Consistency Analysis of Multi-Source Remote Sensing Land Cover Products in Arid Regions—A Case Study of Xinjiang
Arid regions are considered to be among the most ecologically fragile and highly sensitive to environmental change globally, and land use and land cover conditions in the region directly influence large-scale ecosystem processes. Currently, thanks to diverse remote sensing platforms, geographers hav...
Saved in:
Published in | Land (Basel) Vol. 12; no. 12; p. 2178 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arid regions are considered to be among the most ecologically fragile and highly sensitive to environmental change globally, and land use and land cover conditions in the region directly influence large-scale ecosystem processes. Currently, thanks to diverse remote sensing platforms, geographers have developed an array of land cover products. However, there are differences between these products due to variations in spatio-temporal resolutions. In this context, assessing the accuracy and consistency of different land cover products is crucial for rationalizing the selection of land cover products to study global or regional environmental changes. In this study, Xinjiang Uygur Autonomous Region (XUAR) is taken as the study area, and the consistency and performance (type area deviation, spatial consistency, accuracy assessment, and other indexes) of the five land cover products (GlobeLand30, FROM_GLC30, CLCD, GLC_FCS30, and ESRI) were compared and analyzed. The results of the study show that (1) the GlobeLand30 product has the highest overall accuracy in the study area, with an overall accuracy of 84.06%, followed by ESA with 75.57%, while CLCD has the lowest overall accuracy of 70.05%. (2) The consistency between GlobeLand30 and CLCD (area correlation coefficient of 0.99) was higher than that among the other products. (3) Among the five products, the highest consistency was found for water bodies and permanent snow and ice, followed by bare land. In contrast, the consistency of these five products for grassland and forest was relatively low. (4) The full-consistency area accounts for 49.01% of the total study area. They were mainly distributed in areas with relatively homogeneous land cover types, such as the north and south of the Tianshan Mountains, which are dominated by bare land and cropland. In contrast, areas of inconsistency make up only 0.03% and are mostly found in heterogeneous areas, like the transitional zones with mixed land cover types in the Altai Mountains and Tianshan Mountains, or in areas with complex terrain. In terms of meeting practical user needs, GlobeLand30 offers the best comprehensive performance. GLC_FCS30 is more suitable for studies related to forests, while FROM_GLC30 and ESRI demonstrate greater advantages in identifying permanent ice and snow, whereas the performance of CLCD is generally average. |
---|---|
AbstractList | Arid regions are considered to be among the most ecologically fragile and highly sensitive to environmental change globally, and land use and land cover conditions in the region directly influence large-scale ecosystem processes. Currently, thanks to diverse remote sensing platforms, geographers have developed an array of land cover products. However, there are differences between these products due to variations in spatio-temporal resolutions. In this context, assessing the accuracy and consistency of different land cover products is crucial for rationalizing the selection of land cover products to study global or regional environmental changes. In this study, Xinjiang Uygur Autonomous Region (XUAR) is taken as the study area, and the consistency and performance (type area deviation, spatial consistency, accuracy assessment, and other indexes) of the five land cover products (GlobeLand30, FROM_GLC30, CLCD, GLC_FCS30, and ESRI) were compared and analyzed. The results of the study show that (1) the GlobeLand30 product has the highest overall accuracy in the study area, with an overall accuracy of 84.06%, followed by ESA with 75.57%, while CLCD has the lowest overall accuracy of 70.05%. (2) The consistency between GlobeLand30 and CLCD (area correlation coefficient of 0.99) was higher than that among the other products. (3) Among the five products, the highest consistency was found for water bodies and permanent snow and ice, followed by bare land. In contrast, the consistency of these five products for grassland and forest was relatively low. (4) The full-consistency area accounts for 49.01% of the total study area. They were mainly distributed in areas with relatively homogeneous land cover types, such as the north and south of the Tianshan Mountains, which are dominated by bare land and cropland. In contrast, areas of inconsistency make up only 0.03% and are mostly found in heterogeneous areas, like the transitional zones with mixed land cover types in the Altai Mountains and Tianshan Mountains, or in areas with complex terrain. In terms of meeting practical user needs, GlobeLand30 offers the best comprehensive performance. GLC_FCS30 is more suitable for studies related to forests, while FROM_GLC30 and ESRI demonstrate greater advantages in identifying permanent ice and snow, whereas the performance of CLCD is generally average. |
Author | Wang, Yao Yu, Tingting Xu, Fujin Guo, Yuchuan Xu, Zhonglin Liu, Shen |
Author_xml | – sequence: 1 givenname: Shen surname: Liu fullname: Liu, Shen – sequence: 2 givenname: Zhonglin surname: Xu fullname: Xu, Zhonglin – sequence: 3 givenname: Yuchuan surname: Guo fullname: Guo, Yuchuan – sequence: 4 givenname: Tingting surname: Yu fullname: Yu, Tingting – sequence: 5 givenname: Fujin surname: Xu fullname: Xu, Fujin – sequence: 6 givenname: Yao surname: Wang fullname: Wang, Yao |
BookMark | eNptkc1qVDEUx4O0YG278wECblx4NZ_3Yzlc1BZGLFahu5CbnAwZ7iQ1yS3MzofwCfskpo5CKc0mH_zO75D_eYWOQgyA0GtK3nM-kA-zDpYyyhjt-hfohJGON0LIm6NH55foPOctqWugvBfyBKUxhuxzgWD2eBX0vK83HB3-sszFN9dxSQbwN9jFAvgaKhs2eF1b4THeQcJXKdrFlIx9wKvkbUU3virvf_1e4VHnWlQWu38w3viw9TpsztCx03OG83_7Kfrx6eP38aJZf_18Oa7WjRGElIZ1QI2c-rajkx2osYzroWstZ4ZqC8SBY8AlEcz1LWdSaNZNzAwT76URpuWn6PLgtVFv1W3yO532Kmqv_j7EtFE6FW9mUBwEnxwM1e2EZKA1b53TgxkIN5001fX24LpN8ecCuaidzwbmGjrEJStOBOFtL5io6Jsn6LaGWJPNig1EdLJvCa8UO1AmxZwTOGV80aVGV5L2s6JEPUxVPZ5qLXr3pOj_r57F_wCB9KYp |
CitedBy_id | crossref_primary_10_3390_land13040522 crossref_primary_10_1007_s40333_024_0086_z |
Cites_doi | 10.1016/j.rse.2012.08.022 10.1016/j.rse.2017.05.024 10.1080/01431161.2019.1587207 10.1111/1752-1688.12304 10.1080/01431161.2012.674230 10.1080/01431161.2014.930202 10.1016/j.landusepol.2012.12.003 10.3390/rs9010036 10.3390/rs6098739 10.1016/j.rse.2019.111402 10.1111/j.1365-2486.2010.02307.x 10.1016/j.rse.2016.12.026 10.3390/rs11091056 10.1080/0143116031000139827 10.1007/978-94-007-7969-3_2 10.1016/j.jhydrol.2012.02.038 10.1016/j.worlddev.2014.08.017 10.5194/essd-13-2753-2021 10.1080/01431160412331291297 10.1007/s11430-014-4918-0 10.3390/rs12091410 10.1080/01431161.2012.748992 10.1016/j.isprsjprs.2017.01.016 10.1088/1748-9326/10/12/124025 10.3390/rs61212070 10.1016/j.isprsjprs.2016.03.008 10.1016/j.isprsjprs.2014.09.002 10.1080/01431160902893451 10.1007/s10584-021-03136-7 10.1007/s11273-021-09809-5 10.1007/s11430-014-4919-z 10.1016/j.gloplacha.2015.02.009 10.3390/rs15174254 10.1016/j.catena.2023.107245 10.1038/nclimate1690 10.1016/j.isprsjprs.2015.01.001 10.3390/ijgi11030202 10.1007/s40808-016-0159-x 10.3390/rs9111118 10.1016/j.rse.2004.09.005 10.1109/IGARSS47720.2021.9553499 10.1016/j.scib.2017.03.011 10.1016/j.rse.2010.07.001 10.1080/014311600210191 10.1016/j.envsoft.2011.11.015 10.1016/j.rse.2009.08.016 10.5194/isprs-archives-XLI-B7-757-2016 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SN 7ST ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/land12122178 |
DatabaseName | CrossRef Ecology Abstracts Environment Abstracts ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Ecology Abstracts Environmental Sciences and Pollution Management ProQuest Central Environmental Science Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic Environment Abstracts ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 2073-445X |
ExternalDocumentID | oai_doaj_org_article_3e43bfe932cf452eaa36ffa9c903c75c 10_3390_land12122178 |
GeographicLocations | Central Asia China Africa |
GeographicLocations_xml | – name: Central Asia – name: China – name: Africa |
GroupedDBID | 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 7SN 7ST ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c400t-27e1c5b8671bd91cd23a976d32c1ade0fef2e35042f863254a27b2c9b385c4c63 |
IEDL.DBID | BENPR |
ISSN | 2073-445X |
IngestDate | Wed Aug 27 01:04:24 EDT 2025 Fri Jul 11 13:37:04 EDT 2025 Mon Jun 30 11:20:39 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Tue Jul 01 00:27:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-27e1c5b8671bd91cd23a976d32c1ade0fef2e35042f863254a27b2c9b385c4c63 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2904758603?pq-origsite=%requestingapplication% |
PQID | 2904758603 |
PQPubID | 2032374 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3e43bfe932cf452eaa36ffa9c903c75c proquest_miscellaneous_3040368424 proquest_journals_2904758603 crossref_citationtrail_10_3390_land12122178 crossref_primary_10_3390_land12122178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Land (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ban (ref_15) 2015; 103 Chen (ref_2) 2021; 37 Chen (ref_30) 2015; 103 Wang (ref_9) 2018; 69 Ran (ref_11) 2010; 31 Friedl (ref_21) 2010; 114 Congalton (ref_26) 2014; 6 ref_58 Zhang (ref_24) 2017; 197 Cao (ref_7) 2015; 10 Li (ref_39) 2017; 62 Huang (ref_54) 2016; 35 Giri (ref_42) 2005; 94 ref_19 Liu (ref_29) 2021; 38 Roujean (ref_40) 2011; 13 Keola (ref_6) 2015; 66 Bai (ref_41) 2014; 6 Zhang (ref_51) 2018; 71 ref_20 Loveland (ref_16) 2000; 21 Zheng (ref_57) 2021; 166 Yu (ref_61) 2014; 57 ref_28 Wang (ref_59) 2023; 230 Giri (ref_8) 2003; 24 Li (ref_22) 2013; 33 Verburg (ref_25) 2011; 17 Sterling (ref_4) 2013; 3 Wickham (ref_45) 2017; 191 Mora (ref_12) 2014; 18 Hou (ref_49) 2018; 20 Weiss (ref_13) 2020; 236 ref_36 Chen (ref_35) 2019; 64 ref_34 ref_33 Zhao (ref_52) 2014; 35 Yang (ref_60) 2017; 125 Abdikan (ref_14) 2016; 41 Zhang (ref_31) 2020; 13 ref_37 Bartholome (ref_17) 2005; 26 Clark (ref_50) 2010; 114 Kayet (ref_3) 2016; 2 Fritz (ref_53) 2012; 31 Hu (ref_48) 2015; 34 Xu (ref_46) 2019; 40 Song (ref_44) 2012; 28 ref_47 Gong (ref_32) 2013; 34 Song (ref_43) 2015; 22 LaFontaine (ref_10) 2015; 51 White (ref_27) 2016; 116 Zhang (ref_55) 2012; 434 Salazar (ref_5) 2015; 128 Dong (ref_23) 2012; 127 Olofsson (ref_38) 2012; 33 Liao (ref_1) 2014; 57 Defourny (ref_18) 2009; 112 Luo (ref_56) 2021; 29 |
References_xml | – volume: 127 start-page: 60 year: 2012 ident: ref_23 article-title: A comparison of forest cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and FRA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.08.022 – volume: 197 start-page: 15 year: 2017 ident: ref_24 article-title: Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.05.024 – volume: 40 start-page: 6185 year: 2019 ident: ref_46 article-title: Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1587207 – volume: 51 start-page: 1235 year: 2015 ident: ref_10 article-title: Effects of climate and land cover on hydrology in the Southeastern US: Potential impacts on watershed planning publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12304 – volume: 33 start-page: 5768 year: 2012 ident: ref_38 article-title: A global land-cover validation data set, part I: Fundamental design principles publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.674230 – volume: 35 start-page: 4795 year: 2014 ident: ref_52 article-title: Towards a common validation sample set for global land-cover mapping publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.930202 – volume: 33 start-page: 42 year: 2013 ident: ref_22 article-title: Effects of conservation policies on forest cover change in giant panda habitat regions, China publication-title: Land Use Policy doi: 10.1016/j.landusepol.2012.12.003 – ident: ref_19 doi: 10.3390/rs9010036 – volume: 20 start-page: 1478 year: 2018 ident: ref_49 article-title: Accuracy evaluation of land use mapping using remote sensing techniques in coastal zone of China publication-title: J. Geo-Inf. Sci. – volume: 6 start-page: 8739 year: 2014 ident: ref_41 article-title: Assessing consistency of five global land cover data sets in China publication-title: Remote Sens. doi: 10.3390/rs6098739 – volume: 236 start-page: 111402 year: 2020 ident: ref_13 article-title: Remote sensing for agricultural applications: A meta-review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111402 – volume: 17 start-page: 974 year: 2011 ident: ref_25 article-title: Challenges in using land use and land cover data for global change studies publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02307.x – volume: 191 start-page: 328 year: 2017 ident: ref_45 article-title: Thematic accuracy assessment of the 2011 national land cover database (NLCD) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.026 – ident: ref_28 doi: 10.3390/rs11091056 – volume: 13 start-page: 207 year: 2011 ident: ref_40 article-title: Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale publication-title: Int. J. Appl. Earth Obs. – volume: 71 start-page: 83 year: 2018 ident: ref_51 article-title: A SPECLib-based operational classification approach: A preliminary test on China land cover mapping at 30 m publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 24 start-page: 4181 year: 2003 ident: ref_8 article-title: Land cover characterization and mapping of continental Southeast Asia using multi-resolution satellite sensor data publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000139827 – volume: 18 start-page: 11 year: 2014 ident: ref_12 article-title: Global land cover mapping: Current status and future trends publication-title: Land Use Land Cover Mapp. Eur. Pract. Trends doi: 10.1007/978-94-007-7969-3_2 – volume: 434 start-page: 7 year: 2012 ident: ref_55 article-title: Spatio-temporal variations of precipitation extremes in Xinjiang, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.02.038 – volume: 112 start-page: 236 year: 2009 ident: ref_18 article-title: Accuracy assessment of a 300 m global land cover map: The GlobCover experience publication-title: New Libr. World – volume: 66 start-page: 322 year: 2015 ident: ref_6 article-title: Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth publication-title: World Dev. doi: 10.1016/j.worlddev.2014.08.017 – volume: 13 start-page: 2753 year: 2020 ident: ref_31 article-title: GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-2753-2021 – volume: 26 start-page: 1959 year: 2005 ident: ref_17 article-title: GLC2000: A new approach to global land cover mapping from Earth observation data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331291297 – ident: ref_20 – volume: 57 start-page: 2305 year: 2014 ident: ref_1 article-title: High-resolution remote sensing mapping of global land water publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-014-4918-0 – ident: ref_47 doi: 10.3390/rs12091410 – volume: 34 start-page: 1839 year: 2015 ident: ref_48 article-title: Agreement analysis of multi-sensor satellite remote sensing derived land cover products in the Europe Continent publication-title: Geogr. Res. – volume: 34 start-page: 2607 year: 2013 ident: ref_32 article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.748992 – volume: 125 start-page: 156 year: 2017 ident: ref_60 article-title: Accuracy assessment of seven global land cover datasets over China publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.01.016 – volume: 10 start-page: 124025 year: 2015 ident: ref_7 article-title: Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/12/124025 – volume: 35 start-page: 1433 year: 2016 ident: ref_54 article-title: Regional accuracy assessments of the first global land cover dataset at 30-meter resolution: A case study of Henan province publication-title: Geogr. Res. – volume: 6 start-page: 12070 year: 2014 ident: ref_26 article-title: Global land cover mapping: A review and uncertainty analysis publication-title: Remote Sens. doi: 10.3390/rs61212070 – volume: 37 start-page: 142 year: 2021 ident: ref_2 article-title: Consistency analysis and accuracy assessment of multi-source land cover products in the Yangtze River Delta publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 116 start-page: 55 year: 2016 ident: ref_27 article-title: Optical remotely sensed time series data for land cover classification: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.008 – volume: 103 start-page: 7 year: 2015 ident: ref_30 article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.09.002 – volume: 31 start-page: 391 year: 2010 ident: ref_11 article-title: Evaluation of four remote sensing based land cover products over China publication-title: Int. J. Remote Sens. doi: 10.1080/01431160902893451 – volume: 64 start-page: 3 year: 2019 ident: ref_35 article-title: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Sci. Bull. – volume: 166 start-page: 36 year: 2021 ident: ref_57 article-title: Exploring annual lake dynamics in Xinjiang (China): Spatiotemporal features and driving climate factors from 2000 to 2019 publication-title: Clim. Chang. doi: 10.1007/s10584-021-03136-7 – volume: 29 start-page: 617 year: 2021 ident: ref_56 article-title: Spatiotemporal variations of wetlands in the northern Xinjiang with relationship to climate change publication-title: Wetl. Ecol. Manag. doi: 10.1007/s11273-021-09809-5 – volume: 57 start-page: 2317 year: 2014 ident: ref_61 article-title: A multi-resolution global land cover dataset through multisource data aggregation publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-014-4919-z – volume: 128 start-page: 103 year: 2015 ident: ref_5 article-title: Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2015.02.009 – ident: ref_58 doi: 10.3390/rs15174254 – volume: 230 start-page: 107245 year: 2023 ident: ref_59 article-title: Geomorphic influences on land use/cover diversity and pattern publication-title: Catena doi: 10.1016/j.catena.2023.107245 – volume: 3 start-page: 385 year: 2013 ident: ref_4 article-title: The impact of global land-cover change on the terrestrial water cycle publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1690 – volume: 69 start-page: 88 year: 2018 ident: ref_9 article-title: A scale self-adapting segmentation approach and knowledge transfer for automatically updating land use/cover change databases using high spatial resolution images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 103 start-page: 1 year: 2015 ident: ref_15 article-title: Global land cover mapping using Earth observation satellite data: Recent progresses and challenges publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.01.001 – volume: 22 start-page: 36 year: 2015 ident: ref_43 article-title: Exploratory analysis of category accuracy for multi-sources land cover products publication-title: Res. Soil Water Conserv. – ident: ref_36 doi: 10.3390/ijgi11030202 – volume: 2 start-page: 127 year: 2016 ident: ref_3 article-title: Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-016-0159-x – ident: ref_37 doi: 10.3390/rs9111118 – volume: 94 start-page: 123 year: 2005 ident: ref_42 article-title: A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.09.005 – ident: ref_33 – volume: 38 start-page: 5289697 year: 2021 ident: ref_29 article-title: Finer-resolution mapping of global land cover: Recent developments, consistency analysis, and prospects publication-title: J. Remote Sens. – ident: ref_34 doi: 10.1109/IGARSS47720.2021.9553499 – volume: 62 start-page: 508 year: 2017 ident: ref_39 article-title: The first all-season sample set for mapping global land cover with Landsat-8 data publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.03.011 – volume: 114 start-page: 2816 year: 2010 ident: ref_50 article-title: A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.001 – volume: 28 start-page: 207 year: 2012 ident: ref_44 article-title: Precision analysis and validation of multi-sources landcover products derived from remote sensing in China publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 21 start-page: 1303 year: 2000 ident: ref_16 article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210191 – volume: 31 start-page: 110 year: 2012 ident: ref_53 article-title: Geo-Wiki: An online platform for improving global land cover publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2011.11.015 – volume: 114 start-page: 168 year: 2010 ident: ref_21 article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.016 – volume: 41 start-page: 757 year: 2016 ident: ref_14 article-title: Land cover mapping using sentinel-1 SAR data publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLI-B7-757-2016 |
SSID | ssj0000913845 |
Score | 2.260985 |
Snippet | Arid regions are considered to be among the most ecologically fragile and highly sensitive to environmental change globally, and land use and land cover... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2178 |
SubjectTerms | Accuracy accuracy assessment Agricultural land arid region Arid regions Arid zones case studies China Classification Climate change Comparative analysis Consistency consistency analysis Correlation coefficient Correlation coefficients cropland ecosystems Environmental changes forests Grasslands high resolution ice Land area Land cover Land use land use and land cover maps landscapes Mountains Performance indices Regions Remote sensing Research centers Satellites Snow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYhl-RS-ku3TYsK7SmY2BpJXh3TJSGUtpSkgb0ZSR6FLcVb4s0htz5EnzBP0hnZu2wJpZde7cEW4_m1Pn0jxFsdK4uVCQXVFnWhrY6FB1VTIVejw1DalM9xf_pszy71h7mZb436YkzYQA88KO4IUENISGVGTNoo9B5sSt5FV0KsTeToSzlvq5nKMdhVMNVmQLoD9fVHjBOsKE5TCT79Iwdlqv57kTinl9OH4sFYF8rjYT2PxA52j8Xe-thw_0Rc59GaPZe4t3JNJSKXSeYjtMVF_gkvz5FUj_KCYendlfxIy5EzRmnKLwO1ay8XHb1l0ZIoQ5H7u5-_juWMcplkSOEtP3G-6L6R1Vw9FZenJ19nZ8U4MKGI5IqrQtVYRROYsi60roqtAk_lRku6q3yLZcKkEAz5aZpaoNbQqzqo6AJMTdTRwjOx2y07fC6ks64l7bbKo6Ec73xsAzjQ2idPXVA5EYdrFTZxZBPnoRbfG-oqWOHNtsIn4t1G-sfAovEXuff8NTYyzH2dL5BFNKNFNP-yiIk4WH_LZnTIvlGu1NQa2RIm4s3mNrkS74_4Dpc3fQMU0ID3JfWL_7GOl2KfZ9MP2JcDsbu6vsFXVMGswutsrL8Biq7wmQ priority: 102 providerName: Directory of Open Access Journals |
Title | Consistency Analysis of Multi-Source Remote Sensing Land Cover Products in Arid Regions—A Case Study of Xinjiang |
URI | https://www.proquest.com/docview/2904758603 https://www.proquest.com/docview/3040368424 https://doaj.org/article/3e43bfe932cf452eaa36ffa9c903c75c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZge4ALavkRC21lJDihqIn_Ep9Qu2pVIaiqlkp7i2zHXm2FkrLZHnrjIXhCnoQZx9mCEFyTkRN5PDPf2J9nCHkrXKF8IW0G2KLMhBIuM5yVAORKr73NVYj3uD-fqdMr8XEu52nDrU-0ytEnRkfddA73yA-YzgVgW5XzDzffMuwahaerqYXGQ7IFLriqJmTr6Pjs_GKzy4JVLyshB8Y7h_z-APmCBQgDFK_-iEWxZP9fHjmGmZNt8iThQ3o4KHSHPPDtU_JovD7cPyOr2GKzR6h7R8eSIrQLNF6lzS7jZjy98KACTy-Rnt4u6Cf4HTpDtiY9H0q89nTZwleWDYgiJbn_-f3HIZ1BTKNILbzDEefL9hpWz-I5uTo5_jI7zVLjhMyBSa4zVvrCSYul62yjC9cwbgB2NJy5wjQ-Dz4wzyXYa6gUhxTRsNIypy2vpBNO8Rdk0natf0moVropJYxgvIRYr41rLNdcCBMMZEP5lLwfp7B2qao4Nrf4WkN2gRNe_z7hU_JuI30zVNP4h9wRamMjgzWw44NutaiTSdXcC26DBwDqgpDMG8NVCEY7nXMH_zwlu6Mu62SYfX2_jKbkzeY1mBSek5jWd7d9zcGxcTyfFK_-P8Rr8hi7zw_sll0yWa9u_R5glLXdTwtxP-b4vwBALek6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7aFcEE-xUMBI9ISiJrbjrA8ItUurLd2uqj6kvQXHsVeLUFI2W6G98SP4HfwofgkzeSwgBLdek9EkGo9nvrHnAfBK2ki5KM4CxBZJIJW0gRE8QSCXOO2yUPm6jvtkokaX8v00nm7A964WhtIqO5tYG-q8tHRGvst1KBHbqlC8vfoc0NQoul3tRmg0anHsVl8wZKveHL3D9d3h_PDgYjgK2qkCgUV9XQY8cZGNM-rrluU6sjkXBn1yLriNTO5C7zx3IkZl9gMlMH4yPMm41ZkYxFZaJZDvLdiUQoW8B5v7B5PTs_WpDnXZHMi4ybAXQoe7lJ8YoX9A6D_4w_fVIwL-8gC1Wzu8C3daPMr2GgW6BxuuuA9bXbly9QAW9UjPiqD1inUtTFjpWV26G5zXh__szOGSO3ZO6fDFjI3xd9iQskPZadNStmLzAr8yz5GUUqCrH1-_7bEh-lBGqYwr4jidFx9RW2cP4fJGRPoIekVZuMfAtNJ5EiMH42LEFtrYPBNaSGm8wegr7MPrToSpbbuY0zCNTylGMyTw9HeB92FnTX3VdO_4B90-rcaahnpu1w_KxSxtt3AqnBSZdwh4rZcxd8YI5b3RVofC4j_3Ybtby7Q1BFX6S2378HL9Grcw3cuYwpXXVSrQkAq6D5VP_s_iBWyNLk7G6fhocvwUbnPEW01mzTb0lotr9wzx0TJ73iolgw83vQ9-AvyQJNc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL_qtgWMRE8o2sR2kvWhQu22q5aW1aql0t6C49irRVXSbrZCe-tD8DQ8Dk_CTH4WEIJbr4nlWDPjmW_izzMAb6UJIhuEqYfYIvZkJI2nBY8RyMVW2dSPXHWP--MoOrqQHybhZA2-t3dhiFbZ-sTKUWeFoX_kPa58idg28kXPNbSI8cHw_dW1Rx2k6KS1badRm8iJXX7F9K3cPT5AXe9wPjz8NDjymg4DnkHbXXg8toEJU6rxlmYqMBkXGuNzJrgJdGZ9Zx23IkTDdv1IYC6leZxyo1LRD400kcB578F6TFlRB9b3D0fjs9UfHqq42ZdhzbYXQvk94ioGGCswDej_EQerdgF_RYMqxA0fw6MGm7K92piewJrNn8KD9upy-QzmVXvPkmD2krXlTFjhWHWN1zuvDgLYmUX1W3ZO1Ph8yk5xOWxATFE2rsvLlmyW41dmGQ4lOnT54_bbHhtgPGVEa1zSjJNZ_gUtd_ocLu5EpC-gkxe53QCmIpXFIc6gbYg4Q2mTpUIJKbXTmIn5XXjXijAxTUVzaqxxmWBmQwJPfhd4F3ZWo6_qSh7_GLdP2liNofrb1YNiPk2a7ZwIK0XqLIJf42TIrdYick4ro3xhcM1d2G51mTROoUx-mXAX3qxe43amMxqd2-KmTAQ6VUFno3Lz_1O8hvto_8np8ehkCx5yhF41yWYbOov5jX2JUGmRvmpsksHnu94GPwFY2ykM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistency+Analysis+of+Multi-Source+Remote+Sensing+Land+Cover+Products+in+Arid+Regions%E2%80%94A+Case+Study+of+Xinjiang&rft.jtitle=Land+%28Basel%29&rft.au=Liu%2C+Shen&rft.au=Xu%2C+Zhonglin&rft.au=Guo%2C+Yuchuan&rft.au=Yu%2C+Tingting&rft.date=2023-12-01&rft.issn=2073-445X&rft.eissn=2073-445X&rft.volume=12&rft.issue=12&rft_id=info:doi/10.3390%2Fland12122178&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-445X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-445X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-445X&client=summon |