  ident: 10.1016/j.cviu.2016.10.018_bib0050
  article-title: Creating havic: Heterogeneous audio visual internet collection
– year: 2007
  ident: 10.1016/j.cviu.2016.10.018_bib0022
  article-title: Retrieving actions in movies
– start-page: 1
  year: 2007
  ident: 10.1016/j.cviu.2016.10.018_bib0057
  article-title: Action recognition from arbitrary views using 3d exemplars
– year: 2009
  ident: 10.1016/j.cviu.2016.10.018_bib0025
  article-title: Actions in context
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0054
  article-title: Learning spatiotemporal features with 3d convolutional networks
– year: 2009
  ident: 10.1016/j.cviu.2016.10.018_bib0023
  article-title: Recognizing realistic actions from videos “in the wild”
– year: 2012
  ident: 10.1016/j.cviu.2016.10.018_bib0052
  article-title: Learning latent temporal structure for complex event detection
– year: 2010
  ident: 10.1016/j.cviu.2016.10.018_bib0032
  article-title: Improving the fisher kernel for large-scale image classification
– year: 2008
  ident: 10.1016/j.cviu.2016.10.018_bib0021
  article-title: Learning realistic human actions from movies
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0031
  article-title: Encoding feature maps of CNNs for action recognition
– year: 2011
  ident: 10.1016/j.cviu.2016.10.018_bib0019
  article-title: HMDB: a large video database for human motion recognition
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0035
  article-title: MSR Asia MSM at THUMOS challenge 2015
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0003
  article-title: Weakly supervised action labeling in videos under ordering constraints
– year: 2013
  ident: 10.1016/j.cviu.2016.10.018_bib0036
  article-title: Poselet key-framing: a model for human activity recognition
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_sbref0009
– year: 2007
  ident: 10.1016/j.cviu.2016.10.018_bib0017
  article-title: Event detection in crowded videos
– year: 2013
  ident: 10.1016/j.cviu.2016.10.018_bib0040
  article-title: First-person activity recognition: what are they doing to me?
– year: 2010
  ident: 10.1016/j.cviu.2016.10.018_bib0042
  article-title: Modeling the temporal extent of actions
– year: 2004
  ident: 10.1016/j.cviu.2016.10.018_bib0043
  article-title: Recognizing human actions: a local SVM approach
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0051
  article-title: Going deeper with convolutions
– year: 2013
  ident: 10.1016/j.cviu.2016.10.018_bib0029
  article-title: Action and event recognition with Fisher vectors on a compact feature set
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0030
  article-title: Efficient action localization with approximately normalized fisher vectors
– year: 2011
  ident: 10.1016/j.cviu.2016.10.018_bib0010
  article-title: Joint segmentation and classification of human actions in video
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0011
  article-title: University of Amsterdam at THUMOS 2015
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0008
  article-title: USC & THU at THUMOS 2015
– year: 2012
  ident: 10.1016/j.cviu.2016.10.018_bib0033
  article-title: Detecting activities of daily living in first-person camera views
– year: 2016
  ident: 10.1016/j.cviu.2016.10.018_bib0048
  article-title: Predicting the where and what of actors and actions through online action localization
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0034
  article-title: Parsing videos of actions with segmental grammars
– year: 2010
  ident: 10.1016/j.cviu.2016.10.018_bib0018
  article-title: Human focused action localization in video
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0005
  article-title: UTSA submission to THUMOS 2015
– year: 2012
  ident: 10.1016/j.cviu.2016.10.018_bib0049
  article-title: UCF101: A Dataset of 101 Human Action Classes from Videos in the Wild
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0058
  article-title: A discriminative cnn video representation for event detection
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0006
  article-title: Return of the devil in the details: Delving deep into convolutional nets
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0004
  article-title: Activitynet: a large-scale video benchmark for human activity understanding
– year: 2016
  ident: 10.1016/j.cviu.2016.10.018_bib0038
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0059
  article-title: UTS-CMU at THUMOS 2015
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0047
  article-title: Action localization in videos through context walk
– year: 2010
  ident: 10.1016/j.cviu.2016.10.018_bib0026
  article-title: Modeling temporal structure of decomposable motion segments for activity classification
– start-page: 187
  year: 2008
  ident: 10.1016/j.cviu.2016.10.018_bib0001
  article-title: Video corpus annotation using active learning
– year: 2009
  ident: 10.1016/j.cviu.2016.10.018_bib0062
  article-title: Discriminative subvolume search for efficient action detection
– year: 2016
  ident: 10.1016/j.cviu.2016.10.018_bib0044
  article-title: Action temporal localization in untrimmed videos via multi-stage cnns
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0063
  article-title: Adsc submission at thumos challenge 2015
– year: 2006
  ident: 10.1016/j.cviu.2016.10.018_bib0060
  article-title: Estimating average precision with incomplete and imperfect judgments
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_sbref0014
– volume: 105
  start-page: 222
  issue: 3
  year: 2013
  ident: 10.1016/j.cviu.2016.10.018_bib0041
  article-title: Image classification with the fisher vector: theory and practice
  publication-title: IJCV
  doi: 10.1007/s11263-013-0636-x
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0061
  article-title: Informedia@ trecvid 2014 med and mer
– year: 2009
  ident: 10.1016/j.cviu.2016.10.018_bib0007
  article-title: Automatic annotation of human actions in video
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0046
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 24
  start-page: 971
  issue: 5
  year: 2013
  ident: 10.1016/j.cviu.2016.10.018_bib0037
  article-title: Recognizing 50 human action categories of web videos
  publication-title: Mach. Vis Appl.
  doi: 10.1007/s00138-012-0450-4
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0015
  article-title: Large-scale video classification with convolutional neural networks
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0027
  article-title: ZJUDCD submission at THUMOS challenge 2015
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0056
  article-title: CUHK&SIAT submission for THUMOS’15 action recognition challenge
– year: 2008
  ident: 10.1016/j.cviu.2016.10.018_bib0039
  article-title: Action MACH: a spatio-temporal maximum average correlation height filter for action recognition
– year: 2013
  ident: 10.1016/j.cviu.2016.10.018_bib0053
  article-title: Spatiotemporal deformable part models for action detection
– year: 2013
  ident: 10.1016/j.cviu.2016.10.018_bib0055
  article-title: Action recognition with improved trajectories
– year: 2005
  ident: 10.1016/j.cviu.2016.10.018_bib0002
  article-title: Actions as space-time shapes
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0020
  article-title: Beyond gaussian pyramid: multi-skip feature stacking for action recognition
– year: 2014
  ident: 10.1016/j.cviu.2016.10.018_bib0064
  article-title: Visualizing and understanding convolutional networks
– year: 2013
  ident: 10.1016/j.cviu.2016.10.018_sbref0013
– year: 2005
  ident: 10.1016/j.cviu.2016.10.018_bib0016
  article-title: Efficient visual event detection using volumetric features
– year: 2015
  ident: 10.1016/j.cviu.2016.10.018_bib0024
  article-title: Tianjin University submission at THUMOS challenge 2015
SSID ssj0011491
Score 2.6572232
Snippet •THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition.•In this paper we describe the THUMOS benchmark in detail.•Give an...
Automatically recognizing and localizing wide ranges of human actions are crucial for video understanding. Towards this goal, the THUMOS challenge was...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Action detection
Action localization
Action recognition
Benchmark
Computer Science
Computer Vision and Pattern Recognition
Dataset
THUMOS
UCF101
Untrimmed videos
Title The THUMOS challenge on action recognition for videos “in the wild”
URI https://dx.doi.org/10.1016/j.cviu.2016.10.018
https://inria.hal.science/hal-01431525
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gXvTgAzXig2yMN1PoY1u2R0LE-gAPQMKt6e6WiDGFyONo-CH65_glzrRboonh4G0z2W2b2dmdb5pvZgi5BifhDj1PGqZvK4MJXxnCVcwYWjIWSihTOZjv3O54QZ89DNxBgTTzXBikVeq7P7vT09taS2pam7XJaFTrQuBSdyxmA6LAoi8YtzNWRyuvfqxpHgD30655ONnA2TpxJuN4ycVojvQur4oML2z88bdz2nrJf7Ombqd1QPY0XqSN7JMOSSFOSmRfY0eqT-YURHl7hlxWIrs_ag0ekTswCNoL-u3nLpV5BxU6TmiW2UDXTCIYA5ClmJ83ntLV8nOUUECJFEC1Wi2_jkm_ddtrBobuomBIOJ8zw_E4dxToHqChUKACbrpSCi5txaQbO5HtwYA7ke_CJrlccFGPItNXphgOLVs6J6SYjJP4lFDOuM9jL1ZpnUAmhSUhAOKmVPXIh1CsTKxcfaHUJcax08VbmHPJXkNUeYgqRxmovExu1msmWYGNjbPdfFfCX2YSggfYuO4KNLt-AdbUDhpPIcqwwCE2gVpYZ_98-DnZsdHZp1zuC1Kcvc_jS4AqM1FJbbFCthv3j0HnGzOF5-Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADO6KsFoITCs1e58ABsQVo4UArcQuxnYoilCK6IC6ID4Gv4I_4EmYSpwIJcUDiZo1ixxpPxm-iNzMAm3hJeE3fl4YZ2MpwRaAM4SnXaFoyEUooUzmU71w798OGe3rlXQ3Be5ELQ7RK7ftzn555ay0pa22W71ut8iUGLhXHcm1EFFT0xdTMyrPk6RHjts7uyQEe8pZtHx3W90NDtxYwJBpt13B8zh2FG0K8JBSuwk1PSsGlrVzpJU5s-zjgThx4uHOPCy4qcWwGyhTNpmVLB9cdhlEX3QW1Tdh5HvBKML7I2vTR7gzans7UyUllst_qEZ_M3yFKGXUa-fk2HL4p_utm99zRNExqgMr2ch3MwFCSzsKUBqtMu4IOiop-EIVsFia-FDecg2O0QFYPG7WLSyaLli2snbI8lYINqEs4RuTMKCGw3WEfL6-tlCEsZYji1cfL2zw0_kW3CzCSttNkERh3ecATP1FZYUJXCktixMVNqSpxgLFfCaxCfZHUNc2ptcZdVJDXbiNSeUQqJxmqvATbgzn3eUWPX5_2ilOJvtllhFfOr_M2ULODF1AR73CvGpGMKipS16m-tfTHxddhLKzXqlH15PxsGcZtQhoZkXwFRroPvWQVcVJXrGV2yeD6vz-ETzoXI_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+THUMOS+challenge+on+action+recognition+for+videos+%22in+the+wild%22&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Idrees%2C+Haroon+R&rft.au=Zamir%2C+Amir+R&rft.au=Jiang%2C+Yu-Gang&rft.au=Gorban%2C+Alex+R&rft.date=2017-02-01&rft.pub=Elsevier&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016%2Fj.cviu.2016.10.018&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01431525v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon