Generative adversarial networks based on Wasserstein distance for knowledge graph embeddings

Knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention in recent years. Most of the existing models roughly construct negative samples via a uniformly random mode, by which these corrupted sample...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 190; p. 105165
Main Authors Dai, Yuanfei, Wang, Shiping, Chen, Xing, Xu, Chaoyang, Guo, Wenzhong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 29.02.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2019.105165

Cover

Loading…
Abstract Knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention in recent years. Most of the existing models roughly construct negative samples via a uniformly random mode, by which these corrupted samples are practically trivial for training the embedding model. Inspired by generative adversarial networks (GANs), the generator can be employed to sample more plausible negative triplets, that boosts the discriminator to improve its embedding performance further. However, vanishing gradient on discrete data is an inherent problem in traditional GANs. In this paper, we propose a generative adversarial network based knowledge graph representation learning model by introducing the Wasserstein distance to replace traditional divergence for settling this issue. Moreover, the additional weak supervision information is also absorbed to refine the performance of embedding model since these textual information contains detailed semantic description and offers abundant semantic relevance. In the experiments, we evaluate our method on the tasks of link prediction and triplet classification. The experimental results indicate that the Wasserstein distance is capable of solving the problem of vanishing gradient on discrete data and accelerating the convergence, additional weak supervision information also can significantly improve the performance of the model.
AbstractList Knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention in recent years. Most of the existing models roughly construct negative samples via a uniformly random mode, by which these corrupted samples are practically trivial for training the embedding model. Inspired by generative adversarial networks (GANs), the generator can be employed to sample more plausible negative triplets, that boosts the discriminator to improve its embedding performance further. However, vanishing gradient on discrete data is an inherent problem in traditional GANs. In this paper, we propose a generative adversarial network based knowledge graph representation learning model by introducing the Wasserstein distance to replace traditional divergence for settling this issue. Moreover, the additional weak supervision information is also absorbed to refine the performance of embedding model since these textual information contains detailed semantic description and offers abundant semantic relevance. In the experiments, we evaluate our method on the tasks of link prediction and triplet classification. The experimental results indicate that the Wasserstein distance is capable of solving the problem of vanishing gradient on discrete data and accelerating the convergence, additional weak supervision information also can significantly improve the performance of the model.
ArticleNumber 105165
Author Xu, Chaoyang
Guo, Wenzhong
Dai, Yuanfei
Wang, Shiping
Chen, Xing
Author_xml – sequence: 1
  givenname: Yuanfei
  surname: Dai
  fullname: Dai, Yuanfei
  organization: College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China
– sequence: 2
  givenname: Shiping
  surname: Wang
  fullname: Wang, Shiping
  organization: College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China
– sequence: 3
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
  organization: College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China
– sequence: 4
  givenname: Chaoyang
  surname: Xu
  fullname: Xu, Chaoyang
  organization: School of Information Engineering, Putian University, Putian 351100, China
– sequence: 5
  givenname: Wenzhong
  surname: Guo
  fullname: Guo, Wenzhong
  email: guowenzhong@fzu.edu.cn
  organization: College of Mathematics and Computer Sciences, Fuzhou University, Fuzhou 350116, China
BookMark eNqFkEtLAzEQx4NUsD6-gYeA562TbPblQRDxBQUvihchZJPZmlqTmsQWv72R9eRBTwMz_wfz2ycT5x0ScsxgxoDVp8vZq_PxM844sC6vKlZXO2TK2oYXjYBuQqbQVVA0-bJH9mNcAgDnrJ2S5xt0GFSyG6TKbDBEFaxaUYdp68NrpL2KaKh39EnFmM8JraPGxqScRjr4QHP3doVmgXQR1PqF4luPxli3iIdkd1CriEc_84A8Xl89XN4W8_ubu8uLeaEFQCpYy1lVQVWqBplRoDgXQw3MYCtMb1oUTd_1LauHijcwYJ3jVa85CNQl6L48ICdj7jr49w-MSS79R3C5UvKyqTsheMWySowqHXyMAQe5DvZNhU_JQH5zlEs5cpTfHOXIMdvOftm0TRmYdykou_rPfD6aMb-_sRhk1BYzOWMD6iSNt38HfAGKsJUT
CitedBy_id crossref_primary_10_1142_S0219519423400092
crossref_primary_10_1007_s10489_022_03378_7
crossref_primary_10_1145_3653021
crossref_primary_10_1007_s10489_020_02136_x
crossref_primary_10_1142_S0219519423400596
crossref_primary_10_2298_CSIS220718020Z
crossref_primary_10_1016_j_knosys_2022_108431
crossref_primary_10_3390_s23104798
crossref_primary_10_1016_j_knosys_2021_107188
crossref_primary_10_1155_2022_1557302
crossref_primary_10_1016_j_knosys_2021_107882
crossref_primary_10_1177_1550147721992881
crossref_primary_10_1007_s11042_022_12262_y
crossref_primary_10_2298_CSIS220703019Z
crossref_primary_10_2298_CSIS220712011L
crossref_primary_10_1016_j_knosys_2023_110342
crossref_primary_10_1021_acs_iecr_1c00141
crossref_primary_10_1080_17517575_2023_2180777
crossref_primary_10_3390_electronics9050750
crossref_primary_10_2298_CSIS220719021Z
crossref_primary_10_3390_su15065062
crossref_primary_10_1016_j_conbuildmat_2023_130704
crossref_primary_10_1142_S0219519423400067
crossref_primary_10_1142_S0219519423400122
crossref_primary_10_3389_fpsyg_2022_929175
crossref_primary_10_2298_CSIS220828009L
crossref_primary_10_1016_j_knosys_2020_106564
crossref_primary_10_1016_j_renene_2024_122035
crossref_primary_10_1142_S0219519423400523
crossref_primary_10_1142_S0219519423400547
crossref_primary_10_1142_S0219519423400109
crossref_primary_10_3390_sym13030485
crossref_primary_10_1016_j_ins_2021_12_073
crossref_primary_10_1007_s43236_023_00605_3
crossref_primary_10_1016_j_neucom_2021_02_098
crossref_primary_10_1007_s10618_022_00888_3
crossref_primary_10_1109_LRA_2021_3056071
crossref_primary_10_1016_j_ijepes_2023_109352
Cites_doi 10.1609/aaai.v29i1.9491
10.1049/iet-cvi.2016.0027
10.1007/s11042-016-4128-1
10.1007/s10618-014-0356-z
10.1609/aaai.v32i1.11573
10.18653/v1/P17-2057
10.1145/2806416.2806502
10.1109/TMI.2018.2827462
10.1007/s10994-013-5363-6
10.18653/v1/N18-1133
10.18653/v1/P17-1132
10.1609/aaai.v32i1.11536
10.1609/aaai.v30i1.10329
10.18653/v1/N18-1068
10.3233/SW-140134
10.1609/aaai.v30i1.10089
10.18653/v1/N18-2053
10.1609/aaai.v31i1.10953
10.1609/aaai.v31i1.10952
10.1609/aaai.v28i1.8870
10.1145/1376616.1376746
10.1109/TMM.2017.2663324
10.1016/j.knosys.2018.10.008
10.1016/j.knosys.2018.08.004
10.1016/j.neunet.2005.06.042
10.1609/aaai.v30i1.10091
10.1145/219717.219748
10.1016/j.knosys.2019.03.013
10.1609/aaai.v31i1.10804
10.1145/2629489
10.3115/v1/P15-1067
10.3115/v1/P15-1016
ContentType Journal Article
Copyright 2019
Copyright Elsevier Science Ltd. Feb 29, 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier Science Ltd. Feb 29, 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.105165
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2019_105165
S0950705119305143
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-182155053a7e1da0a224f601de84dbd8e47b9b816f5270fe6eddabc204ec30cb3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Mon Jul 14 08:35:50 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Tue Jul 01 04:37:57 EDT 2025
Fri Feb 23 02:49:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Knowledge graph embedding
Generative adversarial networks
Wasserstein distance
Weak supervision information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-182155053a7e1da0a224f601de84dbd8e47b9b816f5270fe6eddabc204ec30cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2376944251
PQPubID 2035257
ParticipantIDs proquest_journals_2376944251
crossref_primary_10_1016_j_knosys_2019_105165
crossref_citationtrail_10_1016_j_knosys_2019_105165
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_105165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-29
PublicationDateYYYYMMDD 2020-02-29
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-29
  day: 29
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b15) 2014
R. Das, M. Zaheer, S. Reddy, A. McCallum, Question answering on knowledge bases and text using universal schema and memory networks, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 2, 2017, pp. 358–365.
Xu, Du, Zhang (b36) 2019; 175
Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings for knowledge graph completion, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, Vol. 15, 2015, pp. 2181–2187.
F. Zhou, S. Yang, H. Fujita, D. Chen, C. Wen, Deep learning fault diagnosis method based on global optimization gan for unbalanced data, Knowl.-Based Syst.
X. Yi, E. Walia, P. Babyn, Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification. arXiv preprint
L. Yu, W. Zhang, J. Wang, Y. Yu, Seqgan: Sequence generative adversarial nets with policy gradient, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017.
T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, G. Bouchard, Complex embeddings for simple link prediction, in: International Conference on Machine Learning, 2016, pp. 2071–2080.
R. Xie, Z. Liu, J. Jia, H. Luan, M. Sun, Representation learning of knowledge graphs with entity descriptions, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 2659–2665.
Y. Jia, Y. Wang, H. Lin, X. Jin, X. Cheng, Locally adaptive translation for knowledge graph embedding, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 992–998.
L. Cai, W.Y. Wang, Kbgan: Adversarial learning for knowledge graph embeddings, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 2018, pp. 1470–1480.
Lehmann, Isele, Jakob, Jentzsch, Kontokostas, Mendes, Hellmann, Morsey, Van Kleef, Auer (b2) 2015; 6
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 6000–6010.
A. Neelakantan, B. Roth, A. McCallum, Compositional vector space models for knowledge base completion, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Vol. 1, 2015, pp. 156–166.
G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge graph embedding via dynamic mapping matrix, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015, pp. 687–696.
S. Ahn, H. Choi, T. Pärnamaa, Y. Bengio, A neural knowledge language model. arXiv preprint
D. Tim, M. Pasquale, S. Pontus, R. Sebastian, Convolutional 2d knowledge graph embeddings, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1811–1818.
T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Advances in neural information processing systems, 2013, pp. 3111–3119.
Liu, Jiang, Evdokimov, Ling, Zhu, Wei, Hu (b34) 2016
M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: Proceedings of the 34st International Conference on Machine Learning, 2017, pp. 214–223.
H. Xiao, M. Huang, L. Meng, X. Zhu, Ssp: Semantic space projection for knowledge graph embedding with text descriptions, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 3104–3110.
Niu, Lin, Ke, Ke (b33) 2017; 11
.
Zhou, Zhang, Liu (b23) 2018; 161
Vrandečić, Krötzsch (b3) 2014; 57
B. Yang, S.W.-t. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for learning and inference in knowledge bases, in: Proceedings of the 2015 International Conference on Learning Representations, 2015.
J. Lei Ba, J.R. Kiros, G.E. Hinton, Layer normalization. arXiv preprint
Wang, Sun (b27) 2015; 29
A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint
P. Wang, S. Li, R. Pan, Incorporating gan for negative sampling in knowledge representation learning, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.
D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. arXiv preprint
M.G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, R. Munos, The cramer distance as a solution to biased wasserstein gradients, in: International Conference on Learning Representations, 2018.
S. He, K. Liu, G. Ji, J. Zhao, Learning to represent knowledge graphs with gaussian embedding, in: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015, pp. 623–632.
Z. Wang, J. Li, Text-enhanced representation learning for knowledge graph, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 1293–1299.
R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, in: Proceedings of the 12th International Conference on Neural Information Processing Systems, 1999, pp. 1057–1063.
G. Ji, K. Liu, S. He, J. Zhao, Knowledge graph completion with adaptive sparse transfer matrix, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 985–991.
Wang, Guo (b31) 2017; 99
Miller (b46) 1995; 38
D.Q. Nguyen, T.D. Nguyen, D.Q. Nguyen, D. Phung, A novel embedding model for knowledge base completion based on convolutional neural network, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, Vol. 2, 2018, pp. 327–333.
M. Nickel, V. Tresp, H.-P. Kriegel, A three-way model for collective learning on multi-relational data, in: Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011, pp. 809–816.
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 448–456.
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 5769–5779.
Yang, Yan, Zhang, Yu, Shi, Mou, Kalra, Zhang, Sun, Wang (b24) 2018; 37
Graves, Schmidhuber (b38) 2005; 18
B. Yang, T. Mitchell, Leveraging knowledge bases in lstms for improving machine reading, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 1, 2017, pp. 1436–1446.
R. Socher, D. Chen, C.D. Manning, A. Ng, Reasoning with neural tensor networks for knowledge base completion, in: Advances in neural information processing systems, 2013, pp. 926–934.
Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, Rotate: Knowledge graph embedding by relational rotation in complex space, in: International Conference on Learning Representations, 2019.
Niu, Lin, Chen, Ke (b32) 2017; 76
Bordes, Glorot, Weston, Bengio (b48) 2014; 94
Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating on hyperplanes, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Vol. 14, 2014, pp. 1112–1119.
M. Martinez, M. Haurilet, Z. Al-Halah, M. Tapaswi, R. Stiefelhagen, Relaxed earth mover’s distances for chain-and tree-connected spaces and their use as a loss function in deep learning. arXiv preprint
Niannian, Dandan, Lejian (b53) 2019; 164
Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko (b9) 2013
Y. Mroueh, C.-L. Li, T. Sercu, A. Raj, Y. Cheng, Sobolev GAN, in: International Conference on Learning Representations, 2018.
B. An, B. Chen, X. Han, L. Sun, Accurate text-enhanced knowledge graph representation learning, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018, pp. 745–755.
G. Ji, K. Liu, S. He, J. Zhao, et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 3060–3066.
Lukovnikov, Fischer, Lehmann, Auer (b4) 2017
K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, in: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 2008, pp. 1247–1250.
10.1016/j.knosys.2019.105165_b21
10.1016/j.knosys.2019.105165_b20
10.1016/j.knosys.2019.105165_b26
10.1016/j.knosys.2019.105165_b29
10.1016/j.knosys.2019.105165_b28
10.1016/j.knosys.2019.105165_b22
10.1016/j.knosys.2019.105165_b25
10.1016/j.knosys.2019.105165_b7
10.1016/j.knosys.2019.105165_b6
10.1016/j.knosys.2019.105165_b5
Lehmann (10.1016/j.knosys.2019.105165_b2) 2015; 6
10.1016/j.knosys.2019.105165_b19
10.1016/j.knosys.2019.105165_b1
Wang (10.1016/j.knosys.2019.105165_b31) 2017; 99
Graves (10.1016/j.knosys.2019.105165_b38) 2005; 18
Miller (10.1016/j.knosys.2019.105165_b46) 1995; 38
10.1016/j.knosys.2019.105165_b52
10.1016/j.knosys.2019.105165_b51
10.1016/j.knosys.2019.105165_b10
10.1016/j.knosys.2019.105165_b54
10.1016/j.knosys.2019.105165_b50
Liu (10.1016/j.knosys.2019.105165_b34) 2016
10.1016/j.knosys.2019.105165_b16
10.1016/j.knosys.2019.105165_b18
Niannian (10.1016/j.knosys.2019.105165_b53) 2019; 164
10.1016/j.knosys.2019.105165_b17
Wang (10.1016/j.knosys.2019.105165_b27) 2015; 29
10.1016/j.knosys.2019.105165_b12
10.1016/j.knosys.2019.105165_b56
10.1016/j.knosys.2019.105165_b11
10.1016/j.knosys.2019.105165_b55
10.1016/j.knosys.2019.105165_b14
10.1016/j.knosys.2019.105165_b13
10.1016/j.knosys.2019.105165_b57
Lukovnikov (10.1016/j.knosys.2019.105165_b4) 2017
Zhou (10.1016/j.knosys.2019.105165_b23) 2018; 161
10.1016/j.knosys.2019.105165_b41
10.1016/j.knosys.2019.105165_b40
10.1016/j.knosys.2019.105165_b43
10.1016/j.knosys.2019.105165_b42
10.1016/j.knosys.2019.105165_b49
10.1016/j.knosys.2019.105165_b45
10.1016/j.knosys.2019.105165_b44
10.1016/j.knosys.2019.105165_b47
Goodfellow (10.1016/j.knosys.2019.105165_b15) 2014
Niu (10.1016/j.knosys.2019.105165_b32) 2017; 76
Yang (10.1016/j.knosys.2019.105165_b24) 2018; 37
10.1016/j.knosys.2019.105165_b30
Bordes (10.1016/j.knosys.2019.105165_b48) 2014; 94
Xu (10.1016/j.knosys.2019.105165_b36) 2019; 175
10.1016/j.knosys.2019.105165_b37
10.1016/j.knosys.2019.105165_b39
Bordes (10.1016/j.knosys.2019.105165_b9) 2013
10.1016/j.knosys.2019.105165_b8
10.1016/j.knosys.2019.105165_b35
Vrandečić (10.1016/j.knosys.2019.105165_b3) 2014; 57
Niu (10.1016/j.knosys.2019.105165_b33) 2017; 11
References_xml – reference: Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, Rotate: Knowledge graph embedding by relational rotation in complex space, in: International Conference on Learning Representations, 2019.
– reference: Y. Mroueh, C.-L. Li, T. Sercu, A. Raj, Y. Cheng, Sobolev GAN, in: International Conference on Learning Representations, 2018.
– reference: A. Neelakantan, B. Roth, A. McCallum, Compositional vector space models for knowledge base completion, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Vol. 1, 2015, pp. 156–166.
– reference: T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Advances in neural information processing systems, 2013, pp. 3111–3119.
– volume: 29
  start-page: 534
  year: 2015
  end-page: 564
  ident: b27
  article-title: Survey on distance metric learning and dimensionality reduction in data mining
  publication-title: Data Min. Knowl. Discov.
– reference: D. Tim, M. Pasquale, S. Pontus, R. Sebastian, Convolutional 2d knowledge graph embeddings, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018, pp. 1811–1818.
– reference: X. Yi, E. Walia, P. Babyn, Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification. arXiv preprint
– reference: Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings for knowledge graph completion, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, Vol. 15, 2015, pp. 2181–2187.
– reference: M. Martinez, M. Haurilet, Z. Al-Halah, M. Tapaswi, R. Stiefelhagen, Relaxed earth mover’s distances for chain-and tree-connected spaces and their use as a loss function in deep learning. arXiv preprint
– year: 2016
  ident: b34
  article-title: Probabilistic reasoning via deep learning: Neural association models
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: b15
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 161
  year: 2017
  end-page: 172
  ident: b33
  article-title: Fitting-based optimisation for image visual salient object detection
  publication-title: IET Comput. Vis.
– volume: 164
  start-page: 38
  year: 2019
  end-page: 44
  ident: b53
  article-title: Knowledge graph embedding with concepts
  publication-title: Knowl.-Based Syst.
– reference: R. Das, M. Zaheer, S. Reddy, A. McCallum, Question answering on knowledge bases and text using universal schema and memory networks, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 2, 2017, pp. 358–365.
– volume: 76
  start-page: 26329
  year: 2017
  end-page: 26353
  ident: b32
  article-title: Machine learning-based framework for saliency detection in distorted images
  publication-title: Multimedia Tools Appl.
– reference: H. Xiao, M. Huang, L. Meng, X. Zhu, Ssp: Semantic space projection for knowledge graph embedding with text descriptions, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 3104–3110.
– reference: B. Yang, S.W.-t. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for learning and inference in knowledge bases, in: Proceedings of the 2015 International Conference on Learning Representations, 2015.
– reference: G. Ji, K. Liu, S. He, J. Zhao, et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 3060–3066.
– volume: 175
  start-page: 50
  year: 2019
  end-page: 61
  ident: b36
  article-title: Predicting pipeline leakage in petrochemical system through gan and lstm
  publication-title: Knowl.-Based Syst.
– reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 6000–6010.
– reference: Y. Jia, Y. Wang, H. Lin, X. Jin, X. Cheng, Locally adaptive translation for knowledge graph embedding, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 992–998.
– reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein gans, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 5769–5779.
– reference: J. Lei Ba, J.R. Kiros, G.E. Hinton, Layer normalization. arXiv preprint
– reference: Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating on hyperplanes, in: Proceedings of the 28th AAAI Conference on Artificial Intelligence, Vol. 14, 2014, pp. 1112–1119.
– reference: G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge graph embedding via dynamic mapping matrix, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015, pp. 687–696.
– reference: B. Yang, T. Mitchell, Leveraging knowledge bases in lstms for improving machine reading, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 1, 2017, pp. 1436–1446.
– reference: L. Yu, W. Zhang, J. Wang, Y. Yu, Seqgan: Sequence generative adversarial nets with policy gradient, in: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017.
– volume: 94
  start-page: 233
  year: 2014
  end-page: 259
  ident: b48
  article-title: A semantic matching energy function for learning with multi-relational data
  publication-title: Mach. Learn.
– reference: S. He, K. Liu, G. Ji, J. Zhao, Learning to represent knowledge graphs with gaussian embedding, in: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015, pp. 623–632.
– reference: P. Wang, S. Li, R. Pan, Incorporating gan for negative sampling in knowledge representation learning, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.
– reference: D.Q. Nguyen, T.D. Nguyen, D.Q. Nguyen, D. Phung, A novel embedding model for knowledge base completion based on convolutional neural network, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, Vol. 2, 2018, pp. 327–333.
– start-page: 2787
  year: 2013
  end-page: 2795
  ident: b9
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Advances in Neural Information Processing Systems
– reference: M. Nickel, V. Tresp, H.-P. Kriegel, A three-way model for collective learning on multi-relational data, in: Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011, pp. 809–816.
– reference: R. Socher, D. Chen, C.D. Manning, A. Ng, Reasoning with neural tensor networks for knowledge base completion, in: Advances in neural information processing systems, 2013, pp. 926–934.
– reference: D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. arXiv preprint
– reference: T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, G. Bouchard, Complex embeddings for simple link prediction, in: International Conference on Machine Learning, 2016, pp. 2071–2080.
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: b38
  article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures
  publication-title: Neural Netw.
– volume: 99
  start-page: 1454
  year: 2017
  end-page: 1466
  ident: b31
  article-title: Sparse multi-graph embedding for multimodal feature representation
  publication-title: IEEE Trans. Multimed.
– reference: B. An, B. Chen, X. Han, L. Sun, Accurate text-enhanced knowledge graph representation learning, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018, pp. 745–755.
– reference: Z. Wang, J. Li, Text-enhanced representation learning for knowledge graph, in: Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 1293–1299.
– volume: 6
  start-page: 167
  year: 2015
  end-page: 195
  ident: b2
  article-title: Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia
  publication-title: Semantic Web
– reference: M.G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, R. Munos, The cramer distance as a solution to biased wasserstein gradients, in: International Conference on Learning Representations, 2018.
– volume: 161
  start-page: 415
  year: 2018
  end-page: 424
  ident: b23
  article-title: Lp-wgan: Using lp-norm normalization to stabilize wasserstein generative adversarial networks
  publication-title: Knowl.-Based Syst.
– start-page: 1211
  year: 2017
  end-page: 1220
  ident: b4
  article-title: Neural network-based question answering over knowledge graphs on word and character level
  publication-title: Proceedings of the 26th International Conference on World Wide Web
– reference: S. Ahn, H. Choi, T. Pärnamaa, Y. Bengio, A neural knowledge language model. arXiv preprint
– reference: .
– volume: 37
  start-page: 1348
  year: 2018
  end-page: 1357
  ident: b24
  article-title: Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss
  publication-title: IEEE Trans. Med. Imaging
– reference: R. Xie, Z. Liu, J. Jia, H. Luan, M. Sun, Representation learning of knowledge graphs with entity descriptions, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 2659–2665.
– reference: G. Ji, K. Liu, S. He, J. Zhao, Knowledge graph completion with adaptive sparse transfer matrix, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016, pp. 985–991.
– volume: 38
  start-page: 39
  year: 1995
  end-page: 41
  ident: b46
  article-title: Wordnet: a lexical database for english
  publication-title: Commun. ACM
– reference: L. Cai, W.Y. Wang, Kbgan: Adversarial learning for knowledge graph embeddings, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 2018, pp. 1470–1480.
– reference: M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: Proceedings of the 34st International Conference on Machine Learning, 2017, pp. 214–223.
– reference: K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, in: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 2008, pp. 1247–1250.
– volume: 57
  start-page: 78
  year: 2014
  end-page: 85
  ident: b3
  article-title: Wikidata: a free collaborative knowledgebase
  publication-title: Commun. ACM
– reference: F. Zhou, S. Yang, H. Fujita, D. Chen, C. Wen, Deep learning fault diagnosis method based on global optimization gan for unbalanced data, Knowl.-Based Syst.
– reference: A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint
– reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 448–456.
– reference: R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, in: Proceedings of the 12th International Conference on Neural Information Processing Systems, 1999, pp. 1057–1063.
– ident: 10.1016/j.knosys.2019.105165_b11
  doi: 10.1609/aaai.v29i1.9491
– volume: 11
  start-page: 161
  year: 2017
  ident: 10.1016/j.knosys.2019.105165_b33
  article-title: Fitting-based optimisation for image visual salient object detection
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2016.0027
– volume: 76
  start-page: 26329
  year: 2017
  ident: 10.1016/j.knosys.2019.105165_b32
  article-title: Machine learning-based framework for saliency detection in distorted images
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-4128-1
– volume: 29
  start-page: 534
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2019.105165_b27
  article-title: Survey on distance metric learning and dimensionality reduction in data mining
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-014-0356-z
– ident: 10.1016/j.knosys.2019.105165_b40
– start-page: 2787
  year: 2013
  ident: 10.1016/j.knosys.2019.105165_b9
  article-title: Translating embeddings for modeling multi-relational data
– ident: 10.1016/j.knosys.2019.105165_b44
– ident: 10.1016/j.knosys.2019.105165_b14
  doi: 10.1609/aaai.v32i1.11573
– ident: 10.1016/j.knosys.2019.105165_b30
– ident: 10.1016/j.knosys.2019.105165_b5
  doi: 10.18653/v1/P17-2057
– ident: 10.1016/j.knosys.2019.105165_b19
– ident: 10.1016/j.knosys.2019.105165_b28
  doi: 10.1145/2806416.2806502
– volume: 37
  start-page: 1348
  issue: 6
  year: 2018
  ident: 10.1016/j.knosys.2019.105165_b24
  article-title: Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2827462
– volume: 94
  start-page: 233
  issue: 2
  year: 2014
  ident: 10.1016/j.knosys.2019.105165_b48
  article-title: A semantic matching energy function for learning with multi-relational data
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5363-6
– ident: 10.1016/j.knosys.2019.105165_b57
– ident: 10.1016/j.knosys.2019.105165_b18
  doi: 10.18653/v1/N18-1133
– ident: 10.1016/j.knosys.2019.105165_b6
  doi: 10.18653/v1/P17-1132
– ident: 10.1016/j.knosys.2019.105165_b35
– ident: 10.1016/j.knosys.2019.105165_b17
  doi: 10.1609/aaai.v32i1.11536
– ident: 10.1016/j.knosys.2019.105165_b41
– ident: 10.1016/j.knosys.2019.105165_b29
– ident: 10.1016/j.knosys.2019.105165_b45
– ident: 10.1016/j.knosys.2019.105165_b47
  doi: 10.1609/aaai.v30i1.10329
– ident: 10.1016/j.knosys.2019.105165_b25
– ident: 10.1016/j.knosys.2019.105165_b52
  doi: 10.18653/v1/N18-1068
– volume: 6
  start-page: 167
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2019.105165_b2
  article-title: Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia
  publication-title: Semantic Web
  doi: 10.3233/SW-140134
– start-page: 2672
  year: 2014
  ident: 10.1016/j.knosys.2019.105165_b15
  article-title: Generative adversarial nets
– ident: 10.1016/j.knosys.2019.105165_b56
– ident: 10.1016/j.knosys.2019.105165_b39
– ident: 10.1016/j.knosys.2019.105165_b20
  doi: 10.1609/aaai.v30i1.10089
– ident: 10.1016/j.knosys.2019.105165_b13
  doi: 10.18653/v1/N18-2053
– start-page: 1211
  year: 2017
  ident: 10.1016/j.knosys.2019.105165_b4
  article-title: Neural network-based question answering over knowledge graphs on word and character level
– ident: 10.1016/j.knosys.2019.105165_b8
  doi: 10.1609/aaai.v31i1.10953
– year: 2016
  ident: 10.1016/j.knosys.2019.105165_b34
– ident: 10.1016/j.knosys.2019.105165_b51
  doi: 10.1609/aaai.v31i1.10952
– ident: 10.1016/j.knosys.2019.105165_b10
  doi: 10.1609/aaai.v28i1.8870
– ident: 10.1016/j.knosys.2019.105165_b49
– ident: 10.1016/j.knosys.2019.105165_b22
– ident: 10.1016/j.knosys.2019.105165_b1
  doi: 10.1145/1376616.1376746
– ident: 10.1016/j.knosys.2019.105165_b55
– volume: 99
  start-page: 1454
  year: 2017
  ident: 10.1016/j.knosys.2019.105165_b31
  article-title: Sparse multi-graph embedding for multimodal feature representation
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2663324
– volume: 164
  start-page: 38
  year: 2019
  ident: 10.1016/j.knosys.2019.105165_b53
  article-title: Knowledge graph embedding with concepts
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.008
– volume: 161
  start-page: 415
  year: 2018
  ident: 10.1016/j.knosys.2019.105165_b23
  article-title: Lp-wgan: Using lp-norm normalization to stabilize wasserstein generative adversarial networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.004
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  ident: 10.1016/j.knosys.2019.105165_b38
  article-title: Framewise phoneme classification with bidirectional lstm and other neural network architectures
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– ident: 10.1016/j.knosys.2019.105165_b37
– ident: 10.1016/j.knosys.2019.105165_b16
– ident: 10.1016/j.knosys.2019.105165_b43
– ident: 10.1016/j.knosys.2019.105165_b7
– ident: 10.1016/j.knosys.2019.105165_b21
  doi: 10.1609/aaai.v30i1.10091
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 10.1016/j.knosys.2019.105165_b46
  article-title: Wordnet: a lexical database for english
  publication-title: Commun. ACM
  doi: 10.1145/219717.219748
– ident: 10.1016/j.knosys.2019.105165_b50
– volume: 175
  start-page: 50
  year: 2019
  ident: 10.1016/j.knosys.2019.105165_b36
  article-title: Predicting pipeline leakage in petrochemical system through gan and lstm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.03.013
– ident: 10.1016/j.knosys.2019.105165_b42
  doi: 10.1609/aaai.v31i1.10804
– volume: 57
  start-page: 78
  issue: 10
  year: 2014
  ident: 10.1016/j.knosys.2019.105165_b3
  article-title: Wikidata: a free collaborative knowledgebase
  publication-title: Commun. ACM
  doi: 10.1145/2629489
– ident: 10.1016/j.knosys.2019.105165_b26
  doi: 10.3115/v1/P15-1067
– ident: 10.1016/j.knosys.2019.105165_b54
– ident: 10.1016/j.knosys.2019.105165_b12
  doi: 10.3115/v1/P15-1016
SSID ssj0002218
Score 2.4690404
Snippet Knowledge graph embedding aims to project entities and relations into low-dimensional and continuous semantic feature spaces, which has captured more attention...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105165
SubjectTerms Embedding
Generative adversarial networks
Graph representations
Graphical representations
Knowledge graph embedding
Knowledge representation
Performance enhancement
Semantics
Wasserstein distance
Weak supervision information
Title Generative adversarial networks based on Wasserstein distance for knowledge graph embeddings
URI https://dx.doi.org/10.1016/j.knosys.2019.105165
https://www.proquest.com/docview/2376944251
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YHVNA83TsaqoiogukBFB6TIr0jlkVa0DCz8du4cBwRCqsSSITlb0fl8D_vuO0LOlFYisj3BZFgUjNuAs9RkhokCsUx4IkONxck342Q04VfT3rRBBnUtDKZVet1f6XSnrf2brudmdzGbdW_BOQB5xXuwGEG8EfET0etAps8_vtM8osid8SExQ-q6fM7leD2V8-U7gnaHGTa8DdHE_G2efilqZ32GO2TLu420X_3ZLmnYco9s1y0ZqN-h--ShgpFGHUYl9lpeSpQwWlbZ3kuKVsvQeUnvpSu0xGaX1KATCeMpeLD065SNOjBral-UNe6G6oBMhhd3gxHzDRSYhq25YhA7uAgklsKGRgYS7HUBEZixKTfKpJYLlak0TIpeJILCJjCdVDoKuNVxoFV8SJrlvLRHhOpEZ3FqI3gqrhXPeGG4TYSW4M8EKmuRuOZbrj26ODa5eM7rNLLHvOJ2jtzOK263CPsatajQNdbQi3pJ8h9SkoMBWDOyXa9g7ncpfAftmnHQWuHxvyc-IZsRhuBY5Z61SXP1-mZPwU9ZqY4TxA7Z6F9ej8afAbPqWQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6JQwAOr1TzcOBkRAgX6WADBgGT5FYlXWtEy8O_xJU4lEBISS4bEZ0Xn8z3su-8ATpVWPLIDTmVYFJTZgNHUZIbyArFMWCJDjcXJ40mS37Hrh8FDC86bWhhMq_S6v9bplbb2b_qem_3Z01P_xjkHTl7xHixGEO94BTqITsXa0Dm7GuaTpUKOouqYD8dTJGgq6Ko0r5dyOv9E3O4ww563IVqZ3y3UD11dGaDLTVj3niM5q39uC1q23IaNpisD8Zt0Bx5rJGlUY0Riu-W5RCEjZZ3wPSdouAyZluReVrWW2O-SGPQjHT1xTixZHrSRCs-a2DdlTXVJtQt3lxe35zn1PRSodrtzQV34UAUhseQ2NDKQzmQXLggzNmVGmdQyrjKVhkkxiHhQ2MRNJ5WOAmZ1HGgV70G7nJZ2H4hOdBanNnJPxbRiGSsMswnX0rk0gcq6EDd8E9oDjGOfi1fRZJI9i5rbArktam53gS6pZjXAxh_jebMk4pugCGcD_qDsNSso_EZ1352CzZhTXOHBvyc-gdX8djwSo6vJ8BDWIozIseg960F78f5hj5zbslDHXiy_AAjH7Qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+adversarial+networks+based+on+Wasserstein+distance+for+knowledge+graph+embeddings&rft.jtitle=Knowledge-based+systems&rft.au=Dai%2C+Yuanfei&rft.au=Wang%2C+Shiping&rft.au=Chen%2C+Xing&rft.au=Xu%2C+Chaoyang&rft.date=2020-02-29&rft.issn=0950-7051&rft.volume=190&rft.spage=105165&rft_id=info:doi/10.1016%2Fj.knosys.2019.105165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2019_105165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon