Tuning the Surface Structure of Polyamide Membranes Using Porous Carbon Nitride Nanoparticles for High-Performance Seawater Desalination

Enhancing the water flux while maintaining the high salt rejection of existing reverse osmosis membranes remains a considerable challenge. Herein, we report the use of a porous carbon nitride (C3N4) nanoparticle to potentially improve both the water flux and salt rejection of the state-of-the-art po...

Full description

Saved in:
Bibliographic Details
Published inMembranes (Basel) Vol. 10; no. 8; p. 163
Main Authors Zhou, Zongyao, Li, Xiang, Shinde, Digambar B., Sheng, Guan, Lu, Dongwei, Li, Peipei, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enhancing the water flux while maintaining the high salt rejection of existing reverse osmosis membranes remains a considerable challenge. Herein, we report the use of a porous carbon nitride (C3N4) nanoparticle to potentially improve both the water flux and salt rejection of the state-of-the-art polyamide (PA) thin film composite (TFC) membranes. The organic–organic covalent bonds endowed C3N4 with great compatibility with the PA layer, which positively influenced the customization of interfacial polymerization (IP). Benefitting from the positive effects of C3N4, a more hydrophilic, more crumpled thin film nanocomposite (TFN) membrane with a larger surface area, and an increased cross-linking degree of PA layer was achieved. Moreover, the uniform porous structure of the C3N4 embedded in the ”ridge” sections of the PA layer potentially provided additional water channels. All these factors combined provided unprecedented performance for seawater desalination among all the PA-TFC membranes reported thus far. The water permeance of the optimized TFN membrane is 2.1-folds higher than that of the pristine PA-TFC membrane, while the NaCl rejection increased to 99.5% from 98.0%. Our method provided a promising way to improve the performance of the state-of-art PA-TFC membranes in seawater desalination.
AbstractList Enhancing the water flux while maintaining the high salt rejection of existing reverse osmosis membranes remains a considerable challenge. Herein, we report the use of a porous carbon nitride (C 3 N 4 ) nanoparticle to potentially improve both the water flux and salt rejection of the state-of-the-art polyamide (PA) thin film composite (TFC) membranes. The organic–organic covalent bonds endowed C 3 N 4 with great compatibility with the PA layer, which positively influenced the customization of interfacial polymerization (IP). Benefitting from the positive effects of C 3 N 4 , a more hydrophilic, more crumpled thin film nanocomposite (TFN) membrane with a larger surface area, and an increased cross-linking degree of PA layer was achieved. Moreover, the uniform porous structure of the C 3 N 4 embedded in the ”ridge” sections of the PA layer potentially provided additional water channels. All these factors combined provided unprecedented performance for seawater desalination among all the PA-TFC membranes reported thus far. The water permeance of the optimized TFN membrane is 2.1-folds higher than that of the pristine PA-TFC membrane, while the NaCl rejection increased to 99.5% from 98.0%. Our method provided a promising way to improve the performance of the state-of-art PA-TFC membranes in seawater desalination.
Enhancing the water flux while maintaining the high salt rejection of existing reverse osmosis membranes remains a considerable challenge. Herein, we report the use of a porous carbon nitride (C3N4) nanoparticle to potentially improve both the water flux and salt rejection of the state-of-the-art polyamide (PA) thin film composite (TFC) membranes. The organic–organic covalent bonds endowed C3N4 with great compatibility with the PA layer, which positively influenced the customization of interfacial polymerization (IP). Benefitting from the positive effects of C3N4, a more hydrophilic, more crumpled thin film nanocomposite (TFN) membrane with a larger surface area, and an increased cross-linking degree of PA layer was achieved. Moreover, the uniform porous structure of the C3N4 embedded in the ”ridge” sections of the PA layer potentially provided additional water channels. All these factors combined provided unprecedented performance for seawater desalination among all the PA-TFC membranes reported thus far. The water permeance of the optimized TFN membrane is 2.1-folds higher than that of the pristine PA-TFC membrane, while the NaCl rejection increased to 99.5% from 98.0%. Our method provided a promising way to improve the performance of the state-of-art PA-TFC membranes in seawater desalination.
Enhancing the water flux while maintaining the high salt rejection of existing reverse osmosis membranes remains a considerable challenge. Herein, we report the use of a porous carbon nitride (C3N4) nanoparticle to potentially improve both the water flux and salt rejection of the state-of-the-art polyamide (PA) thin film composite (TFC) membranes. The organic-organic covalent bonds endowed C3N4 with great compatibility with the PA layer, which positively influenced the customization of interfacial polymerization (IP). Benefitting from the positive effects of C3N4, a more hydrophilic, more crumpled thin film nanocomposite (TFN) membrane with a larger surface area, and an increased cross-linking degree of PA layer was achieved. Moreover, the uniform porous structure of the C3N4 embedded in the "ridge" sections of the PA layer potentially provided additional water channels. All these factors combined provided unprecedented performance for seawater desalination among all the PA-TFC membranes reported thus far. The water permeance of the optimized TFN membrane is 2.1-folds higher than that of the pristine PA-TFC membrane, while the NaCl rejection increased to 99.5% from 98.0%. Our method provided a promising way to improve the performance of the state-of-art PA-TFC membranes in seawater desalination.Enhancing the water flux while maintaining the high salt rejection of existing reverse osmosis membranes remains a considerable challenge. Herein, we report the use of a porous carbon nitride (C3N4) nanoparticle to potentially improve both the water flux and salt rejection of the state-of-the-art polyamide (PA) thin film composite (TFC) membranes. The organic-organic covalent bonds endowed C3N4 with great compatibility with the PA layer, which positively influenced the customization of interfacial polymerization (IP). Benefitting from the positive effects of C3N4, a more hydrophilic, more crumpled thin film nanocomposite (TFN) membrane with a larger surface area, and an increased cross-linking degree of PA layer was achieved. Moreover, the uniform porous structure of the C3N4 embedded in the "ridge" sections of the PA layer potentially provided additional water channels. All these factors combined provided unprecedented performance for seawater desalination among all the PA-TFC membranes reported thus far. The water permeance of the optimized TFN membrane is 2.1-folds higher than that of the pristine PA-TFC membrane, while the NaCl rejection increased to 99.5% from 98.0%. Our method provided a promising way to improve the performance of the state-of-art PA-TFC membranes in seawater desalination.
Author Sheng, Guan
Lu, Dongwei
Lai, Zhiping
Zhou, Zongyao
Shinde, Digambar B.
Li, Xiang
Li, Peipei
AuthorAffiliation Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Zongyao.zhou@kaust.edu.sa (Z.Z.); Xiang.li@kaust.edu.sa (X.L.); Digambar.Shinde@kaust.edu.sa (D.B.S.); Guan.sheng@kaust.edu.sa (G.S.); dongwei.lu@kaust.edu.sa (D.L.); peipei.li@kaust.edu.sa (P.L.)
AuthorAffiliation_xml – name: Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Zongyao.zhou@kaust.edu.sa (Z.Z.); Xiang.li@kaust.edu.sa (X.L.); Digambar.Shinde@kaust.edu.sa (D.B.S.); Guan.sheng@kaust.edu.sa (G.S.); dongwei.lu@kaust.edu.sa (D.L.); peipei.li@kaust.edu.sa (P.L.)
Author_xml – sequence: 1
  givenname: Zongyao
  surname: Zhou
  fullname: Zhou, Zongyao
– sequence: 2
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
– sequence: 3
  givenname: Digambar B.
  orcidid: 0000-0003-1449-0621
  surname: Shinde
  fullname: Shinde, Digambar B.
– sequence: 4
  givenname: Guan
  surname: Sheng
  fullname: Sheng, Guan
– sequence: 5
  givenname: Dongwei
  surname: Lu
  fullname: Lu, Dongwei
– sequence: 6
  givenname: Peipei
  surname: Li
  fullname: Li, Peipei
– sequence: 7
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
BookMark eNp9kstuFDEQRVsoiIQhH8CuJTZsBsqPfm2Q0ARIpBBGIlm3qt3lGY-67cF2g_IHfDaeB4gECW-q5Dr3ulSu59mJdZay7CWDN0I08HaksfNoKTCAGlgpnmRnHKpqDqIqTv7KT7PzEDaQTglFKeBZdip4xTnw-iz7eTtZY1d5XFP-dfIaVYrRTypOnnKn86Ub7nE0PeWffz-Y34WdZOm8m0K-QN85m9-Y6HfUDVq3RR-NGhKpnc8vzWo9X5JP-Yh250_4AyP5_IICDsZiNM6-yJ5qHAKdH-Msu_v44XZxOb_-8ulq8f56riRAnHPkvVairlijJTQkgFV9DVILalhTVIDIJTFAVRPxuiugaHhTU0GVRui4mGVXB9_e4abdejOiv28dmnZ_4fyqPXbfCinLHkWnWVdLJbu6J1YorKnsS81SZZa9O3htp26kXpGNHocHpg8r1qzblfveVrIsAWQyeH008O7bRCG2owmKhiGNOc225ZLXRSEbDgl99QjduMnbNKo9xUsGBUsUO1DKuxA86T_NMGh3a9P-szZJUz3SKBP3f5J6NsN_lL8AzgTNdg
CitedBy_id crossref_primary_10_1016_j_desal_2022_116061
crossref_primary_10_1016_j_cej_2021_130955
crossref_primary_10_1016_j_seppur_2023_126230
crossref_primary_10_1016_j_scitotenv_2021_148462
crossref_primary_10_3390_membranes11050329
crossref_primary_10_1016_j_watres_2022_119524
crossref_primary_10_1016_j_seppur_2023_124574
crossref_primary_10_1155_2022_8415434
crossref_primary_10_1016_j_memsci_2022_121019
crossref_primary_10_1016_j_jece_2023_110511
crossref_primary_10_3390_membranes11040295
crossref_primary_10_3390_membranes10100264
Cites_doi 10.1016/j.desal.2018.01.037
10.1016/j.memsci.2018.11.005
10.1016/j.memsci.2014.09.022
10.1016/j.desal.2017.08.006
10.1016/j.memsci.2014.11.054
10.1016/j.memsci.2010.11.054
10.1016/j.memsci.2015.04.050
10.1126/science.aar6308
10.1002/anie.201801998
10.1007/s10904-017-0667-9
10.1016/j.desal.2014.10.031
10.1021/acs.estlett.8b00169
10.1021/acsami.5b01197
10.1021/es202576h
10.1021/acsami.6b14223
10.1016/j.memsci.2020.117932
10.1021/acs.est.8b02425
10.1016/j.chemosphere.2019.06.008
10.1002/smll.201603893
10.1039/c3ta13768f
10.1016/j.memsci.2007.02.025
10.1021/acs.estlett.8b00016
10.1016/j.apsusc.2015.08.197
10.1016/j.memsci.2015.01.025
10.1002/smll.201601253
10.1126/science.aaa5058
10.1039/C7TA00501F
10.1021/es101569p
10.1039/C3DT53224K
10.1016/j.memsci.2014.10.052
10.1039/c3ra40960k
10.1021/ja308249k
10.1016/j.memsci.2014.11.038
10.1016/j.apsusc.2015.12.028
10.1002/anie.201101182
10.1016/j.desal.2016.02.034
10.1039/C5RA06185G
10.1126/sciadv.1500323
10.1016/j.memsci.2018.06.040
10.1039/C9EN00692C
10.1016/j.apcatb.2017.08.033
10.1126/science.aar2122
10.1016/j.memsci.2009.03.024
10.1039/C5TA04042F
10.1016/j.watres.2015.04.037
10.1021/acsami.5b01212
10.1016/j.desal.2017.11.009
10.1021/nn505318v
10.1021/acs.langmuir.5b03593
10.1016/j.memsci.2010.04.032
10.1039/C7TA07335F
10.1021/acsami.6b05545
10.1039/c3cs60051c
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KB.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/membranes10080163
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2077-0375
ExternalDocumentID oai_doaj_org_article_3446da3bf1b84c4b8de15ca8e6d6f1da
PMC7466004
10_3390_membranes10080163
GeographicLocations United States--US
Germany
GeographicLocations_xml – name: United States--US
– name: Germany
GroupedDBID 53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
D1I
EAD
EAP
EPL
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
I-F
KB.
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RPM
TUS
UKHRP
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c400t-2a2dfc38719f409e3017d804f3e919570aa24e10ac8ee28b5059298e5e7fa0b23
IEDL.DBID M48
ISSN 2077-0375
IngestDate Wed Aug 27 01:26:01 EDT 2025
Thu Aug 21 17:57:28 EDT 2025
Fri Jul 11 02:51:50 EDT 2025
Fri Jul 25 12:15:12 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Tue Jul 01 03:32:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-2a2dfc38719f409e3017d804f3e919570aa24e10ac8ee28b5059298e5e7fa0b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contribute equally.
ORCID 0000-0001-9555-6009
0000-0003-1449-0621
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/membranes10080163
PMID 32722028
PQID 2428261051
PQPubID 2032363
ParticipantIDs doaj_primary_oai_doaj_org_article_3446da3bf1b84c4b8de15ca8e6d6f1da
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7466004
proquest_miscellaneous_2428554920
proquest_journals_2428261051
crossref_primary_10_3390_membranes10080163
crossref_citationtrail_10_3390_membranes10080163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200724
PublicationDateYYYYMMDD 2020-07-24
PublicationDate_xml – month: 7
  year: 2020
  text: 20200724
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Membranes (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhu (ref_30) 2016; 12
Kotp (ref_52) 2017; 27
Lee (ref_53) 2015; 3
Santanu (ref_23) 2015; 348
Xue (ref_40) 2015; 7
Kim (ref_3) 2017; 422
Huang (ref_44) 2015; 483
Lee (ref_49) 2018; 436
Duan (ref_17) 2015; 473
Cao (ref_31) 2015; 490
Duan (ref_10) 2015; 476
Zhou (ref_38) 2020; 601
Hoover (ref_2) 2011; 45
Wang (ref_28) 2017; 5
Lau (ref_16) 2015; 80
Liu (ref_37) 2017; 5
Gao (ref_41) 2014; 43
Yan (ref_48) 2015; 475
Choi (ref_6) 2015; 9
Shaffer (ref_5) 2015; 356
Wu (ref_15) 2018; 57
Huang (ref_45) 2013; 3
Chowdhury (ref_7) 2018; 361
Geise (ref_8) 2011; 369
Jeong (ref_9) 2007; 294
Verbeke (ref_13) 2018; 563
Ma (ref_20) 2017; 9
She (ref_34) 2014; 2
Li (ref_54) 2016; 363
Yang (ref_29) 2018; 52
Ye (ref_32) 2019; 6
Wang (ref_11) 2015; 5
Ghosh (ref_43) 2009; 336
Gupta (ref_21) 2015; 31
Zhou (ref_22) 2018; 5
Klaysom (ref_4) 2013; 42
Wang (ref_26) 2018; 9
Guo (ref_19) 2015; 7
Ali (ref_50) 2016; 386
Dong (ref_18) 2015; 476
Bellardita (ref_39) 2018; 220
Li (ref_14) 2019; 572
Wang (ref_35) 2012; 51
Wang (ref_12) 2019; 233
Ma (ref_24) 2018; 5
Tan (ref_27) 2018; 360
Kale (ref_36) 2017; 13
Zou (ref_42) 2015; 357
Xue (ref_47) 2016; 8
Zhang (ref_33) 2013; 135
Pacheco (ref_25) 2010; 358
Lind (ref_46) 2010; 44
Mekonnen (ref_1) 2016; 2
Chong (ref_51) 2018; 428
References_xml – volume: 436
  start-page: 48
  year: 2018
  ident: ref_49
  article-title: High-performance reverse osmosis membranes fabricated on highly porous microstructured supports
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.01.037
– volume: 572
  start-page: 520
  year: 2019
  ident: ref_14
  article-title: Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.11.005
– volume: 473
  start-page: 157
  year: 2015
  ident: ref_17
  article-title: Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.09.022
– volume: 422
  start-page: 5
  year: 2017
  ident: ref_3
  article-title: Review on methodology for determining forward osmosis (FO) membrane characteristics: Water permeability (A), solute permeability (B), and structural parameter (S)
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.08.006
– volume: 476
  start-page: 373
  year: 2015
  ident: ref_18
  article-title: High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.11.054
– volume: 369
  start-page: 130
  year: 2011
  ident: ref_8
  article-title: Water permeability and water/salt selectivity tradeoff in polymers for desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.11.054
– volume: 490
  start-page: 72
  year: 2015
  ident: ref_31
  article-title: Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.04.050
– volume: 360
  start-page: 518
  year: 2018
  ident: ref_27
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
  doi: 10.1126/science.aar6308
– volume: 57
  start-page: 8007
  year: 2018
  ident: ref_15
  article-title: Toward two-dimensional pi-conjugated covalent organic radical frameworks
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801998
– volume: 27
  start-page: 201
  year: 2017
  ident: ref_52
  article-title: Performance enhancement of PA-TFC RO membrane by using magnesium silicate nanoparticles
  publication-title: J. Inorg. Organomet. Polym. Mater.
  doi: 10.1007/s10904-017-0667-9
– volume: 356
  start-page: 271
  year: 2015
  ident: ref_5
  article-title: Forward osmosis: Where are we now?
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.10.031
– volume: 5
  start-page: 243
  year: 2018
  ident: ref_22
  article-title: High-Performance Thin-Film Composite Membrane with an Ultrathin Spray-Coated Carbon Nanotube Interlayer
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00169
– volume: 7
  start-page: 8225
  year: 2015
  ident: ref_19
  article-title: Desalination by membrane distillation using electrospun polyamide fiber membranes with surface fluorination by chemical vapor deposition
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01197
– volume: 45
  start-page: 9824
  year: 2011
  ident: ref_2
  article-title: Forward with osmosis: Emerging applications for greater sustainability
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202576h
– volume: 9
  start-page: 7523
  year: 2017
  ident: ref_20
  article-title: Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal–organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14223
– volume: 601
  start-page: 117932
  year: 2020
  ident: ref_38
  article-title: Fabrication of highly permeable polyamide membranes with large “leaf-like” surface nanostructures on inorganic supports for organic solvent nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.117932
– volume: 9
  start-page: 1
  year: 2018
  ident: ref_26
  article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination
  publication-title: Nat. Commun.
– volume: 52
  start-page: 9341
  year: 2018
  ident: ref_29
  article-title: Tannic acid/Fe3+ nanoscaffold for Interfacial polymerization: Toward enhanced nanofiltration performance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02425
– volume: 233
  start-page: 524
  year: 2019
  ident: ref_12
  article-title: Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.06.008
– volume: 13
  start-page: 1603893
  year: 2017
  ident: ref_36
  article-title: Sulfur-Modified Graphitic Carbon Nitride Nanostructures as an Efficient Electrocatalyst for Water Oxidation
  publication-title: Small
  doi: 10.1002/smll.201603893
– volume: 2
  start-page: 2563
  year: 2014
  ident: ref_34
  article-title: Exfoliated graphene-like carbon nitride in organic solvents: Enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13768f
– volume: 294
  start-page: 1
  year: 2007
  ident: ref_9
  article-title: Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.02.025
– volume: 5
  start-page: 123
  year: 2018
  ident: ref_24
  article-title: Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00016
– volume: 357
  start-page: 221
  year: 2015
  ident: ref_42
  article-title: Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.197
– volume: 483
  start-page: 25
  year: 2015
  ident: ref_44
  article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.01.025
– volume: 12
  start-page: 5034
  year: 2016
  ident: ref_30
  article-title: Single-Walled Carbon Nanotube Film Supported Nanofiltration Membrane with a Nearly 10 nm Thick Polyamide Selective Layer for High-Flux and High-Rejection Desalination
  publication-title: Small
  doi: 10.1002/smll.201601253
– volume: 348
  start-page: 1347
  year: 2015
  ident: ref_23
  article-title: Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 5
  start-page: 16289
  year: 2017
  ident: ref_28
  article-title: Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00501F
– volume: 44
  start-page: 8230
  year: 2010
  ident: ref_46
  article-title: Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101569p
– volume: 43
  start-page: 8178
  year: 2014
  ident: ref_41
  article-title: Ion coordination significantly enhances the photocatalytic activity of graphitic-phase carbon nitride
  publication-title: Dalton Trans.
  doi: 10.1039/C3DT53224K
– volume: 475
  start-page: 504
  year: 2015
  ident: ref_48
  article-title: The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.10.052
– volume: 3
  start-page: 8203
  year: 2013
  ident: ref_45
  article-title: Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane
  publication-title: RSC Adv.
  doi: 10.1039/c3ra40960k
– volume: 135
  start-page: 18
  year: 2013
  ident: ref_33
  article-title: Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308249k
– volume: 476
  start-page: 303
  year: 2015
  ident: ref_10
  article-title: High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.11.038
– volume: 363
  start-page: 338
  year: 2016
  ident: ref_54
  article-title: Fabrication of semi-aromatic polyamide/spherical mesoporous silica nanocomposite reverse osmosis membrane with superior permeability
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.12.028
– volume: 51
  start-page: 68
  year: 2012
  ident: ref_35
  article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101182
– volume: 386
  start-page: 67
  year: 2016
  ident: ref_50
  article-title: Thin film composite membranes embedded with graphene oxide for water desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.02.034
– volume: 5
  start-page: 50942
  year: 2015
  ident: ref_11
  article-title: The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06185G
– volume: 2
  start-page: e1500323
  year: 2016
  ident: ref_1
  article-title: Four billion people facing severe water scarcity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500323
– volume: 563
  start-page: 938
  year: 2018
  ident: ref_13
  article-title: The role of MOFs in thin-film nanocomposite (TFN) membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.06.040
– volume: 6
  start-page: 2958
  year: 2019
  ident: ref_32
  article-title: High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C3N4 nanosheets for enhanced selectivity towards organics and salts
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C9EN00692C
– volume: 220
  start-page: 222
  year: 2018
  ident: ref_39
  article-title: Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.08.033
– volume: 361
  start-page: 682
  year: 2018
  ident: ref_7
  article-title: 3D printed polyamide membranes for desalination
  publication-title: Science
  doi: 10.1126/science.aar2122
– volume: 336
  start-page: 140
  year: 2009
  ident: ref_43
  article-title: Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.03.024
– volume: 3
  start-page: 22053
  year: 2015
  ident: ref_53
  article-title: A facile route to enhance the water flux of a thin-film composite reverse osmosis membrane: Incorporating thickness-controlled graphene oxide into a highly porous support layer
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04042F
– volume: 80
  start-page: 306
  year: 2015
  ident: ref_16
  article-title: A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.04.037
– volume: 7
  start-page: 9630
  year: 2015
  ident: ref_40
  article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01212
– volume: 428
  start-page: 218
  year: 2018
  ident: ref_51
  article-title: Studies on the properties of RO membranes for salt and boron removal: Influence of thermal treatment methods and rinsing treatments
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.11.009
– volume: 9
  start-page: 345
  year: 2015
  ident: ref_6
  article-title: Tailor-Made Polyamide Membranes for Water Desalination
  publication-title: ACS Nano
  doi: 10.1021/nn505318v
– volume: 31
  start-page: 13230
  year: 2015
  ident: ref_21
  article-title: Water desalination through zeolitic imidazolate framework membranes: Significant role of functional groups
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b03593
– volume: 358
  start-page: 51
  year: 2010
  ident: ref_25
  article-title: Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.04.032
– volume: 5
  start-page: 23190
  year: 2017
  ident: ref_37
  article-title: Modification of thin film composite polyamide membranes with 3D hyperbranched polyglycerol for simultaneous improvement in their filtration performance and antifouling properties
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07335F
– volume: 8
  start-page: 19135
  year: 2016
  ident: ref_47
  article-title: Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs)
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05545
– volume: 42
  start-page: 6959
  year: 2013
  ident: ref_4
  article-title: Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60051c
SSID ssj0000605630
Score 2.261006
Snippet Enhancing the water flux while maintaining the high salt rejection of existing reverse osmosis membranes remains a considerable challenge. Herein, we report...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 163
SubjectTerms Aquaporins
Carbon
Carbon nitride
Covalent bonds
Crosslinking
Desalination
Membranes
mixed matrix membranes
Nanocomposites
Nanoparticles
Performance enhancement
polyamide membrane
Polyamide resins
Polyamides
Porous materials
Rejection
Reverse osmosis
Salt rejection
Scanning electron microscopy
Seawater
seawater desalination
Sodium chloride
Surface structure
thin film composite
Thin films
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp_ZQ-kndpkWFngoikixb9rENDaGQEEgCuZmRNKILWW9xdyn9B_nZGcne7ZpCe-nJ2BqDrNFI70njJ8Y-gPbK1qCEb00rDMQoAIIUSrXYuiRZlKWUzs7r02vz9aa62TvqK-WEjfLAY8MdlcRXApQuKtcYb1wTUFUeGqxDHVXI0IjmvD0yNY7BMglfjduYJfH6oyUuiX7S8JHUbAjnlLOJKOv1z0DmPEVyb845ecIeT2CRfxor-ZQ9wP4Ze7QnIfic3V1t0soGJxzHLzdDBE_XrAm7GZCvIr9Y3f6C5SIgP9vWjec8ASoZiPbzYxjcqufni_WQrGi4JR49pctxgrQ8pYKIi98_GPBLhJ8EUQdOpBXSD73JuS_Y9cmXq-NTMZ2uIDzF7Vpo0CH6kghTG4nkIUW6DY00scRWtZWVANqgkuAbRN04gkoEpRqs0EaQTpcv2UG_6vEV495K62uU0EJjXAXO1AQsKtQ13QRrCia3Td35SXo8nYBx2xEFSd7p_vBOwT7uXvk-6m78zfhz8t_OMElm5wfUkbqpxbp_daSCHW69301x_KMjAEP8izCoKtj7XTFFYNpWoSqQm7JNlYTuZMHsrNfMKjQv6Rffspa3NTVBTvP6f3zBG_ZQp9UAaYU2h-yAOhu-Jci0du9ydNwD8eQb1A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtemkPpZ_UbVoU6KkgItmyZZ9KG7oJgYRAEsjNjKRRu5C1U2eX0n_Qn92Ro93EBHIytmQsNDPSe9L4ibHPkDtlKlDCNboRGkIQAF4KpRpsbJQsGqWUjo6rg3N9eFFepAW365RWuR4Tx4Ha9y6uke_SVEJImNCA-nr1W8RTo-LuajpC4zF7omimiSld9Wx_s8YiCatXRdrMLIjd7y5wQSSUBpGoaUNop5hMR6Nq_wRqThMl78w8sxfseYKM_NuNjV-yR9i9Ys_uCAm-Zv_OVnF9gxOa46erIYCj66gMuxqQ94Gf9Jd_YTH3yI_WbeNjtgCVDET--R4Mtu_48Xw5xFo06BKbTklznIAtjwkh4uT2NwN-ivCHgOrAibpC_K03mvgNO5_9ONs7EOmMBeEoepcih9wHVxBtagJRPaR4N76WOhTYqKY0EiDXqCS4GjGvLQEmAlQ1lmgCSJsXb9lW13f4jnFnpHEVSmig1rYEqyuCFyXmFd14ozMm113duiRAHs_BuGyJiETrtPesk7Evm1eubtQ3Hqr8PdpvUzEKZ48P-uFnm3qsLYj-eihsULbWTtvaoyod1Fj5KigPGdteW79N0Xzd3vpexnY2xRSHcXOFmkBmGuuUUe5OZsxMvGbSoGlJN_81KnobXRHw1O8f_vgH9jSPbF8aketttkVuhB8JEi3tp9Hv_wMVCBGw
  priority: 102
  providerName: ProQuest
Title Tuning the Surface Structure of Polyamide Membranes Using Porous Carbon Nitride Nanoparticles for High-Performance Seawater Desalination
URI https://www.proquest.com/docview/2428261051
https://www.proquest.com/docview/2428554920
https://pubmed.ncbi.nlm.nih.gov/PMC7466004
https://doaj.org/article/3446da3bf1b84c4b8de15ca8e6d6f1da
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2eYGHiasIjMpIPCEZ7MSJkweE2LQyIbWq2Cr1LTp2HKjUJixrBfsH_GzOSdOyiAnxkiixY1k-vnyfffIdxl5D6JRJQAmX6UxoKEsBUEihVOYzS5JFrZTSaJycT_XnWTzbY9vwVl0DXt9J7Sie1LRZvP15dfMBB_x7YpxI2d8t_RKZJc4MJFSDECbaZ4e4MBkKaDDq0P5mYpakhkXh5qQxgqK_bs457y6lt1K1gv49FNr3oby1KA0fsKMOTfKPG_M_ZHu-esTu39IYfMx-Xa5p64Mj0OMX66YEh_dWNHbdeF6XfFIvbmA5LzwfbevGW0cCTGnq9TU_hcbWFR_PVw3lwvkYiXbnT8cR83LyFRGTP38g8AsPPxDDNhxZLdAfv2T9J2w6PLs8PRdd-AXhcGCvRAhhUboIGVVWIgv0OBWYIpW6jHymsthIgFB7JcGl3oepRSyFWCv1sTclSBtGT9lBVVf-GePOSOMSLyGDVNsYrE4QecQ-TPChMDpgctvUueu0ySlExiJHjkLWyf-yTsDe7D75vhHm-FfmE7LfLiNparcv6uZr3rVYHiEzLiCypbKpdtqmhVexg9QnRVKqAgJ2vLV-vu2nOSIcJGgIUlXAXu2ScYjSuQtWAc3U5olJCU8GzPR6Ta9C_ZRq_q0V-zY6QUyqn_9H6S_YvZB2A6QRoT5mB9iX_EuETCs7YPtmZvCaDj8N2OHJ2XjyZdBuPwzaIfIbChQetg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqcgAOqPyJQAEjwQUpqu04fweEoLBsaXdVqVuptzCxnbJSN2mzu6r6BjwNz8hMNtk2Quqtp1XWjmJ5xuNvxuNvGHsPysg4AumbVKe-hqLwAazwpUxdmhNlUUOlNBpHw2P98yQ82WB_u7swlFbZ2cTGUNvKUIx8B7cSRMKIBuTn8wufqkbR6WpXQmOlFvvu6hJdtvmnvW8o3w9KDb5Pdod-W1XAN6ivC1-BsoUJ0FFIC3RuHGp4bBOhi8ClMg1jAaC0kwJM4pxKcoQICCESF7q4AJET0QGa_Hs6wJ2cbqYPfqxjOgJ9gyhoD0-xXezM3AydXjRaxKGD6CrobX9NlYAetO0nZt7Y6QZb7FELUfmXlU49ZhuufMIe3iAufMr-TJYUT-GIHvnRsi7A4G_DRLusHa8KflidXcFsah0fdWPjTXYCttTVcs53oc6rko-ni5p6oZFH771N0uMIpDkloPiH19ca-JGDSwTGNUdXGegaManUM3Z8J7P_nG2WVeleMG5iEZvICUgh0XkIuY4QzoRORfhgY-0x0U11ZlrCc6q7cZah40PSyf6Tjsc-rl85X7F93Nb5K8lv3ZGIups_qvo0a2csC9DdthDkhcwTbXSeWCdDA4mLbFRICx7b7qSftdZjnl3rusferZtx3dNhDg4BxdT0CYleT3gs7mlNb0D9lnL6u2EQj3WEQFe_vP3jb9n94WR0kB3sjfdfsQeKIg0i9pXeZpuoUu41wrFF_qZZA5z9uutF9w-1OE2M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBUlhbE9jH0yb92mwfYyEJFk2bIfxlg_QruuIawt9M27lqUt0Nidk1D6D_ab9ut25dhpzaBvfQqOZCx0r67Oka6OCHkP0ggdg2AmVSlT4BwDKDgTIrVp7iWLGimlo3G8f6q-nkVnG-RvdxbGp1V2MbEJ1EVl_Br5EKcSRMKIBsTQtWkRk93R54vfzN8g5Xdau-s0Vi5yaK8ukb7NPx3soq0_SDnaO9nZZ-0NA8yg7y6YBFk4EyJpSB0SHYverouEKxfaVKSR5gBSWcHBJNbKJEe4gHAisZHVDnjuRQ8w_G9qz4oGZHN7bzz5vl7h4cgU4rDdSg3DlA9ndoYUGEOYV9RBrBX2JsPmzoAe0O2nad6Y90aPyMMWsNIvKw97TDZs-YQ8uCFj-JT8OVn61RWKWJIeL2sHBn8bXdplbWnl6KQ6v4LZtLD0qGsbbXIVsKSulnO6A3VelXQ8XdS-FoZ85PJtyh5FWE19OgqbXB9yoMcWLhEm1xSJM_hDxd7BnpHTO-n_52RQVqV9QajRXJvYckghUXkEuYoR3ERWxvhQaBUQ3nV1Zlr5c38Lx3mGNMhbJ_vPOgH5uH7lYqX9cVvlbW-_dUUv2938UdU_s7bHshDJdwFh7kSeKKPypLAiMpDYuIidKCAgW531szaWzLNrzw_Iu3UxRgG_tYNNQDM1dSIvtscDonte02tQv6Sc_mr0xLWKEfaql7d__C25hwMu-3YwPnxF7ku_7MA1k2qLDNCj7GvEZov8TTsIKPlx1-PuH2jSUx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Surface+Structure+of+Polyamide+Membranes+Using+Porous+Carbon+Nitride+Nanoparticles+for+High-Performance+Seawater+Desalination&rft.jtitle=Membranes+%28Basel%29&rft.au=Zhou%2C+Zongyao&rft.au=Li%2C+Xiang&rft.au=Shinde%2C+Digambar+B&rft.au=Sheng%2C+Guan&rft.date=2020-07-24&rft.issn=2077-0375&rft.eissn=2077-0375&rft.volume=10&rft.issue=8&rft_id=info:doi/10.3390%2Fmembranes10080163&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0375&client=summon