Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study

The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies t...

Full description

Saved in:
Bibliographic Details
Published inFuture internet Vol. 12; no. 10; p. 165
Main Authors Mikhailov, Sergei, Kashevnik, Alexey
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2020
Subjects
Online AccessGet full text
ISSN1999-5903
1999-5903
DOI10.3390/fi12100165

Cover

Abstract The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies the tourist behaviour models’ construction and usage. The digital pattern of life defines the general concepts of tourist behaviour, connects the tourist and the digital world and allows us to track behaviour changes over time. A literature review of the current state of the research in selected fields is performed for identifying the existing problems. The case studies of behaviour analysis based on classification, clustering and time series events behaviour models are shown. An ontological approach and artificial neural networks are used during behaviour model construction, training and evaluation. The gathered results can be used by smart tourism service developers and business stakeholders.
AbstractList The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies the tourist behaviour models’ construction and usage. The digital pattern of life defines the general concepts of tourist behaviour, connects the tourist and the digital world and allows us to track behaviour changes over time. A literature review of the current state of the research in selected fields is performed for identifying the existing problems. The case studies of behaviour analysis based on classification, clustering and time series events behaviour models are shown. An ontological approach and artificial neural networks are used during behaviour model construction, training and evaluation. The gathered results can be used by smart tourism service developers and business stakeholders.
The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies the tourist behaviour models' construction and usage. The digital pattern of life defines the general concepts of tourist behaviour, connects the tourist and the digital world and allows us to track behaviour changes over time. A literature review of the current state of the research in selected fields is performed for identifying the existing problems. The case studies of behaviour analysis based on classification, clustering and time series events behaviour models are shown. An ontological approach and artificial neural networks are used during behaviour model construction, training and evaluation. The gathered results can be used by smart tourism service developers and business stakeholders. Keywords: neural networks; behaviour analysis; tourism; digital pattern of life
Audience Academic
Author Kashevnik, Alexey
Mikhailov, Sergei
Author_xml – sequence: 1
  givenname: Sergei
  orcidid: 0000-0002-3738-0639
  surname: Mikhailov
  fullname: Mikhailov, Sergei
– sequence: 2
  givenname: Alexey
  orcidid: 0000-0001-6503-1447
  surname: Kashevnik
  fullname: Kashevnik, Alexey
BookMark eNptUd1qFDEYDVLB2vbGJwh4J2zNz2RmcjldbS0sKFjBu_BNfrZZppM1yRb2zofoE_ZJ_Ooqiphc5MvhOwfOOS_J0ZxmT8grzs6l1OxtiFxwxnirnpFjrrVeKM3k0V_zC3JWyobhkVq0bXdMvt6kXY6l0gt_C_cRP3SYYdqXWOgFFO9omum7uI4VJvoJavV5pinQVQz-8fvDMNNhu80J7C2F2dElUujnunP7U_I8wFT82a_3hHy5fH-z_LBYfby6Xg6rhW0YqwuheR-cE6HtRCNZq7xjqpUIj7K3wSrXBOg6ZUft9OidD2ODboIY-z4o6-UJuT7ougQbs83xDvLeJIjmJ5Dy2kCu0U7ecBsgqLaXIFnDGepDYCOMTPRh7IRErdcHLXT0bedLNRsMBOMoRigpORd9z3Dr_LC1BhSNc0g1g8Xr_F20WEmIiA9tg6WoXmkksAPB5lRK9sFYjLPGNCMxToYz89Sf-dMfUt78Q_nt7D_LPwAEv5wZ
CitedBy_id crossref_primary_10_3390_systems9030050
crossref_primary_10_3390_electronics10121390
crossref_primary_10_1080_13467581_2024_2399681
crossref_primary_10_3390_su15118463
crossref_primary_10_1016_j_tourman_2025_105139
crossref_primary_10_3390_fi13010002
Cites_doi 10.1063/1.4907823
10.1016/S0167-7012(00)00201-3
10.1016/j.cie.2017.05.016
10.1016/j.procs.2018.03.076
10.1016/j.eswa.2013.09.005
10.23919/FRUCT.2019.8711949
10.1186/s40537-014-0007-7
10.1016/j.eswa.2018.08.025
10.3390/su10093313
10.1109/23.589532
10.1109/CoDIT49905.2020.9263945
10.1109/72.279188
10.1016/j.im.2016.11.011
10.3390/su11051314
10.1016/j.techfore.2018.01.018
10.1007/978-3-642-36309-2_6
10.1016/j.scs.2019.101939
10.1016/j.annals.2019.01.014
10.1016/j.annals.2020.102923
10.1016/j.asoc.2018.02.004
10.1145/331499.331504
10.1016/j.tourman.2019.104008
10.1016/j.array.2020.100020
10.1109/SIET.2017.8304158
10.1109/5.58325
10.1109/ICSSE.2019.8823542
10.1016/j.tourman.2018.03.009
10.1016/j.annals.2018.11.006
10.1016/j.trc.2018.09.006
10.1016/j.ipm.2017.10.006
10.1016/S0169-2070(97)00044-7
10.1016/j.tourman.2016.03.014
10.21832/9781845410247
10.1016/j.proeng.2017.02.357
10.1016/j.pmcj.2014.07.003
10.3390/su12103958
10.1162/neco.1997.9.8.1735
10.1109/JSEN.2020.2975382
10.1002/9781118625590
10.1016/j.tourman.2019.07.002
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi12100165
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection (ProQuest Business/Economics) (LUT)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_1cfaf5683a3041038caf0bab028fb723
A643395859
10_3390_fi12100165
GeographicLocations Russia
GeographicLocations_xml – name: Russia
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RNS
TR2
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c400t-2918fdd2f67243065ed0563291b38cfc5d4fa775cb9d9bedefb4999f2b88f5ce3
IEDL.DBID BENPR
ISSN 1999-5903
IngestDate Wed Aug 27 01:30:29 EDT 2025
Sun Sep 07 03:27:03 EDT 2025
Tue Jun 10 20:30:20 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Tue Jul 01 00:57:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-2918fdd2f67243065ed0563291b38cfc5d4fa775cb9d9bedefb4999f2b88f5ce3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-3738-0639
0000-0001-6503-1447
OpenAccessLink https://www.proquest.com/docview/2533112880?pq-origsite=%requestingapplication%
PQID 2533112880
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_1cfaf5683a3041038caf0bab028fb723
proquest_journals_2533112880
gale_infotracacademiconefile_A643395859
crossref_citationtrail_10_3390_fi12100165
crossref_primary_10_3390_fi12100165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Miah (ref_15) 2017; 54
Padhi (ref_16) 2017; 24
Silva (ref_17) 2019; 74
Hasnat (ref_18) 2018; 96
ref_14
ref_36
ref_35
Wang (ref_31) 2018; 66
Zhang (ref_12) 1998; 14
Kontogianni (ref_1) 2020; 6
Zhang (ref_19) 2019; 75
Eremia (ref_34) 2017; 181
Connor (ref_38) 1994; 5
Najafabadi (ref_13) 2015; 2
Li (ref_4) 2017; 58
ref_39
Li (ref_8) 2018; 68
Huang (ref_32) 2020; 15
Vecchio (ref_10) 2018; 54
Law (ref_30) 2019; 75
Jain (ref_37) 1999; 31
Kashevnik (ref_40) 2020; 20
Yao (ref_22) 2018; 114
Vu (ref_20) 2020; 77
ref_23
ref_45
ref_21
Bi (ref_33) 2020; 83
Nilashi (ref_25) 2017; 109
ref_42
Lika (ref_46) 2014; 41
Phithakkitnukoon (ref_24) 2015; 18
Hochreiter (ref_44) 1997; 9
ref_3
ref_2
Liu (ref_26) 2018; 130
Jamal (ref_6) 2020; 53
ref_28
ref_27
Li (ref_29) 2018; 129
Sola (ref_41) 1997; 44
Basheer (ref_11) 2001; 43
Kohonen (ref_43) 1990; 78
ref_5
Li (ref_9) 2020; 33
ref_7
References_xml – ident: ref_7
  doi: 10.1063/1.4907823
– volume: 43
  start-page: 3
  year: 2001
  ident: ref_11
  article-title: Artificial Neural Networks: Fundamentals, Computing, Design, and Application
  publication-title: J. Microbiol. Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 109
  start-page: 357
  year: 2017
  ident: ref_25
  article-title: A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.05.016
– volume: 129
  start-page: 277
  year: 2018
  ident: ref_29
  article-title: Prediction for Tourism Flow based on LSTM Neural Network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.03.076
– volume: 41
  start-page: 2065
  year: 2014
  ident: ref_46
  article-title: Facing the cold start problem in recommender systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.005
– ident: ref_14
  doi: 10.23919/FRUCT.2019.8711949
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_13
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 114
  start-page: 588
  year: 2018
  ident: ref_22
  article-title: A paired neural network model for tourist arrival forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.025
– ident: ref_27
  doi: 10.3390/su10093313
– volume: 44
  start-page: 1464
  year: 1997
  ident: ref_41
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/23.589532
– ident: ref_35
  doi: 10.1109/CoDIT49905.2020.9263945
– volume: 5
  start-page: 240
  year: 1994
  ident: ref_38
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279188
– volume: 54
  start-page: 771
  year: 2017
  ident: ref_15
  article-title: A Big Data Analytics Method for Tourist Behaviour Analysis
  publication-title: Inf. Manag.
  doi: 10.1016/j.im.2016.11.011
– ident: ref_23
  doi: 10.3390/su11051314
– volume: 130
  start-page: 123
  year: 2018
  ident: ref_26
  article-title: Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2018.01.018
– ident: ref_2
  doi: 10.1007/978-3-642-36309-2_6
– volume: 53
  start-page: 101939
  year: 2020
  ident: ref_6
  article-title: Smartphone and daily travel: How the use of smartphone applications affect travel decisions
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101939
– volume: 75
  start-page: 410
  year: 2019
  ident: ref_30
  article-title: Tourism demand forecasting: A deep learning approach
  publication-title: Ann. Tour. Res.
  doi: 10.1016/j.annals.2019.01.014
– volume: 83
  start-page: 102923
  year: 2020
  ident: ref_33
  article-title: Daily tourism volume forecasting for tourist attractions
  publication-title: Ann. Tour. Res.
  doi: 10.1016/j.annals.2020.102923
– volume: 66
  start-page: 1
  year: 2018
  ident: ref_31
  article-title: Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.004
– volume: 31
  start-page: 264
  year: 1999
  ident: ref_37
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/331499.331504
– volume: 77
  start-page: 104008
  year: 2020
  ident: ref_20
  article-title: Discovering highly profitable travel patterns by high-utility pattern mining
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2019.104008
– ident: ref_42
– volume: 15
  start-page: 100411
  year: 2020
  ident: ref_32
  article-title: Tourists’ spatial-temporal behavior patterns in theme parks: A case study of Ocean Park Hong Kong
  publication-title: J. Destin. Mark. Manag.
– volume: 6
  start-page: 100020
  year: 2020
  ident: ref_1
  article-title: Smart tourism: State of the art and literature review for the last six years
  publication-title: Array
  doi: 10.1016/j.array.2020.100020
– volume: 24
  start-page: 34
  year: 2017
  ident: ref_16
  article-title: Quantifying potential tourist behavior in choice of destination using Google Trends
  publication-title: Tour. Manag. Perspect.
– ident: ref_28
  doi: 10.1109/SIET.2017.8304158
– volume: 78
  start-page: 1464
  year: 1990
  ident: ref_43
  article-title: The self-organizing map
  publication-title: Proc. IEEE
  doi: 10.1109/5.58325
– ident: ref_21
  doi: 10.1109/ICSSE.2019.8823542
– volume: 68
  start-page: 301
  year: 2018
  ident: ref_8
  article-title: Big data in tourism research: A literature review
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2018.03.009
– volume: 74
  start-page: 134
  year: 2019
  ident: ref_17
  article-title: Forecasting tourism demand with denoised neural networks
  publication-title: Ann. Tour. Res.
  doi: 10.1016/j.annals.2018.11.006
– volume: 96
  start-page: 38
  year: 2018
  ident: ref_18
  article-title: Identifying tourists and analyzing spatial patterns of their destinations from location-based social media data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.09.006
– volume: 54
  start-page: 847
  year: 2018
  ident: ref_10
  article-title: Creating value from Social Big Data: Implications for Smart Tourism Destinations
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2017.10.006
– volume: 14
  start-page: 35
  year: 1998
  ident: ref_12
  article-title: Forecasting with artificial neural networks:: The state of the art
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 58
  start-page: 293
  year: 2017
  ident: ref_4
  article-title: The concept of smart tourism in the context of tourism information services
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2016.03.014
– volume: 33
  start-page: 100608
  year: 2020
  ident: ref_9
  article-title: Network analysis of big data research in tourism
  publication-title: Tour. Manag. Perspect.
– ident: ref_5
  doi: 10.21832/9781845410247
– volume: 181
  start-page: 12
  year: 2017
  ident: ref_34
  article-title: The Smart City Concept in the 21st Century
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.02.357
– volume: 18
  start-page: 18
  year: 2015
  ident: ref_24
  article-title: Understanding tourist behavior using large-scale mobile sensing approach: A case study of mobile phone users in Japan
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2014.07.003
– ident: ref_3
  doi: 10.3390/su12103958
– ident: ref_36
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_44
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_45
– volume: 20
  start-page: 6701
  year: 2020
  ident: ref_40
  article-title: Cloud-Based Driver Monitoring System Using a Smartphone
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2975382
– ident: ref_39
  doi: 10.1002/9781118625590
– volume: 75
  start-page: 595
  year: 2019
  ident: ref_19
  article-title: Discovering the tourists’ behaviors and perceptions in a tourism destination by analyzing photos’ visual content with a computer deep learning model: The case of Beijing
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2019.07.002
SSID ssj0000392667
Score 2.2037325
Snippet The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 165
SubjectTerms Algorithms
Applied research
Artificial neural networks
behaviour analysis
Big Data
Case studies
Clustering
Consumer behavior
Decomposition
Deep learning
digital pattern of life
Information technology
Internet
Literature reviews
Methods
Neural networks
Public sector
Sensors
Smartphones
Social networks
Technology application
Time series
Tourism
Tourism promotion
Tourist attractions
Trends
User generated content
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSsNAEMcX6UkP4idGqywoiIfQNLvZJMe2WoqoeLDQ27KfUpBUanvw5kP4hD6JM0laKyhehJyWDWxmsjPzh93fEHJmk8y6jPHQaJOHXDOIg4zHoYV0KyD6uUjhReHbOzEY8utRMlpp9YVnwio8cGW4Vtt45RORMQXCG2neRvlIKw150es0LjmfUR6tiKkyBkPaFyKteKQMdH3LjxGVhZd3vmWgEtT_Wzguc0x_i2zWxSHtVIvaJmuu2CEbK8jAXTKqsH8zWoMN51O64IrQLmQkSycFvRw_Yi8Qel_CMws68fRm7N3H23unoJ2aIk5VYWkPXqF4lvB1jwz7Vw-9QVh3RwgN7LtZGOftzFsbe5HGHPu_OwvFDINhDUbyJrHcqzRNjM5trp11XqO68bHOMp8Yx_ZJo5gU7oBQzbjliYJHa47E9kSJNBWeI6mHi3ZALhYWk6ZGh2MHiycJEgKtK7-sG5DT5dznCpjx46wuGn45AyHX5QC4Xtaul3-5PiDn6DaJWxGWY1R9owA-CqFWsgPVFstBD-UBaS48K-s9-iJjqHSh2oQAdvgfqzki6zFq8fKgX5M0ZtO5O4aCZaZPyn_zEwzx57s
  priority: 102
  providerName: Directory of Open Access Journals
Title Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study
URI https://www.proquest.com/docview/2533112880
https://doaj.org/article/1cfaf5683a3041038caf0bab028fb723
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3Na9swFMAfa3PZDmXdB8vaBcEGYwfTxJJl-TTstlkZWyljhdyEPkug2F2aHnrrH7G_cH_J3nOUdIVt4JMsgy29T1n6PYB3vlA-KC4yZ12VCcvRDnKRZx7drUTrF8aGDgp_PZUn5-LzrJilBbfrtK1ybRN7Q-07R2vkBznGJRgboLh9vPqRUdUo-ruaSmhswQBNsEI5HzTHp2ffNqssY3T_UpYrLinH_P4gzgmZRYd4HniiHtj_L7Pc-5rpU9hJQSKrV7O6C49C-wye_IEOfA6zFf5vyRLg8GbB1nwR1qBn8qxr2dH8gmqCsLMeotmyLrIv8xh-3f2sW1YnmjgzrWeH-AijPYW3L-B8evz98CRLVRIyh_q3zPJqoqL3eZRlLqgOfPAY1HBstly56AovoinLwtnKVzb4EC1lOTG3SsXCBf4SttuuDa-AWS68KAxe1goitxdGlqWMgog9Qk6G8GE9YtolhDhVsrjUmErQ6Or70R3C203fqxU446-9Ghr4TQ-CXfcN3eJCJ93RExdNLKTiho8FAd2diWNrLIZG0ZY5H8J7mjZNKomv40w6WYAfRXArXWPUxSvMi6oh7K9nViddvdb3kvX6_7f34HFO2Xa_lW8ftpeLm_AGQ5KlHcGWmn4awaBujprpKEnhqE_wfwP_ceOU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qZQEsqvJSh7ZgCRBiEXXGdpxkgdC0ZZjSacWilWZn_KxGQkmZToW64yP4Dj6KL-HePKYgAbtKWTlOlFyf3IdjnwPwwqe5D7mQibOuSKQV6AeF5InHcKvQ-4W-oY3CR8dqfCo_TNPpCvzo9sLQssrOJ9aO2leO5sh3OOYlmBsg3N6ef0lINYr-rnYSGg0sDsPVVyzZLt4c7OP4vuR89O5kb5y0qgKJQ7wuEl4M8ug9jyrjknTTg8ckQGCzFbmLLvUymixLnS18YYMP0VJVELnN85i6IPC-t-C2FKIgqYh89H45p9PHZEOprGFBpfM7cUYEXbRl6I-4V8sD_CsI1JFttA5rbUrKhg2G7sNKKB_Avd-ICh_CtCEbXLCWTvFyzjo2E7aLcdCzqmT7szNSIGEfa8rOklWRTWYx_Pz2fViyYctdzkzp2R5ewmgF49UjOL0R6z2G1bIqwwYwK6SXqcHDWkk88alRWaaiJH4gqQY9eN1ZTLuWsJx0Mz5rLFzIuvrauj14vux73tB0_LXXLhl-2YOoteuGan6m2y9VD1w0MVW5MKIviT7emdi3xmIiFm3GRQ9e0bBpcgD4OM60-xjwpYhKSw8VQQOrsKIHW93I6tYzXOhrHD_5_-lncGd8cjTRk4Pjw024y6nOrxcRbsHqYn4ZtjEZWtinNQIZfLppyP8CgVYc-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IH7FQgFLgBCHqLu24yQHhLZdlpaWqgcq7c34t1oJJWW7FeqNh-BpeByehJnE2YIE3Crl5DhRMp7MfOPMfAPw3OelD6WQmbOuyqQVaAeF5JlHd6vQ-oWhoULhDwdq50i-n-WzNfjR18JQWmVvE1tD7RtHe-SbHHEJYgNUt82Y0iIOJ9M3J18y6iBFf1r7dhqdiuyF868Yvp2-3p3gWr_gfPr24_ZOljoMZA51d5nxalRG73lUBZfUQz14BAQCh60oXXS5l9EURe5s5SsbfIiWIoTIbVnG3AWB970CVwtRVBT4ldN3q_2dIQIPpYqOEVWICh97TmRdVD70hw9sWwX8yyG0Xm56C24meMrGnT7dhrVQ34Ebv5EW3oVZRzy4ZIla8WzBemYTtoU-0bOmZpP5MXUjYYctfWfNmsj25zH8_PZ9XLNx4jFnpvZsGy9hlM14fg-OLkV692G9burwAJgV0svc4GGtJM743KiiUFESV5BUowG86iWmXSIvpx4anzUGMSRdfSHdATxbzT3pKDv-OmuLBL-aQTTb7UCzONbpq9UjF03MVSmMGEqikncmDq2xCMqiLbgYwEtaNk3GAB_HmVTTgC9FtFp6jHhPVBiRVQPY6FdWJytxqi90-uH_Tz-Fa6jsen_3YO8RXOcU8rf5hBuwvlychceIi5b2SauADD5dtsb_Aqa9ITk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tourist+Behaviour+Analysis+Based+on+Digital+Pattern+of+Life--An+Approach+and+Case+Study&rft.jtitle=Future+internet&rft.au=Mikhailov%2C+Sergei&rft.au=Kashevnik%2C+Alexey&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=12&rft.issue=10&rft.spage=1&rft_id=info:doi/10.3390%2Ffi12100165&rft.externalDocID=A643395859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon