Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs
[Display omitted] •Amino-MIL-101(Al/Fe) MOFs was applied in high strength phosphate adsorption.•Fast kinetics, high sorption capacity and strong selectivity were demonstrated.•Electrostatic attraction and ligand exchange were identified as the main mechanisms. Although adsorbents for phosphate remov...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 357; pp. 159 - 168 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Amino-MIL-101(Al/Fe) MOFs was applied in high strength phosphate adsorption.•Fast kinetics, high sorption capacity and strong selectivity were demonstrated.•Electrostatic attraction and ligand exchange were identified as the main mechanisms.
Although adsorbents for phosphate removal from eutrophic water have been widely explored, it remains a critical challenge to develop robust and highly selective phosphate adsorbents featuring abundant binding sites and high affinity. In this work, two stable metal-organic frameworks (MOFs) of amine functionalized MIL-101 based on trivalent metal aluminum and iron were synthesized by simple solvothermal methods and applied as adsorbents to capture phosphate ions of high strength. Phosphate adsorption kinetics, isotherm behavior, and solution matrix effects (eg. solution pH, coexisting ions and ionic strength) were reported. Results showed that trivalent metal based NH2-MIL-101 MOFs outperformed most adsorbents ever reported, exhibiting fast kinetics and high maximal adsorption capacity above 79.414 mg P/g at 298 K, pH independence in the range from 3 to 11, less sensitivity to ion strength, strong selectivity for phosphate in presence of competing ions and could be easily regenerated and re-applied for phosphate removal. It was noticeable that phosphate adsorption performance varied on the two kinds of trivalent metals based MOFs due to their difference in morphology, surface and interface properties including zeta potential, chemical affinity toward target anion and the types of complexation formed with phosphate. NH2-MIL-101(Al) showed faster kinetics, while NH2-MIL-101(Fe) has higher affinity toward phosphate. Furthermore, based on Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) spectra and zeta potential analysis, electrostatic attraction and ligand exchange were identified as the main phosphate adsorption mechanisms by NH2-MIL-101(Al/Fe). Besides, the functionalized adsorbents with amine group further enhanced the phosphate removal capacities by providing extra surficial positive charges. These findings demonstrate that trivalent metal based NH2-MIL-101 is a promising candidate for phosphate adsorption from aqueous solution with high efficiency and selectivity. |
---|---|
AbstractList | [Display omitted]
•Amino-MIL-101(Al/Fe) MOFs was applied in high strength phosphate adsorption.•Fast kinetics, high sorption capacity and strong selectivity were demonstrated.•Electrostatic attraction and ligand exchange were identified as the main mechanisms.
Although adsorbents for phosphate removal from eutrophic water have been widely explored, it remains a critical challenge to develop robust and highly selective phosphate adsorbents featuring abundant binding sites and high affinity. In this work, two stable metal-organic frameworks (MOFs) of amine functionalized MIL-101 based on trivalent metal aluminum and iron were synthesized by simple solvothermal methods and applied as adsorbents to capture phosphate ions of high strength. Phosphate adsorption kinetics, isotherm behavior, and solution matrix effects (eg. solution pH, coexisting ions and ionic strength) were reported. Results showed that trivalent metal based NH2-MIL-101 MOFs outperformed most adsorbents ever reported, exhibiting fast kinetics and high maximal adsorption capacity above 79.414 mg P/g at 298 K, pH independence in the range from 3 to 11, less sensitivity to ion strength, strong selectivity for phosphate in presence of competing ions and could be easily regenerated and re-applied for phosphate removal. It was noticeable that phosphate adsorption performance varied on the two kinds of trivalent metals based MOFs due to their difference in morphology, surface and interface properties including zeta potential, chemical affinity toward target anion and the types of complexation formed with phosphate. NH2-MIL-101(Al) showed faster kinetics, while NH2-MIL-101(Fe) has higher affinity toward phosphate. Furthermore, based on Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) spectra and zeta potential analysis, electrostatic attraction and ligand exchange were identified as the main phosphate adsorption mechanisms by NH2-MIL-101(Al/Fe). Besides, the functionalized adsorbents with amine group further enhanced the phosphate removal capacities by providing extra surficial positive charges. These findings demonstrate that trivalent metal based NH2-MIL-101 is a promising candidate for phosphate adsorption from aqueous solution with high efficiency and selectivity. |
Author | Xie, Tingting Chi, Lina Wang, Xinze Sui, Yanming Wang, Yuan Arandiyan, Hamidreza Liu, Ruiting |
Author_xml | – sequence: 1 givenname: Ruiting surname: Liu fullname: Liu, Ruiting organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 2 givenname: Lina orcidid: 0000-0001-5633-3945 surname: Chi fullname: Chi, Lina email: lnchi@sjtu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Xinze surname: Wang fullname: Wang, Xinze email: xinzewang@sjtu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 givenname: Yuan surname: Wang fullname: Wang, Yuan organization: Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia – sequence: 5 givenname: Yanming surname: Sui fullname: Sui, Yanming organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 6 givenname: Tingting surname: Xie fullname: Xie, Tingting organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 7 givenname: Hamidreza surname: Arandiyan fullname: Arandiyan, Hamidreza email: hamid.arandiyan@sydney.edu.au organization: Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney 2006, Australia |
BookMark | eNp9kM1OwzAMgCM0JLbBA3DLC6Qk_VkTcULTBpM27QLnKE1dLVXblCSbxNuTMbhwmHJwLPuz7G-GJoMdAKFHRhNG2eKpTTS0SUoZT6hIWJreoCnjZUaylKWT-M94QbjIyzs0876llC4EE1PkV00DOpgTYDXU2EP3l9XeujEYO2Db4PFg_XhQAXDjbI_V5xHs0WNvu-NPy8koHJw5qQ6GQHoIqvOkUh5qrHozWLLbbElcFO_2a3-PbptYh4ffOEcf69X78o1s96-b5cuW6JzSQNJSZ0CLrGJClaAUq_KiyBgTBQWgJedMAa8pZAJyoWmTVw0TvOAqjVx82Ryxy1ztrPcOGjk60yv3JRmVZ2uyldGaPFuTVMhoLTLlP0aboM43BqdMd5V8vpAQTzoZcNJrA4OG2rjoVNbWXKG_ASYhiok |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_126346 crossref_primary_10_1016_j_seppur_2022_122289 crossref_primary_10_1016_j_cej_2020_126349 crossref_primary_10_1016_j_chemosphere_2021_131976 crossref_primary_10_1021_acsanm_3c03172 crossref_primary_10_1021_acsestengg_2c00324 crossref_primary_10_1016_j_jwpe_2024_104952 crossref_primary_10_1016_j_cej_2023_145949 crossref_primary_10_1002_cjce_24702 crossref_primary_10_1016_j_cej_2022_138215 crossref_primary_10_1016_j_chemosphere_2021_131862 crossref_primary_10_1016_j_cej_2024_154828 crossref_primary_10_1016_j_snb_2023_135204 crossref_primary_10_1016_j_matchemphys_2020_123060 crossref_primary_10_1016_j_chemosphere_2024_142365 crossref_primary_10_3390_w15071420 crossref_primary_10_1016_j_gee_2022_06_004 crossref_primary_10_1016_j_jcis_2021_09_108 crossref_primary_10_1016_j_jhazmat_2021_126981 crossref_primary_10_4491_eer_2022_647 crossref_primary_10_1016_j_apcatb_2021_120406 crossref_primary_10_1016_j_jece_2024_114626 crossref_primary_10_1016_j_cej_2023_142789 crossref_primary_10_1021_acssusresmgt_3c00073 crossref_primary_10_1016_j_jssc_2023_124059 crossref_primary_10_1016_j_jclepro_2024_142057 crossref_primary_10_1016_j_eti_2023_103446 crossref_primary_10_1016_j_jallcom_2020_155106 crossref_primary_10_1016_j_seppur_2024_129103 crossref_primary_10_1021_acs_langmuir_3c03724 crossref_primary_10_1016_j_envres_2020_109489 crossref_primary_10_1016_j_jcis_2023_12_081 crossref_primary_10_1016_j_cej_2024_155108 crossref_primary_10_1016_j_colsurfa_2024_135687 crossref_primary_10_1016_j_cej_2024_149597 crossref_primary_10_1016_j_jece_2024_114062 crossref_primary_10_1039_D3NJ05262A crossref_primary_10_1080_09593330_2021_1921051 crossref_primary_10_1089_ees_2020_0511 crossref_primary_10_1002_pol_20230244 crossref_primary_10_1016_j_jpcs_2021_110403 crossref_primary_10_1021_acsomega_4c03501 crossref_primary_10_1016_j_desal_2024_118000 crossref_primary_10_1002_ep_14543 crossref_primary_10_1016_j_envres_2024_120733 crossref_primary_10_1016_j_jcis_2019_10_077 crossref_primary_10_1007_s11356_023_26667_1 crossref_primary_10_1007_s11783_022_1594_8 crossref_primary_10_1016_j_envres_2020_109817 crossref_primary_10_1016_j_mtsust_2023_100502 crossref_primary_10_1039_C9TA00388F crossref_primary_10_1016_j_chemosphere_2020_127056 crossref_primary_10_3390_w16202889 crossref_primary_10_1016_j_cej_2019_04_136 crossref_primary_10_1021_acsami_0c04318 crossref_primary_10_1016_j_envpol_2023_123218 crossref_primary_10_1016_j_jwpe_2021_101979 crossref_primary_10_1016_j_jece_2023_109663 crossref_primary_10_1016_j_cscee_2024_100754 crossref_primary_10_1016_j_trac_2019_115678 crossref_primary_10_1149_1945_7111_ac707b crossref_primary_10_1080_09593330_2023_2215457 crossref_primary_10_1016_j_colsurfa_2021_128095 crossref_primary_10_1016_j_cej_2022_138918 crossref_primary_10_1016_j_ces_2023_119527 crossref_primary_10_1016_j_jclepro_2023_139388 crossref_primary_10_1007_s13762_022_04008_y crossref_primary_10_1039_D4EW01071J crossref_primary_10_1016_j_cej_2024_157068 crossref_primary_10_1016_j_cej_2022_137396 crossref_primary_10_1016_j_scitotenv_2023_162785 crossref_primary_10_2139_ssrn_4051076 crossref_primary_10_1016_j_chemosphere_2023_138827 crossref_primary_10_1016_j_envres_2023_117816 crossref_primary_10_1016_j_snb_2022_131574 crossref_primary_10_1016_j_micromeso_2023_112941 crossref_primary_10_3389_fbioe_2023_1205911 crossref_primary_10_1016_j_apsusc_2022_154973 crossref_primary_10_1016_j_jece_2022_108969 crossref_primary_10_1021_acs_est_1c01723 crossref_primary_10_1039_D1RA04279C crossref_primary_10_1016_j_jhazmat_2021_127802 crossref_primary_10_1016_j_cej_2021_130367 crossref_primary_10_1007_s10967_024_09711_3 crossref_primary_10_1016_j_jwpe_2023_103821 crossref_primary_10_1016_j_scitotenv_2021_147812 crossref_primary_10_1016_j_ccr_2021_214376 crossref_primary_10_1016_j_scitotenv_2020_140464 crossref_primary_10_1002_aoc_7313 crossref_primary_10_1016_j_ijbiomac_2023_123322 crossref_primary_10_1016_j_molstruc_2024_138156 crossref_primary_10_1016_j_apcatb_2024_124487 crossref_primary_10_1016_j_seppur_2024_126845 crossref_primary_10_1016_j_chemosphere_2021_129904 crossref_primary_10_1016_j_inoche_2025_114026 crossref_primary_10_1016_j_jwpe_2022_103159 crossref_primary_10_1016_j_scitotenv_2019_136111 crossref_primary_10_1016_j_seppur_2025_132205 crossref_primary_10_1016_j_surfin_2021_101649 crossref_primary_10_1016_j_seppur_2024_128453 crossref_primary_10_1016_j_colsurfa_2024_135886 crossref_primary_10_1016_j_chemosphere_2021_130200 crossref_primary_10_1039_C9EN01372E crossref_primary_10_1016_j_ijbiomac_2023_126223 crossref_primary_10_1016_j_cej_2020_126960 crossref_primary_10_1016_j_coesh_2022_100335 crossref_primary_10_1016_j_jclepro_2021_128778 crossref_primary_10_1016_j_jece_2023_110178 crossref_primary_10_1016_j_apsusc_2021_149838 crossref_primary_10_1021_acs_inorgchem_3c03563 crossref_primary_10_1039_C9TA13322D crossref_primary_10_3103_S1063455X21040111 crossref_primary_10_1021_acs_langmuir_3c03558 crossref_primary_10_1016_j_jece_2023_109864 crossref_primary_10_1016_j_jece_2021_106672 crossref_primary_10_1021_acsami_4c14046 crossref_primary_10_1021_acsapm_2c01157 crossref_primary_10_1039_C9CS00829B crossref_primary_10_1016_j_jwpe_2024_105938 crossref_primary_10_1016_j_surfin_2025_106013 crossref_primary_10_1016_j_seppur_2023_125898 crossref_primary_10_2166_wst_2022_331 crossref_primary_10_1016_j_jece_2025_115311 crossref_primary_10_3390_nano14141176 crossref_primary_10_1016_j_colsurfa_2023_132851 crossref_primary_10_1039_D1NJ03468E crossref_primary_10_1016_j_cherd_2023_03_052 crossref_primary_10_2166_aqua_2021_146 crossref_primary_10_1038_s41467_022_34718_3 crossref_primary_10_1002_slct_202204538 crossref_primary_10_1142_S1793604723500121 crossref_primary_10_1038_s41598_024_55713_2 crossref_primary_10_1016_j_chemosphere_2021_132600 crossref_primary_10_1039_D4EW00125G crossref_primary_10_1016_j_psep_2022_02_034 crossref_primary_10_1016_j_ijbiomac_2023_124862 crossref_primary_10_1016_j_molstruc_2023_137110 crossref_primary_10_1016_j_chemosphere_2022_134881 crossref_primary_10_1016_j_apsusc_2023_158459 crossref_primary_10_3390_nano14191602 crossref_primary_10_1016_j_seppur_2021_118460 crossref_primary_10_1016_j_molliq_2019_112286 crossref_primary_10_1016_j_cej_2022_137081 crossref_primary_10_1039_D1TA06438J crossref_primary_10_1016_j_cej_2020_128129 crossref_primary_10_1016_j_mtchem_2023_101490 crossref_primary_10_1016_j_colsurfa_2020_125906 crossref_primary_10_1002_aoc_7519 crossref_primary_10_1039_D4NJ01395F crossref_primary_10_1016_j_cej_2024_154780 crossref_primary_10_1016_j_jece_2021_106332 crossref_primary_10_1039_D2TA07752C crossref_primary_10_1007_s11356_023_27278_6 crossref_primary_10_1016_j_microc_2023_108621 crossref_primary_10_1016_j_chemosphere_2023_138531 crossref_primary_10_1016_j_molliq_2021_117101 crossref_primary_10_1016_j_seppur_2023_125313 crossref_primary_10_1002_slct_202405662 crossref_primary_10_1016_j_jwpe_2024_105530 crossref_primary_10_1016_j_colsurfa_2023_131867 crossref_primary_10_1016_j_indcrop_2024_120154 crossref_primary_10_1039_C9RA02988E crossref_primary_10_1016_j_jes_2023_05_039 crossref_primary_10_1016_j_jssc_2021_122030 crossref_primary_10_1016_j_jenvman_2022_115301 crossref_primary_10_3390_molecules29071488 crossref_primary_10_1016_j_talanta_2024_125809 crossref_primary_10_1016_j_cej_2023_145539 crossref_primary_10_1021_acsanm_4c03670 crossref_primary_10_1007_s11356_023_26612_2 crossref_primary_10_1016_j_jssc_2021_122709 crossref_primary_10_1016_j_ces_2024_119797 crossref_primary_10_1007_s40097_021_00406_9 crossref_primary_10_1016_j_jece_2024_113807 crossref_primary_10_1039_D2RA05506F crossref_primary_10_1016_j_psep_2019_09_021 crossref_primary_10_1016_j_seppur_2022_122557 crossref_primary_10_1016_j_jwpe_2019_101004 crossref_primary_10_1016_j_cej_2024_148518 crossref_primary_10_1039_D2NJ01458K crossref_primary_10_1021_acsami_4c00035 crossref_primary_10_1016_j_molliq_2023_122163 crossref_primary_10_1016_j_ccr_2023_215121 crossref_primary_10_1016_j_cej_2024_151482 crossref_primary_10_1007_s12010_023_04607_6 crossref_primary_10_1016_j_jiec_2020_02_018 crossref_primary_10_1016_j_carbpol_2019_115623 crossref_primary_10_2139_ssrn_4173988 crossref_primary_10_1016_j_seppur_2022_121489 crossref_primary_10_1016_j_jallcom_2021_159580 crossref_primary_10_1016_j_scitotenv_2021_148452 crossref_primary_10_1016_j_molliq_2022_119024 crossref_primary_10_1038_s41598_024_65774_y crossref_primary_10_1039_D1TB00329A crossref_primary_10_1016_j_jece_2025_116167 crossref_primary_10_1016_j_seppur_2025_132066 crossref_primary_10_1016_j_scitotenv_2021_151181 crossref_primary_10_1016_j_watres_2020_116198 crossref_primary_10_1007_s11356_024_32679_2 crossref_primary_10_1016_j_jenvman_2025_124799 crossref_primary_10_1016_j_cej_2020_127848 crossref_primary_10_1016_j_colsurfa_2023_131042 crossref_primary_10_1016_j_jhazmat_2020_122626 crossref_primary_10_1016_j_mtsust_2023_100357 crossref_primary_10_1016_j_cej_2024_150284 crossref_primary_10_1016_j_jclepro_2020_125311 crossref_primary_10_1016_j_cej_2024_150162 crossref_primary_10_1016_j_ijhydene_2020_11_058 crossref_primary_10_1016_j_psep_2020_05_054 crossref_primary_10_1016_j_cej_2024_158555 crossref_primary_10_1016_j_jcis_2024_11_005 crossref_primary_10_1021_acs_energyfuels_9b03996 crossref_primary_10_1039_D3LF00061C crossref_primary_10_1016_j_jscs_2020_09_006 crossref_primary_10_1016_j_jwpe_2024_105442 crossref_primary_10_1002_adfm_202104784 crossref_primary_10_1021_acsanm_4c04034 crossref_primary_10_1039_D2EW00636G crossref_primary_10_1007_s10853_020_05441_5 crossref_primary_10_1016_j_chemosphere_2022_135226 crossref_primary_10_1039_D1TA02169A crossref_primary_10_1021_acs_langmuir_4c00748 crossref_primary_10_1016_j_cej_2022_140299 crossref_primary_10_1016_j_colsurfa_2020_125144 crossref_primary_10_1016_j_isci_2023_107290 crossref_primary_10_1016_j_apsusc_2022_153359 crossref_primary_10_1016_j_colsurfa_2021_127062 crossref_primary_10_1016_j_ijbiomac_2022_01_061 crossref_primary_10_1016_j_molliq_2021_115367 crossref_primary_10_1016_j_desal_2024_118310 crossref_primary_10_1016_j_jclepro_2021_125998 crossref_primary_10_1039_D1TA04444C crossref_primary_10_1016_j_cej_2020_124912 crossref_primary_10_1039_D2RA00936F crossref_primary_10_1021_acsomega_3c02290 crossref_primary_10_1016_j_chemosphere_2024_141350 crossref_primary_10_1016_j_apsusc_2022_152814 crossref_primary_10_1007_s11356_023_27894_2 crossref_primary_10_1016_j_jelechem_2024_118312 crossref_primary_10_1016_j_seppur_2024_129149 crossref_primary_10_1016_j_seppur_2024_130133 crossref_primary_10_1002_aoc_7841 crossref_primary_10_1016_j_microc_2019_103987 crossref_primary_10_1039_D2NJ03584G crossref_primary_10_1016_j_seppur_2023_125245 crossref_primary_10_1016_j_jhazmat_2021_128168 crossref_primary_10_1016_j_seppur_2022_121825 crossref_primary_10_1080_17415993_2023_2207706 crossref_primary_10_1016_j_scitotenv_2020_137449 crossref_primary_10_1016_j_scitotenv_2020_139749 crossref_primary_10_1016_j_seppur_2023_124725 crossref_primary_10_1016_j_seppur_2023_125938 crossref_primary_10_1016_j_cej_2021_131514 crossref_primary_10_1016_j_envres_2024_120534 crossref_primary_10_1016_j_molstruc_2024_137923 crossref_primary_10_1039_D0NJ04164E crossref_primary_10_1016_j_jece_2021_106709 crossref_primary_10_1016_j_cej_2024_155492 crossref_primary_10_1016_j_jwpe_2022_103445 crossref_primary_10_1515_polyeng_2023_0056 crossref_primary_10_1016_j_inoche_2021_108804 crossref_primary_10_1007_s00604_023_06028_y crossref_primary_10_1016_j_jclepro_2020_121782 crossref_primary_10_1016_j_saa_2024_124393 crossref_primary_10_1016_j_envres_2020_110335 crossref_primary_10_1016_j_jece_2022_107686 crossref_primary_10_1016_j_jhazmat_2020_124829 crossref_primary_10_1016_j_chemosphere_2023_140304 crossref_primary_10_1016_j_seppur_2024_127515 crossref_primary_10_1021_acsomega_0c04955 crossref_primary_10_1007_s11356_021_15127_3 crossref_primary_10_1016_j_jiec_2024_09_009 crossref_primary_10_1007_s10661_023_11962_8 crossref_primary_10_1016_j_cej_2020_126681 crossref_primary_10_2166_wst_2020_467 crossref_primary_10_1007_s11356_023_26526_z crossref_primary_10_3390_recycling9050074 crossref_primary_10_1016_j_desal_2024_118450 crossref_primary_10_1016_j_seppur_2024_129370 crossref_primary_10_1016_j_chemosphere_2022_137629 crossref_primary_10_1016_j_arabjc_2024_106079 crossref_primary_10_1016_j_chemosphere_2023_140421 crossref_primary_10_1016_j_jece_2023_109472 crossref_primary_10_1016_j_scitotenv_2023_161646 crossref_primary_10_1149_2_1021915jes crossref_primary_10_1002_ente_202300500 crossref_primary_10_1016_j_seppur_2024_131204 crossref_primary_10_1098_rsos_210428 crossref_primary_10_1016_j_jwpe_2024_106080 crossref_primary_10_1016_j_jhazmat_2023_131104 crossref_primary_10_3390_w14152445 crossref_primary_10_1016_j_gee_2022_03_005 crossref_primary_10_1016_j_jallcom_2024_176009 crossref_primary_10_1016_j_jece_2021_105635 crossref_primary_10_1016_j_scitotenv_2022_157533 crossref_primary_10_1016_j_jece_2021_106849 crossref_primary_10_1155_2021_7694783 crossref_primary_10_1007_s00216_021_03343_2 crossref_primary_10_1016_j_cej_2019_122431 crossref_primary_10_1016_j_chemosphere_2023_139674 |
Cites_doi | 10.1016/j.desal.2011.07.047 10.1038/s41598-017-03526-x 10.1021/cm071046v 10.1016/j.cej.2017.02.075 10.1021/acs.est.6b05623 10.1016/j.cej.2013.09.053 10.1039/c2cc31877f 10.1021/acsami.7b10024 10.1016/j.watres.2013.05.044 10.1021/cm102601v 10.1039/C4TA06308B 10.1080/10643389.2012.741311 10.1002/anie.200462787 10.1002/adfm.200801130 10.1039/c0jm02416c 10.1016/j.jhazmat.2011.10.072 10.1016/j.watres.2016.11.039 10.1016/j.matchemphys.2015.04.021 10.1016/j.watres.2008.12.018 10.1039/c4ta00326h 10.1039/c1cc12213d 10.1021/acssuschemeng.5b01324 10.1016/j.cej.2013.09.021 10.1006/jcis.1996.0030 10.1081/CSS-200056954 10.1021/ic4005328 10.1007/s00604-017-2215-2 10.1016/j.cej.2015.01.070 10.1016/j.cej.2009.11.024 10.1016/j.cej.2018.02.116 10.1016/j.watres.2007.08.020 10.1016/j.jhazmat.2011.01.092 10.1016/j.cej.2011.03.102 10.1021/jp061779n 10.1016/j.pmatsci.2017.01.002 10.1016/j.cej.2016.06.040 10.1016/j.cej.2017.01.066 10.1016/j.cherd.2016.04.020 10.1038/srep30651 10.1126/science.1116275 10.1039/c1cc10659g 10.1021/cm103644b 10.1016/j.jenvman.2010.06.003 10.1016/j.jiec.2013.11.016 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2018.09.122 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 168 |
ExternalDocumentID | 10_1016_j_cej_2018_09_122 S1385894718318394 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c400t-27c3e053b19a7eaa1b455311950ee07881ae8d0e39e49c0f4bf19858a2c3e3e33 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 03:52:06 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Fri Feb 23 02:33:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MIL-101 Amino functionalization Phosphate adsorption Metal-organic frameworks Trivalent metals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-27c3e053b19a7eaa1b455311950ee07881ae8d0e39e49c0f4bf19858a2c3e3e33 |
ORCID | 0000-0001-5633-3945 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2018_09_122 crossref_citationtrail_10_1016_j_cej_2018_09_122 elsevier_sciencedirect_doi_10_1016_j_cej_2018_09_122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Huo, Li, Wang (b0170) 2016; 4 Awual, Shenashen, Jyo, Shiwaku, Yaita (b0195) 2014; 20 Do-Young, Kyu, Christian, Gérard, Jong-San (b0130) 2009; 19 Long, Gong, Zeng, Chen, Wang, Deng, Niu, Zhang, Zhang (b0010) 2011; 171 Drenkova-Tuhtan, Schneider, Franzreb, Meyer, Gellermann, Sextl, Mandel, Steinmetz (b0005) 2017; 109 Koilraj, Sasaki (b0030) 2017; 317 Maksimchuk, Kovalenko, Fedin, Kholdeeva (b0110) 2012; 48 Kandiah, Nilsen, Usseglio, Jakobsen, Olsbye, Tilset, Larabi, Quadrelli, Bonino, Lillerud (b0145) 2010; 22 Kandiah, Usseglio, Svelle, Olsbye, Lillerud, Tilset (b0140) 2010; 20 Hong, Hwang, Serre, Férey, Chang (b0070) 2009; 19 Juan-Alcaniz, Goesten, Martinez-Joaristi, Stavitski, Petukhov, Gascon, Kapteijn (b0120) 2011; 47 Su, Yang, Sun, Li, Shang (b0210) 2015; 268 Persson, Nilsson, Sjöberg (b0220) 1996; 177 Wu, Yamauchi, Hong, Yang, Liang, Funatsu, Tsunoda (b0225) 2011; 47 Awual (b0215) 2016; 303 Awual, Jyo (b0175) 2011; 281 Lin, Chen, Jochems (b0055) 2015; 160 Awual, Jyo, El-Safty, Tamada, Seko (b0085) 2011; 188 Awual, Khraisheh, Alharthi, Luqman, Islam, Rezaul Karim, Rahman, Khaleque (b0125) 2018; 343 Wang, Yue, Xu, Gao, Zhang, Li, Xu (b0095) 2010; 157 Awual, Urata, Jyo, Tamada, Katakai (b0080) 2008; 42 Yin, Yun, Zhang, Fan (b0200) 2011; 198 Li, Gao, Zhang, Zhang (b0205) 2014; 235 Rudzinski, Plazinski (b0185) 2006; 110 Awual, Jyo (b0090) 2009; 43 Zhang, Lan, Bai, Guo (b0045) 2016; 111 Serra-Crespo, Ramos-Fernandez, Gascon, Kapteijn (b0065) 2011; 23 He, Honeycutt (b0115) 2005; 36 Lammert, Bernt, Vermoortele, De Vos, Stock (b0135) 2013; 52 Xu, Zhang, Mortimer, Pan (b0035) 2017; 51 Chowdhury, Yanful (b0160) 2010; 91 Daou, Begin-Colin, Grenèche, Thomas, Derory, Bernhardt, Legaré, Pourroy (b0165) 2007; 19 Li, Xie, Hu, Li, Huang, Yang, Guo (b0150) 2016; 6 Wang, Feng, Chen, Wang, Yan (b0025) 2017; 316 Férey, Mellot-Draznieks, Serre, Millange, Dutour, Surblé, Margiolaki (b0060) 2005; 309 Yoon, Lee, Park, Kim, Kim, Lee, Choi (b0155) 2014; 236 Huang, Zhu, Tang, Yu, Wang, Li, Zhang (b0020) 2014; 2 Alshammari, Jiang, Cordova (b0050) 2016 Kumar, Pournara, Kim, Bansal, Rapti, Manos (b0040) 2017; 86 Xie, Li, Lv, Zhou, Yang, Chen, Guo (b0100) 2017; 7 Chen, Ockwig, Millward, Contreras, Yaghi (b0075) 2005; 44 Gu, Xie, Ma, Qin, Zhang, Wang, Zhang, Zhao (b0230) 2017; 9 Karthik, Pandikumar, Preeyanghaa, Kowsalya, Neppolian (b0105) 2017; 184 Tran, Kabiri, Wang, Losic (b0015) 2015; 3 Loganathan, Vigneswaran, Kandasamy, Bolan (b0180) 2014; 44 Su, Cui, Li, Gao, Shang (b0190) 2013; 47 Hong (10.1016/j.cej.2018.09.122_b0070) 2009; 19 Wang (10.1016/j.cej.2018.09.122_b0095) 2010; 157 Kandiah (10.1016/j.cej.2018.09.122_b0145) 2010; 22 Su (10.1016/j.cej.2018.09.122_b0190) 2013; 47 Do-Young (10.1016/j.cej.2018.09.122_b0130) 2009; 19 Awual (10.1016/j.cej.2018.09.122_b0215) 2016; 303 Persson (10.1016/j.cej.2018.09.122_b0220) 1996; 177 Kumar (10.1016/j.cej.2018.09.122_b0040) 2017; 86 Li (10.1016/j.cej.2018.09.122_b0205) 2014; 235 Xu (10.1016/j.cej.2018.09.122_b0035) 2017; 51 Awual (10.1016/j.cej.2018.09.122_b0125) 2018; 343 Chen (10.1016/j.cej.2018.09.122_b0170) 2016; 4 Awual (10.1016/j.cej.2018.09.122_b0080) 2008; 42 He (10.1016/j.cej.2018.09.122_b0115) 2005; 36 Koilraj (10.1016/j.cej.2018.09.122_b0030) 2017; 317 Gu (10.1016/j.cej.2018.09.122_b0230) 2017; 9 Awual (10.1016/j.cej.2018.09.122_b0175) 2011; 281 Awual (10.1016/j.cej.2018.09.122_b0085) 2011; 188 Li (10.1016/j.cej.2018.09.122_b0150) 2016; 6 Huang (10.1016/j.cej.2018.09.122_b0020) 2014; 2 Wang (10.1016/j.cej.2018.09.122_b0025) 2017; 316 Karthik (10.1016/j.cej.2018.09.122_b0105) 2017; 184 Lammert (10.1016/j.cej.2018.09.122_b0135) 2013; 52 Su (10.1016/j.cej.2018.09.122_b0210) 2015; 268 Chowdhury (10.1016/j.cej.2018.09.122_b0160) 2010; 91 Férey (10.1016/j.cej.2018.09.122_b0060) 2005; 309 Rudzinski (10.1016/j.cej.2018.09.122_b0185) 2006; 110 Xie (10.1016/j.cej.2018.09.122_b0100) 2017; 7 Awual (10.1016/j.cej.2018.09.122_b0195) 2014; 20 Alshammari (10.1016/j.cej.2018.09.122_b0050) 2016 Daou (10.1016/j.cej.2018.09.122_b0165) 2007; 19 Juan-Alcaniz (10.1016/j.cej.2018.09.122_b0120) 2011; 47 Awual (10.1016/j.cej.2018.09.122_b0090) 2009; 43 Zhang (10.1016/j.cej.2018.09.122_b0045) 2016; 111 Lin (10.1016/j.cej.2018.09.122_b0055) 2015; 160 Serra-Crespo (10.1016/j.cej.2018.09.122_b0065) 2011; 23 Tran (10.1016/j.cej.2018.09.122_b0015) 2015; 3 Chen (10.1016/j.cej.2018.09.122_b0075) 2005; 44 Wu (10.1016/j.cej.2018.09.122_b0225) 2011; 47 Kandiah (10.1016/j.cej.2018.09.122_b0140) 2010; 20 Long (10.1016/j.cej.2018.09.122_b0010) 2011; 171 Maksimchuk (10.1016/j.cej.2018.09.122_b0110) 2012; 48 Loganathan (10.1016/j.cej.2018.09.122_b0180) 2014; 44 Yoon (10.1016/j.cej.2018.09.122_b0155) 2014; 236 Yin (10.1016/j.cej.2018.09.122_b0200) 2011; 198 Drenkova-Tuhtan (10.1016/j.cej.2018.09.122_b0005) 2017; 109 |
References_xml | – volume: 303 start-page: 539 year: 2016 end-page: 546 ident: b0215 article-title: Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater publication-title: Chem. Eng. J. – volume: 20 start-page: 2840 year: 2014 end-page: 2847 ident: b0195 article-title: Preparing of novel fibrous ligand exchange adsorbent for rapid column-mode trace phosphate removal from water publication-title: J. Indus. Eng. Chem. – volume: 20 start-page: 9848 year: 2010 end-page: 9851 ident: b0140 article-title: Post-synthetic modification of the metal–organic framework compound UiO-66 publication-title: J. Mater. Chem. – volume: 198 start-page: 362 year: 2011 end-page: 369 ident: b0200 article-title: Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite publication-title: J. Hazard. Mater. – volume: 44 start-page: 4745 year: 2005 end-page: 4749 ident: b0075 article-title: High H publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 5232 year: 2011 end-page: 5234 ident: b0225 article-title: Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery publication-title: Chem. Commun. – volume: 184 start-page: 2265 year: 2017 end-page: 2273 ident: b0105 article-title: Amino-functionalized MIL-101(Fe) metal-organic framework as a viable fluorescent probe for nitroaromatic compounds publication-title: Microchim. Acta – volume: 157 start-page: 161 year: 2010 end-page: 167 ident: b0095 article-title: Optimized conditions in preparation of giant reed quaternary amino anion exchanger for phosphate removal publication-title: Chem. Eng. J. – volume: 343 start-page: 118 year: 2018 end-page: 127 ident: b0125 article-title: Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials publication-title: Chem. Eng. J. – year: 2016 ident: b0050 article-title: Metal organic frameworks as emerging photocatalysts publication-title: InTech – volume: 160 start-page: 168 year: 2015 end-page: 176 ident: b0055 article-title: Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine publication-title: Mater. Chem. Phys. – volume: 42 start-page: 689 year: 2008 end-page: 696 ident: b0080 article-title: Arsenate removal from water by a weak-base anion exchange fibrous adsorbent publication-title: Water Res. – volume: 19 start-page: 1537 year: 2009 end-page: 1552 ident: b0070 article-title: Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis publication-title: Adv. Funct. Mater. – volume: 43 start-page: 1229 year: 2009 end-page: 1236 ident: b0090 article-title: Rapid column-mode removal of arsenate from water by crosslinked poly(allylamine) resin publication-title: Water Res. – volume: 22 start-page: 6632 year: 2010 end-page: 6640 ident: b0145 article-title: Synthesis and stability of tagged UiO-66 Zr-MOFs publication-title: Chem. Mater. – volume: 316 start-page: 33 year: 2017 end-page: 40 ident: b0025 article-title: Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater publication-title: Chem. Eng. J. – volume: 9 start-page: 32151 year: 2017 end-page: 32160 ident: b0230 article-title: Size modulation of zirconium-based metal organic frameworks for highly efficient phosphate remediation publication-title: ACS Appl. Mater. Inter. – volume: 23 start-page: 2565 year: 2011 end-page: 2572 ident: b0065 article-title: Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties publication-title: Chem. Mater. – volume: 19 start-page: 1537 year: 2009 end-page: 1552 ident: b0130 article-title: Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis publication-title: Adv. Funct. Mater. – volume: 111 start-page: 127 year: 2016 end-page: 137 ident: b0045 article-title: Adsorptive removal of acetic acid from water with metal-organic frameworks publication-title: Chem. Eng. Res. Des. – volume: 236 start-page: 341 year: 2014 end-page: 347 ident: b0155 article-title: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles publication-title: Chem. Eng. J. – volume: 44 start-page: 847 year: 2014 end-page: 907 ident: b0180 article-title: Removal and recovery of phosphate from water using sorption publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 188 start-page: 164 year: 2011 end-page: 171 ident: b0085 article-title: A weak-base fibrous anion exchanger effective for rapid phosphate removal from water publication-title: J. Hazard. Mater. – volume: 7 start-page: 3316 year: 2017 ident: b0100 article-title: Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101 publication-title: Sci. Rep. – volume: 110 start-page: 16514 year: 2006 end-page: 16525 ident: b0185 article-title: Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport publication-title: J. Phys. Chem. B – volume: 4 start-page: 1296 year: 2016 end-page: 1302 ident: b0170 article-title: Selective adsorption and efficient removal of phosphate from aqueous medium with graphene-lanthanum composite publication-title: ACS Sustain. Chem. Eng. – volume: 91 start-page: 2238 year: 2010 end-page: 2247 ident: b0160 article-title: Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal publication-title: J. Environ. Manage. – volume: 309 start-page: 2040 year: 2005 end-page: 2042 ident: b0060 article-title: A chromium terephthalate-based solid with unusually large pore volumes and surface area publication-title: Science – volume: 48 start-page: 6812 year: 2012 end-page: 6814 ident: b0110 article-title: Cyclohexane selective oxidation over metal-organic frameworks of MIL-101 family: superior catalytic activity and selectivity publication-title: Chem. Commun. – volume: 177 start-page: 263 year: 1996 end-page: 275 ident: b0220 article-title: Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface publication-title: J. Colloid Interface Sci. – volume: 281 start-page: 111 year: 2011 end-page: 117 ident: b0175 article-title: Assessing of phosphorus removal by polymeric anion exchangers publication-title: Desalination – volume: 47 start-page: 8578 year: 2011 end-page: 8580 ident: b0120 article-title: Live encapsulation of a Keggin polyanion in NH2-MIL-101(Al) observed by in situ time resolved X-ray scattering publication-title: Chem. Commun. – volume: 171 start-page: 448 year: 2011 end-page: 455 ident: b0010 article-title: Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide publication-title: Chem. Eng. J. – volume: 317 start-page: 1059 year: 2017 end-page: 1068 ident: b0030 article-title: Selective removal of phosphate using La-porous carbon composites from aqueous solutions: Batch and column studies publication-title: Chem. Eng. J. – volume: 36 start-page: 1373 year: 2005 end-page: 1383 ident: b0115 article-title: A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates publication-title: Commun. Soil Sci. Plant Anal. – volume: 47 start-page: 5018 year: 2013 end-page: 5026 ident: b0190 article-title: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles publication-title: Water Res. – volume: 51 start-page: 3418 year: 2017 end-page: 3425 ident: b0035 article-title: Enhanced phosphorus locking by novel lanthanum/aluminum–hydroxide composite: implications for eutrophication control publication-title: Environ. Sci. Technol. – volume: 52 start-page: 8521 year: 2013 end-page: 8528 ident: b0135 article-title: Single- and mixed-linker Cr-MIL-101 derivatives: a high-throughput investigation publication-title: Inorg. Chem. – volume: 6 start-page: 30651 year: 2016 ident: b0150 article-title: Surface modification of hollow magnetic Fe publication-title: Sci. Rep. – volume: 109 start-page: 77 year: 2017 end-page: 87 ident: b0005 article-title: Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent @ Fe publication-title: Water Res. – volume: 86 start-page: 25 year: 2017 end-page: 74 ident: b0040 article-title: Metal-organic frameworks: challenges and opportunities for ion-exchange/sorption applications publication-title: Prog. Mater Sci. – volume: 268 start-page: 270 year: 2015 end-page: 279 ident: b0210 article-title: Synthesis of mesoporous cerium–zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water publication-title: Chem. Eng. J. – volume: 19 start-page: 4494 year: 2007 end-page: 4505 ident: b0165 article-title: Phosphate adsorption properties of magnetite-based nanoparticles publication-title: Chem. Mater. – volume: 235 start-page: 124 year: 2014 end-page: 131 ident: b0205 article-title: Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides publication-title: Chem. Eng. J. – volume: 3 start-page: 6844 year: 2015 end-page: 6852 ident: b0015 article-title: Engineered graphene-nanoparticle aerogel composites for efficient removal of phosphate from water publication-title: J. Mater. Chem. A. – volume: 2 start-page: 8839 year: 2014 end-page: 8848 ident: b0020 article-title: Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal publication-title: J. Mater. Chem. A. – volume: 281 start-page: 111 year: 2011 ident: 10.1016/j.cej.2018.09.122_b0175 article-title: Assessing of phosphorus removal by polymeric anion exchangers publication-title: Desalination doi: 10.1016/j.desal.2011.07.047 – volume: 7 start-page: 3316 year: 2017 ident: 10.1016/j.cej.2018.09.122_b0100 article-title: Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101 publication-title: Sci. Rep. doi: 10.1038/s41598-017-03526-x – volume: 19 start-page: 4494 year: 2007 ident: 10.1016/j.cej.2018.09.122_b0165 article-title: Phosphate adsorption properties of magnetite-based nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm071046v – volume: 317 start-page: 1059 year: 2017 ident: 10.1016/j.cej.2018.09.122_b0030 article-title: Selective removal of phosphate using La-porous carbon composites from aqueous solutions: Batch and column studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.075 – volume: 51 start-page: 3418 year: 2017 ident: 10.1016/j.cej.2018.09.122_b0035 article-title: Enhanced phosphorus locking by novel lanthanum/aluminum–hydroxide composite: implications for eutrophication control publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05623 – volume: 236 start-page: 341 year: 2014 ident: 10.1016/j.cej.2018.09.122_b0155 article-title: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.053 – volume: 48 start-page: 6812 year: 2012 ident: 10.1016/j.cej.2018.09.122_b0110 article-title: Cyclohexane selective oxidation over metal-organic frameworks of MIL-101 family: superior catalytic activity and selectivity publication-title: Chem. Commun. doi: 10.1039/c2cc31877f – volume: 9 start-page: 32151 year: 2017 ident: 10.1016/j.cej.2018.09.122_b0230 article-title: Size modulation of zirconium-based metal organic frameworks for highly efficient phosphate remediation publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b10024 – volume: 47 start-page: 5018 year: 2013 ident: 10.1016/j.cej.2018.09.122_b0190 article-title: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles publication-title: Water Res. doi: 10.1016/j.watres.2013.05.044 – volume: 22 start-page: 6632 year: 2010 ident: 10.1016/j.cej.2018.09.122_b0145 article-title: Synthesis and stability of tagged UiO-66 Zr-MOFs publication-title: Chem. Mater. doi: 10.1021/cm102601v – volume: 3 start-page: 6844 year: 2015 ident: 10.1016/j.cej.2018.09.122_b0015 article-title: Engineered graphene-nanoparticle aerogel composites for efficient removal of phosphate from water publication-title: J. Mater. Chem. A. doi: 10.1039/C4TA06308B – volume: 44 start-page: 847 year: 2014 ident: 10.1016/j.cej.2018.09.122_b0180 article-title: Removal and recovery of phosphate from water using sorption publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2012.741311 – volume: 44 start-page: 4745 year: 2005 ident: 10.1016/j.cej.2018.09.122_b0075 article-title: High H2 adsorption in a microporous metal-organic framework with open metal sites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462787 – volume: 19 start-page: 1537 year: 2009 ident: 10.1016/j.cej.2018.09.122_b0130 article-title: Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801130 – volume: 20 start-page: 9848 year: 2010 ident: 10.1016/j.cej.2018.09.122_b0140 article-title: Post-synthetic modification of the metal–organic framework compound UiO-66 publication-title: J. Mater. Chem. doi: 10.1039/c0jm02416c – volume: 198 start-page: 362 year: 2011 ident: 10.1016/j.cej.2018.09.122_b0200 article-title: Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.10.072 – volume: 109 start-page: 77 year: 2017 ident: 10.1016/j.cej.2018.09.122_b0005 article-title: Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent @ Fe3O4/SiO2 particles with magnetic harvesting publication-title: Water Res. doi: 10.1016/j.watres.2016.11.039 – year: 2016 ident: 10.1016/j.cej.2018.09.122_b0050 article-title: Metal organic frameworks as emerging photocatalysts publication-title: InTech – volume: 160 start-page: 168 year: 2015 ident: 10.1016/j.cej.2018.09.122_b0055 article-title: Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.04.021 – volume: 43 start-page: 1229 year: 2009 ident: 10.1016/j.cej.2018.09.122_b0090 article-title: Rapid column-mode removal of arsenate from water by crosslinked poly(allylamine) resin publication-title: Water Res. doi: 10.1016/j.watres.2008.12.018 – volume: 2 start-page: 8839 year: 2014 ident: 10.1016/j.cej.2018.09.122_b0020 article-title: Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal publication-title: J. Mater. Chem. A. doi: 10.1039/c4ta00326h – volume: 47 start-page: 8578 year: 2011 ident: 10.1016/j.cej.2018.09.122_b0120 article-title: Live encapsulation of a Keggin polyanion in NH2-MIL-101(Al) observed by in situ time resolved X-ray scattering publication-title: Chem. Commun. doi: 10.1039/c1cc12213d – volume: 4 start-page: 1296 year: 2016 ident: 10.1016/j.cej.2018.09.122_b0170 article-title: Selective adsorption and efficient removal of phosphate from aqueous medium with graphene-lanthanum composite publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01324 – volume: 235 start-page: 124 year: 2014 ident: 10.1016/j.cej.2018.09.122_b0205 article-title: Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.021 – volume: 177 start-page: 263 year: 1996 ident: 10.1016/j.cej.2018.09.122_b0220 article-title: Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0030 – volume: 19 start-page: 1537 year: 2009 ident: 10.1016/j.cej.2018.09.122_b0070 article-title: Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801130 – volume: 36 start-page: 1373 year: 2005 ident: 10.1016/j.cej.2018.09.122_b0115 article-title: A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1081/CSS-200056954 – volume: 52 start-page: 8521 year: 2013 ident: 10.1016/j.cej.2018.09.122_b0135 article-title: Single- and mixed-linker Cr-MIL-101 derivatives: a high-throughput investigation publication-title: Inorg. Chem. doi: 10.1021/ic4005328 – volume: 184 start-page: 2265 year: 2017 ident: 10.1016/j.cej.2018.09.122_b0105 article-title: Amino-functionalized MIL-101(Fe) metal-organic framework as a viable fluorescent probe for nitroaromatic compounds publication-title: Microchim. Acta doi: 10.1007/s00604-017-2215-2 – volume: 268 start-page: 270 year: 2015 ident: 10.1016/j.cej.2018.09.122_b0210 article-title: Synthesis of mesoporous cerium–zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.070 – volume: 157 start-page: 161 year: 2010 ident: 10.1016/j.cej.2018.09.122_b0095 article-title: Optimized conditions in preparation of giant reed quaternary amino anion exchanger for phosphate removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.11.024 – volume: 343 start-page: 118 year: 2018 ident: 10.1016/j.cej.2018.09.122_b0125 article-title: Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.116 – volume: 42 start-page: 689 year: 2008 ident: 10.1016/j.cej.2018.09.122_b0080 article-title: Arsenate removal from water by a weak-base anion exchange fibrous adsorbent publication-title: Water Res. doi: 10.1016/j.watres.2007.08.020 – volume: 188 start-page: 164 year: 2011 ident: 10.1016/j.cej.2018.09.122_b0085 article-title: A weak-base fibrous anion exchanger effective for rapid phosphate removal from water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.01.092 – volume: 171 start-page: 448 year: 2011 ident: 10.1016/j.cej.2018.09.122_b0010 article-title: Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.03.102 – volume: 110 start-page: 16514 year: 2006 ident: 10.1016/j.cej.2018.09.122_b0185 article-title: Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport publication-title: J. Phys. Chem. B doi: 10.1021/jp061779n – volume: 86 start-page: 25 year: 2017 ident: 10.1016/j.cej.2018.09.122_b0040 article-title: Metal-organic frameworks: challenges and opportunities for ion-exchange/sorption applications publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2017.01.002 – volume: 303 start-page: 539 year: 2016 ident: 10.1016/j.cej.2018.09.122_b0215 article-title: Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.06.040 – volume: 316 start-page: 33 year: 2017 ident: 10.1016/j.cej.2018.09.122_b0025 article-title: Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.01.066 – volume: 111 start-page: 127 year: 2016 ident: 10.1016/j.cej.2018.09.122_b0045 article-title: Adsorptive removal of acetic acid from water with metal-organic frameworks publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.04.020 – volume: 6 start-page: 30651 year: 2016 ident: 10.1016/j.cej.2018.09.122_b0150 article-title: Surface modification of hollow magnetic Fe3O4@NH2-MIL-101(Fe) derived from metal-organic frameworks for enhanced selective removal of phosphates from aqueous solution publication-title: Sci. Rep. doi: 10.1038/srep30651 – volume: 309 start-page: 2040 year: 2005 ident: 10.1016/j.cej.2018.09.122_b0060 article-title: A chromium terephthalate-based solid with unusually large pore volumes and surface area publication-title: Science doi: 10.1126/science.1116275 – volume: 47 start-page: 5232 year: 2011 ident: 10.1016/j.cej.2018.09.122_b0225 article-title: Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery publication-title: Chem. Commun. doi: 10.1039/c1cc10659g – volume: 23 start-page: 2565 year: 2011 ident: 10.1016/j.cej.2018.09.122_b0065 article-title: Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties publication-title: Chem. Mater. doi: 10.1021/cm103644b – volume: 91 start-page: 2238 year: 2010 ident: 10.1016/j.cej.2018.09.122_b0160 article-title: Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.06.003 – volume: 20 start-page: 2840 year: 2014 ident: 10.1016/j.cej.2018.09.122_b0195 article-title: Preparing of novel fibrous ligand exchange adsorbent for rapid column-mode trace phosphate removal from water publication-title: J. Indus. Eng. Chem. doi: 10.1016/j.jiec.2013.11.016 |
SSID | ssj0006919 |
Score | 2.6688807 |
Snippet | [Display omitted]
•Amino-MIL-101(Al/Fe) MOFs was applied in high strength phosphate adsorption.•Fast kinetics, high sorption capacity and strong selectivity... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 159 |
SubjectTerms | Amino functionalization Metal-organic frameworks MIL-101 Phosphate adsorption Trivalent metals |
Title | Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs |
URI | https://dx.doi.org/10.1016/j.cej.2018.09.122 |
Volume | 357 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZ9uBJWJtN0qZ7LMXSWltBLfYWdrMbmmKT0kSP_nZn8tAK6kFyCAkzECYz38yy384QcqmbNoSQshlvtxzmSikYRFHANLcV19x4lsoJsuNWf-LeTpvTGulWZ2GQVllif4HpOVqXbxqlNRvLKGo8ctzTEgiu6JcCe4K6rodefv3-RfNoiXy4BwozlK52NnOOV2DmyO5qY6tTbts_56a1fNPbJTtloUg7xbfskZqJ98n2WvvAA5IWrYcBr6iMNU3zkTb5k06TVY4FNAnpcpakyxnUlBTPklAJmQCW-7RyOvoWSZqtInA5SEBsYaAcTxlmN03lIooTNhrcAY5yOrrvpYdk0rt56vZZOUSBBRCeGbO9wMHxD4oL6RkpuXKbEHc4_dUYC5vJS9PWlnGEcUVgha4KuQDDShv04HKOyEacxOaYUM29tsIFJJ6ACkOQ0iZshi0TSBUAMJwQqzKfH5QdxnHQxYtfUcnmPljcR4v7lvA5qlx9qiyL9hp_CbvVP_G_-YgP8P-72un_1M7IFjyJgqF9Tjay1au5gAIkU_Xcw-pkszMY9sd4Hz48Dz8A3f3cYA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4ine5MAJKVrTx9Yc0cS0wTYOMGm3KGlS0QnaaS38fuw-JpCAA-qpbSxVrv3ZUezPhFybwAUX0i7jYcdjvlKCgRdFzHBXc8Nt19FlgeykM5j697NgtkZ6TS8MllXW2F9heonW9ZN2rc32IknaTxzPtASCK9ql8NfJBrJTBS2ycTt8GExWgNwR5XwPXM9QoDncLMu8IjvHAq8Q2U656_4cnr6EnP4u2alzRXpbfc4eWbPpPtn-wiB4QPKKfRggi6rU0LycalPemTxblnBAs5guXrJ88QJpJcV2EqogGMCOnzZ2Rz8SRYtlAlYHMYi9WcjIc4YBzlD1lqQZGw9HAKWcjh_7-SGZ9u-eewNWz1FgEXhowdxu5OEECM2F6lqluPYDcD0cAGutg3zyyobGsZ6wvoic2NcxF6Bb5YIcXN4RaaVZao8JNbwbatxDYhNUHMMqY-Mg7thI6Qiw4YQ4jfpkVJOM46yLV9lUk80laFyixqUjJEeRm5XIomLY-Gux3_wT-c1MJESA38VO_yd2RTYHz-ORHA0nD2dkC96IqmD7nLSK5bu9gHyk0Je1vX0CjTrdbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+and+selective+adsorption+of+phosphate+from+aqueous+solution+via+trivalent-metals-based+amino-MIL-101+MOFs&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Ruiting&rft.au=Chi%2C+Lina&rft.au=Wang%2C+Xinze&rft.au=Wang%2C+Yuan&rft.date=2019-02-01&rft.issn=1385-8947&rft.volume=357&rft.spage=159&rft.epage=168&rft_id=info:doi/10.1016%2Fj.cej.2018.09.122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2018_09_122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |