A new fractional finite volume method for solving the fractional diffusion equation
The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space–time dependent variable coefficient. In this paper, a two-si...
Saved in:
Published in | Applied mathematical modelling Vol. 38; no. 15-16; pp. 3871 - 3878 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space–time dependent variable coefficient. In this paper, a two-sided space fractional diffusion model with a space–time dependent variable coefficient and a nonlinear source term subject to zero Dirichlet boundary conditions is considered.
Some finite volume methods to solve a fractional differential equation with a constant dispersion coefficient have been proposed. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann–Liouville fractional derivatives at control volume faces in terms of function values at the nodes. However, these finite volume methods have not been extended to two-dimensional and three-dimensional problems in a natural manner. In this paper, a new weighted fractional finite volume method with a nonlocal operator (using nodal basis functions) for solving this two-sided space fractional diffusion equation is proposed. Some numerical results for the Crank–Nicholson fractional finite volume method are given to show the stability, consistency and convergence of our computational approach. This novel simulation technique provides excellent tools for practical problems even when a complex transition zone is involved. This technique can be extend to two-dimensional and three-dimensional problems with complex regions. |
---|---|
AbstractList | The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space–time dependent variable coefficient. In this paper, a two-sided space fractional diffusion model with a space–time dependent variable coefficient and a nonlinear source term subject to zero Dirichlet boundary conditions is considered.
Some finite volume methods to solve a fractional differential equation with a constant dispersion coefficient have been proposed. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann–Liouville fractional derivatives at control volume faces in terms of function values at the nodes. However, these finite volume methods have not been extended to two-dimensional and three-dimensional problems in a natural manner. In this paper, a new weighted fractional finite volume method with a nonlocal operator (using nodal basis functions) for solving this two-sided space fractional diffusion equation is proposed. Some numerical results for the Crank–Nicholson fractional finite volume method are given to show the stability, consistency and convergence of our computational approach. This novel simulation technique provides excellent tools for practical problems even when a complex transition zone is involved. This technique can be extend to two-dimensional and three-dimensional problems with complex regions. The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space-time dependent variable coefficient. In this paper, a two-sided space fractional diffusion model with a space-time dependent variable coefficient and a nonlinear source term subject to zero Dirichlet boundary conditions is considered. Some finite volume methods to solve a fractional differential equation with a constant dispersion coefficient have been proposed. The spatial discretisation employs fractionally-shifted Grunwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. However, these finite volume methods have not been extended to two-dimensional and three-dimensional problems in a natural manner. In this paper, a new weighted fractional finite volume method with a nonlocal operator (using nodal basis functions) for solving this two-sided space fractional diffusion equation is proposed. Some numerical results for the Crank-Nicholson fractional finite volume method are given to show the stability, consistency and convergence of our computational approach. This novel simulation technique provides excellent tools for practical problems even when a complex transition zone is involved. This technique can be extend to two-dimensional and three-dimensional problems with complex regions. |
Author | Burrage, K. Turner, I. Zhuang, P. Liu, F. Anh, V. |
Author_xml | – sequence: 1 givenname: F. surname: Liu fullname: Liu, F. email: f.liu@qut.edu.au organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia – sequence: 2 givenname: P. surname: Zhuang fullname: Zhuang, P. organization: School of Mathematical Sciences, Xiamen University, Xiamen 361005, China – sequence: 3 givenname: I. surname: Turner fullname: Turner, I. organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia – sequence: 4 givenname: K. surname: Burrage fullname: Burrage, K. organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia – sequence: 5 givenname: V. surname: Anh fullname: Anh, V. organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia |
BookMark | eNp9kD9PwzAQxT0UibbwAdg8srScm8RJxFRV_JMqMQASm3V1LtRVEre2U8S3x6UMiKHTvTu93-nujdigsx0xdiVgKkDIm80Ut-10BiKJ_RQgH7AhJJBPSkjfz9nI-w0AZLEbspc57-iT1w51MLbDhtemM4H43jZ9S7ylsLYVr63j3jZ7033wsKa__srUde-j5rTr8TC8YGc1Np4uf-uYvd3fvS4eJ8vnh6fFfDnRKUCYJGkqJYAUOksTmYhsRkm5EigrWQBiXqwyxIKyEkmUOpvpBGcaIY9KYpkWyZhdH_dund315INqjdfUNNiR7b0ShZBQpLIsozU_WrWz3juqlTbh59jg0DRKgDpEpzYqRqcO0R1GMbpIin_k1pkW3ddJ5vbIUPx-b8gprw11mirjSAdVWXOC_gaOvIsB |
CitedBy_id | crossref_primary_10_1007_s10915_024_02603_4 crossref_primary_10_1016_j_apnum_2020_10_032 crossref_primary_10_1016_j_camwa_2018_01_028 crossref_primary_10_3934_dcdsb_2015_20_1427 crossref_primary_10_1016_j_matcom_2023_04_009 crossref_primary_10_1063_5_0032821 crossref_primary_10_11948_20230044 crossref_primary_10_1016_j_camwa_2016_08_012 crossref_primary_10_1016_j_chaos_2021_111314 crossref_primary_10_3934_math_2021529 crossref_primary_10_1016_j_chaos_2021_111279 crossref_primary_10_1007_s10614_021_10216_4 crossref_primary_10_1016_j_cam_2021_113712 crossref_primary_10_1007_s10915_021_01698_3 crossref_primary_10_1007_s11075_022_01367_y crossref_primary_10_1016_j_camwa_2016_08_015 crossref_primary_10_1093_imanum_drab030 crossref_primary_10_1016_j_cam_2020_112985 crossref_primary_10_1016_j_cam_2023_115179 crossref_primary_10_1016_j_camwa_2016_06_007 crossref_primary_10_1007_s11075_019_00801_y crossref_primary_10_1016_j_cnsns_2017_07_016 crossref_primary_10_1007_s11075_020_00940_7 crossref_primary_10_1007_s11075_019_00869_6 crossref_primary_10_1002_mma_5666 crossref_primary_10_1016_j_apnum_2018_07_001 crossref_primary_10_1088_1674_1056_ab3af3 crossref_primary_10_3389_fphy_2019_00093 crossref_primary_10_3390_math10081260 crossref_primary_10_3390_sym15030687 crossref_primary_10_1016_j_apm_2015_08_020 crossref_primary_10_1016_j_enganabound_2015_11_011 crossref_primary_10_1016_j_amc_2020_125505 crossref_primary_10_1016_j_amc_2020_125627 crossref_primary_10_1002_nla_70005 crossref_primary_10_1016_j_amc_2015_12_020 crossref_primary_10_1007_s11075_018_0496_0 crossref_primary_10_1007_s00366_020_01032_9 crossref_primary_10_1007_s10614_025_10853_z crossref_primary_10_1016_j_apnum_2022_09_011 crossref_primary_10_1016_j_aej_2021_07_023 crossref_primary_10_1016_j_cam_2015_04_032 crossref_primary_10_1016_j_apm_2016_04_009 crossref_primary_10_1142_S0218348X22400497 crossref_primary_10_1016_j_amc_2021_126033 crossref_primary_10_1140_epjp_s13360_022_03498_6 crossref_primary_10_4236_jamp_2022_106132 crossref_primary_10_1186_s13661_024_01948_x crossref_primary_10_1007_s40314_018_0693_4 crossref_primary_10_1016_j_apm_2017_12_012 crossref_primary_10_1016_j_apnum_2020_05_024 crossref_primary_10_1140_epjp_i2019_12696_8 crossref_primary_10_3934_math_2025063 crossref_primary_10_1002_num_22554 crossref_primary_10_1007_s40314_023_02198_w crossref_primary_10_1007_s10483_016_2036_6 crossref_primary_10_1016_j_camwa_2017_08_032 crossref_primary_10_1016_j_jcp_2020_110081 crossref_primary_10_1007_s40314_023_02429_0 crossref_primary_10_1080_00207160_2017_1343941 crossref_primary_10_1016_j_camwa_2024_07_009 crossref_primary_10_1016_j_camwa_2019_01_007 crossref_primary_10_1016_j_jcp_2015_05_008 crossref_primary_10_1016_j_apnum_2017_04_003 crossref_primary_10_1016_j_cam_2020_113337 crossref_primary_10_3390_sym15020269 crossref_primary_10_1080_00036811_2016_1167879 crossref_primary_10_3390_fractalfract6010009 crossref_primary_10_1016_j_amc_2022_127829 crossref_primary_10_3390_sym12030485 crossref_primary_10_1142_S1793962321500069 crossref_primary_10_3934_math_2025036 crossref_primary_10_3390_fractalfract7060482 crossref_primary_10_1016_j_mex_2023_102007 crossref_primary_10_1007_s10440_019_00278_w crossref_primary_10_1016_j_jcp_2017_01_061 crossref_primary_10_1155_2021_9945364 crossref_primary_10_3934_nhm_2023022 crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_118 crossref_primary_10_1016_j_mex_2024_102763 crossref_primary_10_1007_s10614_024_10678_2 crossref_primary_10_1002_nla_2436 crossref_primary_10_1016_j_camwa_2019_12_008 crossref_primary_10_1080_0305215X_2015_1099640 crossref_primary_10_1002_num_22571 crossref_primary_10_1007_s10915_019_00966_7 crossref_primary_10_1016_j_cma_2016_05_028 crossref_primary_10_1016_j_cnsns_2017_08_014 crossref_primary_10_1080_00207160_2020_1820492 crossref_primary_10_1016_j_camwa_2017_05_017 crossref_primary_10_1155_2014_636191 crossref_primary_10_1002_mma_5876 crossref_primary_10_1016_j_amc_2018_10_031 crossref_primary_10_1016_j_jcp_2017_04_078 crossref_primary_10_1002_num_22179 crossref_primary_10_1007_s40096_020_00357_2 crossref_primary_10_1016_j_jcp_2015_06_028 crossref_primary_10_3390_math9182179 crossref_primary_10_1016_j_camwa_2020_11_007 crossref_primary_10_3390_fractalfract7040302 crossref_primary_10_1016_j_rinp_2021_104293 crossref_primary_10_1155_2020_8829017 crossref_primary_10_1016_j_enganabound_2018_10_002 crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_105 crossref_primary_10_1016_j_amc_2019_124689 crossref_primary_10_1216_rmj_2020_50_2199 crossref_primary_10_1007_s10915_019_00979_2 crossref_primary_10_1007_s10915_022_01860_5 crossref_primary_10_1016_j_physa_2015_06_024 crossref_primary_10_1007_s11075_019_00742_6 crossref_primary_10_1007_s40314_020_01394_2 crossref_primary_10_2478_auom_2021_0027 crossref_primary_10_3390_fractalfract8010053 crossref_primary_10_1007_s10614_025_10881_9 crossref_primary_10_1140_epjp_s13360_020_00153_w crossref_primary_10_1007_s10092_014_0132_x crossref_primary_10_1007_s40314_023_02507_3 crossref_primary_10_1016_j_aej_2020_06_007 crossref_primary_10_1080_00207160_2017_1290434 crossref_primary_10_1016_j_matcom_2022_03_004 crossref_primary_10_1080_17415977_2016_1259316 crossref_primary_10_1515_cmam_2020_0158 crossref_primary_10_1007_s10444_021_09867_6 crossref_primary_10_1155_2022_3764703 crossref_primary_10_1515_ijnsns_2018_0146 crossref_primary_10_1063_1_5111832 crossref_primary_10_1080_01630563_2017_1402346 crossref_primary_10_1080_00207160_2019_1668556 crossref_primary_10_1016_j_amc_2017_05_032 crossref_primary_10_1007_s12190_016_1079_7 crossref_primary_10_1016_j_camwa_2017_10_035 crossref_primary_10_1007_s10915_018_0835_2 crossref_primary_10_1016_j_camwa_2015_09_012 crossref_primary_10_1002_num_22198 crossref_primary_10_1016_j_cam_2019_03_048 crossref_primary_10_1016_j_apnum_2019_01_005 crossref_primary_10_1016_j_cam_2018_01_036 crossref_primary_10_1007_s11075_022_01363_2 crossref_primary_10_1007_s40840_018_0652_7 crossref_primary_10_1016_j_cam_2019_06_035 crossref_primary_10_3934_dcdss_2021022 crossref_primary_10_1016_j_camwa_2016_02_007 crossref_primary_10_1002_mma_6260 crossref_primary_10_3934_era_2023365 crossref_primary_10_1016_j_jcp_2019_03_030 crossref_primary_10_1155_2014_371413 crossref_primary_10_1016_j_cnsns_2018_10_016 crossref_primary_10_1007_s40096_021_00439_9 crossref_primary_10_1007_s11075_016_0201_0 crossref_primary_10_3934_math_20231318 crossref_primary_10_1002_num_22366 crossref_primary_10_1515_math_2021_0099 crossref_primary_10_3390_fractalfract8120687 crossref_primary_10_1016_j_apnum_2017_03_009 crossref_primary_10_1063_1_4993817 crossref_primary_10_1002_zamm_202100042 crossref_primary_10_1002_num_22490 crossref_primary_10_1016_j_amc_2014_12_060 crossref_primary_10_1016_j_camwa_2023_09_005 crossref_primary_10_1186_s13662_021_03524_4 crossref_primary_10_1007_s11425_017_9179_x crossref_primary_10_32604_cmes_2021_014950 crossref_primary_10_1016_j_apnum_2018_11_014 crossref_primary_10_1016_j_camwa_2016_11_020 crossref_primary_10_1038_s41598_023_28741_7 crossref_primary_10_1186_s13662_018_1537_7 crossref_primary_10_1080_02286203_2017_1358133 crossref_primary_10_3390_math12162519 crossref_primary_10_1016_j_aej_2020_03_003 crossref_primary_10_1016_j_cnsns_2020_105445 crossref_primary_10_1007_s42967_019_00058_1 crossref_primary_10_1002_mma_5431 crossref_primary_10_1016_j_apm_2017_01_065 crossref_primary_10_3390_sym15122172 crossref_primary_10_1016_j_chaos_2019_05_008 crossref_primary_10_1016_j_jcp_2020_109284 crossref_primary_10_1016_j_camwa_2020_04_019 crossref_primary_10_1016_j_camwa_2019_05_017 crossref_primary_10_11948_2018_229 crossref_primary_10_1016_j_camwa_2015_05_015 crossref_primary_10_1016_j_matcom_2020_12_033 |
Cites_doi | 10.1016/S0370-1573(02)00331-9 10.1029/2000WR900032 10.1016/j.cam.2003.09.028 10.1016/j.cam.2009.02.013 10.1016/j.camwa.2009.08.071 10.1016/j.camwa.2007.11.012 10.1016/j.apnum.2005.02.008 10.1016/j.camwa.2009.08.004 10.1007/s11075-010-9393-x 10.1029/2004WR003818 10.1007/s10543-014-0484-2 10.1007/s11118-011-9243-z 10.2478/s11534-013-0317-y 10.1016/S0167-7322(99)00143-9 10.1016/j.camwa.2011.02.045 10.1016/j.cam.2005.06.005 10.1016/j.amc.2006.08.162 10.1016/j.cam.2004.01.033 10.1029/2006WR004912 10.1093/imamat/hxn033 10.1016/j.jmaa.2013.02.046 10.1029/2000WR900031 10.1016/j.jcp.2012.10.018 10.1016/j.advwatres.2009.01.008 10.1137/060673114 10.1007/s11538-007-9220-2 |
ContentType | Journal Article |
Copyright | 2013 |
Copyright_xml | – notice: 2013 |
DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.apm.2013.10.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EndPage | 3878 |
ExternalDocumentID | 10_1016_j_apm_2013_10_007 S0307904X13006197 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AAOAW AAQFI AAXUO ABAOU ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSW SSZ T5K TN5 WH7 ZMT ~02 ~G- AALRI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB G-2 HZ~ MVM R2- SEW SSH WUQ XJT XPP 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-344660061c54363152e39b1a6d680aa78b5aa8e59ae19c52c3a2ca0752c6a9483 |
IEDL.DBID | .~1 |
ISSN | 0307-904X |
IngestDate | Fri Jul 11 09:07:05 EDT 2025 Thu Apr 24 22:50:07 EDT 2025 Tue Jul 01 02:00:48 EDT 2025 Fri Feb 23 02:30:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15-16 |
Keywords | Finite volume method Fractional diffusion equation Two-sided space fractional derivative Nonlinear source term Space–time dependent variable coefficient |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-344660061c54363152e39b1a6d680aa78b5aa8e59ae19c52c3a2ca0752c6a9483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0307904X13006197 |
PQID | 1816084699 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1816084699 crossref_citationtrail_10_1016_j_apm_2013_10_007 crossref_primary_10_1016_j_apm_2013_10_007 elsevier_sciencedirect_doi_10_1016_j_apm_2013_10_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematical modelling |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Baeumer, Kovály, Meerschaert (b0055) 2008; 55 Liu, Zhuang, Anh, Turner, Burrage (b0070) 2007; 191 Shen, Liu, Anh (b0080) 2011; 56 Leonenko, Meerschaert, Sikorskii (b0030) 2013; 403 Chen, Ye, Sun (b0100) 2010; 59 Benson, Wheatcraft, Meerschaert (b0010) 2000; 36 Zhang, Benson, Reeves (b0050) 2009; 32 Meerschaert, Tadjeran (b0060) 2004; 172 Meerschaert, Tadjeran (b0065) 2006; 56 Roop (b0110) 2006; 193 Zhang, Crawford, Deeks, Shutler, Bengough, Young (b0130) 2005; 41 Liu, Yang, Burrage (b0095) 2009; 231 H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the time–space fractional advection–dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14–17, Hohai University, Nanjing, China (MS11, Paper ID 038). Kochubei (b0035) 2012; 37 A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-inspace reaction–diffusion equations, J. Comp. Phys., 2013, in press. Metzler, Klafter (b0020) 2000; 86 Li, Zhao, Chen (b0120) 2011; 62 Fu, Chen, Yang (b0105) 2013; 235 S. Shen, F. Liu, V. Anh, I. Turner, A second-order accuracy numerical approximation for the Riesz space fractional advection–dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14–17, 2012, Hohai University, Nanjing, China. Zhang, Benson, Meerschaert, Labolle (b0045) 2007; 43 Meerschaert, Sikorskii (b0025) 2012; 43 Zheng, Li, Zhao (b0115) 2010; 59 Baeumer, Kovály, Meerschaert (b0140) 2007; 69 Liu, Anh, Turner (b0015) 2004; 16 Zhuang, Liu, Anh, Turner (b0090) 2008; 46 Zaslavsky (b0040) 2002; 371 Shen, Liu, Anh, Turner (b0075) 2008; 73 Benson, Wheatcraft, Meerschaert (b0005) 2000; 36 Zhang (10.1016/j.apm.2013.10.007_b0045) 2007; 43 Benson (10.1016/j.apm.2013.10.007_b0010) 2000; 36 Liu (10.1016/j.apm.2013.10.007_b0015) 2004; 16 Zheng (10.1016/j.apm.2013.10.007_b0115) 2010; 59 Zhuang (10.1016/j.apm.2013.10.007_b0090) 2008; 46 Meerschaert (10.1016/j.apm.2013.10.007_b0060) 2004; 172 Li (10.1016/j.apm.2013.10.007_b0120) 2011; 62 Roop (10.1016/j.apm.2013.10.007_b0110) 2006; 193 Baeumer (10.1016/j.apm.2013.10.007_b0140) 2007; 69 10.1016/j.apm.2013.10.007_b0135 Zaslavsky (10.1016/j.apm.2013.10.007_b0040) 2002; 371 Baeumer (10.1016/j.apm.2013.10.007_b0055) 2008; 55 Fu (10.1016/j.apm.2013.10.007_b0105) 2013; 235 Benson (10.1016/j.apm.2013.10.007_b0005) 2000; 36 Kochubei (10.1016/j.apm.2013.10.007_b0035) 2012; 37 Metzler (10.1016/j.apm.2013.10.007_b0020) 2000; 86 Leonenko (10.1016/j.apm.2013.10.007_b0030) 2013; 403 Meerschaert (10.1016/j.apm.2013.10.007_b0065) 2006; 56 Meerschaert (10.1016/j.apm.2013.10.007_b0025) 2012; 43 Liu (10.1016/j.apm.2013.10.007_b0070) 2007; 191 Shen (10.1016/j.apm.2013.10.007_b0080) 2011; 56 Chen (10.1016/j.apm.2013.10.007_b0100) 2010; 59 Shen (10.1016/j.apm.2013.10.007_b0075) 2008; 73 10.1016/j.apm.2013.10.007_b0125 Liu (10.1016/j.apm.2013.10.007_b0095) 2009; 231 Zhang (10.1016/j.apm.2013.10.007_b0130) 2005; 41 Zhang (10.1016/j.apm.2013.10.007_b0050) 2009; 32 10.1016/j.apm.2013.10.007_b0085 |
References_xml | – reference: H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the time–space fractional advection–dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14–17, Hohai University, Nanjing, China (MS11, Paper ID 038). – volume: 59 start-page: 1614 year: 2010 end-page: 1620 ident: b0100 article-title: Fractional diffusion equations by the Kansa method publication-title: Comput. Math. Appl. – volume: 36 start-page: 1403 year: 2000 end-page: 1412 ident: b0005 article-title: Application of a fractional advection–dispersion equation publication-title: Water Resour. Res. – volume: 371 start-page: 461 year: 2002 end-page: 580 ident: b0040 article-title: Chaos, fractional kinetics, and anomalous transport publication-title: Phys. Rep. – volume: 193 start-page: 243 year: 2006 end-page: 268 ident: b0110 article-title: Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in publication-title: J. Comput. Appl. Math. – volume: 231 start-page: 160 year: 2009 end-page: 176 ident: b0095 article-title: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term publication-title: J. Comput. Appl. Math. – volume: 86 start-page: 219 year: 2000 end-page: 228 ident: b0020 article-title: The fractional Fokker–Planck equation: dispersive transport in an external force field publication-title: J. Mol. Liq. – volume: 41 start-page: 1 year: 2005 end-page: 10 ident: b0130 article-title: A mass balance based numerical method for the fractional advection–dispersion equation: theory and application publication-title: Water Resour. Res. – volume: 36 start-page: 1413 year: 2000 end-page: 1423 ident: b0010 article-title: The fractional-order governing equation of levy motion publication-title: Water Resour. Res. – volume: 62 start-page: 855 year: 2011 end-page: 875 ident: b0120 article-title: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion publication-title: Comput. Math. Appl. – volume: 73 start-page: 850 year: 2008 end-page: 872 ident: b0075 article-title: The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation publication-title: IMA J. Appl. Math. – volume: 69 start-page: 2281 year: 2007 end-page: 2297 ident: b0140 article-title: Fractional reproduction-dispersal equations and heavy tail dispersal kernels publication-title: Bull. Math. Biol. – volume: 172 start-page: 65 year: 2004 end-page: 77 ident: b0060 article-title: Finite difference approximations for fractional advection–dispersion flow equations publication-title: J. Comput. Appl. Math. – volume: 55 start-page: 2212 year: 2008 end-page: 2226 ident: b0055 article-title: Numerical solutions for fractional reaction–diffusion equations publication-title: Comput. Math. Appl. – volume: 191 start-page: 12 year: 2007 end-page: 21 ident: b0070 article-title: Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation publication-title: Appl. Math. Comput. – volume: 46 start-page: 1079 year: 2008 end-page: 1095 ident: b0090 article-title: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation publication-title: SIAM J. Numer. Anal. – reference: S. Shen, F. Liu, V. Anh, I. Turner, A second-order accuracy numerical approximation for the Riesz space fractional advection–dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14–17, 2012, Hohai University, Nanjing, China. – volume: 32 start-page: 561 year: 2009 end-page: 581 ident: b0050 article-title: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications publication-title: Adv. Water Resour. – volume: 56 start-page: 383 year: 2011 end-page: 403 ident: b0080 article-title: Numerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equation publication-title: Numer. Algorithms – volume: 56 start-page: 80 year: 2006 end-page: 90 ident: b0065 article-title: Finite difference approximations for two-sided space-fractional partial differential equations publication-title: Appl. Numer. Math. – volume: 59 start-page: 1718 year: 2010 end-page: 1726 ident: b0115 article-title: A note on the finite element method for the space-fractional advection diffusion equation publication-title: Comput. Math. Appl. – volume: 43 year: 2012 ident: b0025 article-title: Stochastic models for fractional calculus publication-title: De Gruyter Studies in Mathematics – volume: 235 start-page: 52 year: 2013 end-page: 66 ident: b0105 article-title: Boundary particle method for Laplace transformed time fractional diffusion equations publication-title: J. Comput. Phys. – volume: 37 start-page: 1 year: 2012 end-page: 30 ident: b0035 article-title: Fractional-parabolic systems publication-title: Potential Anal. – reference: A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-inspace reaction–diffusion equations, J. Comp. Phys., 2013, in press. – volume: 403 start-page: 532 year: 2013 end-page: 546 ident: b0030 article-title: Fractional Pearson diffusions publication-title: J. Math. Anal. Appl. – volume: 16 start-page: 209 year: 2004 end-page: 219 ident: b0015 article-title: Numerical solution of the space fractional Fokker–Planck equation publication-title: J. Comput. Appl. Math. – volume: 43 start-page: W05439 year: 2007 ident: b0045 article-title: Space-fractional advection–dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data publication-title: Water Resour. Res. – volume: 371 start-page: 461 year: 2002 ident: 10.1016/j.apm.2013.10.007_b0040 article-title: Chaos, fractional kinetics, and anomalous transport publication-title: Phys. Rep. doi: 10.1016/S0370-1573(02)00331-9 – volume: 36 start-page: 1413 issue: 6 year: 2000 ident: 10.1016/j.apm.2013.10.007_b0010 article-title: The fractional-order governing equation of levy motion publication-title: Water Resour. Res. doi: 10.1029/2000WR900032 – volume: 16 start-page: 209 issue: 6 year: 2004 ident: 10.1016/j.apm.2013.10.007_b0015 article-title: Numerical solution of the space fractional Fokker–Planck equation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2003.09.028 – volume: 231 start-page: 160 issue: 1 year: 2009 ident: 10.1016/j.apm.2013.10.007_b0095 article-title: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.02.013 – volume: 59 start-page: 1718 year: 2010 ident: 10.1016/j.apm.2013.10.007_b0115 article-title: A note on the finite element method for the space-fractional advection diffusion equation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.071 – volume: 43 year: 2012 ident: 10.1016/j.apm.2013.10.007_b0025 article-title: Stochastic models for fractional calculus – volume: 55 start-page: 2212 year: 2008 ident: 10.1016/j.apm.2013.10.007_b0055 article-title: Numerical solutions for fractional reaction–diffusion equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2007.11.012 – volume: 56 start-page: 80 issue: 1 year: 2006 ident: 10.1016/j.apm.2013.10.007_b0065 article-title: Finite difference approximations for two-sided space-fractional partial differential equations publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.02.008 – ident: 10.1016/j.apm.2013.10.007_b0085 – volume: 59 start-page: 1614 year: 2010 ident: 10.1016/j.apm.2013.10.007_b0100 article-title: Fractional diffusion equations by the Kansa method publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.004 – volume: 56 start-page: 383 year: 2011 ident: 10.1016/j.apm.2013.10.007_b0080 article-title: Numerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equation publication-title: Numer. Algorithms doi: 10.1007/s11075-010-9393-x – volume: 41 start-page: 1 year: 2005 ident: 10.1016/j.apm.2013.10.007_b0130 article-title: A mass balance based numerical method for the fractional advection–dispersion equation: theory and application publication-title: Water Resour. Res. doi: 10.1029/2004WR003818 – ident: 10.1016/j.apm.2013.10.007_b0125 doi: 10.1007/s10543-014-0484-2 – volume: 37 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.apm.2013.10.007_b0035 article-title: Fractional-parabolic systems publication-title: Potential Anal. doi: 10.1007/s11118-011-9243-z – ident: 10.1016/j.apm.2013.10.007_b0135 doi: 10.2478/s11534-013-0317-y – volume: 86 start-page: 219 year: 2000 ident: 10.1016/j.apm.2013.10.007_b0020 article-title: The fractional Fokker–Planck equation: dispersive transport in an external force field publication-title: J. Mol. Liq. doi: 10.1016/S0167-7322(99)00143-9 – volume: 62 start-page: 855 year: 2011 ident: 10.1016/j.apm.2013.10.007_b0120 article-title: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.02.045 – volume: 193 start-page: 243 issue: 1 year: 2006 ident: 10.1016/j.apm.2013.10.007_b0110 article-title: Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R2 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.06.005 – volume: 191 start-page: 12 year: 2007 ident: 10.1016/j.apm.2013.10.007_b0070 article-title: Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.08.162 – volume: 172 start-page: 65 year: 2004 ident: 10.1016/j.apm.2013.10.007_b0060 article-title: Finite difference approximations for fractional advection–dispersion flow equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2004.01.033 – volume: 43 start-page: W05439 year: 2007 ident: 10.1016/j.apm.2013.10.007_b0045 article-title: Space-fractional advection–dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data publication-title: Water Resour. Res. doi: 10.1029/2006WR004912 – volume: 73 start-page: 850 year: 2008 ident: 10.1016/j.apm.2013.10.007_b0075 article-title: The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxn033 – volume: 403 start-page: 532 issue: 2 year: 2013 ident: 10.1016/j.apm.2013.10.007_b0030 article-title: Fractional Pearson diffusions publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.02.046 – volume: 36 start-page: 1403 issue: 6 year: 2000 ident: 10.1016/j.apm.2013.10.007_b0005 article-title: Application of a fractional advection–dispersion equation publication-title: Water Resour. Res. doi: 10.1029/2000WR900031 – volume: 235 start-page: 52 year: 2013 ident: 10.1016/j.apm.2013.10.007_b0105 article-title: Boundary particle method for Laplace transformed time fractional diffusion equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.10.018 – volume: 32 start-page: 561 year: 2009 ident: 10.1016/j.apm.2013.10.007_b0050 article-title: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.01.008 – volume: 46 start-page: 1079 issue: 2 year: 2008 ident: 10.1016/j.apm.2013.10.007_b0090 article-title: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/060673114 – volume: 69 start-page: 2281 year: 2007 ident: 10.1016/j.apm.2013.10.007_b0140 article-title: Fractional reproduction-dispersal equations and heavy tail dispersal kernels publication-title: Bull. Math. Biol. doi: 10.1007/s11538-007-9220-2 |
SSID | ssj0005904 |
Score | 2.4982328 |
Snippet | The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3871 |
SubjectTerms | Coefficients Dependent variables Diffusion Dirichlet problem Finite volume method Fractional diffusion equation Mathematical analysis Mathematical models Nonlinear source term Space–time dependent variable coefficient Three dimensional Two-sided space fractional derivative |
Title | A new fractional finite volume method for solving the fractional diffusion equation |
URI | https://dx.doi.org/10.1016/j.apm.2013.10.007 https://www.proquest.com/docview/1816084699 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lXvQgrliXEsGTMO0smUxyrMXSKu2lFuY2JJkUKjKtXa7-dt-bpVTBHjwmvIThm5eXb-ZthDyIlGOfqdQxvvUdJkXoaCa0E1pPCwWTkmNy8nDE-xP2EodxjXSrXBgMqyxtf2HTc2tdzrRLNNuL2aw9RvWULovRIQOfAZhRzliEWt762gnzkC6riiGidOXZzGO81AKT0b2glQd4RX_dTb-sdH719E7IcckZaad4rFNSs9kZORpuC66uzsm4Q4Ef0-myyFMA6ekM2SQtrA8tGkVTYKgUlA1_IlBYvSuPnVI2-OuM2s-i_PcFmfSe37p9p-yX4Bg4iWsnQN8sYmFCFvAAbmYbSO0pnnLhKhUJHSolbCiV9aQJfRMo3yjgDL7hSjIRXJJ6Ns_sFaGeFSaKtOJeahgXRumpF2HdmTQQDLZrELdCKjFlMXHsafGRVFFj7wmAmyC4OAXgNsjjdsmiqKSxT5hV8Cc_1CEBS79v2X31qhI4Juj7UJmdb1YJEBnuAteS8vp_W9-QQxixIvbvltTXy429Az6y1s1c4ZrkoDN47Y9gNIifvgERsOAW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG4QD-rBuEZca-LJZGCWTqc9EqJBBS5Awq3pdEqCMQOyXP3tvjcLQRM5eO28NpNvXl-_6dsIeRAJxz5TiWN86ztMitCJmYid0Hqx0DAoOSYnd3u8PWSvo3BUIa0yFwbDKgvbn9v0zFoXI40CzcZsMmn0UT2ly0bokIHfgGiH7DLYvtjGoP61EechXVZWQ0Tx0rWZBXnpGWaje0E9i_CK_jqcfpnp7Ox5PiKHBWmkzfy9jknFpifkoLuuuLo4Jf0mBYJMx_M8UQGkxxOkkzQ3PzTvFE2BolLQNrxFoDB7Ux5bpazw7ozaz7z-9xkZPj8NWm2naJjgGNiKSydA5yyCYUIW8ACOZhvI2NM84cLVOhJxqLWwodTWkyb0TaB9o4E0-IZryURwTqrpNLUXhHpWmCiKNfcSw7gwOh57ERaeSQLBYLkacUuklCmqiWNTiw9Vho29KwBXIbg4BODWyON6yiwvpbFNmJXwqx_6oMDUb5t2X34qBfsEnR86tdPVQgGT4S6QLSkv_7f0HdlrD7od1XnpvV2RfXjC8kDAa1Jdzlf2BsjJMr7NlO8bCJ_goA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+fractional+finite+volume+method+for+solving+the+fractional+diffusion+equation&rft.jtitle=Applied+mathematical+modelling&rft.au=Liu%2C+F&rft.au=Zhuang%2C+P&rft.au=Turner%2C+I&rft.au=Burrage%2C+K&rft.date=2014-08-01&rft.issn=0307-904X&rft.volume=38&rft.issue=15-16&rft.spage=3871&rft.epage=3878&rft_id=info:doi/10.1016%2Fj.apm.2013.10.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |