Generative adversarial networks based on Wasserstein distance for knowledge graph embeddings
Knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention in recent years. Most of the existing models roughly construct negative samples via a uniformly random mode, by which these corrupted sample...
Saved in:
Published in | Knowledge-based systems Vol. 190; p. 105165 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
29.02.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0950-7051 1872-7409 |
DOI | 10.1016/j.knosys.2019.105165 |
Cover
Loading…
Abstract | Knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention in recent years. Most of the existing models roughly construct negative samples via a uniformly random mode, by which these corrupted samples are practically trivial for training the embedding model. Inspired by generative adversarial networks (GANs), the generator can be employed to sample more plausible negative triplets, that boosts the discriminator to improve its embedding performance further. However, vanishing gradient on discrete data is an inherent problem in traditional GANs. In this paper, we propose a generative adversarial network based knowledge graph representation learning model by introducing the Wasserstein distance to replace traditional divergence for settling this issue. Moreover, the additional weak supervision information is also absorbed to refine the performance of embedding model since these textual information contains detailed semantic description and offers abundant semantic relevance. In the experiments, we evaluate our method on the tasks of link prediction and triplet classification. The experimental results indicate that the Wasserstein distance is capable of solving the problem of vanishing gradient on discrete data and accelerating the convergence, additional weak supervision information also can significantly improve the performance of the model. |
---|---|
AbstractList | Knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention in recent years. Most of the existing models roughly construct negative samples via a uniformly random mode, by which these corrupted samples are practically trivial for training the embedding model. Inspired by generative adversarial networks (GANs), the generator can be employed to sample more plausible negative triplets, that boosts the discriminator to improve its embedding performance further. However, vanishing gradient on discrete data is an inherent problem in traditional GANs. In this paper, we propose a generative adversarial network based knowledge graph representation learning model by introducing the Wasserstein distance to replace traditional divergence for settling this issue. Moreover, the additional weak supervision information is also absorbed to refine the performance of embedding model since these textual information contains detailed semantic description and offers abundant semantic relevance. In the experiments, we evaluate our method on the tasks of link prediction and triplet classification. The experimental results indicate that the Wasserstein distance is capable of solving the problem of vanishing gradient on discrete data and accelerating the convergence, additional weak supervision information also can significantly improve the performance of the model. |
ArticleNumber | 105165 |
Author | Xu, Chaoyang Guo, Wenzhong Dai, Yuanfei Wang, Shiping Chen, Xing |
Author_xml | – sequence: 1 givenname: Yuanfei surname: Dai fullname: Dai, Yuanfei organization: College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China – sequence: 2 givenname: Shiping surname: Wang fullname: Wang, Shiping organization: College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China – sequence: 3 givenname: Xing surname: Chen fullname: Chen, Xing organization: College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China – sequence: 4 givenname: Chaoyang surname: Xu fullname: Xu, Chaoyang organization: School of Information Engineering, Putian University, Putian 351100, China – sequence: 5 givenname: Wenzhong surname: Guo fullname: Guo, Wenzhong email: guowenzhong@fzu.edu.cn organization: College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China |
BookMark | eNqFkEtLAzEQx4NUsD6-gYeA562TbPblQRDxBQUvihchZJPZmlqTmsQWv72R9eRBTwMz_wfz2ycT5x0ScsxgxoDVp8vZq_PxM844sC6vKlZXO2TK2oYXjYBuQqbQVVA0-bJH9mNcAgDnrJ2S5xt0GFSyG6TKbDBEFaxaUYdp68NrpL2KaKh39EnFmM8JraPGxqScRjr4QHP3doVmgXQR1PqF4luPxli3iIdkd1CriEc_84A8Xl89XN4W8_ubu8uLeaEFQCpYy1lVQVWqBplRoDgXQw3MYCtMb1oUTd_1LauHijcwYJ3jVa85CNQl6L48ICdj7jr49w-MSS79R3C5UvKyqTsheMWySowqHXyMAQe5DvZNhU_JQH5zlEs5cpTfHOXIMdvOftm0TRmYdykou_rPfD6aMb-_sRhk1BYzOWMD6iSNt38HfAGKsJUT |
CitedBy_id | crossref_primary_10_1142_S0219519423400092 crossref_primary_10_1007_s10489_022_03378_7 crossref_primary_10_1145_3653021 crossref_primary_10_1007_s10489_020_02136_x crossref_primary_10_1142_S0219519423400596 crossref_primary_10_2298_CSIS220718020Z crossref_primary_10_1016_j_knosys_2022_108431 crossref_primary_10_3390_s23104798 crossref_primary_10_1016_j_knosys_2021_107188 crossref_primary_10_1155_2022_1557302 crossref_primary_10_1016_j_knosys_2021_107882 crossref_primary_10_1177_1550147721992881 crossref_primary_10_1007_s11042_022_12262_y crossref_primary_10_2298_CSIS220703019Z crossref_primary_10_2298_CSIS220712011L crossref_primary_10_1016_j_knosys_2023_110342 crossref_primary_10_1021_acs_iecr_1c00141 crossref_primary_10_1080_17517575_2023_2180777 crossref_primary_10_3390_electronics9050750 crossref_primary_10_2298_CSIS220719021Z crossref_primary_10_3390_su15065062 crossref_primary_10_1016_j_conbuildmat_2023_130704 crossref_primary_10_1142_S0219519423400067 crossref_primary_10_1142_S0219519423400122 crossref_primary_10_3389_fpsyg_2022_929175 crossref_primary_10_2298_CSIS220828009L crossref_primary_10_1016_j_knosys_2020_106564 crossref_primary_10_1016_j_renene_2024_122035 crossref_primary_10_1142_S0219519423400523 crossref_primary_10_1142_S0219519423400547 crossref_primary_10_1142_S0219519423400109 crossref_primary_10_3390_sym13030485 crossref_primary_10_1016_j_ins_2021_12_073 crossref_primary_10_1007_s43236_023_00605_3 crossref_primary_10_1016_j_neucom_2021_02_098 crossref_primary_10_1007_s10618_022_00888_3 crossref_primary_10_1109_LRA_2021_3056071 crossref_primary_10_1016_j_ijepes_2023_109352 |
Cites_doi | 10.1609/aaai.v29i1.9491 10.1049/iet-cvi.2016.0027 10.1007/s11042-016-4128-1 10.1007/s10618-014-0356-z 10.1609/aaai.v32i1.11573 10.18653/v1/P17-2057 10.1145/2806416.2806502 10.1109/TMI.2018.2827462 10.1007/s10994-013-5363-6 10.18653/v1/N18-1133 10.18653/v1/P17-1132 10.1609/aaai.v32i1.11536 10.1609/aaai.v30i1.10329 10.18653/v1/N18-1068 10.3233/SW-140134 10.1609/aaai.v30i1.10089 10.18653/v1/N18-2053 10.1609/aaai.v31i1.10953 10.1609/aaai.v31i1.10952 10.1609/aaai.v28i1.8870 10.1145/1376616.1376746 10.1109/TMM.2017.2663324 10.1016/j.knosys.2018.10.008 10.1016/j.knosys.2018.08.004 10.1016/j.neunet.2005.06.042 10.1609/aaai.v30i1.10091 10.1145/219717.219748 10.1016/j.knosys.2019.03.013 10.1609/aaai.v31i1.10804 10.1145/2629489 10.3115/v1/P15-1067 10.3115/v1/P15-1016 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier Science Ltd. Feb 29, 2020 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier Science Ltd. Feb 29, 2020 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2019.105165 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2019_105165 S0950705119305143 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-182155053a7e1da0a224f601de84dbd8e47b9b816f5270fe6eddabc204ec30cb3 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Mon Jul 14 08:35:50 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Tue Jul 01 04:37:57 EDT 2025 Fri Feb 23 02:49:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Knowledge graph embedding Generative adversarial networks Wasserstein distance Weak supervision information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-182155053a7e1da0a224f601de84dbd8e47b9b816f5270fe6eddabc204ec30cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2376944251 |
PQPubID | 2035257 |
ParticipantIDs | proquest_journals_2376944251 crossref_primary_10_1016_j_knosys_2019_105165 crossref_citationtrail_10_1016_j_knosys_2019_105165 elsevier_sciencedirect_doi_10_1016_j_knosys_2019_105165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-29 |
PublicationDateYYYYMMDD | 2020-02-29 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b15) 2014 R. Das, M. Zaheer, S. Reddy, A. McCallum, Question answering on knowledge bases and text using universal schema and memory networks, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 2, 2017, pp. 358–365. Xu, Du, Zhang (b36) 2019; 175 Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings for knowledge graph completion, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, Vol. 15, 2015, pp. 2181–2187. F. Zhou, S. Yang, H. Fujita, D. Chen, C. Wen, Deep learning fault diagnosis method based on global optimization gan for unbalanced data, Knowl.-Based Syst. X. Yi, E. Walia, P. Babyn, Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification. arXiv preprint L. Yu, W. Zhang, J. Wang, Y. Yu, Seqgan: Sequence generative adversarial nets with policy gradient, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017. T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, G. Bouchard, Complex embeddings for simple link prediction, in: International Conference on Machine Learning, 2016, pp. 2071–2080. R. Xie, Z. Liu, J. Jia, H. Luan, M. Sun, Representation learning of knowledge graphs with entity descriptions, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 2659–2665. Y. Jia, Y. Wang, H. Lin, X. Jin, X. Cheng, Locally adaptive translation for knowledge graph embedding, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 992–998. L. Cai, W.Y. Wang, Kbgan: Adversarial learning for knowledge graph embeddings, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 2018, pp. 1470–1480. Lehmann, Isele, Jakob, Jentzsch, Kontokostas, Mendes, Hellmann, Morsey, Van Kleef, Auer (b2) 2015; 6 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 6000–6010. A. Neelakantan, B. Roth, A. McCallum, Compositional vector space models for knowledge base completion, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Vol. 1, 2015, pp. 156–166. G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge graph embedding via dynamic mapping matrix, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015, pp. 687–696. S. Ahn, H. Choi, T. Pärnamaa, Y. Bengio, A neural knowledge language model. arXiv preprint D. Tim, M. Pasquale, S. Pontus, R. Sebastian, Convolutional 2d knowledge graph embeddings, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1811–1818. T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Advances in neural information processing systems, 2013, pp. 3111–3119. Liu, Jiang, Evdokimov, Ling, Zhu, Wei, Hu (b34) 2016 M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: Proceedings of the 34st International Conference on Machine Learning, 2017, pp. 214–223. H. Xiao, M. Huang, L. Meng, X. Zhu, Ssp: Semantic space projection for knowledge graph embedding with text descriptions, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 3104–3110. Niu, Lin, Ke, Ke (b33) 2017; 11 . Zhou, Zhang, Liu (b23) 2018; 161 Vrandečić, Krötzsch (b3) 2014; 57 B. Yang, S.W.-t. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for learning and inference in knowledge bases, in: Proceedings of the 2015 International Conference on Learning Representations, 2015. J. Lei Ba, J.R. Kiros, G.E. Hinton, Layer normalization. arXiv preprint Wang, Sun (b27) 2015; 29 A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint P. Wang, S. Li, R. Pan, Incorporating gan for negative sampling in knowledge representation learning, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018. D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. arXiv preprint M.G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, R. Munos, The cramer distance as a solution to biased wasserstein gradients, in: International Conference on Learning Representations, 2018. S. He, K. Liu, G. Ji, J. Zhao, Learning to represent knowledge graphs with gaussian embedding, in: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015, pp. 623–632. Z. Wang, J. Li, Text-enhanced representation learning for knowledge graph, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 1293–1299. R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, in: Proceedings of the 12th International Conference on Neural Information Processing Systems, 1999, pp. 1057–1063. G. Ji, K. Liu, S. He, J. Zhao, Knowledge graph completion with adaptive sparse transfer matrix, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 985–991. Wang, Guo (b31) 2017; 99 Miller (b46) 1995; 38 D.Q. Nguyen, T.D. Nguyen, D.Q. Nguyen, D. Phung, A novel embedding model for knowledge base completion based on convolutional neural network, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, Vol. 2, 2018, pp. 327–333. M. Nickel, V. Tresp, H.-P. Kriegel, A three-way model for collective learning on multi-relational data, in: Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011, pp. 809–816. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 448–456. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 5769–5779. Yang, Yan, Zhang, Yu, Shi, Mou, Kalra, Zhang, Sun, Wang (b24) 2018; 37 Graves, Schmidhuber (b38) 2005; 18 B. Yang, T. Mitchell, Leveraging knowledge bases in lstms for improving machine reading, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 1, 2017, pp. 1436–1446. R. Socher, D. Chen, C.D. Manning, A. Ng, Reasoning with neural tensor networks for knowledge base completion, in: Advances in neural information processing systems, 2013, pp. 926–934. Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, Rotate: Knowledge graph embedding by relational rotation in complex space, in: International Conference on Learning Representations, 2019. Niu, Lin, Chen, Ke (b32) 2017; 76 Bordes, Glorot, Weston, Bengio (b48) 2014; 94 Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating on hyperplanes, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Vol. 14, 2014, pp. 1112–1119. M. Martinez, M. Haurilet, Z. Al-Halah, M. Tapaswi, R. Stiefelhagen, Relaxed earth mover’s distances for chain-and tree-connected spaces and their use as a loss function in deep learning. arXiv preprint Niannian, Dandan, Lejian (b53) 2019; 164 Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko (b9) 2013 Y. Mroueh, C.-L. Li, T. Sercu, A. Raj, Y. Cheng, Sobolev GAN, in: International Conference on Learning Representations, 2018. B. An, B. Chen, X. Han, L. Sun, Accurate text-enhanced knowledge graph representation learning, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018, pp. 745–755. G. Ji, K. Liu, S. He, J. Zhao, et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 3060–3066. Lukovnikov, Fischer, Lehmann, Auer (b4) 2017 K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, in: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 2008, pp. 1247–1250. 10.1016/j.knosys.2019.105165_b21 10.1016/j.knosys.2019.105165_b20 10.1016/j.knosys.2019.105165_b26 10.1016/j.knosys.2019.105165_b29 10.1016/j.knosys.2019.105165_b28 10.1016/j.knosys.2019.105165_b22 10.1016/j.knosys.2019.105165_b25 10.1016/j.knosys.2019.105165_b7 10.1016/j.knosys.2019.105165_b6 10.1016/j.knosys.2019.105165_b5 Lehmann (10.1016/j.knosys.2019.105165_b2) 2015; 6 10.1016/j.knosys.2019.105165_b19 10.1016/j.knosys.2019.105165_b1 Wang (10.1016/j.knosys.2019.105165_b31) 2017; 99 Graves (10.1016/j.knosys.2019.105165_b38) 2005; 18 Miller (10.1016/j.knosys.2019.105165_b46) 1995; 38 10.1016/j.knosys.2019.105165_b52 10.1016/j.knosys.2019.105165_b51 10.1016/j.knosys.2019.105165_b10 10.1016/j.knosys.2019.105165_b54 10.1016/j.knosys.2019.105165_b50 Liu (10.1016/j.knosys.2019.105165_b34) 2016 10.1016/j.knosys.2019.105165_b16 10.1016/j.knosys.2019.105165_b18 Niannian (10.1016/j.knosys.2019.105165_b53) 2019; 164 10.1016/j.knosys.2019.105165_b17 Wang (10.1016/j.knosys.2019.105165_b27) 2015; 29 10.1016/j.knosys.2019.105165_b12 10.1016/j.knosys.2019.105165_b56 10.1016/j.knosys.2019.105165_b11 10.1016/j.knosys.2019.105165_b55 10.1016/j.knosys.2019.105165_b14 10.1016/j.knosys.2019.105165_b13 10.1016/j.knosys.2019.105165_b57 Lukovnikov (10.1016/j.knosys.2019.105165_b4) 2017 Zhou (10.1016/j.knosys.2019.105165_b23) 2018; 161 10.1016/j.knosys.2019.105165_b41 10.1016/j.knosys.2019.105165_b40 10.1016/j.knosys.2019.105165_b43 10.1016/j.knosys.2019.105165_b42 10.1016/j.knosys.2019.105165_b49 10.1016/j.knosys.2019.105165_b45 10.1016/j.knosys.2019.105165_b44 10.1016/j.knosys.2019.105165_b47 Goodfellow (10.1016/j.knosys.2019.105165_b15) 2014 Niu (10.1016/j.knosys.2019.105165_b32) 2017; 76 Yang (10.1016/j.knosys.2019.105165_b24) 2018; 37 10.1016/j.knosys.2019.105165_b30 Bordes (10.1016/j.knosys.2019.105165_b48) 2014; 94 Xu (10.1016/j.knosys.2019.105165_b36) 2019; 175 10.1016/j.knosys.2019.105165_b37 10.1016/j.knosys.2019.105165_b39 Bordes (10.1016/j.knosys.2019.105165_b9) 2013 10.1016/j.knosys.2019.105165_b8 10.1016/j.knosys.2019.105165_b35 Vrandečić (10.1016/j.knosys.2019.105165_b3) 2014; 57 Niu (10.1016/j.knosys.2019.105165_b33) 2017; 11 |
References_xml | – reference: Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, Rotate: Knowledge graph embedding by relational rotation in complex space, in: International Conference on Learning Representations, 2019. – reference: Y. Mroueh, C.-L. Li, T. Sercu, A. Raj, Y. Cheng, Sobolev GAN, in: International Conference on Learning Representations, 2018. – reference: A. Neelakantan, B. Roth, A. McCallum, Compositional vector space models for knowledge base completion, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Vol. 1, 2015, pp. 156–166. – reference: T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Advances in neural information processing systems, 2013, pp. 3111–3119. – volume: 29 start-page: 534 year: 2015 end-page: 564 ident: b27 article-title: Survey on distance metric learning and dimensionality reduction in data mining publication-title: Data Min. Knowl. Discov. – reference: D. Tim, M. Pasquale, S. Pontus, R. Sebastian, Convolutional 2d knowledge graph embeddings, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1811–1818. – reference: X. Yi, E. Walia, P. Babyn, Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification. arXiv preprint – reference: Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings for knowledge graph completion, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, Vol. 15, 2015, pp. 2181–2187. – reference: M. Martinez, M. Haurilet, Z. Al-Halah, M. Tapaswi, R. Stiefelhagen, Relaxed earth mover’s distances for chain-and tree-connected spaces and their use as a loss function in deep learning. arXiv preprint – year: 2016 ident: b34 article-title: Probabilistic reasoning via deep learning: Neural association models – start-page: 2672 year: 2014 end-page: 2680 ident: b15 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 161 year: 2017 end-page: 172 ident: b33 article-title: Fitting-based optimisation for image visual salient object detection publication-title: IET Comput. Vis. – volume: 164 start-page: 38 year: 2019 end-page: 44 ident: b53 article-title: Knowledge graph embedding with concepts publication-title: Knowl.-Based Syst. – reference: R. Das, M. Zaheer, S. Reddy, A. McCallum, Question answering on knowledge bases and text using universal schema and memory networks, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 2, 2017, pp. 358–365. – volume: 76 start-page: 26329 year: 2017 end-page: 26353 ident: b32 article-title: Machine learning-based framework for saliency detection in distorted images publication-title: Multimedia Tools Appl. – reference: H. Xiao, M. Huang, L. Meng, X. Zhu, Ssp: Semantic space projection for knowledge graph embedding with text descriptions, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 3104–3110. – reference: B. Yang, S.W.-t. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for learning and inference in knowledge bases, in: Proceedings of the 2015 International Conference on Learning Representations, 2015. – reference: G. Ji, K. Liu, S. He, J. Zhao, et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 3060–3066. – volume: 175 start-page: 50 year: 2019 end-page: 61 ident: b36 article-title: Predicting pipeline leakage in petrochemical system through gan and lstm publication-title: Knowl.-Based Syst. – reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 6000–6010. – reference: Y. Jia, Y. Wang, H. Lin, X. Jin, X. Cheng, Locally adaptive translation for knowledge graph embedding, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 992–998. – reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 5769–5779. – reference: J. Lei Ba, J.R. Kiros, G.E. Hinton, Layer normalization. arXiv preprint – reference: Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating on hyperplanes, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Vol. 14, 2014, pp. 1112–1119. – reference: G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge graph embedding via dynamic mapping matrix, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015, pp. 687–696. – reference: B. Yang, T. Mitchell, Leveraging knowledge bases in lstms for improving machine reading, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 1, 2017, pp. 1436–1446. – reference: L. Yu, W. Zhang, J. Wang, Y. Yu, Seqgan: Sequence generative adversarial nets with policy gradient, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017. – volume: 94 start-page: 233 year: 2014 end-page: 259 ident: b48 article-title: A semantic matching energy function for learning with multi-relational data publication-title: Mach. Learn. – reference: S. He, K. Liu, G. Ji, J. Zhao, Learning to represent knowledge graphs with gaussian embedding, in: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015, pp. 623–632. – reference: P. Wang, S. Li, R. Pan, Incorporating gan for negative sampling in knowledge representation learning, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018. – reference: D.Q. Nguyen, T.D. Nguyen, D.Q. Nguyen, D. Phung, A novel embedding model for knowledge base completion based on convolutional neural network, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, Vol. 2, 2018, pp. 327–333. – start-page: 2787 year: 2013 end-page: 2795 ident: b9 article-title: Translating embeddings for modeling multi-relational data publication-title: Advances in Neural Information Processing Systems – reference: M. Nickel, V. Tresp, H.-P. Kriegel, A three-way model for collective learning on multi-relational data, in: Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011, pp. 809–816. – reference: R. Socher, D. Chen, C.D. Manning, A. Ng, Reasoning with neural tensor networks for knowledge base completion, in: Advances in neural information processing systems, 2013, pp. 926–934. – reference: D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. arXiv preprint – reference: T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, G. Bouchard, Complex embeddings for simple link prediction, in: International Conference on Machine Learning, 2016, pp. 2071–2080. – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: b38 article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures publication-title: Neural Netw. – volume: 99 start-page: 1454 year: 2017 end-page: 1466 ident: b31 article-title: Sparse multi-graph embedding for multimodal feature representation publication-title: IEEE Trans. Multimed. – reference: B. An, B. Chen, X. Han, L. Sun, Accurate text-enhanced knowledge graph representation learning, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018, pp. 745–755. – reference: Z. Wang, J. Li, Text-enhanced representation learning for knowledge graph, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 1293–1299. – volume: 6 start-page: 167 year: 2015 end-page: 195 ident: b2 article-title: Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia publication-title: Semantic Web – reference: M.G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, R. Munos, The cramer distance as a solution to biased wasserstein gradients, in: International Conference on Learning Representations, 2018. – volume: 161 start-page: 415 year: 2018 end-page: 424 ident: b23 article-title: Lp-wgan: Using lp-norm normalization to stabilize wasserstein generative adversarial networks publication-title: Knowl.-Based Syst. – start-page: 1211 year: 2017 end-page: 1220 ident: b4 article-title: Neural network-based question answering over knowledge graphs on word and character level publication-title: Proceedings of the 26th International Conference on World Wide Web – reference: S. Ahn, H. Choi, T. Pärnamaa, Y. Bengio, A neural knowledge language model. arXiv preprint – reference: . – volume: 37 start-page: 1348 year: 2018 end-page: 1357 ident: b24 article-title: Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss publication-title: IEEE Trans. Med. Imaging – reference: R. Xie, Z. Liu, J. Jia, H. Luan, M. Sun, Representation learning of knowledge graphs with entity descriptions, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 2659–2665. – reference: G. Ji, K. Liu, S. He, J. Zhao, Knowledge graph completion with adaptive sparse transfer matrix, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 985–991. – volume: 38 start-page: 39 year: 1995 end-page: 41 ident: b46 article-title: Wordnet: a lexical database for english publication-title: Commun. ACM – reference: L. Cai, W.Y. Wang, Kbgan: Adversarial learning for knowledge graph embeddings, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 2018, pp. 1470–1480. – reference: M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: Proceedings of the 34st International Conference on Machine Learning, 2017, pp. 214–223. – reference: K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, in: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 2008, pp. 1247–1250. – volume: 57 start-page: 78 year: 2014 end-page: 85 ident: b3 article-title: Wikidata: a free collaborative knowledgebase publication-title: Commun. ACM – reference: F. Zhou, S. Yang, H. Fujita, D. Chen, C. Wen, Deep learning fault diagnosis method based on global optimization gan for unbalanced data, Knowl.-Based Syst. – reference: A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint – reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 448–456. – reference: R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, in: Proceedings of the 12th International Conference on Neural Information Processing Systems, 1999, pp. 1057–1063. – ident: 10.1016/j.knosys.2019.105165_b11 doi: 10.1609/aaai.v29i1.9491 – volume: 11 start-page: 161 year: 2017 ident: 10.1016/j.knosys.2019.105165_b33 article-title: Fitting-based optimisation for image visual salient object detection publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2016.0027 – volume: 76 start-page: 26329 year: 2017 ident: 10.1016/j.knosys.2019.105165_b32 article-title: Machine learning-based framework for saliency detection in distorted images publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-4128-1 – volume: 29 start-page: 534 issue: 2 year: 2015 ident: 10.1016/j.knosys.2019.105165_b27 article-title: Survey on distance metric learning and dimensionality reduction in data mining publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-014-0356-z – ident: 10.1016/j.knosys.2019.105165_b40 – start-page: 2787 year: 2013 ident: 10.1016/j.knosys.2019.105165_b9 article-title: Translating embeddings for modeling multi-relational data – ident: 10.1016/j.knosys.2019.105165_b44 – ident: 10.1016/j.knosys.2019.105165_b14 doi: 10.1609/aaai.v32i1.11573 – ident: 10.1016/j.knosys.2019.105165_b30 – ident: 10.1016/j.knosys.2019.105165_b5 doi: 10.18653/v1/P17-2057 – ident: 10.1016/j.knosys.2019.105165_b19 – ident: 10.1016/j.knosys.2019.105165_b28 doi: 10.1145/2806416.2806502 – volume: 37 start-page: 1348 issue: 6 year: 2018 ident: 10.1016/j.knosys.2019.105165_b24 article-title: Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2827462 – volume: 94 start-page: 233 issue: 2 year: 2014 ident: 10.1016/j.knosys.2019.105165_b48 article-title: A semantic matching energy function for learning with multi-relational data publication-title: Mach. Learn. doi: 10.1007/s10994-013-5363-6 – ident: 10.1016/j.knosys.2019.105165_b57 – ident: 10.1016/j.knosys.2019.105165_b18 doi: 10.18653/v1/N18-1133 – ident: 10.1016/j.knosys.2019.105165_b6 doi: 10.18653/v1/P17-1132 – ident: 10.1016/j.knosys.2019.105165_b35 – ident: 10.1016/j.knosys.2019.105165_b17 doi: 10.1609/aaai.v32i1.11536 – ident: 10.1016/j.knosys.2019.105165_b41 – ident: 10.1016/j.knosys.2019.105165_b29 – ident: 10.1016/j.knosys.2019.105165_b45 – ident: 10.1016/j.knosys.2019.105165_b47 doi: 10.1609/aaai.v30i1.10329 – ident: 10.1016/j.knosys.2019.105165_b25 – ident: 10.1016/j.knosys.2019.105165_b52 doi: 10.18653/v1/N18-1068 – volume: 6 start-page: 167 issue: 2 year: 2015 ident: 10.1016/j.knosys.2019.105165_b2 article-title: Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia publication-title: Semantic Web doi: 10.3233/SW-140134 – start-page: 2672 year: 2014 ident: 10.1016/j.knosys.2019.105165_b15 article-title: Generative adversarial nets – ident: 10.1016/j.knosys.2019.105165_b56 – ident: 10.1016/j.knosys.2019.105165_b39 – ident: 10.1016/j.knosys.2019.105165_b20 doi: 10.1609/aaai.v30i1.10089 – ident: 10.1016/j.knosys.2019.105165_b13 doi: 10.18653/v1/N18-2053 – start-page: 1211 year: 2017 ident: 10.1016/j.knosys.2019.105165_b4 article-title: Neural network-based question answering over knowledge graphs on word and character level – ident: 10.1016/j.knosys.2019.105165_b8 doi: 10.1609/aaai.v31i1.10953 – year: 2016 ident: 10.1016/j.knosys.2019.105165_b34 – ident: 10.1016/j.knosys.2019.105165_b51 doi: 10.1609/aaai.v31i1.10952 – ident: 10.1016/j.knosys.2019.105165_b10 doi: 10.1609/aaai.v28i1.8870 – ident: 10.1016/j.knosys.2019.105165_b49 – ident: 10.1016/j.knosys.2019.105165_b22 – ident: 10.1016/j.knosys.2019.105165_b1 doi: 10.1145/1376616.1376746 – ident: 10.1016/j.knosys.2019.105165_b55 – volume: 99 start-page: 1454 year: 2017 ident: 10.1016/j.knosys.2019.105165_b31 article-title: Sparse multi-graph embedding for multimodal feature representation publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2663324 – volume: 164 start-page: 38 year: 2019 ident: 10.1016/j.knosys.2019.105165_b53 article-title: Knowledge graph embedding with concepts publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.10.008 – volume: 161 start-page: 415 year: 2018 ident: 10.1016/j.knosys.2019.105165_b23 article-title: Lp-wgan: Using lp-norm normalization to stabilize wasserstein generative adversarial networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.08.004 – volume: 18 start-page: 602 issue: 5–6 year: 2005 ident: 10.1016/j.knosys.2019.105165_b38 article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – ident: 10.1016/j.knosys.2019.105165_b37 – ident: 10.1016/j.knosys.2019.105165_b16 – ident: 10.1016/j.knosys.2019.105165_b43 – ident: 10.1016/j.knosys.2019.105165_b7 – ident: 10.1016/j.knosys.2019.105165_b21 doi: 10.1609/aaai.v30i1.10091 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 10.1016/j.knosys.2019.105165_b46 article-title: Wordnet: a lexical database for english publication-title: Commun. ACM doi: 10.1145/219717.219748 – ident: 10.1016/j.knosys.2019.105165_b50 – volume: 175 start-page: 50 year: 2019 ident: 10.1016/j.knosys.2019.105165_b36 article-title: Predicting pipeline leakage in petrochemical system through gan and lstm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.03.013 – ident: 10.1016/j.knosys.2019.105165_b42 doi: 10.1609/aaai.v31i1.10804 – volume: 57 start-page: 78 issue: 10 year: 2014 ident: 10.1016/j.knosys.2019.105165_b3 article-title: Wikidata: a free collaborative knowledgebase publication-title: Commun. ACM doi: 10.1145/2629489 – ident: 10.1016/j.knosys.2019.105165_b26 doi: 10.3115/v1/P15-1067 – ident: 10.1016/j.knosys.2019.105165_b54 – ident: 10.1016/j.knosys.2019.105165_b12 doi: 10.3115/v1/P15-1016 |
SSID | ssj0002218 |
Score | 2.4690404 |
Snippet | Knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105165 |
SubjectTerms | Embedding Generative adversarial networks Graph representations Graphical representations Knowledge graph embedding Knowledge representation Performance enhancement Semantics Wasserstein distance Weak supervision information |
Title | Generative adversarial networks based on Wasserstein distance for knowledge graph embeddings |
URI | https://dx.doi.org/10.1016/j.knosys.2019.105165 https://www.proquest.com/docview/2376944251 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YHVNA83TsaqoiogukBFB6TIr0jlkVa0DCz8du4cBwRCqsSSITlb0fl8D_vuO0LOlFYisj3BZFgUjNuAs9RkhokCsUx4IkONxck342Q04VfT3rRBBnUtDKZVet1f6XSnrf2brudmdzGbdW_BOQB5xXuwGEG8EfET0etAps8_vtM8osid8SExQ-q6fM7leD2V8-U7gnaHGTa8DdHE_G2efilqZ32GO2TLu420X_3ZLmnYco9s1y0ZqN-h--ShgpFGHUYl9lpeSpQwWlbZ3kuKVsvQeUnvpSu0xGaX1KATCeMpeLD065SNOjBral-UNe6G6oBMhhd3gxHzDRSYhq25YhA7uAgklsKGRgYS7HUBEZixKTfKpJYLlak0TIpeJILCJjCdVDoKuNVxoFV8SJrlvLRHhOpEZ3FqI3gqrhXPeGG4TYSW4M8EKmuRuOZbrj26ODa5eM7rNLLHvOJ2jtzOK263CPsatajQNdbQi3pJ8h9SkoMBWDOyXa9g7ncpfAftmnHQWuHxvyc-IZsRhuBY5Z61SXP1-mZPwU9ZqY4TxA7Z6F9ej8afAbPqWQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6JQwAOr1TzcOBkRAgX6WADBgGT5FYlXWtEy8O_xJU4lEBISS4bEZ0Xn8z3su-8ATpVWPLIDTmVYFJTZgNHUZIbyArFMWCJDjcXJ40mS37Hrh8FDC86bWhhMq_S6v9bplbb2b_qem_3Z01P_xjkHTl7xHixGEO94BTqITsXa0Dm7GuaTpUKOouqYD8dTJGgq6Ko0r5dyOv9E3O4ww563IVqZ3y3UD11dGaDLTVj3niM5q39uC1q23IaNpisD8Zt0Bx5rJGlUY0Riu-W5RCEjZZ3wPSdouAyZluReVrWW2O-SGPQjHT1xTixZHrSRCs-a2DdlTXVJtQt3lxe35zn1PRSodrtzQV34UAUhseQ2NDKQzmQXLggzNmVGmdQyrjKVhkkxiHhQ2MRNJ5WOAmZ1HGgV70G7nJZ2H4hOdBanNnJPxbRiGSsMswnX0rk0gcq6EDd8E9oDjGOfi1fRZJI9i5rbArktam53gS6pZjXAxh_jebMk4pugCGcD_qDsNSso_EZ1352CzZhTXOHBvyc-gdX8djwSo6vJ8BDWIozIseg960F78f5hj5zbslDHXiy_AAjH7Qo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks+based+on+Wasserstein+distance+for+knowledge+graph+embeddings&rft.jtitle=Knowledge-based+systems&rft.au=Dai%2C+Yuanfei&rft.au=Wang%2C+Shiping&rft.au=Chen%2C+Xing&rft.au=Xu%2C+Chaoyang&rft.date=2020-02-29&rft.issn=0950-7051&rft.volume=190&rft.spage=105165&rft_id=info:doi/10.1016%2Fj.knosys.2019.105165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2019_105165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |