Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study
The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies t...
Saved in:
Published in | Future internet Vol. 12; no. 10; p. 165 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-5903 1999-5903 |
DOI | 10.3390/fi12100165 |
Cover
Abstract | The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies the tourist behaviour models’ construction and usage. The digital pattern of life defines the general concepts of tourist behaviour, connects the tourist and the digital world and allows us to track behaviour changes over time. A literature review of the current state of the research in selected fields is performed for identifying the existing problems. The case studies of behaviour analysis based on classification, clustering and time series events behaviour models are shown. An ontological approach and artificial neural networks are used during behaviour model construction, training and evaluation. The gathered results can be used by smart tourism service developers and business stakeholders. |
---|---|
AbstractList | The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies the tourist behaviour models’ construction and usage. The digital pattern of life defines the general concepts of tourist behaviour, connects the tourist and the digital world and allows us to track behaviour changes over time. A literature review of the current state of the research in selected fields is performed for identifying the existing problems. The case studies of behaviour analysis based on classification, clustering and time series events behaviour models are shown. An ontological approach and artificial neural networks are used during behaviour model construction, training and evaluation. The gathered results can be used by smart tourism service developers and business stakeholders. The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies the tourist behaviour models' construction and usage. The digital pattern of life defines the general concepts of tourist behaviour, connects the tourist and the digital world and allows us to track behaviour changes over time. A literature review of the current state of the research in selected fields is performed for identifying the existing problems. The case studies of behaviour analysis based on classification, clustering and time series events behaviour models are shown. An ontological approach and artificial neural networks are used during behaviour model construction, training and evaluation. The gathered results can be used by smart tourism service developers and business stakeholders. Keywords: neural networks; behaviour analysis; tourism; digital pattern of life |
Audience | Academic |
Author | Kashevnik, Alexey Mikhailov, Sergei |
Author_xml | – sequence: 1 givenname: Sergei orcidid: 0000-0002-3738-0639 surname: Mikhailov fullname: Mikhailov, Sergei – sequence: 2 givenname: Alexey orcidid: 0000-0001-6503-1447 surname: Kashevnik fullname: Kashevnik, Alexey |
BookMark | eNptUd1qFDEYDVLB2vbGJwh4J2zNz2RmcjldbS0sKFjBu_BNfrZZppM1yRb2zofoE_ZJ_Ooqiphc5MvhOwfOOS_J0ZxmT8grzs6l1OxtiFxwxnirnpFjrrVeKM3k0V_zC3JWyobhkVq0bXdMvt6kXY6l0gt_C_cRP3SYYdqXWOgFFO9omum7uI4VJvoJavV5pinQVQz-8fvDMNNhu80J7C2F2dElUujnunP7U_I8wFT82a_3hHy5fH-z_LBYfby6Xg6rhW0YqwuheR-cE6HtRCNZq7xjqpUIj7K3wSrXBOg6ZUft9OidD2ODboIY-z4o6-UJuT7ougQbs83xDvLeJIjmJ5Dy2kCu0U7ecBsgqLaXIFnDGepDYCOMTPRh7IRErdcHLXT0bedLNRsMBOMoRigpORd9z3Dr_LC1BhSNc0g1g8Xr_F20WEmIiA9tg6WoXmkksAPB5lRK9sFYjLPGNCMxToYz89Sf-dMfUt78Q_nt7D_LPwAEv5wZ |
CitedBy_id | crossref_primary_10_3390_systems9030050 crossref_primary_10_3390_electronics10121390 crossref_primary_10_1080_13467581_2024_2399681 crossref_primary_10_3390_su15118463 crossref_primary_10_1016_j_tourman_2025_105139 crossref_primary_10_3390_fi13010002 |
Cites_doi | 10.1063/1.4907823 10.1016/S0167-7012(00)00201-3 10.1016/j.cie.2017.05.016 10.1016/j.procs.2018.03.076 10.1016/j.eswa.2013.09.005 10.23919/FRUCT.2019.8711949 10.1186/s40537-014-0007-7 10.1016/j.eswa.2018.08.025 10.3390/su10093313 10.1109/23.589532 10.1109/CoDIT49905.2020.9263945 10.1109/72.279188 10.1016/j.im.2016.11.011 10.3390/su11051314 10.1016/j.techfore.2018.01.018 10.1007/978-3-642-36309-2_6 10.1016/j.scs.2019.101939 10.1016/j.annals.2019.01.014 10.1016/j.annals.2020.102923 10.1016/j.asoc.2018.02.004 10.1145/331499.331504 10.1016/j.tourman.2019.104008 10.1016/j.array.2020.100020 10.1109/SIET.2017.8304158 10.1109/5.58325 10.1109/ICSSE.2019.8823542 10.1016/j.tourman.2018.03.009 10.1016/j.annals.2018.11.006 10.1016/j.trc.2018.09.006 10.1016/j.ipm.2017.10.006 10.1016/S0169-2070(97)00044-7 10.1016/j.tourman.2016.03.014 10.21832/9781845410247 10.1016/j.proeng.2017.02.357 10.1016/j.pmcj.2014.07.003 10.3390/su12103958 10.1162/neco.1997.9.8.1735 10.1109/JSEN.2020.2975382 10.1002/9781118625590 10.1016/j.tourman.2019.07.002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/fi12100165 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection (ProQuest Business/Economics) (LUT) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1999-5903 |
ExternalDocumentID | oai_doaj_org_article_1cfaf5683a3041038caf0bab028fb723 A643395859 10_3390_fi12100165 |
GeographicLocations | Russia |
GeographicLocations_xml | – name: Russia |
GroupedDBID | -DT .4I 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV ADMLS AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K60 K6V K6~ K7- KQ8 M0C MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC RNS TR2 PMFND 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c400t-2918fdd2f67243065ed0563291b38cfc5d4fa775cb9d9bedefb4999f2b88f5ce3 |
IEDL.DBID | BENPR |
ISSN | 1999-5903 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Sun Sep 07 03:27:03 EDT 2025 Tue Jun 10 20:30:20 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Tue Jul 01 00:57:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-2918fdd2f67243065ed0563291b38cfc5d4fa775cb9d9bedefb4999f2b88f5ce3 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
ORCID | 0000-0002-3738-0639 0000-0001-6503-1447 |
OpenAccessLink | https://www.proquest.com/docview/2533112880?pq-origsite=%requestingapplication% |
PQID | 2533112880 |
PQPubID | 2032396 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1cfaf5683a3041038caf0bab028fb723 proquest_journals_2533112880 gale_infotracacademiconefile_A643395859 crossref_citationtrail_10_3390_fi12100165 crossref_primary_10_3390_fi12100165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Future internet |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Miah (ref_15) 2017; 54 Padhi (ref_16) 2017; 24 Silva (ref_17) 2019; 74 Hasnat (ref_18) 2018; 96 ref_14 ref_36 ref_35 Wang (ref_31) 2018; 66 Zhang (ref_12) 1998; 14 Kontogianni (ref_1) 2020; 6 Zhang (ref_19) 2019; 75 Eremia (ref_34) 2017; 181 Connor (ref_38) 1994; 5 Najafabadi (ref_13) 2015; 2 Li (ref_4) 2017; 58 ref_39 Li (ref_8) 2018; 68 Huang (ref_32) 2020; 15 Vecchio (ref_10) 2018; 54 Law (ref_30) 2019; 75 Jain (ref_37) 1999; 31 Kashevnik (ref_40) 2020; 20 Yao (ref_22) 2018; 114 Vu (ref_20) 2020; 77 ref_23 ref_45 ref_21 Bi (ref_33) 2020; 83 Nilashi (ref_25) 2017; 109 ref_42 Lika (ref_46) 2014; 41 Phithakkitnukoon (ref_24) 2015; 18 Hochreiter (ref_44) 1997; 9 ref_3 ref_2 Liu (ref_26) 2018; 130 Jamal (ref_6) 2020; 53 ref_28 ref_27 Li (ref_29) 2018; 129 Sola (ref_41) 1997; 44 Basheer (ref_11) 2001; 43 Kohonen (ref_43) 1990; 78 ref_5 Li (ref_9) 2020; 33 ref_7 |
References_xml | – ident: ref_7 doi: 10.1063/1.4907823 – volume: 43 start-page: 3 year: 2001 ident: ref_11 article-title: Artificial Neural Networks: Fundamentals, Computing, Design, and Application publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 109 start-page: 357 year: 2017 ident: ref_25 article-title: A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.05.016 – volume: 129 start-page: 277 year: 2018 ident: ref_29 article-title: Prediction for Tourism Flow based on LSTM Neural Network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.03.076 – volume: 41 start-page: 2065 year: 2014 ident: ref_46 article-title: Facing the cold start problem in recommender systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.005 – ident: ref_14 doi: 10.23919/FRUCT.2019.8711949 – volume: 2 start-page: 1 year: 2015 ident: ref_13 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 114 start-page: 588 year: 2018 ident: ref_22 article-title: A paired neural network model for tourist arrival forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.025 – ident: ref_27 doi: 10.3390/su10093313 – volume: 44 start-page: 1464 year: 1997 ident: ref_41 article-title: Importance of input data normalization for the application of neural networks to complex industrial problems publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.589532 – ident: ref_35 doi: 10.1109/CoDIT49905.2020.9263945 – volume: 5 start-page: 240 year: 1994 ident: ref_38 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279188 – volume: 54 start-page: 771 year: 2017 ident: ref_15 article-title: A Big Data Analytics Method for Tourist Behaviour Analysis publication-title: Inf. Manag. doi: 10.1016/j.im.2016.11.011 – ident: ref_23 doi: 10.3390/su11051314 – volume: 130 start-page: 123 year: 2018 ident: ref_26 article-title: Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2018.01.018 – ident: ref_2 doi: 10.1007/978-3-642-36309-2_6 – volume: 53 start-page: 101939 year: 2020 ident: ref_6 article-title: Smartphone and daily travel: How the use of smartphone applications affect travel decisions publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101939 – volume: 75 start-page: 410 year: 2019 ident: ref_30 article-title: Tourism demand forecasting: A deep learning approach publication-title: Ann. Tour. Res. doi: 10.1016/j.annals.2019.01.014 – volume: 83 start-page: 102923 year: 2020 ident: ref_33 article-title: Daily tourism volume forecasting for tourist attractions publication-title: Ann. Tour. Res. doi: 10.1016/j.annals.2020.102923 – volume: 66 start-page: 1 year: 2018 ident: ref_31 article-title: Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.004 – volume: 31 start-page: 264 year: 1999 ident: ref_37 article-title: Data clustering: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/331499.331504 – volume: 77 start-page: 104008 year: 2020 ident: ref_20 article-title: Discovering highly profitable travel patterns by high-utility pattern mining publication-title: Tour. Manag. doi: 10.1016/j.tourman.2019.104008 – ident: ref_42 – volume: 15 start-page: 100411 year: 2020 ident: ref_32 article-title: Tourists’ spatial-temporal behavior patterns in theme parks: A case study of Ocean Park Hong Kong publication-title: J. Destin. Mark. Manag. – volume: 6 start-page: 100020 year: 2020 ident: ref_1 article-title: Smart tourism: State of the art and literature review for the last six years publication-title: Array doi: 10.1016/j.array.2020.100020 – volume: 24 start-page: 34 year: 2017 ident: ref_16 article-title: Quantifying potential tourist behavior in choice of destination using Google Trends publication-title: Tour. Manag. Perspect. – ident: ref_28 doi: 10.1109/SIET.2017.8304158 – volume: 78 start-page: 1464 year: 1990 ident: ref_43 article-title: The self-organizing map publication-title: Proc. IEEE doi: 10.1109/5.58325 – ident: ref_21 doi: 10.1109/ICSSE.2019.8823542 – volume: 68 start-page: 301 year: 2018 ident: ref_8 article-title: Big data in tourism research: A literature review publication-title: Tour. Manag. doi: 10.1016/j.tourman.2018.03.009 – volume: 74 start-page: 134 year: 2019 ident: ref_17 article-title: Forecasting tourism demand with denoised neural networks publication-title: Ann. Tour. Res. doi: 10.1016/j.annals.2018.11.006 – volume: 96 start-page: 38 year: 2018 ident: ref_18 article-title: Identifying tourists and analyzing spatial patterns of their destinations from location-based social media data publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.09.006 – volume: 54 start-page: 847 year: 2018 ident: ref_10 article-title: Creating value from Social Big Data: Implications for Smart Tourism Destinations publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2017.10.006 – volume: 14 start-page: 35 year: 1998 ident: ref_12 article-title: Forecasting with artificial neural networks:: The state of the art publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(97)00044-7 – volume: 58 start-page: 293 year: 2017 ident: ref_4 article-title: The concept of smart tourism in the context of tourism information services publication-title: Tour. Manag. doi: 10.1016/j.tourman.2016.03.014 – volume: 33 start-page: 100608 year: 2020 ident: ref_9 article-title: Network analysis of big data research in tourism publication-title: Tour. Manag. Perspect. – ident: ref_5 doi: 10.21832/9781845410247 – volume: 181 start-page: 12 year: 2017 ident: ref_34 article-title: The Smart City Concept in the 21st Century publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.02.357 – volume: 18 start-page: 18 year: 2015 ident: ref_24 article-title: Understanding tourist behavior using large-scale mobile sensing approach: A case study of mobile phone users in Japan publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2014.07.003 – ident: ref_3 doi: 10.3390/su12103958 – ident: ref_36 – volume: 9 start-page: 1735 year: 1997 ident: ref_44 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_45 – volume: 20 start-page: 6701 year: 2020 ident: ref_40 article-title: Cloud-Based Driver Monitoring System Using a Smartphone publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2975382 – ident: ref_39 doi: 10.1002/9781118625590 – volume: 75 start-page: 595 year: 2019 ident: ref_19 article-title: Discovering the tourists’ behaviors and perceptions in a tourism destination by analyzing photos’ visual content with a computer deep learning model: The case of Beijing publication-title: Tour. Manag. doi: 10.1016/j.tourman.2019.07.002 |
SSID | ssj0000392667 |
Score | 2.2037325 |
Snippet | The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 165 |
SubjectTerms | Algorithms Applied research Artificial neural networks behaviour analysis Big Data Case studies Clustering Consumer behavior Decomposition Deep learning digital pattern of life Information technology Internet Literature reviews Methods Neural networks Public sector Sensors Smartphones Social networks Technology application Time series Tourism Tourism promotion Tourist attractions Trends User generated content |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSsNAEMcX6UkP4idGqywoiIfQNLvZJMe2WoqoeLDQ27KfUpBUanvw5kP4hD6JM0laKyhehJyWDWxmsjPzh93fEHJmk8y6jPHQaJOHXDOIg4zHoYV0KyD6uUjhReHbOzEY8utRMlpp9YVnwio8cGW4Vtt45RORMQXCG2neRvlIKw150es0LjmfUR6tiKkyBkPaFyKteKQMdH3LjxGVhZd3vmWgEtT_Wzguc0x_i2zWxSHtVIvaJmuu2CEbK8jAXTKqsH8zWoMN51O64IrQLmQkSycFvRw_Yi8Qel_CMws68fRm7N3H23unoJ2aIk5VYWkPXqF4lvB1jwz7Vw-9QVh3RwgN7LtZGOftzFsbe5HGHPu_OwvFDINhDUbyJrHcqzRNjM5trp11XqO68bHOMp8Yx_ZJo5gU7oBQzbjliYJHa47E9kSJNBWeI6mHi3ZALhYWk6ZGh2MHiycJEgKtK7-sG5DT5dznCpjx46wuGn45AyHX5QC4Xtaul3-5PiDn6DaJWxGWY1R9owA-CqFWsgPVFstBD-UBaS48K-s9-iJjqHSh2oQAdvgfqzki6zFq8fKgX5M0ZtO5O4aCZaZPyn_zEwzx57s priority: 102 providerName: Directory of Open Access Journals |
Title | Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study |
URI | https://www.proquest.com/docview/2533112880 https://doaj.org/article/1cfaf5683a3041038caf0bab028fb723 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3Na9swFMAfa3PZDmXdB8vaBcEGYwfTxJJl-TTstlkZWyljhdyEPkug2F2aHnrrH7G_cH_J3nOUdIVt4JMsgy29T1n6PYB3vlA-KC4yZ12VCcvRDnKRZx7drUTrF8aGDgp_PZUn5-LzrJilBbfrtK1ybRN7Q-07R2vkBznGJRgboLh9vPqRUdUo-ruaSmhswQBNsEI5HzTHp2ffNqssY3T_UpYrLinH_P4gzgmZRYd4HniiHtj_L7Pc-5rpU9hJQSKrV7O6C49C-wye_IEOfA6zFf5vyRLg8GbB1nwR1qBn8qxr2dH8gmqCsLMeotmyLrIv8xh-3f2sW1YnmjgzrWeH-AijPYW3L-B8evz98CRLVRIyh_q3zPJqoqL3eZRlLqgOfPAY1HBstly56AovoinLwtnKVzb4EC1lOTG3SsXCBf4SttuuDa-AWS68KAxe1goitxdGlqWMgog9Qk6G8GE9YtolhDhVsrjUmErQ6Or70R3C203fqxU446-9Ghr4TQ-CXfcN3eJCJ93RExdNLKTiho8FAd2diWNrLIZG0ZY5H8J7mjZNKomv40w6WYAfRXArXWPUxSvMi6oh7K9nViddvdb3kvX6_7f34HFO2Xa_lW8ftpeLm_AGQ5KlHcGWmn4awaBujprpKEnhqE_wfwP_ceOU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qZQEsqvJSh7ZgCRBiEXXGdpxkgdC0ZZjSacWilWZn_KxGQkmZToW64yP4Dj6KL-HePKYgAbtKWTlOlFyf3IdjnwPwwqe5D7mQibOuSKQV6AeF5InHcKvQ-4W-oY3CR8dqfCo_TNPpCvzo9sLQssrOJ9aO2leO5sh3OOYlmBsg3N6ef0lINYr-rnYSGg0sDsPVVyzZLt4c7OP4vuR89O5kb5y0qgKJQ7wuEl4M8ug9jyrjknTTg8ckQGCzFbmLLvUymixLnS18YYMP0VJVELnN85i6IPC-t-C2FKIgqYh89H45p9PHZEOprGFBpfM7cUYEXbRl6I-4V8sD_CsI1JFttA5rbUrKhg2G7sNKKB_Avd-ICh_CtCEbXLCWTvFyzjo2E7aLcdCzqmT7szNSIGEfa8rOklWRTWYx_Pz2fViyYctdzkzp2R5ewmgF49UjOL0R6z2G1bIqwwYwK6SXqcHDWkk88alRWaaiJH4gqQY9eN1ZTLuWsJx0Mz5rLFzIuvrauj14vux73tB0_LXXLhl-2YOoteuGan6m2y9VD1w0MVW5MKIviT7emdi3xmIiFm3GRQ9e0bBpcgD4OM60-xjwpYhKSw8VQQOrsKIHW93I6tYzXOhrHD_5_-lncGd8cjTRk4Pjw024y6nOrxcRbsHqYn4ZtjEZWtinNQIZfLppyP8CgVYc-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IH7FQgFLgBCHqLu24yQHhLZdlpaWqgcq7c34t1oJJWW7FeqNh-BpeByehJnE2YIE3Crl5DhRMp7MfOPMfAPw3OelD6WQmbOuyqQVaAeF5JlHd6vQ-oWhoULhDwdq50i-n-WzNfjR18JQWmVvE1tD7RtHe-SbHHEJYgNUt82Y0iIOJ9M3J18y6iBFf1r7dhqdiuyF868Yvp2-3p3gWr_gfPr24_ZOljoMZA51d5nxalRG73lUBZfUQz14BAQCh60oXXS5l9EURe5s5SsbfIiWIoTIbVnG3AWB970CVwtRVBT4ldN3q_2dIQIPpYqOEVWICh97TmRdVD70hw9sWwX8yyG0Xm56C24meMrGnT7dhrVQ34Ebv5EW3oVZRzy4ZIla8WzBemYTtoU-0bOmZpP5MXUjYYctfWfNmsj25zH8_PZ9XLNx4jFnpvZsGy9hlM14fg-OLkV692G9burwAJgV0svc4GGtJM743KiiUFESV5BUowG86iWmXSIvpx4anzUGMSRdfSHdATxbzT3pKDv-OmuLBL-aQTTb7UCzONbpq9UjF03MVSmMGEqikncmDq2xCMqiLbgYwEtaNk3GAB_HmVTTgC9FtFp6jHhPVBiRVQPY6FdWJytxqi90-uH_Tz-Fa6jsen_3YO8RXOcU8rf5hBuwvlychceIi5b2SauADD5dtsb_Aqa9ITk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tourist+Behaviour+Analysis+Based+on+Digital+Pattern+of+Life--An+Approach+and+Case+Study&rft.jtitle=Future+internet&rft.au=Mikhailov%2C+Sergei&rft.au=Kashevnik%2C+Alexey&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=12&rft.issue=10&rft.spage=1&rft_id=info:doi/10.3390%2Ffi12100165&rft.externalDocID=A643395859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |