Consistency Analysis of Multi-Source Remote Sensing Land Cover Products in Arid Regions—A Case Study of Xinjiang

Arid regions are considered to be among the most ecologically fragile and highly sensitive to environmental change globally, and land use and land cover conditions in the region directly influence large-scale ecosystem processes. Currently, thanks to diverse remote sensing platforms, geographers hav...

Full description

Saved in:
Bibliographic Details
Published inLand (Basel) Vol. 12; no. 12; p. 2178
Main Authors Liu, Shen, Xu, Zhonglin, Guo, Yuchuan, Yu, Tingting, Xu, Fujin, Wang, Yao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arid regions are considered to be among the most ecologically fragile and highly sensitive to environmental change globally, and land use and land cover conditions in the region directly influence large-scale ecosystem processes. Currently, thanks to diverse remote sensing platforms, geographers have developed an array of land cover products. However, there are differences between these products due to variations in spatio-temporal resolutions. In this context, assessing the accuracy and consistency of different land cover products is crucial for rationalizing the selection of land cover products to study global or regional environmental changes. In this study, Xinjiang Uygur Autonomous Region (XUAR) is taken as the study area, and the consistency and performance (type area deviation, spatial consistency, accuracy assessment, and other indexes) of the five land cover products (GlobeLand30, FROM_GLC30, CLCD, GLC_FCS30, and ESRI) were compared and analyzed. The results of the study show that (1) the GlobeLand30 product has the highest overall accuracy in the study area, with an overall accuracy of 84.06%, followed by ESA with 75.57%, while CLCD has the lowest overall accuracy of 70.05%. (2) The consistency between GlobeLand30 and CLCD (area correlation coefficient of 0.99) was higher than that among the other products. (3) Among the five products, the highest consistency was found for water bodies and permanent snow and ice, followed by bare land. In contrast, the consistency of these five products for grassland and forest was relatively low. (4) The full-consistency area accounts for 49.01% of the total study area. They were mainly distributed in areas with relatively homogeneous land cover types, such as the north and south of the Tianshan Mountains, which are dominated by bare land and cropland. In contrast, areas of inconsistency make up only 0.03% and are mostly found in heterogeneous areas, like the transitional zones with mixed land cover types in the Altai Mountains and Tianshan Mountains, or in areas with complex terrain. In terms of meeting practical user needs, GlobeLand30 offers the best comprehensive performance. GLC_FCS30 is more suitable for studies related to forests, while FROM_GLC30 and ESRI demonstrate greater advantages in identifying permanent ice and snow, whereas the performance of CLCD is generally average.
AbstractList Arid regions are considered to be among the most ecologically fragile and highly sensitive to environmental change globally, and land use and land cover conditions in the region directly influence large-scale ecosystem processes. Currently, thanks to diverse remote sensing platforms, geographers have developed an array of land cover products. However, there are differences between these products due to variations in spatio-temporal resolutions. In this context, assessing the accuracy and consistency of different land cover products is crucial for rationalizing the selection of land cover products to study global or regional environmental changes. In this study, Xinjiang Uygur Autonomous Region (XUAR) is taken as the study area, and the consistency and performance (type area deviation, spatial consistency, accuracy assessment, and other indexes) of the five land cover products (GlobeLand30, FROM_GLC30, CLCD, GLC_FCS30, and ESRI) were compared and analyzed. The results of the study show that (1) the GlobeLand30 product has the highest overall accuracy in the study area, with an overall accuracy of 84.06%, followed by ESA with 75.57%, while CLCD has the lowest overall accuracy of 70.05%. (2) The consistency between GlobeLand30 and CLCD (area correlation coefficient of 0.99) was higher than that among the other products. (3) Among the five products, the highest consistency was found for water bodies and permanent snow and ice, followed by bare land. In contrast, the consistency of these five products for grassland and forest was relatively low. (4) The full-consistency area accounts for 49.01% of the total study area. They were mainly distributed in areas with relatively homogeneous land cover types, such as the north and south of the Tianshan Mountains, which are dominated by bare land and cropland. In contrast, areas of inconsistency make up only 0.03% and are mostly found in heterogeneous areas, like the transitional zones with mixed land cover types in the Altai Mountains and Tianshan Mountains, or in areas with complex terrain. In terms of meeting practical user needs, GlobeLand30 offers the best comprehensive performance. GLC_FCS30 is more suitable for studies related to forests, while FROM_GLC30 and ESRI demonstrate greater advantages in identifying permanent ice and snow, whereas the performance of CLCD is generally average.
Author Wang, Yao
Yu, Tingting
Xu, Fujin
Guo, Yuchuan
Xu, Zhonglin
Liu, Shen
Author_xml – sequence: 1
  givenname: Shen
  surname: Liu
  fullname: Liu, Shen
– sequence: 2
  givenname: Zhonglin
  surname: Xu
  fullname: Xu, Zhonglin
– sequence: 3
  givenname: Yuchuan
  surname: Guo
  fullname: Guo, Yuchuan
– sequence: 4
  givenname: Tingting
  surname: Yu
  fullname: Yu, Tingting
– sequence: 5
  givenname: Fujin
  surname: Xu
  fullname: Xu, Fujin
– sequence: 6
  givenname: Yao
  surname: Wang
  fullname: Wang, Yao
BookMark eNptkc1qVDEUx4O0YG278wECblx4NZ_3Yzlc1BZGLFahu5CbnAwZ7iQ1yS3MzofwCfskpo5CKc0mH_zO75D_eYWOQgyA0GtK3nM-kA-zDpYyyhjt-hfohJGON0LIm6NH55foPOctqWugvBfyBKUxhuxzgWD2eBX0vK83HB3-sszFN9dxSQbwN9jFAvgaKhs2eF1b4THeQcJXKdrFlIx9wKvkbUU3virvf_1e4VHnWlQWu38w3viw9TpsztCx03OG83_7Kfrx6eP38aJZf_18Oa7WjRGElIZ1QI2c-rajkx2osYzroWstZ4ZqC8SBY8AlEcz1LWdSaNZNzAwT76URpuWn6PLgtVFv1W3yO532Kmqv_j7EtFE6FW9mUBwEnxwM1e2EZKA1b53TgxkIN5001fX24LpN8ecCuaidzwbmGjrEJStOBOFtL5io6Jsn6LaGWJPNig1EdLJvCa8UO1AmxZwTOGV80aVGV5L2s6JEPUxVPZ5qLXr3pOj_r57F_wCB9KYp
CitedBy_id crossref_primary_10_3390_land13040522
crossref_primary_10_1007_s40333_024_0086_z
Cites_doi 10.1016/j.rse.2012.08.022
10.1016/j.rse.2017.05.024
10.1080/01431161.2019.1587207
10.1111/1752-1688.12304
10.1080/01431161.2012.674230
10.1080/01431161.2014.930202
10.1016/j.landusepol.2012.12.003
10.3390/rs9010036
10.3390/rs6098739
10.1016/j.rse.2019.111402
10.1111/j.1365-2486.2010.02307.x
10.1016/j.rse.2016.12.026
10.3390/rs11091056
10.1080/0143116031000139827
10.1007/978-94-007-7969-3_2
10.1016/j.jhydrol.2012.02.038
10.1016/j.worlddev.2014.08.017
10.5194/essd-13-2753-2021
10.1080/01431160412331291297
10.1007/s11430-014-4918-0
10.3390/rs12091410
10.1080/01431161.2012.748992
10.1016/j.isprsjprs.2017.01.016
10.1088/1748-9326/10/12/124025
10.3390/rs61212070
10.1016/j.isprsjprs.2016.03.008
10.1016/j.isprsjprs.2014.09.002
10.1080/01431160902893451
10.1007/s10584-021-03136-7
10.1007/s11273-021-09809-5
10.1007/s11430-014-4919-z
10.1016/j.gloplacha.2015.02.009
10.3390/rs15174254
10.1016/j.catena.2023.107245
10.1038/nclimate1690
10.1016/j.isprsjprs.2015.01.001
10.3390/ijgi11030202
10.1007/s40808-016-0159-x
10.3390/rs9111118
10.1016/j.rse.2004.09.005
10.1109/IGARSS47720.2021.9553499
10.1016/j.scib.2017.03.011
10.1016/j.rse.2010.07.001
10.1080/014311600210191
10.1016/j.envsoft.2011.11.015
10.1016/j.rse.2009.08.016
10.5194/isprs-archives-XLI-B7-757-2016
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SN
7ST
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/land12122178
DatabaseName CrossRef
Ecology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Ecology Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2073-445X
ExternalDocumentID oai_doaj_org_article_3e43bfe932cf452eaa36ffa9c903c75c
10_3390_land12122178
GeographicLocations Central Asia
China
Africa
GeographicLocations_xml – name: Central Asia
– name: China
– name: Africa
GroupedDBID 5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
7SN
7ST
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c400t-27e1c5b8671bd91cd23a976d32c1ade0fef2e35042f863254a27b2c9b385c4c63
IEDL.DBID BENPR
ISSN 2073-445X
IngestDate Wed Aug 27 01:04:24 EDT 2025
Fri Jul 11 13:37:04 EDT 2025
Mon Jun 30 11:20:39 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Tue Jul 01 00:27:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-27e1c5b8671bd91cd23a976d32c1ade0fef2e35042f863254a27b2c9b385c4c63
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/2904758603?pq-origsite=%requestingapplication%
PQID 2904758603
PQPubID 2032374
ParticipantIDs doaj_primary_oai_doaj_org_article_3e43bfe932cf452eaa36ffa9c903c75c
proquest_miscellaneous_3040368424
proquest_journals_2904758603
crossref_citationtrail_10_3390_land12122178
crossref_primary_10_3390_land12122178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Land (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ban (ref_15) 2015; 103
Chen (ref_2) 2021; 37
Chen (ref_30) 2015; 103
Wang (ref_9) 2018; 69
Ran (ref_11) 2010; 31
Friedl (ref_21) 2010; 114
Congalton (ref_26) 2014; 6
ref_58
Zhang (ref_24) 2017; 197
Cao (ref_7) 2015; 10
Li (ref_39) 2017; 62
Huang (ref_54) 2016; 35
Giri (ref_42) 2005; 94
ref_19
Liu (ref_29) 2021; 38
Roujean (ref_40) 2011; 13
Keola (ref_6) 2015; 66
Bai (ref_41) 2014; 6
Zhang (ref_51) 2018; 71
ref_20
Loveland (ref_16) 2000; 21
Zheng (ref_57) 2021; 166
Yu (ref_61) 2014; 57
ref_28
Wang (ref_59) 2023; 230
Giri (ref_8) 2003; 24
Li (ref_22) 2013; 33
Verburg (ref_25) 2011; 17
Sterling (ref_4) 2013; 3
Wickham (ref_45) 2017; 191
Mora (ref_12) 2014; 18
Hou (ref_49) 2018; 20
Weiss (ref_13) 2020; 236
ref_36
Chen (ref_35) 2019; 64
ref_34
ref_33
Zhao (ref_52) 2014; 35
Yang (ref_60) 2017; 125
Abdikan (ref_14) 2016; 41
Zhang (ref_31) 2020; 13
ref_37
Bartholome (ref_17) 2005; 26
Clark (ref_50) 2010; 114
Kayet (ref_3) 2016; 2
Fritz (ref_53) 2012; 31
Hu (ref_48) 2015; 34
Xu (ref_46) 2019; 40
Song (ref_44) 2012; 28
ref_47
Gong (ref_32) 2013; 34
Song (ref_43) 2015; 22
LaFontaine (ref_10) 2015; 51
White (ref_27) 2016; 116
Zhang (ref_55) 2012; 434
Salazar (ref_5) 2015; 128
Dong (ref_23) 2012; 127
Olofsson (ref_38) 2012; 33
Liao (ref_1) 2014; 57
Defourny (ref_18) 2009; 112
Luo (ref_56) 2021; 29
References_xml – volume: 127
  start-page: 60
  year: 2012
  ident: ref_23
  article-title: A comparison of forest cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and FRA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.022
– volume: 197
  start-page: 15
  year: 2017
  ident: ref_24
  article-title: Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.05.024
– volume: 40
  start-page: 6185
  year: 2019
  ident: ref_46
  article-title: Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1587207
– volume: 51
  start-page: 1235
  year: 2015
  ident: ref_10
  article-title: Effects of climate and land cover on hydrology in the Southeastern US: Potential impacts on watershed planning
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12304
– volume: 33
  start-page: 5768
  year: 2012
  ident: ref_38
  article-title: A global land-cover validation data set, part I: Fundamental design principles
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.674230
– volume: 35
  start-page: 4795
  year: 2014
  ident: ref_52
  article-title: Towards a common validation sample set for global land-cover mapping
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.930202
– volume: 33
  start-page: 42
  year: 2013
  ident: ref_22
  article-title: Effects of conservation policies on forest cover change in giant panda habitat regions, China
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2012.12.003
– ident: ref_19
  doi: 10.3390/rs9010036
– volume: 20
  start-page: 1478
  year: 2018
  ident: ref_49
  article-title: Accuracy evaluation of land use mapping using remote sensing techniques in coastal zone of China
  publication-title: J. Geo-Inf. Sci.
– volume: 6
  start-page: 8739
  year: 2014
  ident: ref_41
  article-title: Assessing consistency of five global land cover data sets in China
  publication-title: Remote Sens.
  doi: 10.3390/rs6098739
– volume: 236
  start-page: 111402
  year: 2020
  ident: ref_13
  article-title: Remote sensing for agricultural applications: A meta-review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111402
– volume: 17
  start-page: 974
  year: 2011
  ident: ref_25
  article-title: Challenges in using land use and land cover data for global change studies
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02307.x
– volume: 191
  start-page: 328
  year: 2017
  ident: ref_45
  article-title: Thematic accuracy assessment of the 2011 national land cover database (NLCD)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.026
– ident: ref_28
  doi: 10.3390/rs11091056
– volume: 13
  start-page: 207
  year: 2011
  ident: ref_40
  article-title: Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale
  publication-title: Int. J. Appl. Earth Obs.
– volume: 71
  start-page: 83
  year: 2018
  ident: ref_51
  article-title: A SPECLib-based operational classification approach: A preliminary test on China land cover mapping at 30 m
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 24
  start-page: 4181
  year: 2003
  ident: ref_8
  article-title: Land cover characterization and mapping of continental Southeast Asia using multi-resolution satellite sensor data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000139827
– volume: 18
  start-page: 11
  year: 2014
  ident: ref_12
  article-title: Global land cover mapping: Current status and future trends
  publication-title: Land Use Land Cover Mapp. Eur. Pract. Trends
  doi: 10.1007/978-94-007-7969-3_2
– volume: 434
  start-page: 7
  year: 2012
  ident: ref_55
  article-title: Spatio-temporal variations of precipitation extremes in Xinjiang, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.02.038
– volume: 112
  start-page: 236
  year: 2009
  ident: ref_18
  article-title: Accuracy assessment of a 300 m global land cover map: The GlobCover experience
  publication-title: New Libr. World
– volume: 66
  start-page: 322
  year: 2015
  ident: ref_6
  article-title: Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth
  publication-title: World Dev.
  doi: 10.1016/j.worlddev.2014.08.017
– volume: 13
  start-page: 2753
  year: 2020
  ident: ref_31
  article-title: GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-2753-2021
– volume: 26
  start-page: 1959
  year: 2005
  ident: ref_17
  article-title: GLC2000: A new approach to global land cover mapping from Earth observation data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331291297
– ident: ref_20
– volume: 57
  start-page: 2305
  year: 2014
  ident: ref_1
  article-title: High-resolution remote sensing mapping of global land water
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-014-4918-0
– ident: ref_47
  doi: 10.3390/rs12091410
– volume: 34
  start-page: 1839
  year: 2015
  ident: ref_48
  article-title: Agreement analysis of multi-sensor satellite remote sensing derived land cover products in the Europe Continent
  publication-title: Geogr. Res.
– volume: 34
  start-page: 2607
  year: 2013
  ident: ref_32
  article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.748992
– volume: 125
  start-page: 156
  year: 2017
  ident: ref_60
  article-title: Accuracy assessment of seven global land cover datasets over China
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.01.016
– volume: 10
  start-page: 124025
  year: 2015
  ident: ref_7
  article-title: Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/12/124025
– volume: 35
  start-page: 1433
  year: 2016
  ident: ref_54
  article-title: Regional accuracy assessments of the first global land cover dataset at 30-meter resolution: A case study of Henan province
  publication-title: Geogr. Res.
– volume: 6
  start-page: 12070
  year: 2014
  ident: ref_26
  article-title: Global land cover mapping: A review and uncertainty analysis
  publication-title: Remote Sens.
  doi: 10.3390/rs61212070
– volume: 37
  start-page: 142
  year: 2021
  ident: ref_2
  article-title: Consistency analysis and accuracy assessment of multi-source land cover products in the Yangtze River Delta
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 116
  start-page: 55
  year: 2016
  ident: ref_27
  article-title: Optical remotely sensed time series data for land cover classification: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.008
– volume: 103
  start-page: 7
  year: 2015
  ident: ref_30
  article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.09.002
– volume: 31
  start-page: 391
  year: 2010
  ident: ref_11
  article-title: Evaluation of four remote sensing based land cover products over China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160902893451
– volume: 64
  start-page: 3
  year: 2019
  ident: ref_35
  article-title: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017
  publication-title: Sci. Bull.
– volume: 166
  start-page: 36
  year: 2021
  ident: ref_57
  article-title: Exploring annual lake dynamics in Xinjiang (China): Spatiotemporal features and driving climate factors from 2000 to 2019
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-021-03136-7
– volume: 29
  start-page: 617
  year: 2021
  ident: ref_56
  article-title: Spatiotemporal variations of wetlands in the northern Xinjiang with relationship to climate change
  publication-title: Wetl. Ecol. Manag.
  doi: 10.1007/s11273-021-09809-5
– volume: 57
  start-page: 2317
  year: 2014
  ident: ref_61
  article-title: A multi-resolution global land cover dataset through multisource data aggregation
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-014-4919-z
– volume: 128
  start-page: 103
  year: 2015
  ident: ref_5
  article-title: Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2015.02.009
– ident: ref_58
  doi: 10.3390/rs15174254
– volume: 230
  start-page: 107245
  year: 2023
  ident: ref_59
  article-title: Geomorphic influences on land use/cover diversity and pattern
  publication-title: Catena
  doi: 10.1016/j.catena.2023.107245
– volume: 3
  start-page: 385
  year: 2013
  ident: ref_4
  article-title: The impact of global land-cover change on the terrestrial water cycle
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1690
– volume: 69
  start-page: 88
  year: 2018
  ident: ref_9
  article-title: A scale self-adapting segmentation approach and knowledge transfer for automatically updating land use/cover change databases using high spatial resolution images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 103
  start-page: 1
  year: 2015
  ident: ref_15
  article-title: Global land cover mapping using Earth observation satellite data: Recent progresses and challenges
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.001
– volume: 22
  start-page: 36
  year: 2015
  ident: ref_43
  article-title: Exploratory analysis of category accuracy for multi-sources land cover products
  publication-title: Res. Soil Water Conserv.
– ident: ref_36
  doi: 10.3390/ijgi11030202
– volume: 2
  start-page: 127
  year: 2016
  ident: ref_3
  article-title: Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-016-0159-x
– ident: ref_37
  doi: 10.3390/rs9111118
– volume: 94
  start-page: 123
  year: 2005
  ident: ref_42
  article-title: A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.09.005
– ident: ref_33
– volume: 38
  start-page: 5289697
  year: 2021
  ident: ref_29
  article-title: Finer-resolution mapping of global land cover: Recent developments, consistency analysis, and prospects
  publication-title: J. Remote Sens.
– ident: ref_34
  doi: 10.1109/IGARSS47720.2021.9553499
– volume: 62
  start-page: 508
  year: 2017
  ident: ref_39
  article-title: The first all-season sample set for mapping global land cover with Landsat-8 data
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.03.011
– volume: 114
  start-page: 2816
  year: 2010
  ident: ref_50
  article-title: A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.001
– volume: 28
  start-page: 207
  year: 2012
  ident: ref_44
  article-title: Precision analysis and validation of multi-sources landcover products derived from remote sensing in China
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 21
  start-page: 1303
  year: 2000
  ident: ref_16
  article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210191
– volume: 31
  start-page: 110
  year: 2012
  ident: ref_53
  article-title: Geo-Wiki: An online platform for improving global land cover
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.11.015
– volume: 114
  start-page: 168
  year: 2010
  ident: ref_21
  article-title: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.016
– volume: 41
  start-page: 757
  year: 2016
  ident: ref_14
  article-title: Land cover mapping using sentinel-1 SAR data
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLI-B7-757-2016
SSID ssj0000913845
Score 2.260985
Snippet Arid regions are considered to be among the most ecologically fragile and highly sensitive to environmental change globally, and land use and land cover...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2178
SubjectTerms Accuracy
accuracy assessment
Agricultural land
arid region
Arid regions
Arid zones
case studies
China
Classification
Climate change
Comparative analysis
Consistency
consistency analysis
Correlation coefficient
Correlation coefficients
cropland
ecosystems
Environmental changes
forests
Grasslands
high resolution
ice
Land area
Land cover
Land use
land use and land cover maps
landscapes
Mountains
Performance indices
Regions
Remote sensing
Research centers
Satellites
Snow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYhl-RS-ku3TYsK7SmY2BpJXh3TJSGUtpSkgb0ZSR6FLcVb4s0htz5EnzBP0hnZu2wJpZde7cEW4_m1Pn0jxFsdK4uVCQXVFnWhrY6FB1VTIVejw1DalM9xf_pszy71h7mZb436YkzYQA88KO4IUENISGVGTNoo9B5sSt5FV0KsTeToSzlvq5nKMdhVMNVmQLoD9fVHjBOsKE5TCT79Iwdlqv57kTinl9OH4sFYF8rjYT2PxA52j8Xe-thw_0Rc59GaPZe4t3JNJSKXSeYjtMVF_gkvz5FUj_KCYendlfxIy5EzRmnKLwO1ay8XHb1l0ZIoQ5H7u5-_juWMcplkSOEtP3G-6L6R1Vw9FZenJ19nZ8U4MKGI5IqrQtVYRROYsi60roqtAk_lRku6q3yLZcKkEAz5aZpaoNbQqzqo6AJMTdTRwjOx2y07fC6ks64l7bbKo6Ec73xsAzjQ2idPXVA5EYdrFTZxZBPnoRbfG-oqWOHNtsIn4t1G-sfAovEXuff8NTYyzH2dL5BFNKNFNP-yiIk4WH_LZnTIvlGu1NQa2RIm4s3mNrkS74_4Dpc3fQMU0ID3JfWL_7GOl2KfZ9MP2JcDsbu6vsFXVMGswutsrL8Biq7wmQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Consistency Analysis of Multi-Source Remote Sensing Land Cover Products in Arid Regions—A Case Study of Xinjiang
URI https://www.proquest.com/docview/2904758603
https://www.proquest.com/docview/3040368424
https://doaj.org/article/3e43bfe932cf452eaa36ffa9c903c75c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZge4ALavkRC21lJDihqIn_Ep9Qu2pVIaiqlkp7i2zHXm2FkrLZHnrjIXhCnoQZx9mCEFyTkRN5PDPf2J9nCHkrXKF8IW0G2KLMhBIuM5yVAORKr73NVYj3uD-fqdMr8XEu52nDrU-0ytEnRkfddA73yA-YzgVgW5XzDzffMuwahaerqYXGQ7IFLriqJmTr6Pjs_GKzy4JVLyshB8Y7h_z-APmCBQgDFK_-iEWxZP9fHjmGmZNt8iThQ3o4KHSHPPDtU_JovD7cPyOr2GKzR6h7R8eSIrQLNF6lzS7jZjy98KACTy-Rnt4u6Cf4HTpDtiY9H0q89nTZwleWDYgiJbn_-f3HIZ1BTKNILbzDEefL9hpWz-I5uTo5_jI7zVLjhMyBSa4zVvrCSYul62yjC9cwbgB2NJy5wjQ-Dz4wzyXYa6gUhxTRsNIypy2vpBNO8Rdk0natf0moVropJYxgvIRYr41rLNdcCBMMZEP5lLwfp7B2qao4Nrf4WkN2gRNe_z7hU_JuI30zVNP4h9wRamMjgzWw44NutaiTSdXcC26DBwDqgpDMG8NVCEY7nXMH_zwlu6Mu62SYfX2_jKbkzeY1mBSek5jWd7d9zcGxcTyfFK_-P8Rr8hi7zw_sll0yWa9u_R5glLXdTwtxP-b4vwBALek6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7aFcEE-xUMBI9ISiJrbjrA8ItUurLd2uqj6kvQXHsVeLUFI2W6G98SP4HfwofgkzeSwgBLdek9EkGo9nvrHnAfBK2ki5KM4CxBZJIJW0gRE8QSCXOO2yUPm6jvtkokaX8v00nm7A964WhtIqO5tYG-q8tHRGvst1KBHbqlC8vfoc0NQoul3tRmg0anHsVl8wZKveHL3D9d3h_PDgYjgK2qkCgUV9XQY8cZGNM-rrluU6sjkXBn1yLriNTO5C7zx3IkZl9gMlMH4yPMm41ZkYxFZaJZDvLdiUQoW8B5v7B5PTs_WpDnXZHMi4ybAXQoe7lJ8YoX9A6D_4w_fVIwL-8gC1Wzu8C3daPMr2GgW6BxuuuA9bXbly9QAW9UjPiqD1inUtTFjpWV26G5zXh__szOGSO3ZO6fDFjI3xd9iQskPZadNStmLzAr8yz5GUUqCrH1-_7bEh-lBGqYwr4jidFx9RW2cP4fJGRPoIekVZuMfAtNJ5EiMH42LEFtrYPBNaSGm8wegr7MPrToSpbbuY0zCNTylGMyTw9HeB92FnTX3VdO_4B90-rcaahnpu1w_KxSxtt3AqnBSZdwh4rZcxd8YI5b3RVofC4j_3Ybtby7Q1BFX6S2378HL9Grcw3cuYwpXXVSrQkAq6D5VP_s_iBWyNLk7G6fhocvwUbnPEW01mzTb0lotr9wzx0TJ73iolgw83vQ9-AvyQJNc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL_qtgWMRE8o2sR2kvWhQu22q5aW1aql0t6C49irRVXSbrZCe-tD8DQ8Dk_CTH4WEIJbr4nlWDPjmW_izzMAb6UJIhuEqYfYIvZkJI2nBY8RyMVW2dSPXHWP--MoOrqQHybhZA2-t3dhiFbZ-sTKUWeFoX_kPa58idg28kXPNbSI8cHw_dW1Rx2k6KS1badRm8iJXX7F9K3cPT5AXe9wPjz8NDjymg4DnkHbXXg8toEJU6rxlmYqMBkXGuNzJrgJdGZ9Zx23IkTDdv1IYC6leZxyo1LRD400kcB578F6TFlRB9b3D0fjs9UfHqq42ZdhzbYXQvk94ioGGCswDej_EQerdgF_RYMqxA0fw6MGm7K92piewJrNn8KD9upy-QzmVXvPkmD2krXlTFjhWHWN1zuvDgLYmUX1W3ZO1Ph8yk5xOWxATFE2rsvLlmyW41dmGQ4lOnT54_bbHhtgPGVEa1zSjJNZ_gUtd_ocLu5EpC-gkxe53QCmIpXFIc6gbYg4Q2mTpUIJKbXTmIn5XXjXijAxTUVzaqxxmWBmQwJPfhd4F3ZWo6_qSh7_GLdP2liNofrb1YNiPk2a7ZwIK0XqLIJf42TIrdYick4ro3xhcM1d2G51mTROoUx-mXAX3qxe43amMxqd2-KmTAQ6VUFno3Lz_1O8hvto_8np8ehkCx5yhF41yWYbOov5jX2JUGmRvmpsksHnu94GPwFY2ykM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistency+Analysis+of+Multi-Source+Remote+Sensing+Land+Cover+Products+in+Arid+Regions%E2%80%94A+Case+Study+of+Xinjiang&rft.jtitle=Land+%28Basel%29&rft.au=Liu%2C+Shen&rft.au=Xu%2C+Zhonglin&rft.au=Guo%2C+Yuchuan&rft.au=Yu%2C+Tingting&rft.date=2023-12-01&rft.issn=2073-445X&rft.eissn=2073-445X&rft.volume=12&rft.issue=12&rft_id=info:doi/10.3390%2Fland12122178&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-445X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-445X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-445X&client=summon