Direct Numerical Simulation of Thermal Turbulent Boundary Layer Flow over Multiple V-Shaped Ribs at Different Angles

Direct numerical simulations (DNSs) of spatially developing thermal turbulent boundary layers over angle-ribbed walls were performed. Four rib angles (γ=90°,60°,45° and 30°) were examined. It was found that the 45° ribs produced the highest drag coefficient, whereas the 30° ribs most improved the St...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 16; no. 9; p. 3831
Main Authors Ji, Feng, Ding, Jing, Lu, Jianfeng, Wang, Weilong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct numerical simulations (DNSs) of spatially developing thermal turbulent boundary layers over angle-ribbed walls were performed. Four rib angles (γ=90°,60°,45° and 30°) were examined. It was found that the 45° ribs produced the highest drag coefficient, whereas the 30° ribs most improved the Stanton number. In comparison to the transverse rib case, streamwise velocity and dimensionless temperature in the V-shaped cases significantly increased in the near wall region and were attenuated by secondary flows further away from the ribs, which suggested a break of the outer-layer similarity in the scenario presented. The surprising improvement of heat transfer performance in the 30° rib case was mainly due to its large dispersive heat flux, while dispersive stress reached its peak value in the 45° case, emphasizing the dissimilarity in transporting momentum and heat by turbulence over a ribbed surface. Additionally, by calculating the global and local Reynolds analogy factors, we concluded that the enhancement in heat transfer efficiency was attributed to an increasing Reynolds analogy factor in the intermediate region as the rib angle decreased.
AbstractList Direct numerical simulations (DNSs) of spatially developing thermal turbulent boundary layers over angle-ribbed walls were performed. Four rib angles (γ=90°,60°,45° and 30°) were examined. It was found that the 45° ribs produced the highest drag coefficient, whereas the 30° ribs most improved the Stanton number. In comparison to the transverse rib case, streamwise velocity and dimensionless temperature in the V-shaped cases significantly increased in the near wall region and were attenuated by secondary flows further away from the ribs, which suggested a break of the outer-layer similarity in the scenario presented. The surprising improvement of heat transfer performance in the 30° rib case was mainly due to its large dispersive heat flux, while dispersive stress reached its peak value in the 45° case, emphasizing the dissimilarity in transporting momentum and heat by turbulence over a ribbed surface. Additionally, by calculating the global and local Reynolds analogy factors, we concluded that the enhancement in heat transfer efficiency was attributed to an increasing Reynolds analogy factor in the intermediate region as the rib angle decreased.
Direct numerical simulations (DNSs) of spatially developing thermal turbulent boundary layers over angle-ribbed walls were performed. Four rib angles (γ=90[sup.°],60[sup.°],45[sup.°] and 30[sup.°]) were examined. It was found that the 45[sup.°] ribs produced the highest drag coefficient, whereas the 30[sup.°] ribs most improved the Stanton number. In comparison to the transverse rib case, streamwise velocity and dimensionless temperature in the V-shaped cases significantly increased in the near wall region and were attenuated by secondary flows further away from the ribs, which suggested a break of the outer-layer similarity in the scenario presented. The surprising improvement of heat transfer performance in the 30[sup.°] rib case was mainly due to its large dispersive heat flux, while dispersive stress reached its peak value in the 45[sup.°] case, emphasizing the dissimilarity in transporting momentum and heat by turbulence over a ribbed surface. Additionally, by calculating the global and local Reynolds analogy factors, we concluded that the enhancement in heat transfer efficiency was attributed to an increasing Reynolds analogy factor in the intermediate region as the rib angle decreased.
Audience Academic
Author Ding, Jing
Lu, Jianfeng
Wang, Weilong
Ji, Feng
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-6097-614X
  surname: Ji
  fullname: Ji, Feng
– sequence: 2
  givenname: Jing
  surname: Ding
  fullname: Ding, Jing
– sequence: 3
  givenname: Jianfeng
  orcidid: 0000-0002-6839-0442
  surname: Lu
  fullname: Lu, Jianfeng
– sequence: 4
  givenname: Weilong
  surname: Wang
  fullname: Wang, Weilong
BookMark eNpNUV1rFDEUDVLBWvviLwj4JkzNx-wkeVxbawurgl19HfJxs82SSdZMRum_b-qKevNwD4d7Tg6cl-gk5QQIvabkgnNF3kGiA1FccvoMnVKlho4SwU_-wy_Q-TzvSRvOKef8FNWrUMBW_HmZoASrI74L0xJ1DTnh7PH2HsrU2O1SzBIhVfw-L8np8oA3-gEKvo75F84_G_q0xBoOEfD37u5eH8Dhr8HMWFd8FbyH8iRep12E-RV67nWc4fzPPkPfrj9sL2-6zZePt5frTWd7QmpHBVDiuFCCGO619kwo51eDFj0zgplertRKeiaNATlwtWJW9mxwdgAhrZT8DN0efV3W-_FQwtRyj1mH8TeRy27UpQYbYRwYlY43M-B9b137gxnjTAOMeEFZ83pz9DqU_GOBuY77vJTU4o9MUtYPlLC-XV0cr3a6mYbkcy3atudgCrbV5UPj16JXRAkuSBO8PQpsyfNcwP-NScn41Or4r1X-COozlPo
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2024_109162
Cites_doi 10.1016/j.ijheatfluidflow.2004.02.011
10.1017/jfm.2018.231
10.1063/1.4864105
10.1017/jfm.2015.344
10.1017/jfm.2018.578
10.1017/jfm.2014.608
10.1063/5.0024038
10.1017/jfm.2021.1015
10.1017/jfm.2018.541
10.1017/jfm.2022.295
10.1007/BF00128057
10.1017/jfm.2016.12
10.1016/j.softx.2020.100550
10.1016/j.ijheatfluidflow.2021.108782
10.1017/S0022112010005082
10.1017/jfm.2019.1014
10.1017/jfm.2021.310
10.1017/jfm.2022.880
10.1063/1.4832377
10.1063/1.4985715
10.1016/j.ijheatfluidflow.2015.07.008
10.1016/j.ijheatfluidflow.2019.108518
10.1063/1.1516779
10.1017/jfm.2022.269
10.1017/S0022112003005500
10.1063/5.0080867
10.1017/jfm.2012.324
10.1016/j.ijheatfluidflow.2015.06.006
10.1103/PhysRevFluids.3.014608
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16093831
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_6218d38f2e344cd6a72bbdbd6a20f712
A749097370
10_3390_en16093831
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IAO
ITC
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
BGLVJ
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-17e10d37970b3faaf279df56a742b72b485958f28bbe863952c8426dc6e78c883
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Thu Jul 04 21:10:25 EDT 2024
Fri Sep 13 06:53:39 EDT 2024
Fri Feb 02 04:28:28 EST 2024
Fri Aug 23 01:30:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-17e10d37970b3faaf279df56a742b72b485958f28bbe863952c8426dc6e78c883
ORCID 0000-0002-6839-0442
0000-0002-6097-614X
OpenAccessLink https://www.proquest.com/docview/2812461024/abstract/?pq-origsite=%requestingapplication%
PQID 2812461024
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_6218d38f2e344cd6a72bbdbd6a20f712
proquest_journals_2812461024
gale_infotracacademiconefile_A749097370
crossref_primary_10_3390_en16093831
PublicationCentury 2000
PublicationDate 2023-04-29
PublicationDateYYYYMMDD 2023-04-29
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-29
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nadeem (ref_4) 2015; 56
Wang (ref_2) 2021; 89
Guo (ref_16) 2022; 34
Nagano (ref_28) 2004; 25
Wei (ref_30) 2018; 854
Fang (ref_15) 2017; 29
Leonardi (ref_17) 2015; 776
Rouhi (ref_29) 2022; 951
Hwang (ref_10) 2018; 3
Leonardi (ref_3) 2003; 491
Modesti (ref_1) 2021; 917
Li (ref_23) 2018; 845
Renard (ref_22) 2016; 790
Stroh (ref_18) 2020; 81
Xu (ref_20) 2022; 941
Willingham (ref_12) 2014; 26
Lee (ref_5) 2011; 669
Kuwata (ref_6) 2020; 32
Christensen (ref_9) 2013; 25
Fukagata (ref_19) 2002; 14
Fan (ref_21) 2022; 932
Schlatter (ref_27) 2012; 710
Wang (ref_13) 2022; 932
Jelly (ref_7) 2018; 852
ref_8
Raupach (ref_25) 1982; 22
Yuan (ref_26) 2014; 760
Fang (ref_14) 2015; 56
Medjnoun (ref_11) 2020; 886
Bartholomew (ref_24) 2020; 12
References_xml – volume: 25
  start-page: 393
  year: 2004
  ident: ref_28
  article-title: DNS of Velocity and Thermal Fields in Turbulent Channel Flow with Transverse-Rib Roughness
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2004.02.011
  contributor:
    fullname: Nagano
– volume: 845
  start-page: 417
  year: 2018
  ident: ref_23
  article-title: Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Spatially Developing Turbulent Boundary Layer Laden with Particles
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.231
  contributor:
    fullname: Li
– volume: 26
  start-page: 025111
  year: 2014
  ident: ref_12
  article-title: Turbulent Boundary Layer Flow over Transverse Aerodynamic Roughness Transitions: Induced Mixing and Flow Characterization
  publication-title: Phys. Fluids
  doi: 10.1063/1.4864105
  contributor:
    fullname: Willingham
– volume: 776
  start-page: 512
  year: 2015
  ident: ref_17
  article-title: Heat Transfer in a Turbulent Channel Flow with Square Bars or Circular Rods on One Wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.344
  contributor:
    fullname: Leonardi
– volume: 854
  start-page: 449
  year: 2018
  ident: ref_30
  article-title: Integral Properties of Turbulent-Kinetic-Energy Production and Dissipation in Turbulent Wall-Bounded Flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.578
  contributor:
    fullname: Wei
– volume: 760
  start-page: R1
  year: 2014
  ident: ref_26
  article-title: Roughness Effects on the Reynolds Stress Budgets in Near-Wall Turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.608
  contributor:
    fullname: Yuan
– volume: 32
  start-page: 105113
  year: 2020
  ident: ref_6
  article-title: Direct Numerical Simulation on the Effects of Surface Slope and Skewness on Rough-Wall Turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/5.0024038
  contributor:
    fullname: Kuwata
– volume: 932
  start-page: A31
  year: 2022
  ident: ref_21
  article-title: Decomposition of the Mean Friction Drag on an NACA4412 Airfoil under Uniform Blowing/Suction
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.1015
  contributor:
    fullname: Fan
– volume: 852
  start-page: 710
  year: 2018
  ident: ref_7
  article-title: Reynolds and Dispersive Shear Stress Contributions above Highly Skewed Roughness
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.541
  contributor:
    fullname: Jelly
– volume: 932
  start-page: A48
  year: 2022
  ident: ref_13
  article-title: Direct Numerical Simulation of Turbulent Duct Flow with Inclined or V-shaped Ribs Mounted on One Wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.295
  contributor:
    fullname: Wang
– volume: 22
  start-page: 79
  year: 1982
  ident: ref_25
  article-title: Averaging Procedures for Flow within Vegetation Canopies
  publication-title: Boundary-Layer Meteorol.
  doi: 10.1007/BF00128057
  contributor:
    fullname: Raupach
– volume: 790
  start-page: 339
  year: 2016
  ident: ref_22
  article-title: A Theoretical Decomposition of Mean Skin Friction Generation into Physical Phenomena across the Boundary Layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.12
  contributor:
    fullname: Renard
– volume: 12
  start-page: 100550
  year: 2020
  ident: ref_24
  article-title: Xcompact3D: An Open-Source Framework for Solving Turbulence Problems on a Cartesian Mesh
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100550
  contributor:
    fullname: Bartholomew
– volume: 89
  start-page: 108782
  year: 2021
  ident: ref_2
  article-title: Direct Numerical Simulation of Turbulent Heat Transfer in a Square Duct with Transverse Ribs Mounted on One Wall
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2021.108782
  contributor:
    fullname: Wang
– volume: 669
  start-page: 397
  year: 2011
  ident: ref_5
  article-title: Direct Numerical Simulation of the Turbulent Boundary Layer over a Cube-Roughened Wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010005082
  contributor:
    fullname: Lee
– volume: 886
  start-page: A31
  year: 2020
  ident: ref_11
  article-title: Effects of Heterogeneous Surface Geometry on Secondary Flows in Turbulent Boundary Layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.1014
  contributor:
    fullname: Medjnoun
– volume: 917
  start-page: A55
  year: 2021
  ident: ref_1
  article-title: Dispersive Stresses in Turbulent Flow over Riblets
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.310
  contributor:
    fullname: Modesti
– ident: ref_8
– volume: 951
  start-page: A45
  year: 2022
  ident: ref_29
  article-title: Riblet-Generated Flow Mechanisms That Lead to Local Breaking of Reynolds Analogy
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.880
  contributor:
    fullname: Rouhi
– volume: 25
  start-page: 115109
  year: 2013
  ident: ref_9
  article-title: Wall-Parallel Stereo Particle-Image Velocimetry Measurements in the Roughness Sublayer of Turbulent Flow Overlying Highly Irregular Roughness
  publication-title: Phys. Fluids
  doi: 10.1063/1.4832377
  contributor:
    fullname: Christensen
– volume: 29
  start-page: 065110
  year: 2017
  ident: ref_15
  article-title: Large-Eddy Simulation of Turbulent Flow and Structures in a Square Duct Roughened with Perpendicular and V-shaped Ribs
  publication-title: Phys. Fluids
  doi: 10.1063/1.4985715
  contributor:
    fullname: Fang
– volume: 56
  start-page: 182
  year: 2015
  ident: ref_14
  article-title: Highly-Disturbed Turbulent Flow in a Square Channel with V-shaped Ribs on One Wall
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2015.07.008
  contributor:
    fullname: Fang
– volume: 81
  start-page: 108518
  year: 2020
  ident: ref_18
  article-title: Secondary Flow and Heat Transfer in Turbulent Flow over Streamwise Ridges
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2019.108518
  contributor:
    fullname: Stroh
– volume: 14
  start-page: L73
  year: 2002
  ident: ref_19
  article-title: Contribution of Reynolds Stress Distribution to the Skin Friction in Wall-Bounded Flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.1516779
  contributor:
    fullname: Fukagata
– volume: 941
  start-page: A4
  year: 2022
  ident: ref_20
  article-title: Skin-Friction and Heat-Transfer Decompositions in Hypersonic Transitional and Turbulent Boundary Layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.269
  contributor:
    fullname: Xu
– volume: 491
  start-page: 229
  year: 2003
  ident: ref_3
  article-title: Direct Numerical Simulations of Turbulent Channel Flow with Transverse Square Bars on One Wall
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003005500
  contributor:
    fullname: Leonardi
– volume: 34
  start-page: 025115
  year: 2022
  ident: ref_16
  article-title: Energy-Based Drag Decomposition Analyses for a Turbulent Channel Flow Developing over Convergent–Divergent Riblets
  publication-title: Phys. Fluids
  doi: 10.1063/5.0080867
  contributor:
    fullname: Guo
– volume: 710
  start-page: 5
  year: 2012
  ident: ref_27
  article-title: Turbulent Boundary Layers at Moderate Reynolds Numbers: Inflow Length and Tripping Effects
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.324
  contributor:
    fullname: Schlatter
– volume: 56
  start-page: 16
  year: 2015
  ident: ref_4
  article-title: Turbulent Boundary Layers over Sparsely-Spaced Rod-Roughened Walls
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2015.06.006
  contributor:
    fullname: Nadeem
– volume: 3
  start-page: 014608
  year: 2018
  ident: ref_10
  article-title: Secondary Flows in Turbulent Boundary Layers over Longitudinal Surface Roughness
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.014608
  contributor:
    fullname: Hwang
SSID ssj0000331333
Score 2.3782957
Snippet Direct numerical simulations (DNSs) of spatially developing thermal turbulent boundary layers over angle-ribbed walls were performed. Four rib angles...
Direct numerical simulations (DNSs) of spatially developing thermal turbulent boundary layers over angle-ribbed walls were performed. Four rib angles (...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 3831
SubjectTerms Boundary layer flow
Boundary layers
Computer industry
Decomposition
Direct numerical simulation
Dispersion
Drag coefficients
Friction
Heat flux
Heat transfer
Influence
Investigations
Mathematical models
Numerical analysis
Reynolds analogy
Reynolds number
ribbed surface
Secondary flow
Simulation
Simulation methods
Stanton number
Thermal boundary layer
Thermal simulation
thermal turbulent boundary layer
Turbulence
Turbulent boundary layer
Turbulent flow
Velocity
Vortices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA7SU3sQaxXXtvJAwdPQmSSTH8etdinS9mBb6S0kk0QL29myO4v43_e9mWldD-LF2xByeHzfvF8k-R5jH2Sm55YqFbYucyENj4XBRFBElbBlDib5Xnj-_EKdXssvN_XNxqgvuhM2yAMPwB0pzEFRmMyTkLKJymseQgz4wcusqyH6VvVGM9XHYCGw-RKDHqnAvv4otZXC7t2I6o8M1Av1_y0c9zlm9oI9H4tDmA5G7bJnqX3JdjYkA_dYN8QouFgPRy1zuLy9G0dwwSID0o6hdg5Xa4SLMgoc94OTlr_gzGN5DbP54ifQvU04H-8Swrfi8oe_TxG-3oYV-A4-j1NTOpi23-dp9Ypdz06uPp0W4-SEokGf7IpKp6qMQltdBpG9z1zbmGsET_KAAEpSNUNMTQjJYI1S84YYio1K2jTGiNdsq1206Q0DlVS2kXTJcIuqrcnSl8JGi3ExN2U9Ye8f0XT3g0CGw8aCMHe_MZ-wYwL6aQeJWvcLSLUbqXb_onrCPhJNjlyvW_rGjy8I0FASsXJTLS2pD-lywg4emXSjT64cp1oGq0Uu3_4Pa_bZNo2ep5Mlbg_YVrdcp0MsULrwrv8XHwCHhuMp
  priority: 102
  providerName: Directory of Open Access Journals
Title Direct Numerical Simulation of Thermal Turbulent Boundary Layer Flow over Multiple V-Shaped Ribs at Different Angles
URI https://www.proquest.com/docview/2812461024/abstract/
https://doaj.org/article/6218d38f2e344cd6a72bbdbd6a20f712
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELb2cYHDiqcoLJUlkDhFTWzHcU6ohe1WiK3QPlBvlh3buyuVpNumQvx7ZhJ3Fw5wiaLEB2ve4xl_Q8h7EfC6pfRJmachEYq5RIEjSJz0kDJb5U0HPH82l7Mr8WWRL_bIbHcXBtsqdzaxM9SuqfCMfMTQE4GvZ2JkLJ4CVO3o4-ouwflRWGeNwzT2ySHLBBZsDycn82_n9-ctKeeQjvEeoZRDpj_ydSYhn1c8-8snddD9_zLQndeZPiFHMVyk456_T8mer5-Rx3-ACD4nbW-16HzbF1-W9OL2RxzKRZtAQRDA-C7p5RYIiD6GTrpRSutf9KuBgJtOl81Pip2c9Cx2F9LvycWNWXlHz2_thpqWfo5zVFo6rq-XfvOCXE1PLj_NkjhLIalAS9skK3yWOl6URWp5MCawonQhlwZSY1swKxDnTAWmrPUKopacVcgzV0lfqEop_pIc1E3tXxEqvQylQ6QyWCLzUgVhUl66EixlqNJ8QN7tqKlXPWSGhlQDaa4faD4gEyT0_QqEue4-NOtrHbVGSwhAHIdteS5E5WC3zFpn4YWlocjYgHxANmlURhQJE-8UwEYR1kqPC1EiHlGRDsjxjpM6aulGP8jU6___fkMe4Zh5rCKx8pgctOutfwvBSGuHZF9NT4dR2oZdSg_P00X2G3TF4hs
link.rule.ids 315,786,790,870,2115,12792,21416,27957,27958,33408,33779,43635,43840,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELVgOQAHxKcoLGAJJE7RJrbj2CfUBUqBtge2i_Zm2bG9rFSS0qZC_HtmEncXDnCLkhysGc-8GX-8R8grEfG6pQyZLvOYCcV8pgAIMi8DtMxOBdsTz88XcnoqPp2VZ2nBbZuOVe5zYp-ofVvjGvkRQyQCrGfizfpHhqpRuLuaJDSukxuCA3TiTfHJh8s1lpxzaMH4wErKobs_Ck0hoYdXvPgLh3q6_n8l5R5pJnfJnVQi0vHg03vkWmjuk9t_EAc-IN2QqehiN2y4rOjJxfckxEXbSMH5kHBXdLkDoyGu0ONePmnzi84sFNl0smp_Ujy9SefpRCH9mp18s-vg6ZcLt6W2o--SdkpHx835KmwfktPJ--XbaZb0E7IaIrPLiioUueeVrnLHo7WRVdrHUlpoh13FnEBuMxWZci4oqFRKVqOffC1DpWql-CNy0LRNeEyoDDJqj-xk8IsstYrC5lx7Ddkx1nk5Ii_31jTrgSbDQHuBNjdXNh-RYzT05R9Ibd2_aDfnJkWKkVB0eA7DClyI2sNomXPewQPLY1WwEXmNbjIYgN3G1jbdI4CBIpWVGVdCIwdRlY_I4d6TJkXm1lzNoyf___yC3Jwu5zMz-7j4_JTcQpl53EVi-pAcdJtdeAbFSOee9zPuN8Wm3Rw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgkxAcEJ9axwBLIHGKmtqO7ZxQy1YN2KppH2g3y47tMalLSpsK8d_zXuJucIBblPhgve8XP_9-hLwXEa9bypCVRR4zoZnPNCSCzMsALbPTwXbA88czeXghvlwWl2n-aZXGKjcxsQvUvqnwH_mQYSaCXM_EMKaxiJP96cfFjwwZpPCkNdFp3CfbSsgCLHx7cjA7Ob3945JzDg0Z7zFKOfT6w1CPJHT0mo_-ykodeP-_QnSXd6ZPyONUMNJxr-Gn5F6on5FHf8AIPidtH7fobN0fv8zp2fVNouWiTaRgChB-5_R8DSLELEMnHZnS8hc9slBy0-m8-UlxlpMep_lC-i07-24XwdPTa7eitqX7iUmlpeP6ah5WL8jF9OD802GW2BSyCvy0zUYqjHLPValyx6O1kanSx0JaaI6dYk4g0pmOTDsXNNQtBatQa76SQelKa_6SbNVNHXYIlUHG0iNWGSwBUesobM5LX0KsjFVeDMi7jTTNogfNMNBsoMzNncwHZIKCvl2BQNfdi2Z5ZZLfGAkliOewrcCFqDzsljnnHTywPKoRG5APqCaD7tgubWXTrQLYKAJbmbESJSISqXxA9jaaNMlPV-bOqnb___kteQDmZo4-z76-Ig-Rcx6PlFi5R7ba5Tq8hsqkdW-Syf0G4Vfivw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Numerical+Simulation+of+Thermal+Turbulent+Boundary+Layer+Flow+over+Multiple+V-Shaped+Ribs+at+Different+Angles&rft.jtitle=Energies+%28Basel%29&rft.au=Ji%2C+Feng&rft.au=Ding%2C+Jing&rft.au=Lu%2C+Jianfeng&rft.au=Wang%2C+Weilong&rft.date=2023-04-29&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=16&rft.issue=9&rft.spage=3831&rft_id=info:doi/10.3390%2Fen16093831&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon