Enhancing denitrification phosphorus removal with a novel nutrient removal process: Role of configuration
•A novel tow configuration (process) was proposed to enrich DPB treating low strength real wastewater.•Configurational profiles of model intracellular compounds i.e. PHA and glycogen were characterized.•Configurational mass flow characteristics were demonstrated.•Two rules of thumb have been confirm...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 240; pp. 404 - 412 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel tow configuration (process) was proposed to enrich DPB treating low strength real wastewater.•Configurational profiles of model intracellular compounds i.e. PHA and glycogen were characterized.•Configurational mass flow characteristics were demonstrated.•Two rules of thumb have been confirmed to enrich DPB with proper configuration.
Role of configurations on enriching denitrifying phosphorus removing bacteria (DPB) by biological nutrient removal processes was discussed. Effects of configurations on enhancement of denitrifying phosphorus removal in a novel nutrient removal process, the STB (six-tank-bioreactor) process were investigated. Profiles of model intracellular compounds i.e. glycogen and PHA (poly-hydroxyalknoates) under different configurations were characterized in order to reveal the biochemical pathway that DPBs might follow in the STB process. Mass flow characteristics of main pollutants under different configurations were also illustrated. Results showed that a higher anoxic to total volume ratio and the multi-barrier bioreactor strategy were crucial factors to enhance denitrifying phosphorus removal in the STB process. Both of the configurations performed well with average removal efficiencies of 74%, 98%, 51% and 85% under configuration I, and 74%, 99%, 72% and 70% under configuration II for COD, NH3–N, TN and TP respectively. A higher denitrifying phosphorus removal efficiency was achieved under configuration II than configuration I due to a bigger anoxic to total volume ratio. |
---|---|
AbstractList | Role of configurations on enriching denitrifying phosphorus removing bacteria (DPB) by biological nutrient removal processes was discussed. Effects of configurations on enhancement of denitrifying phosphorus removal in a novel nutrient removal process, the STB (six-tank-bioreactor) process were investigated. Profiles of model intracellular compounds i.e. glycogen and PHA (poly-hydroxyalknoates) under different configurations were characterized in order to reveal the biochemical pathway that DPBs might follow in the STB process. Mass flow characteristics of main pollutants under different configurations were also illustrated. Results showed that a higher anoxic to total volume ratio and the multi-barrier bioreactor strategy were crucial factors to enhance denitrifying phosphorus removal in the STB process. Both of the configurations performed well with average removal efficiencies of 74%, 98%, 51% and 85% under configuration I, and 74%, 99%, 72% and 70% under configuration II for COD, NH3-N, TN and TP respectively. A higher denitrifying phosphorus removal efficiency was achieved under configuration II than configuration I due to a bigger anoxic to total volume ratio. •A novel tow configuration (process) was proposed to enrich DPB treating low strength real wastewater.•Configurational profiles of model intracellular compounds i.e. PHA and glycogen were characterized.•Configurational mass flow characteristics were demonstrated.•Two rules of thumb have been confirmed to enrich DPB with proper configuration. Role of configurations on enriching denitrifying phosphorus removing bacteria (DPB) by biological nutrient removal processes was discussed. Effects of configurations on enhancement of denitrifying phosphorus removal in a novel nutrient removal process, the STB (six-tank-bioreactor) process were investigated. Profiles of model intracellular compounds i.e. glycogen and PHA (poly-hydroxyalknoates) under different configurations were characterized in order to reveal the biochemical pathway that DPBs might follow in the STB process. Mass flow characteristics of main pollutants under different configurations were also illustrated. Results showed that a higher anoxic to total volume ratio and the multi-barrier bioreactor strategy were crucial factors to enhance denitrifying phosphorus removal in the STB process. Both of the configurations performed well with average removal efficiencies of 74%, 98%, 51% and 85% under configuration I, and 74%, 99%, 72% and 70% under configuration II for COD, NH3–N, TN and TP respectively. A higher denitrifying phosphorus removal efficiency was achieved under configuration II than configuration I due to a bigger anoxic to total volume ratio. |
Author | Gao, Saisai Sun, Liping Zhu, Mengling Liu, Hongbo Xia, Siqing |
Author_xml | – sequence: 1 givenname: Hongbo surname: Liu fullname: Liu, Hongbo email: Liuhb@usst.edu.cn organization: School of Environment and Architecture, University of Shanghai for Science and Technology, 200093 Shanghai, China – sequence: 2 givenname: Mengling surname: Zhu fullname: Zhu, Mengling organization: School of Environment and Architecture, University of Shanghai for Science and Technology, 200093 Shanghai, China – sequence: 3 givenname: Saisai surname: Gao fullname: Gao, Saisai organization: School of Environment and Architecture, University of Shanghai for Science and Technology, 200093 Shanghai, China – sequence: 4 givenname: Siqing surname: Xia fullname: Xia, Siqing organization: State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 200092 Shanghai, China – sequence: 5 givenname: Liping surname: Sun fullname: Sun, Liping organization: Tianjin Key Laboratory of Water Quality Science and Technology, 300384 Tianjin, China |
BookMark | eNqFkU1LRCEUhiUK-vwB7Vy2uTeP3s9aRfQFQRC1Fsd7bBzu6KTeif591kSLFrUQBZ_ncHjffbLtvENCjoGVwKA5XZQaFyVnIEqAkjX9FtmDrhWF4MC381t0ddH1VbtL9mNcMJYR6PeIvXJz5bR1L3RAZ1OwxmqVrHd0NfcxnzBFGnDp12qkbzbNqaLOr3Gkbso0uvTzuwpeY4xn9NGPSL2h2jtjX6bwNe-Q7Bg1Rjz6vg_I8_XV0-Vtcf9wc3d5cV_oirFU8KoTswbbWdOgMVWt9aAUAPT1oBUfZgIFMxy6WvSKQ4-gUM2Ai5oxo4aWiwNyspmb13mdMCa5tFHjOCqHfooSWgYs59R2_6M1ryqAuqsyChtUBx9jQCNXwS5VeJfA5GcDciFzA_KzAQkgc7zZaX852qavLFJQdvzTPN-YmINaWwwy6hy1xsEG1EkO3v5hfwBtDKSO |
CitedBy_id | crossref_primary_10_1016_j_cej_2017_07_061 crossref_primary_10_3389_fmicb_2021_779369 crossref_primary_10_1016_j_cej_2015_01_036 crossref_primary_10_1016_j_ibiod_2015_12_008 crossref_primary_10_1016_j_jes_2021_07_012 crossref_primary_10_1007_s11270_018_3746_9 crossref_primary_10_1016_j_biteb_2023_101406 crossref_primary_10_1016_j_jes_2015_10_012 crossref_primary_10_1089_ees_2016_0429 crossref_primary_10_1590_s1413_41522019125711 crossref_primary_10_1016_j_cej_2015_04_111 crossref_primary_10_1016_j_jbiosc_2016_03_019 crossref_primary_10_29252_arakmu_12_2_27 crossref_primary_10_1016_j_biortech_2022_128093 crossref_primary_10_1016_j_cej_2016_05_012 |
Cites_doi | 10.1016/j.watres.2006.08.006 10.1016/S1001-0742(11)60808-5 10.1016/j.watres.2007.06.065 10.1109/ICBBE.2009.5163146 10.1080/09593330.2011.563428 10.1016/j.watres.2008.01.001 10.1007/s10532-008-9215-1 10.1061/(ASCE)0733-9372(2008)134:7(536) 10.1016/j.watres.2012.04.036 10.1016/j.biortech.2008.07.045 10.1016/S0043-1354(02)00186-0 10.1016/j.cej.2011.09.080 10.2166/wst.2009.703 10.1016/j.bej.2010.01.013 10.1007/s00449-011-0575-2 10.1016/j.copbio.2011.11.027 10.2175/106143097X122103 10.1061/(ASCE)EE.1943-7870.0000262 10.1002/(SICI)1097-0290(20000605)68:5<496::AID-BIT3>3.0.CO;2-S 10.1016/j.nbt.2012.05.022 10.1002/bit.10292 10.2175/106143012X13280358613543 10.2175/106143011X13233670703378 10.1016/j.bej.2007.06.016 10.1081/ESE-120016898 10.1007/s12205-008-8009-7 10.2166/wst.2009.025 10.1002/jctb.1573 10.1002/bit.20339 10.1128/AEM.71.12.8683-8691.2005 10.2166/wst.2006.092 10.2166/wst.2010.975 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | AAYXX CITATION 7ST 7TV C1K SOI 7SR 8FD JG9 |
DOI | 10.1016/j.cej.2013.11.069 |
DatabaseName | CrossRef Environment Abstracts Pollution Abstracts Environmental Sciences and Pollution Management Environment Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Pollution Abstracts Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database Pollution Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 412 |
ExternalDocumentID | 10_1016_j_cej_2013_11_069 S1385894713015465 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 7ST 7TV C1K SOI 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c400t-2483b6e7b66eff45ccdaa11195dca2db3e30f218539a219e1aeab123500fad723 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Jul 10 23:21:36 EDT 2025 Fri Jul 11 01:59:12 EDT 2025 Tue Jul 01 01:09:59 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Fri Feb 23 02:17:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biological nutrient removal (BNR) Bioreactor Denitrifying phosphorus removing bacteria (DPB) Configuration Operational mode |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-2483b6e7b66eff45ccdaa11195dca2db3e30f218539a219e1aeab123500fad723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1524411584 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1701001378 proquest_miscellaneous_1524411584 crossref_primary_10_1016_j_cej_2013_11_069 crossref_citationtrail_10_1016_j_cej_2013_11_069 elsevier_sciencedirect_doi_10_1016_j_cej_2013_11_069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-15 |
PublicationDateYYYYMMDD | 2014-03-15 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Carvalho, Lemos, Oehmen, Reis (b0070) 2007; 41 Barat, van Loosdrecht (b0005) 2006; 40 Ahn, Daidou, Tsuneda, Hirata (b0035) 2002; 79 Kapagiannidis, Zafiriadis, Aivasidis (b0075) 2012; 35 Kapagiannidis, Zafiriadis, Aivasidis (b0045) 2009; 60 Zhang, Wang, Xiao, Yang, Zhang (b0020) 2009; 100 Peng, Wang, Wu, Li, Fan (b0135) 2006; 81 Kapagiannidis, Zafiriadis, Aivasidis (b0090) 2011; 175 Houweling, Comeau, Takacs, Dold (b0165) 2010; 61 Lopez-Vazquez, Hooijmans, Brdjanovic, Gijzen, van Loosdrecht (b0175) 2008; 42 Filipe, Daigger (b0055) 1999; 71 Beun, Verhoef, Van Loosdrecht, Heijnen (b0155) 2000; 68 Podedworna, Zubrowska-Sudol (b0160) 2012; 33 Hongbo, Liping, Siqing (b0080) 2008; 38 Chou, Ouyang, Kuo, Huang (b0010) 2003; 38 Ginige, Bowyer, Foley, Keller, Yuan (b0030) 2009; 20 Kapagiannidis, Zafiriadis, Aivasidis (b0170) 2013; 30 Torrico, Kuba, Kusuda (b0085) 2008; 134 Xia, Liu (b0105) 2006; 18 Wu, Peng, Li, Wang (b0025) 2010; 136 Hu, Wentzel, Ekama (b0100) 2002; 36 Qi, Yu, Li, Li, Mino, Shoji, Fujie, Yang (b0040) 2012; 24 R.S.a.P. Hanson, J.A. Phillips, Chemical composition, in: R.G.E.M.P. Gerhardt, R.N. Costilow, E.W. Nester, W.A. Wood, N.R. Krieg, G.B. Phillips (Ed.), Manual of Methods for General Bacteriology. American Society for Microbiology, American Society for Microbiology, Washington, DC, 1981, p. 333. H.B. Liu, L.J. Shi, S.Q. Xia, W.P. Cao, Operation and Optimization of the Parallel AN/AO Process, 2009, in: 3rd International Conference on Bioinformatics and Biomedical Engineering, vols. 1–11, 2009, pp. 4973–4980. Cao, Ang, Chua, Woo, Chi, Bhawna, Chong, Ganesan, Ooi, Wah (b0140) 2009; 59 Wang, Li, Yang, Zheng, Wu, Zeng, Zeng (b0150) 2012; 46 Hao, van Loosdrecht (b0095) 2006; 53 Choi, Park, Yun, Min (b0015) 2008; 12 Zafiriadis, Ntougias, Mirelis, Kapagiannidis, Aivasidis (b0065) 2012; 84 Girard, Encina, Rodriguez (b0050) 2012; 84 Xia, Li, Wang, Li, Zhang (b0130) 2010; 49 Ginige, Keller, Blackall (b0145) 2005; 71 Nielsen, Saunders, Hansen, Larsen, Nielsen (b0060) 2012; 23 A.W.W.A.A. American Public Health Association (APHA), Water Environment Federation (WEFW), Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington, DC, 1998. Xia, Wang, Fu, Yang, Ma (b0125) 2005; 89 10.1016/j.cej.2013.11.069_b0120 Peng (10.1016/j.cej.2013.11.069_b0135) 2006; 81 Kapagiannidis (10.1016/j.cej.2013.11.069_b0045) 2009; 60 Filipe (10.1016/j.cej.2013.11.069_b0055) 1999; 71 Hongbo (10.1016/j.cej.2013.11.069_b0080) 2008; 38 Zafiriadis (10.1016/j.cej.2013.11.069_b0065) 2012; 84 Xia (10.1016/j.cej.2013.11.069_b0130) 2010; 49 Kapagiannidis (10.1016/j.cej.2013.11.069_b0075) 2012; 35 Wang (10.1016/j.cej.2013.11.069_b0150) 2012; 46 Kapagiannidis (10.1016/j.cej.2013.11.069_b0090) 2011; 175 Hu (10.1016/j.cej.2013.11.069_b0100) 2002; 36 Wu (10.1016/j.cej.2013.11.069_b0025) 2010; 136 Xia (10.1016/j.cej.2013.11.069_b0105) 2006; 18 Ginige (10.1016/j.cej.2013.11.069_b0030) 2009; 20 Kapagiannidis (10.1016/j.cej.2013.11.069_b0170) 2013; 30 Ginige (10.1016/j.cej.2013.11.069_b0145) 2005; 71 Lopez-Vazquez (10.1016/j.cej.2013.11.069_b0175) 2008; 42 Houweling (10.1016/j.cej.2013.11.069_b0165) 2010; 61 Barat (10.1016/j.cej.2013.11.069_b0005) 2006; 40 Carvalho (10.1016/j.cej.2013.11.069_b0070) 2007; 41 Choi (10.1016/j.cej.2013.11.069_b0015) 2008; 12 Podedworna (10.1016/j.cej.2013.11.069_b0160) 2012; 33 Girard (10.1016/j.cej.2013.11.069_b0050) 2012; 84 Ahn (10.1016/j.cej.2013.11.069_b0035) 2002; 79 Chou (10.1016/j.cej.2013.11.069_b0010) 2003; 38 Nielsen (10.1016/j.cej.2013.11.069_b0060) 2012; 23 Hao (10.1016/j.cej.2013.11.069_b0095) 2006; 53 Xia (10.1016/j.cej.2013.11.069_b0125) 2005; 89 10.1016/j.cej.2013.11.069_b0115 Beun (10.1016/j.cej.2013.11.069_b0155) 2000; 68 Qi (10.1016/j.cej.2013.11.069_b0040) 2012; 24 Cao (10.1016/j.cej.2013.11.069_b0140) 2009; 59 Zhang (10.1016/j.cej.2013.11.069_b0020) 2009; 100 Torrico (10.1016/j.cej.2013.11.069_b0085) 2008; 134 10.1016/j.cej.2013.11.069_b0110 |
References_xml | – volume: 35 start-page: 371 year: 2012 end-page: 382 ident: b0075 article-title: Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic–anoxic activated sludge system publication-title: Bioproc. Biosyst. Eng. – volume: 49 start-page: 370 year: 2010 end-page: 378 ident: b0130 article-title: Tracking composition and dynamics of nitrification and denitrification microbial community in a biofilm reactor by PCR–DGGE and combining FISH with flow cytometry publication-title: Biochem. Eng. J. – volume: 81 start-page: 1391 year: 2006 end-page: 1397 ident: b0135 article-title: Optimisation of anaerobic/anoxic/oxic process to improve performance and reduce operating costs publication-title: J. Chem. Technol. Biotechnol. – volume: 53 start-page: 191 year: 2006 end-page: 198 ident: b0095 article-title: Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS (R)) publication-title: Water Sci. Technol. – volume: 20 start-page: 221 year: 2009 end-page: 234 ident: b0030 article-title: A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones publication-title: Biodegradation – volume: 46 start-page: 3868 year: 2012 end-page: 3878 ident: b0150 article-title: Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source publication-title: Water Res. – volume: 40 start-page: 3507 year: 2006 end-page: 3516 ident: b0005 article-title: Potential phosphorus recovery in a WWTP with the BCFS (R) process: interactions with the biological process publication-title: Water Res. – reference: H.B. Liu, L.J. Shi, S.Q. Xia, W.P. Cao, Operation and Optimization of the Parallel AN/AO Process, 2009, in: 3rd International Conference on Bioinformatics and Biomedical Engineering, vols. 1–11, 2009, pp. 4973–4980. – volume: 18 start-page: 433 year: 2006 end-page: 438 ident: b0105 article-title: Operation of three parallel AN/AO processes to enrich denitrifying phosphorus removing bacteria for low strength wastewater treatment publication-title: J. Environ. Sci. -China – reference: A.W.W.A.A. American Public Health Association (APHA), Water Environment Federation (WEFW), Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington, DC, 1998. – volume: 36 start-page: 4927 year: 2002 end-page: 4937 ident: b0100 article-title: Anoxic growth of phosphate-accumulating organisms (PAOs) in biological nutrient removal activated sludge systems publication-title: Water Res. – volume: 136 start-page: 1248 year: 2010 end-page: 1254 ident: b0025 article-title: Effect of carbon source on biological nitrogen and phosphorus removal in an anaerobic–anoxic–oxic, (A(2)O) process publication-title: J. Environ. Eng. -ASCE – volume: 41 start-page: 4383 year: 2007 end-page: 4396 ident: b0070 article-title: Denitrifying phosphorus removal: linking the process performance with the microbial community structure publication-title: Water Res. – volume: 24 start-page: 571 year: 2012 end-page: 578 ident: b0040 article-title: Comparison of conventional and inverted A(2)/O processes: phosphorus release and uptake behaviors publication-title: J. Environ. Sci. -China – volume: 175 start-page: 124 year: 2011 end-page: 135 ident: b0090 article-title: Upgrading the efficiency of an external nitrification BNR system – the modified Dephanox process publication-title: Chem. Eng. J. – volume: 68 start-page: 496 year: 2000 end-page: 507 ident: b0155 article-title: Stoichiometry and kinetics of poly-beta-hydroxybutyrate metabolism under denitrifying conditions in activated sludge cultures publication-title: Biotechnol. Bioeng. – volume: 30 start-page: 227 year: 2013 end-page: 237 ident: b0170 article-title: Comparison between aerobic and anoxic metabolism of denitrifying-EBPR sludge: effect of biomass poly-hydroxyalkanoates content publication-title: New Biotechnol. – volume: 134 start-page: 536 year: 2008 end-page: 542 ident: b0085 article-title: Optimization of internal bypass ratio for complete ammonium and phosphate removal in a dephanox-type two-sludge denitrification system publication-title: J. Environ. Eng. -ASCE – volume: 60 start-page: 2695 year: 2009 end-page: 2703 ident: b0045 article-title: Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions publication-title: Water Sci. Technol. – volume: 23 start-page: 452 year: 2012 end-page: 459 ident: b0060 article-title: Microbial communities involved in enhanced biological phosphorus removal from wastewater – a model system in environmental biotechnology publication-title: Curr. Opin. Biotechnol. – volume: 33 start-page: 237 year: 2012 end-page: 245 ident: b0160 article-title: Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase publication-title: Environ. Technol. – volume: 84 start-page: 475 year: 2012 end-page: 484 ident: b0065 article-title: Molecular characterization of denitrifying bacteria isolated from the anoxic reactor of a modified DEPHANOX plant performing enhanced biological phosphorus removal publication-title: Water Environ. Res. – volume: 100 start-page: 1048 year: 2009 end-page: 1054 ident: b0020 article-title: Enhanced biological nutrient removal using MUCT–MBR system publication-title: Bioresour. Technol. – volume: 84 start-page: 354 year: 2012 end-page: 361 ident: b0050 article-title: Process performance and polyphosphate-accumulating organism-glycogen-accumulating organism communities in an anaerobic/anoxic/oxic system operated with different carbon sources publication-title: Water Environ. Res. – volume: 38 start-page: 339 year: 2003 end-page: 352 ident: b0010 article-title: Denitrifying characteristics of the multiple stages enhanced biological nutrient removal process with external carbon sources publication-title: J. Environ. Sci. Heal. A – volume: 12 start-page: 9 year: 2008 end-page: 14 ident: b0015 article-title: Design implications on denitrifying PAO in BNR plant publication-title: KSCE J. Civ. Eng. – volume: 79 start-page: 83 year: 2002 end-page: 93 ident: b0035 article-title: Transformation of phosphorus and relevant intracellular compounds by a phosphorus-accumulating enrichment culture in the presence of both the electron acceptor and electron donor publication-title: Biotechnol. Bioeng. – volume: 71 start-page: 8683 year: 2005 end-page: 8691 ident: b0145 article-title: Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization–microautoradiography publication-title: Appl. Environ. Microbiol. – volume: 71 start-page: 1140 year: 1999 end-page: 1150 ident: b0055 article-title: Evaluation of the capacity of phosphorus-accumulating organisms to use nitrate and oxygen as final electron acceptors: a theoretical study on population dynamics publication-title: Water Environ. Res. – reference: R.S.a.P. Hanson, J.A. Phillips, Chemical composition, in: R.G.E.M.P. Gerhardt, R.N. Costilow, E.W. Nester, W.A. Wood, N.R. Krieg, G.B. Phillips (Ed.), Manual of Methods for General Bacteriology. American Society for Microbiology, American Society for Microbiology, Washington, DC, 1981, p. 333. – volume: 38 start-page: 158 year: 2008 end-page: 163 ident: b0080 article-title: An efficient DPB utilization process: the modified A(2)N process publication-title: Biochem. Eng. J. – volume: 61 start-page: 1793 year: 2010 end-page: 1800 ident: b0165 article-title: Uncertainty and variability in enhanced biological phosphorus removal (EBPR) stoichiometry: consequences for process modelling and optimization publication-title: Water Sci. Technol. – volume: 42 start-page: 2349 year: 2008 end-page: 2360 ident: b0175 article-title: Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in the Netherlands publication-title: Water Res. – volume: 89 start-page: 656 year: 2005 end-page: 659 ident: b0125 article-title: Biodiversity analysis of microbial community in the chem-bioflocculation treatment process publication-title: Biotechnol. Bioeng. – volume: 59 start-page: 857 year: 2009 end-page: 865 ident: b0140 article-title: Enhanced biological phosphorus removal in the retrofitting from an anoxic selector to an anaerobic selector in a full-scale activated sludge process in Singapore publication-title: Water Sci. Technol. – volume: 40 start-page: 3507 year: 2006 ident: 10.1016/j.cej.2013.11.069_b0005 article-title: Potential phosphorus recovery in a WWTP with the BCFS (R) process: interactions with the biological process publication-title: Water Res. doi: 10.1016/j.watres.2006.08.006 – volume: 24 start-page: 571 year: 2012 ident: 10.1016/j.cej.2013.11.069_b0040 article-title: Comparison of conventional and inverted A(2)/O processes: phosphorus release and uptake behaviors publication-title: J. Environ. Sci. -China doi: 10.1016/S1001-0742(11)60808-5 – volume: 41 start-page: 4383 year: 2007 ident: 10.1016/j.cej.2013.11.069_b0070 article-title: Denitrifying phosphorus removal: linking the process performance with the microbial community structure publication-title: Water Res. doi: 10.1016/j.watres.2007.06.065 – ident: 10.1016/j.cej.2013.11.069_b0110 doi: 10.1109/ICBBE.2009.5163146 – volume: 33 start-page: 237 year: 2012 ident: 10.1016/j.cej.2013.11.069_b0160 article-title: Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase publication-title: Environ. Technol. doi: 10.1080/09593330.2011.563428 – volume: 42 start-page: 2349 year: 2008 ident: 10.1016/j.cej.2013.11.069_b0175 article-title: Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in the Netherlands publication-title: Water Res. doi: 10.1016/j.watres.2008.01.001 – volume: 20 start-page: 221 year: 2009 ident: 10.1016/j.cej.2013.11.069_b0030 article-title: A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones publication-title: Biodegradation doi: 10.1007/s10532-008-9215-1 – volume: 134 start-page: 536 year: 2008 ident: 10.1016/j.cej.2013.11.069_b0085 article-title: Optimization of internal bypass ratio for complete ammonium and phosphate removal in a dephanox-type two-sludge denitrification system publication-title: J. Environ. Eng. -ASCE doi: 10.1061/(ASCE)0733-9372(2008)134:7(536) – volume: 46 start-page: 3868 year: 2012 ident: 10.1016/j.cej.2013.11.069_b0150 article-title: Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source publication-title: Water Res. doi: 10.1016/j.watres.2012.04.036 – volume: 100 start-page: 1048 year: 2009 ident: 10.1016/j.cej.2013.11.069_b0020 article-title: Enhanced biological nutrient removal using MUCT–MBR system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.07.045 – volume: 36 start-page: 4927 year: 2002 ident: 10.1016/j.cej.2013.11.069_b0100 article-title: Anoxic growth of phosphate-accumulating organisms (PAOs) in biological nutrient removal activated sludge systems publication-title: Water Res. doi: 10.1016/S0043-1354(02)00186-0 – volume: 175 start-page: 124 year: 2011 ident: 10.1016/j.cej.2013.11.069_b0090 article-title: Upgrading the efficiency of an external nitrification BNR system – the modified Dephanox process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.09.080 – volume: 60 start-page: 2695 year: 2009 ident: 10.1016/j.cej.2013.11.069_b0045 article-title: Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions publication-title: Water Sci. Technol. doi: 10.2166/wst.2009.703 – volume: 49 start-page: 370 year: 2010 ident: 10.1016/j.cej.2013.11.069_b0130 article-title: Tracking composition and dynamics of nitrification and denitrification microbial community in a biofilm reactor by PCR–DGGE and combining FISH with flow cytometry publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2010.01.013 – volume: 35 start-page: 371 year: 2012 ident: 10.1016/j.cej.2013.11.069_b0075 article-title: Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic–anoxic activated sludge system publication-title: Bioproc. Biosyst. Eng. doi: 10.1007/s00449-011-0575-2 – volume: 23 start-page: 452 year: 2012 ident: 10.1016/j.cej.2013.11.069_b0060 article-title: Microbial communities involved in enhanced biological phosphorus removal from wastewater – a model system in environmental biotechnology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.11.027 – volume: 71 start-page: 1140 year: 1999 ident: 10.1016/j.cej.2013.11.069_b0055 article-title: Evaluation of the capacity of phosphorus-accumulating organisms to use nitrate and oxygen as final electron acceptors: a theoretical study on population dynamics publication-title: Water Environ. Res. doi: 10.2175/106143097X122103 – volume: 136 start-page: 1248 year: 2010 ident: 10.1016/j.cej.2013.11.069_b0025 article-title: Effect of carbon source on biological nitrogen and phosphorus removal in an anaerobic–anoxic–oxic, (A(2)O) process publication-title: J. Environ. Eng. -ASCE doi: 10.1061/(ASCE)EE.1943-7870.0000262 – ident: 10.1016/j.cej.2013.11.069_b0120 – volume: 68 start-page: 496 year: 2000 ident: 10.1016/j.cej.2013.11.069_b0155 article-title: Stoichiometry and kinetics of poly-beta-hydroxybutyrate metabolism under denitrifying conditions in activated sludge cultures publication-title: Biotechnol. Bioeng. doi: 10.1002/(SICI)1097-0290(20000605)68:5<496::AID-BIT3>3.0.CO;2-S – volume: 30 start-page: 227 year: 2013 ident: 10.1016/j.cej.2013.11.069_b0170 article-title: Comparison between aerobic and anoxic metabolism of denitrifying-EBPR sludge: effect of biomass poly-hydroxyalkanoates content publication-title: New Biotechnol. doi: 10.1016/j.nbt.2012.05.022 – volume: 18 start-page: 433 year: 2006 ident: 10.1016/j.cej.2013.11.069_b0105 article-title: Operation of three parallel AN/AO processes to enrich denitrifying phosphorus removing bacteria for low strength wastewater treatment publication-title: J. Environ. Sci. -China – volume: 79 start-page: 83 year: 2002 ident: 10.1016/j.cej.2013.11.069_b0035 article-title: Transformation of phosphorus and relevant intracellular compounds by a phosphorus-accumulating enrichment culture in the presence of both the electron acceptor and electron donor publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10292 – volume: 84 start-page: 475 year: 2012 ident: 10.1016/j.cej.2013.11.069_b0065 article-title: Molecular characterization of denitrifying bacteria isolated from the anoxic reactor of a modified DEPHANOX plant performing enhanced biological phosphorus removal publication-title: Water Environ. Res. doi: 10.2175/106143012X13280358613543 – volume: 84 start-page: 354 year: 2012 ident: 10.1016/j.cej.2013.11.069_b0050 article-title: Process performance and polyphosphate-accumulating organism-glycogen-accumulating organism communities in an anaerobic/anoxic/oxic system operated with different carbon sources publication-title: Water Environ. Res. doi: 10.2175/106143011X13233670703378 – volume: 38 start-page: 158 year: 2008 ident: 10.1016/j.cej.2013.11.069_b0080 article-title: An efficient DPB utilization process: the modified A(2)N process publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2007.06.016 – volume: 38 start-page: 339 year: 2003 ident: 10.1016/j.cej.2013.11.069_b0010 article-title: Denitrifying characteristics of the multiple stages enhanced biological nutrient removal process with external carbon sources publication-title: J. Environ. Sci. Heal. A doi: 10.1081/ESE-120016898 – volume: 12 start-page: 9 year: 2008 ident: 10.1016/j.cej.2013.11.069_b0015 article-title: Design implications on denitrifying PAO in BNR plant publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-008-8009-7 – ident: 10.1016/j.cej.2013.11.069_b0115 – volume: 59 start-page: 857 year: 2009 ident: 10.1016/j.cej.2013.11.069_b0140 article-title: Enhanced biological phosphorus removal in the retrofitting from an anoxic selector to an anaerobic selector in a full-scale activated sludge process in Singapore publication-title: Water Sci. Technol. doi: 10.2166/wst.2009.025 – volume: 81 start-page: 1391 year: 2006 ident: 10.1016/j.cej.2013.11.069_b0135 article-title: Optimisation of anaerobic/anoxic/oxic process to improve performance and reduce operating costs publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1573 – volume: 89 start-page: 656 year: 2005 ident: 10.1016/j.cej.2013.11.069_b0125 article-title: Biodiversity analysis of microbial community in the chem-bioflocculation treatment process publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20339 – volume: 71 start-page: 8683 year: 2005 ident: 10.1016/j.cej.2013.11.069_b0145 article-title: Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization–microautoradiography publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.12.8683-8691.2005 – volume: 53 start-page: 191 year: 2006 ident: 10.1016/j.cej.2013.11.069_b0095 article-title: Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS (R)) publication-title: Water Sci. Technol. doi: 10.2166/wst.2006.092 – volume: 61 start-page: 1793 year: 2010 ident: 10.1016/j.cej.2013.11.069_b0165 article-title: Uncertainty and variability in enhanced biological phosphorus removal (EBPR) stoichiometry: consequences for process modelling and optimization publication-title: Water Sci. Technol. doi: 10.2166/wst.2010.975 |
SSID | ssj0006919 |
Score | 2.2081902 |
Snippet | •A novel tow configuration (process) was proposed to enrich DPB treating low strength real wastewater.•Configurational profiles of model intracellular... Role of configurations on enriching denitrifying phosphorus removing bacteria (DPB) by biological nutrient removal processes was discussed. Effects of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 404 |
SubjectTerms | Bacteria Biochemistry Biological nutrient removal (BNR) Bioreactor Chemical engineering Configuration Denitrifying phosphorus removing bacteria (DPB) Glycogens Nutrients Operational mode Phosphorus removal Pollutants Strategy |
Title | Enhancing denitrification phosphorus removal with a novel nutrient removal process: Role of configuration |
URI | https://dx.doi.org/10.1016/j.cej.2013.11.069 https://www.proquest.com/docview/1524411584 https://www.proquest.com/docview/1701001378 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwZNQt22SdutNRFld9OADvYUkO9XK2i778Ohvd6YPX8gePJTSdkLLZPLNpPNi7CCKLSSpVR7qOuVJCJRnqL8JCJW40CaqXbZ7u7qOOvfy8lE9zrDTJheGwipr7K8wvUTr-k6r5mZrkGWt24B8WgmCqyA7IKJEcyljkvKj968wjygpm3sQsUfUjWezjPFy8ELRXeKICnlSzPPfuukXSpeq53yJLdY2Iz-pPmuZzUC-wha-VRJcZdlZ_kyVM_InjkCSjYcUAVQynQ-eixEew8mID-G1QMni9POVG54Xb9DnOdXjR9Xz-XRQ5Q4c85uiD7xIOW6Z0-xpUsnKGrs_P7s77Xh1FwXP4foce6FsCxtBbKMI0lQq53rGBFTpredM2LMChJ-GpLYTg_AFgQFjKYPW91PTi0OxzmbzIocNxq30HXnyZJBSAiruw4UCJ40RoTAgYJP5Df-0q0uMU6eLvm5iyV40slwTy3HroZHlm-zwc8igqq8xjVg2k6J_CIlG_J82bL-ZQI2LhzwiJodiMtJovKA5GKARNoUm9oOy-mp763-v32bzeCUpcC1QO2x2PJzALloyY7tXiuoemzu56Hau6dy9eeh-AB339X8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UB7QPQlKJS6Uk-Vwiaxnd1wQwi0FNhDAYmbZXsnS9CSrPbR39-ZPFYFoT30kEtiK9F4_M04M_MNwI-k5zDNnA7I1ulAYaQDy_1NUOrUxy7V_ard2_UwGdypX_f6fgNO21oYTqtssL_G9AqtmzvdRprdaZ53byKOaaUErpL9gES_gU1mp9Id2Dy5uBwMV4CcpFV_Dx4f8IQ2uFmleXl85AQvecRcnpz2_Lp5egHUlfU534Htxm0UJ_WXvYcNLD7Au3_IBD9CflY8MHlGMRaEJflixklAldzF9KGc0zVbzsUMn0pSLsH_X4UVRfkHJ6JgSn6yPqun07p84Fj8LicoykzQqTnLx8taXT7B3fnZ7ekgaBopBJ626CKIVV-6BHsuSTDLlPZ-ZG3EZG8jb-ORkyjDLGbLnVpCMIwsWsdFtGGY2VEvlp-hU5QF7oJwKvQczFNRxjWodBSXGr2yVsbSosQ9CFv5Gd-wjHOzi4lp08keDYncsMjp9GFI5HvwczVlWlNsrBus2kUxz_TEkAlYN-17u4CG9g8HRWyB5XJuyH8hjzAiP2zNmF4YVQSs_S__9_pvsDW4vb4yVxfDy314S08U57FF-gA6i9kSv5Jjs3CHjeL-BdET9o0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+denitrification+phosphorus+removal+with+a+novel+nutrient+removal+process%3A+Role+of+configuration&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Hongbo&rft.au=Zhu%2C+Mengling&rft.au=Gao%2C+Saisai&rft.au=Xia%2C+Siqing&rft.date=2014-03-15&rft.issn=1385-8947&rft.volume=240&rft.spage=404&rft.epage=412&rft_id=info:doi/10.1016%2Fj.cej.2013.11.069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2013_11_069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |