A new fractional finite volume method for solving the fractional diffusion equation

The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space–time dependent variable coefficient. In this paper, a two-si...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematical modelling Vol. 38; no. 15-16; pp. 3871 - 3878
Main Authors Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space–time dependent variable coefficient. In this paper, a two-sided space fractional diffusion model with a space–time dependent variable coefficient and a nonlinear source term subject to zero Dirichlet boundary conditions is considered. Some finite volume methods to solve a fractional differential equation with a constant dispersion coefficient have been proposed. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann–Liouville fractional derivatives at control volume faces in terms of function values at the nodes. However, these finite volume methods have not been extended to two-dimensional and three-dimensional problems in a natural manner. In this paper, a new weighted fractional finite volume method with a nonlocal operator (using nodal basis functions) for solving this two-sided space fractional diffusion equation is proposed. Some numerical results for the Crank–Nicholson fractional finite volume method are given to show the stability, consistency and convergence of our computational approach. This novel simulation technique provides excellent tools for practical problems even when a complex transition zone is involved. This technique can be extend to two-dimensional and three-dimensional problems with complex regions.
AbstractList The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space–time dependent variable coefficient. In this paper, a two-sided space fractional diffusion model with a space–time dependent variable coefficient and a nonlinear source term subject to zero Dirichlet boundary conditions is considered. Some finite volume methods to solve a fractional differential equation with a constant dispersion coefficient have been proposed. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann–Liouville fractional derivatives at control volume faces in terms of function values at the nodes. However, these finite volume methods have not been extended to two-dimensional and three-dimensional problems in a natural manner. In this paper, a new weighted fractional finite volume method with a nonlocal operator (using nodal basis functions) for solving this two-sided space fractional diffusion equation is proposed. Some numerical results for the Crank–Nicholson fractional finite volume method are given to show the stability, consistency and convergence of our computational approach. This novel simulation technique provides excellent tools for practical problems even when a complex transition zone is involved. This technique can be extend to two-dimensional and three-dimensional problems with complex regions.
The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model solute transport through such media is by fractional diffusion equations with a space-time dependent variable coefficient. In this paper, a two-sided space fractional diffusion model with a space-time dependent variable coefficient and a nonlinear source term subject to zero Dirichlet boundary conditions is considered. Some finite volume methods to solve a fractional differential equation with a constant dispersion coefficient have been proposed. The spatial discretisation employs fractionally-shifted Grunwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. However, these finite volume methods have not been extended to two-dimensional and three-dimensional problems in a natural manner. In this paper, a new weighted fractional finite volume method with a nonlocal operator (using nodal basis functions) for solving this two-sided space fractional diffusion equation is proposed. Some numerical results for the Crank-Nicholson fractional finite volume method are given to show the stability, consistency and convergence of our computational approach. This novel simulation technique provides excellent tools for practical problems even when a complex transition zone is involved. This technique can be extend to two-dimensional and three-dimensional problems with complex regions.
Author Burrage, K.
Turner, I.
Zhuang, P.
Liu, F.
Anh, V.
Author_xml – sequence: 1
  givenname: F.
  surname: Liu
  fullname: Liu, F.
  email: f.liu@qut.edu.au
  organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia
– sequence: 2
  givenname: P.
  surname: Zhuang
  fullname: Zhuang, P.
  organization: School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
– sequence: 3
  givenname: I.
  surname: Turner
  fullname: Turner, I.
  organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia
– sequence: 4
  givenname: K.
  surname: Burrage
  fullname: Burrage, K.
  organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia
– sequence: 5
  givenname: V.
  surname: Anh
  fullname: Anh, V.
  organization: School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia
BookMark eNp9kD9PwzAQxT0UibbwAdg8srScm8RJxFRV_JMqMQASm3V1LtRVEre2U8S3x6UMiKHTvTu93-nujdigsx0xdiVgKkDIm80Ut-10BiKJ_RQgH7AhJJBPSkjfz9nI-w0AZLEbspc57-iT1w51MLbDhtemM4H43jZ9S7ylsLYVr63j3jZ7033wsKa__srUde-j5rTr8TC8YGc1Np4uf-uYvd3fvS4eJ8vnh6fFfDnRKUCYJGkqJYAUOksTmYhsRkm5EigrWQBiXqwyxIKyEkmUOpvpBGcaIY9KYpkWyZhdH_dund315INqjdfUNNiR7b0ShZBQpLIsozU_WrWz3juqlTbh59jg0DRKgDpEpzYqRqcO0R1GMbpIin_k1pkW3ddJ5vbIUPx-b8gprw11mirjSAdVWXOC_gaOvIsB
CitedBy_id crossref_primary_10_1007_s10915_024_02603_4
crossref_primary_10_1016_j_apnum_2020_10_032
crossref_primary_10_1016_j_camwa_2018_01_028
crossref_primary_10_3934_dcdsb_2015_20_1427
crossref_primary_10_1016_j_matcom_2023_04_009
crossref_primary_10_1063_5_0032821
crossref_primary_10_11948_20230044
crossref_primary_10_1016_j_camwa_2016_08_012
crossref_primary_10_1016_j_chaos_2021_111314
crossref_primary_10_3934_math_2021529
crossref_primary_10_1016_j_chaos_2021_111279
crossref_primary_10_1007_s10614_021_10216_4
crossref_primary_10_1016_j_cam_2021_113712
crossref_primary_10_1007_s10915_021_01698_3
crossref_primary_10_1007_s11075_022_01367_y
crossref_primary_10_1016_j_camwa_2016_08_015
crossref_primary_10_1093_imanum_drab030
crossref_primary_10_1016_j_cam_2020_112985
crossref_primary_10_1016_j_cam_2023_115179
crossref_primary_10_1016_j_camwa_2016_06_007
crossref_primary_10_1007_s11075_019_00801_y
crossref_primary_10_1016_j_cnsns_2017_07_016
crossref_primary_10_1007_s11075_020_00940_7
crossref_primary_10_1007_s11075_019_00869_6
crossref_primary_10_1002_mma_5666
crossref_primary_10_1016_j_apnum_2018_07_001
crossref_primary_10_1088_1674_1056_ab3af3
crossref_primary_10_3389_fphy_2019_00093
crossref_primary_10_3390_math10081260
crossref_primary_10_3390_sym15030687
crossref_primary_10_1016_j_apm_2015_08_020
crossref_primary_10_1016_j_enganabound_2015_11_011
crossref_primary_10_1016_j_amc_2020_125505
crossref_primary_10_1016_j_amc_2020_125627
crossref_primary_10_1002_nla_70005
crossref_primary_10_1016_j_amc_2015_12_020
crossref_primary_10_1007_s11075_018_0496_0
crossref_primary_10_1007_s00366_020_01032_9
crossref_primary_10_1007_s10614_025_10853_z
crossref_primary_10_1016_j_apnum_2022_09_011
crossref_primary_10_1016_j_aej_2021_07_023
crossref_primary_10_1016_j_cam_2015_04_032
crossref_primary_10_1016_j_apm_2016_04_009
crossref_primary_10_1142_S0218348X22400497
crossref_primary_10_1016_j_amc_2021_126033
crossref_primary_10_1140_epjp_s13360_022_03498_6
crossref_primary_10_4236_jamp_2022_106132
crossref_primary_10_1186_s13661_024_01948_x
crossref_primary_10_1007_s40314_018_0693_4
crossref_primary_10_1016_j_apm_2017_12_012
crossref_primary_10_1016_j_apnum_2020_05_024
crossref_primary_10_1140_epjp_i2019_12696_8
crossref_primary_10_3934_math_2025063
crossref_primary_10_1002_num_22554
crossref_primary_10_1007_s40314_023_02198_w
crossref_primary_10_1007_s10483_016_2036_6
crossref_primary_10_1016_j_camwa_2017_08_032
crossref_primary_10_1016_j_jcp_2020_110081
crossref_primary_10_1007_s40314_023_02429_0
crossref_primary_10_1080_00207160_2017_1343941
crossref_primary_10_1016_j_camwa_2024_07_009
crossref_primary_10_1016_j_camwa_2019_01_007
crossref_primary_10_1016_j_jcp_2015_05_008
crossref_primary_10_1016_j_apnum_2017_04_003
crossref_primary_10_1016_j_cam_2020_113337
crossref_primary_10_3390_sym15020269
crossref_primary_10_1080_00036811_2016_1167879
crossref_primary_10_3390_fractalfract6010009
crossref_primary_10_1016_j_amc_2022_127829
crossref_primary_10_3390_sym12030485
crossref_primary_10_1142_S1793962321500069
crossref_primary_10_3934_math_2025036
crossref_primary_10_3390_fractalfract7060482
crossref_primary_10_1016_j_mex_2023_102007
crossref_primary_10_1007_s10440_019_00278_w
crossref_primary_10_1016_j_jcp_2017_01_061
crossref_primary_10_1155_2021_9945364
crossref_primary_10_3934_nhm_2023022
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_118
crossref_primary_10_1016_j_mex_2024_102763
crossref_primary_10_1007_s10614_024_10678_2
crossref_primary_10_1002_nla_2436
crossref_primary_10_1016_j_camwa_2019_12_008
crossref_primary_10_1080_0305215X_2015_1099640
crossref_primary_10_1002_num_22571
crossref_primary_10_1007_s10915_019_00966_7
crossref_primary_10_1016_j_cma_2016_05_028
crossref_primary_10_1016_j_cnsns_2017_08_014
crossref_primary_10_1080_00207160_2020_1820492
crossref_primary_10_1016_j_camwa_2017_05_017
crossref_primary_10_1155_2014_636191
crossref_primary_10_1002_mma_5876
crossref_primary_10_1016_j_amc_2018_10_031
crossref_primary_10_1016_j_jcp_2017_04_078
crossref_primary_10_1002_num_22179
crossref_primary_10_1007_s40096_020_00357_2
crossref_primary_10_1016_j_jcp_2015_06_028
crossref_primary_10_3390_math9182179
crossref_primary_10_1016_j_camwa_2020_11_007
crossref_primary_10_3390_fractalfract7040302
crossref_primary_10_1016_j_rinp_2021_104293
crossref_primary_10_1155_2020_8829017
crossref_primary_10_1016_j_enganabound_2018_10_002
crossref_primary_10_1016_j_ijheatmasstransfer_2017_08_105
crossref_primary_10_1016_j_amc_2019_124689
crossref_primary_10_1216_rmj_2020_50_2199
crossref_primary_10_1007_s10915_019_00979_2
crossref_primary_10_1007_s10915_022_01860_5
crossref_primary_10_1016_j_physa_2015_06_024
crossref_primary_10_1007_s11075_019_00742_6
crossref_primary_10_1007_s40314_020_01394_2
crossref_primary_10_2478_auom_2021_0027
crossref_primary_10_3390_fractalfract8010053
crossref_primary_10_1007_s10614_025_10881_9
crossref_primary_10_1140_epjp_s13360_020_00153_w
crossref_primary_10_1007_s10092_014_0132_x
crossref_primary_10_1007_s40314_023_02507_3
crossref_primary_10_1016_j_aej_2020_06_007
crossref_primary_10_1080_00207160_2017_1290434
crossref_primary_10_1016_j_matcom_2022_03_004
crossref_primary_10_1080_17415977_2016_1259316
crossref_primary_10_1515_cmam_2020_0158
crossref_primary_10_1007_s10444_021_09867_6
crossref_primary_10_1155_2022_3764703
crossref_primary_10_1515_ijnsns_2018_0146
crossref_primary_10_1063_1_5111832
crossref_primary_10_1080_01630563_2017_1402346
crossref_primary_10_1080_00207160_2019_1668556
crossref_primary_10_1016_j_amc_2017_05_032
crossref_primary_10_1007_s12190_016_1079_7
crossref_primary_10_1016_j_camwa_2017_10_035
crossref_primary_10_1007_s10915_018_0835_2
crossref_primary_10_1016_j_camwa_2015_09_012
crossref_primary_10_1002_num_22198
crossref_primary_10_1016_j_cam_2019_03_048
crossref_primary_10_1016_j_apnum_2019_01_005
crossref_primary_10_1016_j_cam_2018_01_036
crossref_primary_10_1007_s11075_022_01363_2
crossref_primary_10_1007_s40840_018_0652_7
crossref_primary_10_1016_j_cam_2019_06_035
crossref_primary_10_3934_dcdss_2021022
crossref_primary_10_1016_j_camwa_2016_02_007
crossref_primary_10_1002_mma_6260
crossref_primary_10_3934_era_2023365
crossref_primary_10_1016_j_jcp_2019_03_030
crossref_primary_10_1155_2014_371413
crossref_primary_10_1016_j_cnsns_2018_10_016
crossref_primary_10_1007_s40096_021_00439_9
crossref_primary_10_1007_s11075_016_0201_0
crossref_primary_10_3934_math_20231318
crossref_primary_10_1002_num_22366
crossref_primary_10_1515_math_2021_0099
crossref_primary_10_3390_fractalfract8120687
crossref_primary_10_1016_j_apnum_2017_03_009
crossref_primary_10_1063_1_4993817
crossref_primary_10_1002_zamm_202100042
crossref_primary_10_1002_num_22490
crossref_primary_10_1016_j_amc_2014_12_060
crossref_primary_10_1016_j_camwa_2023_09_005
crossref_primary_10_1186_s13662_021_03524_4
crossref_primary_10_1007_s11425_017_9179_x
crossref_primary_10_32604_cmes_2021_014950
crossref_primary_10_1016_j_apnum_2018_11_014
crossref_primary_10_1016_j_camwa_2016_11_020
crossref_primary_10_1038_s41598_023_28741_7
crossref_primary_10_1186_s13662_018_1537_7
crossref_primary_10_1080_02286203_2017_1358133
crossref_primary_10_3390_math12162519
crossref_primary_10_1016_j_aej_2020_03_003
crossref_primary_10_1016_j_cnsns_2020_105445
crossref_primary_10_1007_s42967_019_00058_1
crossref_primary_10_1002_mma_5431
crossref_primary_10_1016_j_apm_2017_01_065
crossref_primary_10_3390_sym15122172
crossref_primary_10_1016_j_chaos_2019_05_008
crossref_primary_10_1016_j_jcp_2020_109284
crossref_primary_10_1016_j_camwa_2020_04_019
crossref_primary_10_1016_j_camwa_2019_05_017
crossref_primary_10_11948_2018_229
crossref_primary_10_1016_j_camwa_2015_05_015
crossref_primary_10_1016_j_matcom_2020_12_033
Cites_doi 10.1016/S0370-1573(02)00331-9
10.1029/2000WR900032
10.1016/j.cam.2003.09.028
10.1016/j.cam.2009.02.013
10.1016/j.camwa.2009.08.071
10.1016/j.camwa.2007.11.012
10.1016/j.apnum.2005.02.008
10.1016/j.camwa.2009.08.004
10.1007/s11075-010-9393-x
10.1029/2004WR003818
10.1007/s10543-014-0484-2
10.1007/s11118-011-9243-z
10.2478/s11534-013-0317-y
10.1016/S0167-7322(99)00143-9
10.1016/j.camwa.2011.02.045
10.1016/j.cam.2005.06.005
10.1016/j.amc.2006.08.162
10.1016/j.cam.2004.01.033
10.1029/2006WR004912
10.1093/imamat/hxn033
10.1016/j.jmaa.2013.02.046
10.1029/2000WR900031
10.1016/j.jcp.2012.10.018
10.1016/j.advwatres.2009.01.008
10.1137/060673114
10.1007/s11538-007-9220-2
ContentType Journal Article
Copyright 2013
Copyright_xml – notice: 2013
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2013.10.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 3878
ExternalDocumentID 10_1016_j_apm_2013_10_007
S0307904X13006197
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
ZMT
~02
~G-
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
G-2
HZ~
MVM
R2-
SEW
SSH
WUQ
XJT
XPP
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-344660061c54363152e39b1a6d680aa78b5aa8e59ae19c52c3a2ca0752c6a9483
IEDL.DBID .~1
ISSN 0307-904X
IngestDate Fri Jul 11 09:07:05 EDT 2025
Thu Apr 24 22:50:07 EDT 2025
Tue Jul 01 02:00:48 EDT 2025
Fri Feb 23 02:30:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15-16
Keywords Finite volume method
Fractional diffusion equation
Two-sided space fractional derivative
Nonlinear source term
Space–time dependent variable coefficient
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-344660061c54363152e39b1a6d680aa78b5aa8e59ae19c52c3a2ca0752c6a9483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0307904X13006197
PQID 1816084699
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1816084699
crossref_citationtrail_10_1016_j_apm_2013_10_007
crossref_primary_10_1016_j_apm_2013_10_007
elsevier_sciencedirect_doi_10_1016_j_apm_2013_10_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematical modelling
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Baeumer, Kovály, Meerschaert (b0055) 2008; 55
Liu, Zhuang, Anh, Turner, Burrage (b0070) 2007; 191
Shen, Liu, Anh (b0080) 2011; 56
Leonenko, Meerschaert, Sikorskii (b0030) 2013; 403
Chen, Ye, Sun (b0100) 2010; 59
Benson, Wheatcraft, Meerschaert (b0010) 2000; 36
Zhang, Benson, Reeves (b0050) 2009; 32
Meerschaert, Tadjeran (b0060) 2004; 172
Meerschaert, Tadjeran (b0065) 2006; 56
Roop (b0110) 2006; 193
Zhang, Crawford, Deeks, Shutler, Bengough, Young (b0130) 2005; 41
Liu, Yang, Burrage (b0095) 2009; 231
H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the time–space fractional advection–dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14–17, Hohai University, Nanjing, China (MS11, Paper ID 038).
Kochubei (b0035) 2012; 37
A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-inspace reaction–diffusion equations, J. Comp. Phys., 2013, in press.
Metzler, Klafter (b0020) 2000; 86
Li, Zhao, Chen (b0120) 2011; 62
Fu, Chen, Yang (b0105) 2013; 235
S. Shen, F. Liu, V. Anh, I. Turner, A second-order accuracy numerical approximation for the Riesz space fractional advection–dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14–17, 2012, Hohai University, Nanjing, China.
Zhang, Benson, Meerschaert, Labolle (b0045) 2007; 43
Meerschaert, Sikorskii (b0025) 2012; 43
Zheng, Li, Zhao (b0115) 2010; 59
Baeumer, Kovály, Meerschaert (b0140) 2007; 69
Liu, Anh, Turner (b0015) 2004; 16
Zhuang, Liu, Anh, Turner (b0090) 2008; 46
Zaslavsky (b0040) 2002; 371
Shen, Liu, Anh, Turner (b0075) 2008; 73
Benson, Wheatcraft, Meerschaert (b0005) 2000; 36
Zhang (10.1016/j.apm.2013.10.007_b0045) 2007; 43
Benson (10.1016/j.apm.2013.10.007_b0010) 2000; 36
Liu (10.1016/j.apm.2013.10.007_b0015) 2004; 16
Zheng (10.1016/j.apm.2013.10.007_b0115) 2010; 59
Zhuang (10.1016/j.apm.2013.10.007_b0090) 2008; 46
Meerschaert (10.1016/j.apm.2013.10.007_b0060) 2004; 172
Li (10.1016/j.apm.2013.10.007_b0120) 2011; 62
Roop (10.1016/j.apm.2013.10.007_b0110) 2006; 193
Baeumer (10.1016/j.apm.2013.10.007_b0140) 2007; 69
10.1016/j.apm.2013.10.007_b0135
Zaslavsky (10.1016/j.apm.2013.10.007_b0040) 2002; 371
Baeumer (10.1016/j.apm.2013.10.007_b0055) 2008; 55
Fu (10.1016/j.apm.2013.10.007_b0105) 2013; 235
Benson (10.1016/j.apm.2013.10.007_b0005) 2000; 36
Kochubei (10.1016/j.apm.2013.10.007_b0035) 2012; 37
Metzler (10.1016/j.apm.2013.10.007_b0020) 2000; 86
Leonenko (10.1016/j.apm.2013.10.007_b0030) 2013; 403
Meerschaert (10.1016/j.apm.2013.10.007_b0065) 2006; 56
Meerschaert (10.1016/j.apm.2013.10.007_b0025) 2012; 43
Liu (10.1016/j.apm.2013.10.007_b0070) 2007; 191
Shen (10.1016/j.apm.2013.10.007_b0080) 2011; 56
Chen (10.1016/j.apm.2013.10.007_b0100) 2010; 59
Shen (10.1016/j.apm.2013.10.007_b0075) 2008; 73
10.1016/j.apm.2013.10.007_b0125
Liu (10.1016/j.apm.2013.10.007_b0095) 2009; 231
Zhang (10.1016/j.apm.2013.10.007_b0130) 2005; 41
Zhang (10.1016/j.apm.2013.10.007_b0050) 2009; 32
10.1016/j.apm.2013.10.007_b0085
References_xml – reference: H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the time–space fractional advection–dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14–17, Hohai University, Nanjing, China (MS11, Paper ID 038).
– volume: 59
  start-page: 1614
  year: 2010
  end-page: 1620
  ident: b0100
  article-title: Fractional diffusion equations by the Kansa method
  publication-title: Comput. Math. Appl.
– volume: 36
  start-page: 1403
  year: 2000
  end-page: 1412
  ident: b0005
  article-title: Application of a fractional advection–dispersion equation
  publication-title: Water Resour. Res.
– volume: 371
  start-page: 461
  year: 2002
  end-page: 580
  ident: b0040
  article-title: Chaos, fractional kinetics, and anomalous transport
  publication-title: Phys. Rep.
– volume: 193
  start-page: 243
  year: 2006
  end-page: 268
  ident: b0110
  article-title: Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in
  publication-title: J. Comput. Appl. Math.
– volume: 231
  start-page: 160
  year: 2009
  end-page: 176
  ident: b0095
  article-title: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
  publication-title: J. Comput. Appl. Math.
– volume: 86
  start-page: 219
  year: 2000
  end-page: 228
  ident: b0020
  article-title: The fractional Fokker–Planck equation: dispersive transport in an external force field
  publication-title: J. Mol. Liq.
– volume: 41
  start-page: 1
  year: 2005
  end-page: 10
  ident: b0130
  article-title: A mass balance based numerical method for the fractional advection–dispersion equation: theory and application
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 1413
  year: 2000
  end-page: 1423
  ident: b0010
  article-title: The fractional-order governing equation of levy motion
  publication-title: Water Resour. Res.
– volume: 62
  start-page: 855
  year: 2011
  end-page: 875
  ident: b0120
  article-title: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
  publication-title: Comput. Math. Appl.
– volume: 73
  start-page: 850
  year: 2008
  end-page: 872
  ident: b0075
  article-title: The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation
  publication-title: IMA J. Appl. Math.
– volume: 69
  start-page: 2281
  year: 2007
  end-page: 2297
  ident: b0140
  article-title: Fractional reproduction-dispersal equations and heavy tail dispersal kernels
  publication-title: Bull. Math. Biol.
– volume: 172
  start-page: 65
  year: 2004
  end-page: 77
  ident: b0060
  article-title: Finite difference approximations for fractional advection–dispersion flow equations
  publication-title: J. Comput. Appl. Math.
– volume: 55
  start-page: 2212
  year: 2008
  end-page: 2226
  ident: b0055
  article-title: Numerical solutions for fractional reaction–diffusion equations
  publication-title: Comput. Math. Appl.
– volume: 191
  start-page: 12
  year: 2007
  end-page: 21
  ident: b0070
  article-title: Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation
  publication-title: Appl. Math. Comput.
– volume: 46
  start-page: 1079
  year: 2008
  end-page: 1095
  ident: b0090
  article-title: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
  publication-title: SIAM J. Numer. Anal.
– reference: S. Shen, F. Liu, V. Anh, I. Turner, A second-order accuracy numerical approximation for the Riesz space fractional advection–dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14–17, 2012, Hohai University, Nanjing, China.
– volume: 32
  start-page: 561
  year: 2009
  end-page: 581
  ident: b0050
  article-title: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications
  publication-title: Adv. Water Resour.
– volume: 56
  start-page: 383
  year: 2011
  end-page: 403
  ident: b0080
  article-title: Numerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equation
  publication-title: Numer. Algorithms
– volume: 56
  start-page: 80
  year: 2006
  end-page: 90
  ident: b0065
  article-title: Finite difference approximations for two-sided space-fractional partial differential equations
  publication-title: Appl. Numer. Math.
– volume: 59
  start-page: 1718
  year: 2010
  end-page: 1726
  ident: b0115
  article-title: A note on the finite element method for the space-fractional advection diffusion equation
  publication-title: Comput. Math. Appl.
– volume: 43
  year: 2012
  ident: b0025
  article-title: Stochastic models for fractional calculus
  publication-title: De Gruyter Studies in Mathematics
– volume: 235
  start-page: 52
  year: 2013
  end-page: 66
  ident: b0105
  article-title: Boundary particle method for Laplace transformed time fractional diffusion equations
  publication-title: J. Comput. Phys.
– volume: 37
  start-page: 1
  year: 2012
  end-page: 30
  ident: b0035
  article-title: Fractional-parabolic systems
  publication-title: Potential Anal.
– reference: A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-inspace reaction–diffusion equations, J. Comp. Phys., 2013, in press.
– volume: 403
  start-page: 532
  year: 2013
  end-page: 546
  ident: b0030
  article-title: Fractional Pearson diffusions
  publication-title: J. Math. Anal. Appl.
– volume: 16
  start-page: 209
  year: 2004
  end-page: 219
  ident: b0015
  article-title: Numerical solution of the space fractional Fokker–Planck equation
  publication-title: J. Comput. Appl. Math.
– volume: 43
  start-page: W05439
  year: 2007
  ident: b0045
  article-title: Space-fractional advection–dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data
  publication-title: Water Resour. Res.
– volume: 371
  start-page: 461
  year: 2002
  ident: 10.1016/j.apm.2013.10.007_b0040
  article-title: Chaos, fractional kinetics, and anomalous transport
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(02)00331-9
– volume: 36
  start-page: 1413
  issue: 6
  year: 2000
  ident: 10.1016/j.apm.2013.10.007_b0010
  article-title: The fractional-order governing equation of levy motion
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900032
– volume: 16
  start-page: 209
  issue: 6
  year: 2004
  ident: 10.1016/j.apm.2013.10.007_b0015
  article-title: Numerical solution of the space fractional Fokker–Planck equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2003.09.028
– volume: 231
  start-page: 160
  issue: 1
  year: 2009
  ident: 10.1016/j.apm.2013.10.007_b0095
  article-title: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.02.013
– volume: 59
  start-page: 1718
  year: 2010
  ident: 10.1016/j.apm.2013.10.007_b0115
  article-title: A note on the finite element method for the space-fractional advection diffusion equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.071
– volume: 43
  year: 2012
  ident: 10.1016/j.apm.2013.10.007_b0025
  article-title: Stochastic models for fractional calculus
– volume: 55
  start-page: 2212
  year: 2008
  ident: 10.1016/j.apm.2013.10.007_b0055
  article-title: Numerical solutions for fractional reaction–diffusion equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2007.11.012
– volume: 56
  start-page: 80
  issue: 1
  year: 2006
  ident: 10.1016/j.apm.2013.10.007_b0065
  article-title: Finite difference approximations for two-sided space-fractional partial differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.02.008
– ident: 10.1016/j.apm.2013.10.007_b0085
– volume: 59
  start-page: 1614
  year: 2010
  ident: 10.1016/j.apm.2013.10.007_b0100
  article-title: Fractional diffusion equations by the Kansa method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.004
– volume: 56
  start-page: 383
  year: 2011
  ident: 10.1016/j.apm.2013.10.007_b0080
  article-title: Numerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-010-9393-x
– volume: 41
  start-page: 1
  year: 2005
  ident: 10.1016/j.apm.2013.10.007_b0130
  article-title: A mass balance based numerical method for the fractional advection–dispersion equation: theory and application
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003818
– ident: 10.1016/j.apm.2013.10.007_b0125
  doi: 10.1007/s10543-014-0484-2
– volume: 37
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.apm.2013.10.007_b0035
  article-title: Fractional-parabolic systems
  publication-title: Potential Anal.
  doi: 10.1007/s11118-011-9243-z
– ident: 10.1016/j.apm.2013.10.007_b0135
  doi: 10.2478/s11534-013-0317-y
– volume: 86
  start-page: 219
  year: 2000
  ident: 10.1016/j.apm.2013.10.007_b0020
  article-title: The fractional Fokker–Planck equation: dispersive transport in an external force field
  publication-title: J. Mol. Liq.
  doi: 10.1016/S0167-7322(99)00143-9
– volume: 62
  start-page: 855
  year: 2011
  ident: 10.1016/j.apm.2013.10.007_b0120
  article-title: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.02.045
– volume: 193
  start-page: 243
  issue: 1
  year: 2006
  ident: 10.1016/j.apm.2013.10.007_b0110
  article-title: Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R2
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.06.005
– volume: 191
  start-page: 12
  year: 2007
  ident: 10.1016/j.apm.2013.10.007_b0070
  article-title: Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.08.162
– volume: 172
  start-page: 65
  year: 2004
  ident: 10.1016/j.apm.2013.10.007_b0060
  article-title: Finite difference approximations for fractional advection–dispersion flow equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.01.033
– volume: 43
  start-page: W05439
  year: 2007
  ident: 10.1016/j.apm.2013.10.007_b0045
  article-title: Space-fractional advection–dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR004912
– volume: 73
  start-page: 850
  year: 2008
  ident: 10.1016/j.apm.2013.10.007_b0075
  article-title: The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxn033
– volume: 403
  start-page: 532
  issue: 2
  year: 2013
  ident: 10.1016/j.apm.2013.10.007_b0030
  article-title: Fractional Pearson diffusions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.02.046
– volume: 36
  start-page: 1403
  issue: 6
  year: 2000
  ident: 10.1016/j.apm.2013.10.007_b0005
  article-title: Application of a fractional advection–dispersion equation
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900031
– volume: 235
  start-page: 52
  year: 2013
  ident: 10.1016/j.apm.2013.10.007_b0105
  article-title: Boundary particle method for Laplace transformed time fractional diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.10.018
– volume: 32
  start-page: 561
  year: 2009
  ident: 10.1016/j.apm.2013.10.007_b0050
  article-title: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.01.008
– volume: 46
  start-page: 1079
  issue: 2
  year: 2008
  ident: 10.1016/j.apm.2013.10.007_b0090
  article-title: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/060673114
– volume: 69
  start-page: 2281
  year: 2007
  ident: 10.1016/j.apm.2013.10.007_b0140
  article-title: Fractional reproduction-dispersal equations and heavy tail dispersal kernels
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-007-9220-2
SSID ssj0005904
Score 2.4982328
Snippet The inherent heterogeneities of many geophysical systems often gives rise to fast and slow pathways to water and chemical movement. One approach to model...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3871
SubjectTerms Coefficients
Dependent variables
Diffusion
Dirichlet problem
Finite volume method
Fractional diffusion equation
Mathematical analysis
Mathematical models
Nonlinear source term
Space–time dependent variable coefficient
Three dimensional
Two-sided space fractional derivative
Title A new fractional finite volume method for solving the fractional diffusion equation
URI https://dx.doi.org/10.1016/j.apm.2013.10.007
https://www.proquest.com/docview/1816084699
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lXvQgrliXEsGTMO0smUxyrMXSKu2lFuY2JJkUKjKtXa7-dt-bpVTBHjwmvIThm5eXb-ZthDyIlGOfqdQxvvUdJkXoaCa0E1pPCwWTkmNy8nDE-xP2EodxjXSrXBgMqyxtf2HTc2tdzrRLNNuL2aw9RvWULovRIQOfAZhRzliEWt762gnzkC6riiGidOXZzGO81AKT0b2glQd4RX_dTb-sdH719E7IcckZaad4rFNSs9kZORpuC66uzsm4Q4Ef0-myyFMA6ekM2SQtrA8tGkVTYKgUlA1_IlBYvSuPnVI2-OuM2s-i_PcFmfSe37p9p-yX4Bg4iWsnQN8sYmFCFvAAbmYbSO0pnnLhKhUJHSolbCiV9aQJfRMo3yjgDL7hSjIRXJJ6Ns_sFaGeFSaKtOJeahgXRumpF2HdmTQQDLZrELdCKjFlMXHsafGRVFFj7wmAmyC4OAXgNsjjdsmiqKSxT5hV8Cc_1CEBS79v2X31qhI4Juj7UJmdb1YJEBnuAteS8vp_W9-QQxixIvbvltTXy429Az6y1s1c4ZrkoDN47Y9gNIifvgERsOAW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG4QD-rBuEZca-LJZGCWTqc9EqJBBS5Awq3pdEqCMQOyXP3tvjcLQRM5eO28NpNvXl-_6dsIeRAJxz5TiWN86ztMitCJmYid0Hqx0DAoOSYnd3u8PWSvo3BUIa0yFwbDKgvbn9v0zFoXI40CzcZsMmn0UT2ly0bokIHfgGiH7DLYvtjGoP61EechXVZWQ0Tx0rWZBXnpGWaje0E9i_CK_jqcfpnp7Ox5PiKHBWmkzfy9jknFpifkoLuuuLo4Jf0mBYJMx_M8UQGkxxOkkzQ3PzTvFE2BolLQNrxFoDB7Ux5bpazw7ozaz7z-9xkZPj8NWm2naJjgGNiKSydA5yyCYUIW8ACOZhvI2NM84cLVOhJxqLWwodTWkyb0TaB9o4E0-IZryURwTqrpNLUXhHpWmCiKNfcSw7gwOh57ERaeSQLBYLkacUuklCmqiWNTiw9Vho29KwBXIbg4BODWyON6yiwvpbFNmJXwqx_6oMDUb5t2X34qBfsEnR86tdPVQgGT4S6QLSkv_7f0HdlrD7od1XnpvV2RfXjC8kDAa1Jdzlf2BsjJMr7NlO8bCJ_goA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+fractional+finite+volume+method+for+solving+the+fractional+diffusion+equation&rft.jtitle=Applied+mathematical+modelling&rft.au=Liu%2C+F&rft.au=Zhuang%2C+P&rft.au=Turner%2C+I&rft.au=Burrage%2C+K&rft.date=2014-08-01&rft.issn=0307-904X&rft.volume=38&rft.issue=15-16&rft.spage=3871&rft.epage=3878&rft_id=info:doi/10.1016%2Fj.apm.2013.10.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon