UV-Vis Spectroscopy, Electrochemical and DFT Study of Tris(β-diketonato)iron(III) Complexes with Application in DSSC: Role of Aromatic Thienyl Groups

A series of tris(β-diketonato)iron(III) complexes, with the β-diketonato ligand bearing different substituent groups, have been synthesized and characterized by Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) and mass spectroscopic methods. The maximum band UV-Vis absorption wavelen...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 12; p. 3743
Main Author Conradie, Marrigje M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 10.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A series of tris(β-diketonato)iron(III) complexes, with the β-diketonato ligand bearing different substituent groups, have been synthesized and characterized by Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) and mass spectroscopic methods. The maximum band UV-Vis absorption wavelengths of the tris(β-diketonato)iron(III) complexes were in the range of 270–380 nm. The complexes have very good solubility in various solvents such as chloroform, dichloromethane, ethyl acetate, tetrahydrofurane, dimethylsulphoxide and dimethylformamide. After the syntheses and characterization processes, spectroscopic and electrochemical properties of these tris(β-diketonato)iron(III) complexes were investigated. A density functional theory (DFT) study related to the spectroscopic and electrochemical properties of the tris(β-diketonato)iron(III) complexes was used to investigate the possible application of these complexes as dye sensitizers or redox mediators in dye-sensitized solar cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27123743