Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide

Terahertz (THz)-bandwidth continuous-wave (CW) squeezed light is essential for integrating quantum processors with time-domain multiplexing (TDM) by using optical delay line interferometers. Here, we utilize a single-pass optical parametric amplifier (OPA) based on a single-spatial-mode periodically...

Full description

Saved in:
Bibliographic Details
Published inAPL photonics Vol. 5; no. 3; pp. 036104 - 036104-7
Main Authors Kashiwazaki, Takahiro, Takanashi, Naoto, Yamashima, Taichi, Kazama, Takushi, Enbutsu, Koji, Kasahara, Ryoichi, Umeki, Takeshi, Furusawa, Akira
Format Journal Article
LanguageEnglish
Published AIP Publishing LLC 01.03.2020
Online AccessGet full text
ISSN2378-0967
2378-0967
DOI10.1063/1.5142437

Cover

Abstract Terahertz (THz)-bandwidth continuous-wave (CW) squeezed light is essential for integrating quantum processors with time-domain multiplexing (TDM) by using optical delay line interferometers. Here, we utilize a single-pass optical parametric amplifier (OPA) based on a single-spatial-mode periodically poled ZnO:LiNbO3 waveguide, which is directly bonded onto a LiTaO3 substrate. The single-pass OPA allows THz bandwidth, and the absence of higher-order spatial modes in the single-spatial-mode structure helps avoid degradation of squeezing. In addition, the directly bonded ZnO-doped waveguide has durability for high-power pump and shows small photorefractive damage. Using this waveguide, we observe CW 6.3-dB squeezing at 20-MHz sideband by balanced homodyne detection. This is the first realization of CW squeezing with a single-pass OPA at a level exceeding 4.5 dB, which is required for the generation of a two-dimensional cluster state. Furthermore, the squeezed light shows 2.5-THz spectral bandwidth. The squeezed light will lead to the development of a high-speed on-chip quantum processor using TDM with a centimeter-order optical delay line.
AbstractList Terahertz (THz)-bandwidth continuous-wave (CW) squeezed light is essential for integrating quantum processors with time-domain multiplexing (TDM) by using optical delay line interferometers. Here, we utilize a single-pass optical parametric amplifier (OPA) based on a single-spatial-mode periodically poled ZnO:LiNbO3 waveguide, which is directly bonded onto a LiTaO3 substrate. The single-pass OPA allows THz bandwidth, and the absence of higher-order spatial modes in the single-spatial-mode structure helps avoid degradation of squeezing. In addition, the directly bonded ZnO-doped waveguide has durability for high-power pump and shows small photorefractive damage. Using this waveguide, we observe CW 6.3-dB squeezing at 20-MHz sideband by balanced homodyne detection. This is the first realization of CW squeezing with a single-pass OPA at a level exceeding 4.5 dB, which is required for the generation of a two-dimensional cluster state. Furthermore, the squeezed light shows 2.5-THz spectral bandwidth. The squeezed light will lead to the development of a high-speed on-chip quantum processor using TDM with a centimeter-order optical delay line.
Terahertz (THz)-bandwidth continuous-wave (CW) squeezed light is essential for integrating quantum processors with time-domain multiplexing (TDM) by using optical delay line interferometers. Here, we utilize a single-pass optical parametric amplifier (OPA) based on a single-spatial-mode periodically poled ZnO:LiNbO3 waveguide, which is directly bonded onto a LiTaO3 substrate. The single-pass OPA allows THz bandwidth, and the absence of higher-order spatial modes in the single-spatial-mode structure helps avoid degradation of squeezing. In addition, the directly bonded ZnO-doped waveguide has durability for high-power pump and shows small photorefractive damage. Using this waveguide, we observe CW 6.3-dB squeezing at 20-MHz sideband by balanced homodyne detection. This is the first realization of CW squeezing with a single-pass OPA at a level exceeding 4.5 dB, which is required for the generation of a two-dimensional cluster state. Furthermore, the squeezed light shows 2.5-THz spectral bandwidth. The squeezed light will lead to the development of a high-speed on-chip quantum processor using TDM with a centimeter-order optical delay line.
Author Enbutsu, Koji
Yamashima, Taichi
Kazama, Takushi
Takanashi, Naoto
Umeki, Takeshi
Furusawa, Akira
Kasahara, Ryoichi
Kashiwazaki, Takahiro
Author_xml – sequence: 1
  givenname: Takahiro
  surname: Kashiwazaki
  fullname: Kashiwazaki, Takahiro
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 2
  givenname: Naoto
  surname: Takanashi
  fullname: Takanashi, Naoto
  organization: Department of Applied Physics, School of Engineering, The University of Tokyo
– sequence: 3
  givenname: Taichi
  surname: Yamashima
  fullname: Yamashima, Taichi
  organization: Department of Applied Physics, School of Engineering, The University of Tokyo
– sequence: 4
  givenname: Takushi
  surname: Kazama
  fullname: Kazama, Takushi
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 5
  givenname: Koji
  surname: Enbutsu
  fullname: Enbutsu, Koji
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 6
  givenname: Ryoichi
  surname: Kasahara
  fullname: Kasahara, Ryoichi
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 7
  givenname: Takeshi
  surname: Umeki
  fullname: Umeki, Takeshi
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 8
  givenname: Akira
  surname: Furusawa
  fullname: Furusawa, Akira
  email: akiraf@ap.t.u-tokyo.ac.jp
  organization: Department of Applied Physics, School of Engineering, The University of Tokyo
BookMark eNqdkM1OwzAQhC0EEr8H3iBXkFy8ceIkR6iAIlXAoSculmOvi1EaFzttRZ-elIJAiBOnXY1mvl3NIdltfYuEnAIbABP8AgY5ZGnGix1ykPKipKwSxe6PfZ-cxPjCGANRQJXlB-Rp6NvOtQu_iHSllpgIaq5ofF0grtEkjZs-d8nKdc9JOsjpZLSmtWrNyplescHPkujaaYN05g0mj4_j-2RDmS6cwWOyZ1UT8eRzHpHJzfVkOKLjh9u74eWY6oyxjkKVV4A5FJUVjFtTl6WAwkDBUHEoy1SkBrQQIHSVixoRta5UBpZDbQTwI3K3xRqvXuQ8uJkKb9IrJz8EH6ZShc7pBmWFhdW25toAz_KUqZybvgajWI2qP9-zLrYsHXyMAa3UrlOd6zsKyjUSmNwULUF-Ft0nzn4lvj74y3u-9cYv6v_MSx--jXJuLH8H43WaAg
CODEN APPHD2
CitedBy_id crossref_primary_10_1364_OPTICA_439827
crossref_primary_10_1016_j_optcom_2022_129192
crossref_primary_10_1088_1367_2630_abf702
crossref_primary_10_1002_pssb_202400161
crossref_primary_10_1103_PhysRevA_106_042414
crossref_primary_10_1038_s41467_021_25054_z
crossref_primary_10_1103_PhysRevLett_132_140802
crossref_primary_10_1038_s41566_020_00715_5
crossref_primary_10_1109_JSTQE_2024_3492261
crossref_primary_10_1103_PhysRevApplied_18_014060
crossref_primary_10_1364_OE_498423
crossref_primary_10_1364_OE_534446
crossref_primary_10_1364_OPTICA_442550
crossref_primary_10_1364_OL_486654
crossref_primary_10_1364_OL_433440
crossref_primary_10_1103_PhysRevResearch_3_013068
crossref_primary_10_1364_OE_454123
crossref_primary_10_1021_acsphotonics_4c02447
crossref_primary_10_1126_science_abj4396
crossref_primary_10_1063_5_0144385
crossref_primary_10_1364_OL_493217
crossref_primary_10_1103_PhysRevA_110_063725
crossref_primary_10_1038_s41467_024_53408_w
crossref_primary_10_1038_s41565_023_01525_w
crossref_primary_10_1364_OL_447695
crossref_primary_10_1103_PhysRevApplied_14_044025
crossref_primary_10_1038_s41598_024_84560_4
crossref_primary_10_1063_5_0241224
crossref_primary_10_1063_5_0156331
crossref_primary_10_1364_OE_405832
crossref_primary_10_1063_5_0063118
crossref_primary_10_1364_OL_446645
crossref_primary_10_1038_s41534_024_00814_z
crossref_primary_10_1103_PhysRevLett_124_240503
crossref_primary_10_1364_JOSAB_502389
crossref_primary_10_1038_s41586_024_07071_2
crossref_primary_10_1364_JOSAB_495520
crossref_primary_10_1109_JQE_2020_2982698
crossref_primary_10_1364_OE_452299
crossref_primary_10_1103_PRXQuantum_3_020358
crossref_primary_10_1088_1367_2630_ac2f8f
crossref_primary_10_1103_PhysRevA_103_063519
crossref_primary_10_1103_PhysRevA_108_023716
crossref_primary_10_1364_OE_493208
crossref_primary_10_1103_PhysRevA_102_043706
crossref_primary_10_53829_ntr202208fa6
crossref_primary_10_1364_OE_512280
crossref_primary_10_1080_00150193_2021_1916351
crossref_primary_10_1364_OE_550832
crossref_primary_10_1364_OPTICA_514075
crossref_primary_10_1103_PhysRevApplied_18_064027
crossref_primary_10_1088_1361_6455_ac489c
crossref_primary_10_1103_PhysRevLett_128_083604
crossref_primary_10_1117_1_APN_1_1_016002
crossref_primary_10_1103_PhysRevA_103_013710
crossref_primary_10_1109_JLT_2024_3476419
crossref_primary_10_1116_5_0020684
crossref_primary_10_35848_1347_4065_acf823
crossref_primary_10_1364_OPTICAQ_540881
crossref_primary_10_1364_OPTICA_481385
crossref_primary_10_1038_s41598_023_38086_w
crossref_primary_10_1103_PRXQuantum_2_030325
crossref_primary_10_1364_AOP_495768
crossref_primary_10_1364_AOP_497143
crossref_primary_10_1103_PhysRevA_105_023721
crossref_primary_10_53829_ntr202111ra1
crossref_primary_10_1364_OE_399841
crossref_primary_10_1063_5_0203988
crossref_primary_10_1109_JPHOT_2024_3358343
crossref_primary_10_1038_s41467_023_39195_w
crossref_primary_10_1038_s41567_021_01296_y
crossref_primary_10_35848_1347_4065_abf49e
crossref_primary_10_1364_OE_435281
crossref_primary_10_1038_s41467_023_38246_6
crossref_primary_10_1088_2515_7647_ac80e2
crossref_primary_10_1103_PhysRevLett_126_210507
crossref_primary_10_1103_PhysRevLett_132_160803
crossref_primary_10_1364_OE_476025
crossref_primary_10_1103_PhysRevA_107_052414
crossref_primary_10_1088_2515_7647_ac1ef4
crossref_primary_10_1063_5_0029619
crossref_primary_10_1088_2515_7647_ac1729
crossref_primary_10_1103_PhysRevApplied_16_034005
crossref_primary_10_1364_OE_410317
crossref_primary_10_1103_PhysRevApplied_21_L031002
crossref_primary_10_1126_sciadv_abi8150
crossref_primary_10_1364_OE_520041
crossref_primary_10_1038_s41566_024_01589_7
crossref_primary_10_1016_j_ijleo_2024_172137
Cites_doi 10.1364/ol.32.001698
10.1063/1.332883
10.1364/optica.5.001438
10.1103/physrevlett.73.1605
10.1063/1.5100160
10.1038/s41586-018-0551-y
10.1364/oe.15.004321
10.1038/srep04535
10.1126/science.aay2645
10.1038/nphoton.2015.42
10.1364/ol.17.000529
10.1103/physrevlett.59.2566
10.1364/ol.20.001649
10.1063/1.2437057
10.1109/jqe.2010.2045475
10.1364/ol.16.001189
10.1109/68.748224
10.1038/nature12366
10.1088/0031-8949/91/5/053001
10.1103/physreva.44.2013
10.1016/j.optmat.2015.12.040
10.1103/physrevlett.117.110801
10.1364/oe.27.018900
10.1103/physrevlett.119.120504
10.1038/nphoton.2013.287
10.1364/ol.20.000620
10.1103/physreva.61.010302
10.1126/science.1155441
10.1117/12.7972267
10.1063/1.1374228
10.1038/s41467-018-03083-5
10.1364/oe.21.013572
10.1364/ol.34.000256
10.1063/1.4962732
10.1364/ol.41.001905
10.1109/jlt.1985.1074142
10.1364/optica.3.000362
10.1103/physreva.52.4202
10.1364/ol.23.001004
10.1103/physrevlett.55.2409
10.1063/1.2335806
10.1364/prj.7.000a36
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AJDQP
AAYXX
CITATION
DOA
DOI 10.1063/1.5142437
DatabaseName AIP Open Access Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2378-0967
EndPage 036104-7
ExternalDocumentID oai_doaj_org_article_9e7fcfb3cd134520a53d194da0bea9f6
10_1063_1_5142437
app
GrantInformation_xml – fundername: Core Research for Evolutional Science and Technology
  grantid: JPMJCR15N5
– fundername: APLS of Ministry of Education, Culture, Science and Technology
– fundername: The University of Tokyo Foundation
– fundername: KAKENHI of Japan Society for the Promotion of Science
  grantid: 18H05297
GroupedDBID 5VS
AAYEQ
ADBBV
ADCTM
AGKCL
AGLKD
AHSDT
AJDQP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
BCNDV
EBS
FRJ
GROUPED_DOAJ
KQ8
M~E
OK1
RIP
RQS
AAYXX
ABJGX
ADMLS
AKSGC
CITATION
ID FETCH-LOGICAL-c400t-19591e5179f603fdb88617d170ea3188262d1c6616c956beeecc9a41f31bd613
IEDL.DBID DOA
ISSN 2378-0967
IngestDate Wed Aug 27 01:25:15 EDT 2025
Thu Jul 03 08:26:52 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Fri Jun 21 00:14:08 EDT 2024
Wed Nov 11 00:05:19 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2378-0967/2020/5(3)/036104/7/$0.00
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-19591e5179f603fdb88617d170ea3188262d1c6616c956beeecc9a41f31bd613
ORCID 0000-0002-6176-6742
0000-0002-1979-8724
0000-0002-4601-047X
0000-0002-5132-0165
OpenAccessLink https://doaj.org/article/9e7fcfb3cd134520a53d194da0bea9f6
PageCount 7
ParticipantIDs crossref_citationtrail_10_1063_1_5142437
doaj_primary_oai_doaj_org_article_9e7fcfb3cd134520a53d194da0bea9f6
crossref_primary_10_1063_1_5142437
scitation_primary_10_1063_1_5142437
PublicationCentury 2000
PublicationDate 20200301
2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 20200301
  day: 01
PublicationDecade 2020
PublicationTitle APL photonics
PublicationYear 2020
Publisher AIP Publishing LLC
Publisher_xml – name: AIP Publishing LLC
References Takeda, Furusawa (c1) 2019; 4
Aytür, Kumar (c18) 1992; 17
Suzuki, Yonezawa, Kannari, Sasaki, Furusawa (c12) 2006; 89
Ulliac, Calero, Ndao, Baida, Bernal (c34) 2016; 53
Ast, Mehmet, Schnabel (c15) 2013; 21
Takeda, Mizuta, Fuwa, van Loock, Furusawa (c2) 2013; 500
Vahlbruch, Mehmet, Danzmann, Schnabel (c14) 2016; 117
Werner, Raymer, Beck, Drummond (c19) 1995; 52
Yoshino, Aoki, Furusawa (c24) 2007; 90
Shaked, Michael, Vered, Bello, Rosenbluh, Pe’er (c43) 2018; 9
Yokoyama, Ukai, Armstrong, Sornphiphatphong, Kaji, Suzuki, Yoshikawa, Yonezawa, Menicucci, Furusawa (c3) 2013; 7
Yoshikawa, Yokoyama, Kaji, Sornphiphatphong, Shiozawa, Makino, Furusawa (c5) 2016; 1
Asobe, Tadanaga, Yanagawa, Itoh, Suzuki (c33) 2001; 78
Anderson, Bierlein, Beck, Raymer (c26) 1995; 20
Takeno, Yukawa, Yonezawa, Furusawa (c13) 2007; 15
Slusher, Grangier, Laporta, Yurke, Potasek (c17) 1987; 59
van Loock, Braunstein (c9) 1999; 61
Serkland, Fejer, Byer, Yamamoto (c23) 1995; 20
Pysher, Bloomer, Kaleva, Roberts, Battle, Pfister (c25) 2009; 34
Wang, Zhang, Chen, Bertrand, Shams-Ansari, Chandrasekhar, Winzer, Lončar (c42) 2018; 562
Takanashi, Inokuchi, Serikawa, Furusawa (c32) 2019; 27
Glass (c29) 1978; 17
Mondain, Lunghi, Zavatta, Gouzien, Doutre, De Micheli, Tanzilli, D’Auria (c28) 2019; 7
Kaiser, Fedrici, Zavatta, D’AUria, Tanzilli (c41) 2016; 3
Kanbara, Itoh, Asobe, Noguchi, Miyazawa, Yanagawa, Yokohama (c37) 1999; 11
Takeda, Furusawa (c4) 2017; 119
La Porta, Slusher (c22) 1991; 44
Raymer, Drummond, Carter (c20) 1991; 16
Jackel, Glass, Peterson, Rice, Olson, Veselka (c30) 1984; 55
Politi, Cryan, Rarity, Yu, O’Brien (c7) 2008; 320
Asavanant, Shiozawa, Yokoyama, Charoensombutamon, Emura, Alexander, Takeda, Yoshikawa, Menicucci, Yonezawa, Furusawa (c6) 2019; 366
Slusher, Hollberg, Yurke, Mertz, Valley (c10) 1985; 55
Eto, Tajima, Zhang, Hirano (c27) 2007; 32
Umeki, Tadanaga, Asobe (c35) 2010; 46
Wang, Langrock, Marandi, Jankowski, Zhang, Desiatov, Fejer, Lončar (c40) 2018; 5
Chou, Hauden, Arbore, Fejer (c39) 1998; 23
Masada, Miyata, Politi, Hashimoto, O’Brien, Furusawa (c8) 2015; 9
Andersen, Gehring, Marquardt, Leuchs (c11) 2016; 91
Kim, Kumar (c21) 1994; 73
Wakui, Eto, Benichi, Izumi, Yanagida, Ema, Numata, Fukuda, Takeoka, Sasaki (c16) 2014; 4
Kishimoto, Inafune, Ogawa, Sasaki, Murai (c36) 2016; 41
Singh, De La Rue (c38) 1985; 3
(2024031517063469500_c3) 2013; 7
(2024031517063469500_c37) 1999; 11
(2024031517063469500_c29) 1978; 17
(2024031517063469500_c16) 2014; 4
(2024031517063469500_c26) 1995; 20
(2024031517063469500_c5) 2016; 1
(2024031517063469500_c1) 2019; 4
(2024031517063469500_c19) 1995; 52
(2024031517063469500_c31) 2019
(2024031517063469500_c38) 1985; 3
(2024031517063469500_c25) 2009; 34
(2024031517063469500_c34) 2016; 53
(2024031517063469500_c40) 2018; 5
(2024031517063469500_c33) 2001; 78
(2024031517063469500_c6) 2019; 366
(2024031517063469500_c43) 2018; 9
(2024031517063469500_c14) 2016; 117
(2024031517063469500_c15) 2013; 21
(2024031517063469500_c22) 1991; 44
(2024031517063469500_c13) 2007; 15
(2024031517063469500_c30) 1984; 55
(2024031517063469500_c36) 2016; 41
(2024031517063469500_c24) 2007; 90
(2024031517063469500_c21) 1994; 73
(2024031517063469500_c39) 1998; 23
(2024031517063469500_c8) 2015; 9
(2024031517063469500_c18) 1992; 17
(2024031517063469500_c42) 2018; 562
(2024031517063469500_c10) 1985; 55
(2024031517063469500_c35) 2010; 46
(2024031517063469500_c11) 2016; 91
(2024031517063469500_c2) 2013; 500
(2024031517063469500_c32) 2019; 27
(2024031517063469500_c41) 2016; 3
(2024031517063469500_c12) 2006; 89
(2024031517063469500_c7) 2008; 320
(2024031517063469500_c17) 1987; 59
(2024031517063469500_c20) 1991; 16
(2024031517063469500_c28) 2019; 7
(2024031517063469500_c9) 1999; 61
(2024031517063469500_c27) 2007; 32
(2024031517063469500_c4) 2017; 119
(2024031517063469500_c23) 1995; 20
References_xml – volume: 119
  start-page: 120504
  year: 2017
  ident: c4
  article-title: Universal quantum computing with measurement-induced continuous-variable gate sequence in a loop-based architecture
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 2566
  year: 1987
  ident: c17
  article-title: Pulsed squeezed light
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 269
  year: 1984
  ident: c30
  article-title: Damage-resistant LiNbO waveguides
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 328
  year: 1999
  ident: c37
  article-title: All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide
  publication-title: IEEE Photonics Technol. Lett.
– volume: 55
  start-page: 2409
  year: 1985
  ident: c10
  article-title: Observation of squeezed states generated by four-wave mixing in an optical cavity
  publication-title: Phys. Rev. Lett.
– volume: 90
  start-page: 041111
  year: 2007
  ident: c24
  article-title: Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 061116
  year: 2006
  ident: c12
  article-title: 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 175470
  year: 1978
  ident: c29
  article-title: The photorefractive effect
  publication-title: Opt. Eng.
– volume: 320
  start-page: 646
  year: 2008
  ident: c7
  article-title: Silica-on-silicon waveguide quantum circuits
  publication-title: Science
– volume: 46
  start-page: 1206
  year: 2010
  ident: c35
  article-title: Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide
  publication-title: IEEE J. Quantum Electron.
– volume: 117
  start-page: 110801
  year: 2016
  ident: c14
  article-title: Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency
  publication-title: Phys. Rev. Lett.
– volume: 73
  start-page: 1605
  year: 1994
  ident: c21
  article-title: Quadrature-squeezed light detection using a self-generated matched local oscillator
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 2013
  year: 1991
  ident: c22
  article-title: Squeezing limits at high parametric gains
  publication-title: Phys. Rev. A
– volume: 7
  start-page: A36
  year: 2019
  ident: c28
  article-title: Chip-based squeezing at a telecom wavelength
  publication-title: Photonics Res.
– volume: 7
  start-page: 982
  year: 2013
  ident: c3
  article-title: Ultra-large-scale continuous-variable cluster states multiplexed in the time domain
  publication-title: Nat. Photonics
– volume: 61
  start-page: 010302
  year: 1999
  ident: c9
  article-title: Unconditional teleportation of continuous-variable entanglement
  publication-title: Phys. Rev. A
– volume: 21
  start-page: 13572
  year: 2013
  ident: c15
  article-title: High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity
  publication-title: Opt. Express
– volume: 16
  start-page: 1189
  year: 1991
  ident: c20
  article-title: Limits to wideband pulsed squeezing in a traveling-wave parametric amplifier with group-velocity dispersion
  publication-title: Opt. Lett.
– volume: 34
  start-page: 256
  year: 2009
  ident: c25
  article-title: Broadband amplitude squeezing in a periodically poled KTiOPO waveguide
  publication-title: Opt. Lett.
– volume: 9
  start-page: 609
  year: 2018
  ident: c43
  article-title: Lifting the bandwidth limit of optical homodyne measurement with broadband parametric amplification
  publication-title: Nat. Commun.
– volume: 9
  start-page: 316
  year: 2015
  ident: c8
  article-title: Continuous-variable entanglement on a chip
  publication-title: Nat. Photonics
– volume: 4
  start-page: 4535
  year: 2014
  ident: c16
  article-title: Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength
  publication-title: Sci. Rep.
– volume: 1
  start-page: 060801
  year: 2016
  ident: c5
  article-title: Invited article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing
  publication-title: APL Photonics
– volume: 366
  start-page: 373
  year: 2019
  ident: c6
  article-title: Generation of time-domain-multiplexed two-dimensional cluster state
  publication-title: Science
– volume: 27
  start-page: 18900
  year: 2019
  ident: c32
  article-title: Generation and measurement of a squeezed vacuum up to 100 MHz at 1550 nm with a semi-monolithic optical parametric oscillator designed towards direct coupling with waveguide modules
  publication-title: Opt. Express
– volume: 20
  start-page: 620
  year: 1995
  ident: c26
  article-title: Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides
  publication-title: Opt. Lett.
– volume: 4
  start-page: 060902
  year: 2019
  ident: c1
  article-title: Toward large-scale fault-tolerant universal photonic quantum computing
  publication-title: APL Photonics
– volume: 500
  start-page: 315
  year: 2013
  ident: c2
  article-title: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique
  publication-title: Nature
– volume: 15
  start-page: 4321
  year: 2007
  ident: c13
  article-title: Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement
  publication-title: Opt. Express
– volume: 53
  start-page: 1
  year: 2016
  ident: c34
  article-title: Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application
  publication-title: Opt. Mater.
– volume: 20
  start-page: 1649
  year: 1995
  ident: c23
  article-title: Squeezing in a quasi-phase-matched LiNbO waveguide
  publication-title: Opt. Lett.
– volume: 52
  start-page: 4202
  year: 1995
  ident: c19
  article-title: Ultrashort pulsed squeezing by optical parametric amplification
  publication-title: Phys. Rev. A
– volume: 32
  start-page: 1698
  year: 2007
  ident: c27
  article-title: Observation of squeezed light at 1.535 μm using a pulsed homodyne detector
  publication-title: Opt. Lett.
– volume: 17
  start-page: 529
  year: 1992
  ident: c18
  article-title: Squeezed-light generation with a mode-locked Q-switched laser and detection by using a matched local oscillator
  publication-title: Opt. Lett.
– volume: 78
  start-page: 3163
  year: 2001
  ident: c33
  article-title: Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO wavelength converters
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 67
  year: 1985
  ident: c38
  article-title: An experimental study of in-plane light scattering in titanium diffused Y-cut LiNbO optical waveguides
  publication-title: J. Lightwave Technol.
– volume: 5
  start-page: 1438
  year: 2018
  ident: c40
  article-title: Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides
  publication-title: Optica
– volume: 91
  start-page: 053001
  year: 2016
  ident: c11
  article-title: 30 years of squeezed light generation
  publication-title: Phys. Scr.
– volume: 23
  start-page: 1004
  year: 1998
  ident: c39
  article-title: 1.5- m-band wavelength conversion based on difference-frequency generation in LiNbO waveguides with integrated coupling structures
  publication-title: Opt. Lett.
– volume: 41
  start-page: 1905
  year: 2016
  ident: c36
  article-title: Highly efficient phase-sensitive parametric gain in periodically poled LiNbO ridge waveguide
  publication-title: Opt. Lett.
– volume: 3
  start-page: 362
  year: 2016
  ident: c41
  article-title: A fully guided-wave squeezing experiment for fiber quantum networks
  publication-title: Optica
– volume: 562
  start-page: 101
  year: 2018
  ident: c42
  article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages
  publication-title: Nature
– volume: 32
  start-page: 1698
  year: 2007
  ident: 2024031517063469500_c27
  article-title: Observation of squeezed light at 1.535 μm using a pulsed homodyne detector
  publication-title: Opt. Lett.
  doi: 10.1364/ol.32.001698
– volume: 55
  start-page: 269
  year: 1984
  ident: 2024031517063469500_c30
  article-title: Damage-resistant LiNbO3 waveguides
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.332883
– volume: 5
  start-page: 1438
  year: 2018
  ident: 2024031517063469500_c40
  article-title: Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides
  publication-title: Optica
  doi: 10.1364/optica.5.001438
– volume: 73
  start-page: 1605
  year: 1994
  ident: 2024031517063469500_c21
  article-title: Quadrature-squeezed light detection using a self-generated matched local oscillator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.73.1605
– volume: 4
  start-page: 060902
  year: 2019
  ident: 2024031517063469500_c1
  article-title: Toward large-scale fault-tolerant universal photonic quantum computing
  publication-title: APL Photonics
  doi: 10.1063/1.5100160
– volume: 562
  start-page: 101
  year: 2018
  ident: 2024031517063469500_c42
  article-title: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages
  publication-title: Nature
  doi: 10.1038/s41586-018-0551-y
– volume: 15
  start-page: 4321
  year: 2007
  ident: 2024031517063469500_c13
  article-title: Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement
  publication-title: Opt. Express
  doi: 10.1364/oe.15.004321
– volume: 4
  start-page: 4535
  year: 2014
  ident: 2024031517063469500_c16
  article-title: Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength
  publication-title: Sci. Rep.
  doi: 10.1038/srep04535
– volume: 366
  start-page: 373
  year: 2019
  ident: 2024031517063469500_c6
  article-title: Generation of time-domain-multiplexed two-dimensional cluster state
  publication-title: Science
  doi: 10.1126/science.aay2645
– start-page: NW3A.2
  year: 2019
  ident: 2024031517063469500_c31
  article-title: Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module
– volume: 9
  start-page: 316
  year: 2015
  ident: 2024031517063469500_c8
  article-title: Continuous-variable entanglement on a chip
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.42
– volume: 17
  start-page: 529
  year: 1992
  ident: 2024031517063469500_c18
  article-title: Squeezed-light generation with a mode-locked Q-switched laser and detection by using a matched local oscillator
  publication-title: Opt. Lett.
  doi: 10.1364/ol.17.000529
– volume: 59
  start-page: 2566
  year: 1987
  ident: 2024031517063469500_c17
  article-title: Pulsed squeezed light
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.59.2566
– volume: 20
  start-page: 1649
  year: 1995
  ident: 2024031517063469500_c23
  article-title: Squeezing in a quasi-phase-matched LiNbO3 waveguide
  publication-title: Opt. Lett.
  doi: 10.1364/ol.20.001649
– volume: 90
  start-page: 041111
  year: 2007
  ident: 2024031517063469500_c24
  article-title: Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2437057
– volume: 46
  start-page: 1206
  year: 2010
  ident: 2024031517063469500_c35
  article-title: Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/jqe.2010.2045475
– volume: 16
  start-page: 1189
  year: 1991
  ident: 2024031517063469500_c20
  article-title: Limits to wideband pulsed squeezing in a traveling-wave parametric amplifier with group-velocity dispersion
  publication-title: Opt. Lett.
  doi: 10.1364/ol.16.001189
– volume: 11
  start-page: 328
  year: 1999
  ident: 2024031517063469500_c37
  article-title: All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/68.748224
– volume: 500
  start-page: 315
  year: 2013
  ident: 2024031517063469500_c2
  article-title: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique
  publication-title: Nature
  doi: 10.1038/nature12366
– volume: 91
  start-page: 053001
  year: 2016
  ident: 2024031517063469500_c11
  article-title: 30 years of squeezed light generation
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/91/5/053001
– volume: 44
  start-page: 2013
  year: 1991
  ident: 2024031517063469500_c22
  article-title: Squeezing limits at high parametric gains
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.44.2013
– volume: 53
  start-page: 1
  year: 2016
  ident: 2024031517063469500_c34
  article-title: Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2015.12.040
– volume: 117
  start-page: 110801
  year: 2016
  ident: 2024031517063469500_c14
  article-title: Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.117.110801
– volume: 27
  start-page: 18900
  year: 2019
  ident: 2024031517063469500_c32
  article-title: Generation and measurement of a squeezed vacuum up to 100 MHz at 1550 nm with a semi-monolithic optical parametric oscillator designed towards direct coupling with waveguide modules
  publication-title: Opt. Express
  doi: 10.1364/oe.27.018900
– volume: 119
  start-page: 120504
  year: 2017
  ident: 2024031517063469500_c4
  article-title: Universal quantum computing with measurement-induced continuous-variable gate sequence in a loop-based architecture
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.119.120504
– volume: 7
  start-page: 982
  year: 2013
  ident: 2024031517063469500_c3
  article-title: Ultra-large-scale continuous-variable cluster states multiplexed in the time domain
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.287
– volume: 20
  start-page: 620
  year: 1995
  ident: 2024031517063469500_c26
  article-title: Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides
  publication-title: Opt. Lett.
  doi: 10.1364/ol.20.000620
– volume: 61
  start-page: 010302
  year: 1999
  ident: 2024031517063469500_c9
  article-title: Unconditional teleportation of continuous-variable entanglement
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.61.010302
– volume: 320
  start-page: 646
  year: 2008
  ident: 2024031517063469500_c7
  article-title: Silica-on-silicon waveguide quantum circuits
  publication-title: Science
  doi: 10.1126/science.1155441
– volume: 17
  start-page: 175470
  year: 1978
  ident: 2024031517063469500_c29
  article-title: The photorefractive effect
  publication-title: Opt. Eng.
  doi: 10.1117/12.7972267
– volume: 78
  start-page: 3163
  year: 2001
  ident: 2024031517063469500_c33
  article-title: Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1374228
– volume: 9
  start-page: 609
  year: 2018
  ident: 2024031517063469500_c43
  article-title: Lifting the bandwidth limit of optical homodyne measurement with broadband parametric amplification
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03083-5
– volume: 21
  start-page: 13572
  year: 2013
  ident: 2024031517063469500_c15
  article-title: High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity
  publication-title: Opt. Express
  doi: 10.1364/oe.21.013572
– volume: 34
  start-page: 256
  year: 2009
  ident: 2024031517063469500_c25
  article-title: Broadband amplitude squeezing in a periodically poled KTiOPO4 waveguide
  publication-title: Opt. Lett.
  doi: 10.1364/ol.34.000256
– volume: 1
  start-page: 060801
  year: 2016
  ident: 2024031517063469500_c5
  article-title: Invited article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing
  publication-title: APL Photonics
  doi: 10.1063/1.4962732
– volume: 41
  start-page: 1905
  year: 2016
  ident: 2024031517063469500_c36
  article-title: Highly efficient phase-sensitive parametric gain in periodically poled LiNbO3 ridge waveguide
  publication-title: Opt. Lett.
  doi: 10.1364/ol.41.001905
– volume: 3
  start-page: 67
  year: 1985
  ident: 2024031517063469500_c38
  article-title: An experimental study of in-plane light scattering in titanium diffused Y-cut LiNbO3 optical waveguides
  publication-title: J. Lightwave Technol.
  doi: 10.1109/jlt.1985.1074142
– volume: 3
  start-page: 362
  year: 2016
  ident: 2024031517063469500_c41
  article-title: A fully guided-wave squeezing experiment for fiber quantum networks
  publication-title: Optica
  doi: 10.1364/optica.3.000362
– volume: 52
  start-page: 4202
  year: 1995
  ident: 2024031517063469500_c19
  article-title: Ultrashort pulsed squeezing by optical parametric amplification
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.52.4202
– volume: 23
  start-page: 1004
  year: 1998
  ident: 2024031517063469500_c39
  article-title: 1.5-µm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures
  publication-title: Opt. Lett.
  doi: 10.1364/ol.23.001004
– volume: 55
  start-page: 2409
  year: 1985
  ident: 2024031517063469500_c10
  article-title: Observation of squeezed states generated by four-wave mixing in an optical cavity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.55.2409
– volume: 89
  start-page: 061116
  year: 2006
  ident: 2024031517063469500_c12
  article-title: 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2335806
– volume: 7
  start-page: A36
  year: 2019
  ident: 2024031517063469500_c28
  article-title: Chip-based squeezing at a telecom wavelength
  publication-title: Photonics Res.
  doi: 10.1364/prj.7.000a36
SSID ssj0001671945
Score 2.4957123
Snippet Terahertz (THz)-bandwidth continuous-wave (CW) squeezed light is essential for integrating quantum processors with time-domain multiplexing (TDM) by using...
Terahertz (THz)-bandwidth continuous-wave (CW) squeezed light is essential for integrating quantum processors with time-domain multiplexing (TDM) by using...
SourceID doaj
crossref
scitation
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 036104
SummonAdditionalLinks – databaseName: AIP Open Access Journals
  dbid: AJDQP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5BeRh72NgArWwga-xhL4Y6jp3wCBuoqgB1UpHQXqLY56BKVVr1FxJ_PXdt2oIEiFfrYit3Od332bnPAL_QRE45n0jC4kbGGCvprEVpg3eIscHEc-_w1bVt3sStW3O7BoevnOBbfayODHdj6WQdNiICx1ENNk5bf_-1V1spNiEqbha6QU-feVZtZqL8H-ED1Zb5MfeTSnKxBZ8qCChO5zH7Amuh_AqfKzgoqmQbbcN_Vo7qlhPi5vI-nwZhJZ7JEVPPBzLsMa0WvI8qoiMjO80H6fIS77tII9w1IngboBckX3Yj2u3La8Gz3E26GHagc3He-dOU1VUI0lOSjSVLwKjAclqFbegCXZoS9ECVNEJOWUkcIULlqdZaT4THhUCROcljVWjlkCr2LtTKfhm-gSiiRGFqfYoFxjbNXdAMCQMTO0wKX4ffC49lCz_xbRW9bHZcbXWmssq5dfi5NB3MtTFeMjpjty8NWM56NkAxzqrsyE4CrVw47VHp2ESN3GikkGLecCGnV67D4TJoby31gtW0P1xZZAMs9t4113fYjJhZz_42-wG18XAS9gl-jN1B9fk9Aryt1TU
  priority: 102
  providerName: American Institute of Physics
Title Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide
URI http://dx.doi.org/10.1063/1.5142437
https://doaj.org/article/9e7fcfb3cd134520a53d194da0bea9f6
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iB_XgW1xfBPXgJdq0TdoefbKIygoriJfSZBJZWKroroK_3pm2u-5B9OI1fLRhMmHmSzLfMHYAKjTS2ERgLq5EDLEURmsQ2lkDECtILNUO39zq9n189aAeJlp90ZuwWh64Ntxx5hJvvYksyChWYVCoCJB4QxEYV2S-EtsOsmCCTFWnKzpBkKo6y5GEbKaTkayQjo7lkaICL-p9PhGMKs3-eTaLoae-BZ8INJdLbKHJEPlJPbNlNuXKFbbYZIu82Ytvq-yRhKV65RCpu_go3h3XAk7FGzHTTwT2iXVzOmbl4ZES3fanMEUJHz3AESoq4XRK0HeCeuHwTuf6ltNXnoY9cGuse3nRPWuLplOCsLgHB4IUYqQjtS2vg8iDSVPMTEAmgStw0yKFCEFaDMXaIh8yzuHCZUUsfSQNYEBfZ9Plc-k2GPdhIiHVNgUPsU4L4yLKGB3xPsCVaLHDkcXykZ2omUU_r26zdZTLvDFui-2NoS-1dMZPoFMy-xhAatfVAPpA3vhA_pcPtNj-eNF--9UPqPfn129E_gJ-8z8mtMXmQuLl1Vu1bTY9eB26HUxeBmaXzZxcnd91dit__QJRhev5
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEB5a55DmkL6J05doe-hFjrVaaTfHpGlwU8e44ELoZZE02mIwmyW2E8iv74y9tlMIJVcxq8fMiplP0nwD8BlN4pUPmaRY3MgUUyW9tShtDB4xNZgFzh0-H9jer_Tswlw0b3M4F4YmMe24cb2kCK7rg0aBckIx57zeEA5YfaA6hvO0dPYYtjImtGzB1tHZyc_h5pDFZgTSzYpR6O43__ihBV3_DmyT11legN_xMafPYLcJDsXRcjLP4VGsXsDTJlAUzTacvoTfzCk1ruaE2uWNu47CSjyWUwaltyQ4YcAt-IRVJB0jR71b6V2FN2OkFs4nEXxAQKvlMjhiOOwPBPfyZz7G-ApGp99GX3uyKZIgA22_mWRyGBWZaKu0XV2iz3MKSlBl3ehovxJ6SFAF8sI2EBTyMZLNDl2qSq08ki9_Da3qsop7IMokU5jbkGOJqc2dj5qDxciQD7MytOHLSmPFSk9cx2JSLC6yrS5U0Si3DR_XovWSNeM-oWNW-1qAia4XDWT6ojF7cRhp5NLrgEqnJuk6o5FMiq7ro6Mlt-HT2mj_G-oeqevLq41EUWO5_6C-PsB2b3TeL_rfBz_ewJOE8ffiTdpbaM2u5vEdBSkz_775Ff8CdB7iPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous-wave+6-dB-squeezed+light+with+2.5-THz-bandwidth+from+single-mode+PPLN+waveguide&rft.jtitle=APL+photonics&rft.au=Takahiro+Kashiwazaki&rft.au=Naoto+Takanashi&rft.au=Taichi+Yamashima&rft.au=Takushi+Kazama&rft.date=2020-03-01&rft.pub=AIP+Publishing+LLC&rft.issn=2378-0967&rft.eissn=2378-0967&rft.volume=5&rft.issue=3&rft.spage=036104&rft.epage=036104-7&rft_id=info:doi/10.1063%2F1.5142437&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e7fcfb3cd134520a53d194da0bea9f6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2378-0967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2378-0967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2378-0967&client=summon