Effect of Mg addition on the physical properties of aluminum nitride

•c-Axis oriented AlxMg1-xN thin films were deposited on Si (100) using rf sputtering.•Low Mg doping to AlN enhanced the piezoelectric response up to 7.4 pC/N.•Low Mg addition into AlN could increase the stiffness of the thin film. We are reporting the effect of magnesium (Mg) addition into aluminum...

Full description

Saved in:
Bibliographic Details
Published inMaterials letters Vol. 219; pp. 247 - 250
Main Authors Anggraini, Sri Ayu, Uehara, Masato, Yamada, Hiroshi, Akiyama, Morito
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.05.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •c-Axis oriented AlxMg1-xN thin films were deposited on Si (100) using rf sputtering.•Low Mg doping to AlN enhanced the piezoelectric response up to 7.4 pC/N.•Low Mg addition into AlN could increase the stiffness of the thin film. We are reporting the effect of magnesium (Mg) addition into aluminum nitride (AlN) on piezoelectric and mechanical properties. Addition of 2.5 at.% Mg was found to slightly enhance both the piezoelectric constant (d33) (up to 7.4 pC/N) and the relative permittivity (up to 12). Young’s modulus and hardness were decreased when 2.5 at.% Mg was added into AlN and were slightly increased for sample with 5 at.% Mg addition. The dielectric loss was less than 10−2 for samples with Mg addition lower than 8 at.%. However, higher Mg addition (>8 at.%) led to a lower d33, higher relativity permittivity while decreasing Young’s modulus and hardness.
AbstractList •c-Axis oriented AlxMg1-xN thin films were deposited on Si (100) using rf sputtering.•Low Mg doping to AlN enhanced the piezoelectric response up to 7.4 pC/N.•Low Mg addition into AlN could increase the stiffness of the thin film. We are reporting the effect of magnesium (Mg) addition into aluminum nitride (AlN) on piezoelectric and mechanical properties. Addition of 2.5 at.% Mg was found to slightly enhance both the piezoelectric constant (d33) (up to 7.4 pC/N) and the relative permittivity (up to 12). Young’s modulus and hardness were decreased when 2.5 at.% Mg was added into AlN and were slightly increased for sample with 5 at.% Mg addition. The dielectric loss was less than 10−2 for samples with Mg addition lower than 8 at.%. However, higher Mg addition (>8 at.%) led to a lower d33, higher relativity permittivity while decreasing Young’s modulus and hardness.
We are reporting the effect of magnesium (Mg) addition into aluminum nitride (AlN) on piezoelectric and mechanical properties. Addition of 2.5 at.% Mg was found to slightly enhance both the piezoelectric constant (d33) (up to 7.4 pC/N) and the relative permittivity (up to 12). Young’s modulus and hardness were decreased when 2.5 at.% Mg was added into AlN and were slightly increased for sample with 5 at.% Mg addition. The dielectric loss was less than 10−2 for samples with Mg addition lower than 8 at.%. However, higher Mg addition (>8 at.%) led to a lower d33, higher relativity permittivity while decreasing Young’s modulus and hardness.
Author Akiyama, Morito
Anggraini, Sri Ayu
Yamada, Hiroshi
Uehara, Masato
Author_xml – sequence: 1
  givenname: Sri Ayu
  surname: Anggraini
  fullname: Anggraini, Sri Ayu
  email: ayu-anggraini@aist.go.jp
– sequence: 2
  givenname: Masato
  surname: Uehara
  fullname: Uehara, Masato
– sequence: 3
  givenname: Hiroshi
  surname: Yamada
  fullname: Yamada, Hiroshi
– sequence: 4
  givenname: Morito
  surname: Akiyama
  fullname: Akiyama, Morito
BookMark eNqFkE1LxDAURYOM4Iz6D1wUXLcmTaZtXAgyjh8w4kbBXUjTFyelXyapMP_elLpyoRB4m3Pfyz0rtOj6DhC6IDghmGRXddJK34BPUkyKBKcJ5uQILUmR05jxnC_QMmB5vM7z9xO0cq7GGDOO2RLdbbUG5aNeR88fkawq403fReH5PUTD_uCMkk002H4A6w24iZTN2JpubKPOeGsqOEPHWjYOzn_mKXq7375uHuPdy8PT5nYXK4axj8laqbyEolCl4jnjDAglmEueakZB64ooxjNKaLFWnJaSq1RXDKgseGCzkp6iy3lv-M7nCM6Luh9tF06KFGe0yEJJHqjrmVK2d86CFsp4OdXyVppGECwma6IWszUxWRM4FcFaCLNf4cGaVtrDf7GbOQah_pcBK5wy0CmojA16RdWbvxd8A4Noixs
CitedBy_id crossref_primary_10_1016_j_matchemphys_2021_125394
crossref_primary_10_1080_10408436_2024_2406247
crossref_primary_10_1002_adfm_202001915
crossref_primary_10_1021_acsomega_9b01912
crossref_primary_10_1007_s12540_020_00891_7
crossref_primary_10_3390_mi11070630
crossref_primary_10_1016_j_scriptamat_2018_09_001
crossref_primary_10_1109_JMW_2021_3064825
crossref_primary_10_1016_j_jeurceramsoc_2023_06_050
crossref_primary_10_1038_s41598_020_61285_8
crossref_primary_10_1007_s43673_023_00104_4
crossref_primary_10_1016_j_ceramint_2019_10_041
crossref_primary_10_1016_j_mattod_2024_12_011
crossref_primary_10_1021_acsami_4c07539
Cites_doi 10.1007/s10832-007-9047-0
10.1063/1.4788728
10.1111/j.1151-2916.2000.tb01154.x
10.1002/app.13690
10.1063/1.1725697
10.1063/1.2362582
10.7567/APEX.8.061501
10.1002/app.10082
10.1080/00150190211782
10.1016/j.jallcom.2014.11.095
10.1016/j.jallcom.2014.10.018
10.1002/adma.200802611
10.1016/j.mssp.2016.11.006
10.1063/1.4990533
10.1016/S0038-1098(02)00180-1
10.1016/S0167-9317(03)00386-1
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV May 15, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV May 15, 2018
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matlet.2018.02.091
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-4979
EndPage 250
ExternalDocumentID 10_1016_j_matlet_2018_02_091
S0167577X18303057
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
XPP
ZMT
~02
~G-
29M
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
SSH
WUQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c400t-15cc7be88cbc97494e13109a92f43effd1c49631385c93ba9c2fd4e3a8994e6b3
IEDL.DBID .~1
ISSN 0167-577X
IngestDate Fri Jul 25 04:42:10 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Tue Jul 01 02:10:53 EDT 2025
Fri Feb 23 02:29:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Piezoelectric material
AlN
Mg
Sputtering
Thin film
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-15cc7be88cbc97494e13109a92f43effd1c49631385c93ba9c2fd4e3a8994e6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2063861679
PQPubID 2045434
PageCount 4
ParticipantIDs proquest_journals_2063861679
crossref_citationtrail_10_1016_j_matlet_2018_02_091
crossref_primary_10_1016_j_matlet_2018_02_091
elsevier_sciencedirect_doi_10_1016_j_matlet_2018_02_091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Materials letters
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Akiyama, Kamohara, Kano, Teshigahara, Takeuchi, Kawahara (b0070) 2009; 21
Templeton, Wang, Penn, Webb, Cohen, Alford (b0075) 2000; 83
Jakkaraju, Henn, Shearer, Harris, Rimmer, Rich (b0010) 2003; 70
Yoshiki, Tsuyoshi, Tokihiro, Masanori (b0040) 2015; 8
Yokoyama, Onda, Nishihara, Sasajima, Ueda (b0030) 2014; 64
Ramesh, Kara, Bowen (b0065) 2002; 273
Uehara, Shigemoto, Fujio, Nagase, Aida, Umeda, Akiyama (b0035) 2017; 111
Muralt, Antifakos, Cantoni, Lanz, Martin (b0005) 2005
Shrout, Zhang (b0055) 2007; 19
Slater (b0080) 1964; 41
Akiyama, Umeda, Honda, Nagase (b0060) 2013; 102
Nakarmi, Nepal, Ugolini, Altahtamouni, Lin, Jiang (b0085) 2006; 89
Hu, Wu, Zhang, Li, Zhuo, Yan, Wang, Yan (b0020) 2015; 624
Xue, Kitamura (b0090) 2002; 122
Pampili, Parbrook (b0015) 2017; 62
Rao, Wong (b0045) 2004; 92
Sun, Xiong, Zhang, Liu, Gu (b0025) 2015; 621
Rao, Ogitani, Kohl, Wong (b0050) 2002; 83
Slater (10.1016/j.matlet.2018.02.091_b0080) 1964; 41
Ramesh (10.1016/j.matlet.2018.02.091_b0065) 2002; 273
Muralt (10.1016/j.matlet.2018.02.091_b0005) 2005
Templeton (10.1016/j.matlet.2018.02.091_b0075) 2000; 83
Rao (10.1016/j.matlet.2018.02.091_b0045) 2004; 92
Akiyama (10.1016/j.matlet.2018.02.091_b0060) 2013; 102
Xue (10.1016/j.matlet.2018.02.091_b0090) 2002; 122
Hu (10.1016/j.matlet.2018.02.091_b0020) 2015; 624
Yoshiki (10.1016/j.matlet.2018.02.091_b0040) 2015; 8
Sun (10.1016/j.matlet.2018.02.091_b0025) 2015; 621
Nakarmi (10.1016/j.matlet.2018.02.091_b0085) 2006; 89
Rao (10.1016/j.matlet.2018.02.091_b0050) 2002; 83
Pampili (10.1016/j.matlet.2018.02.091_b0015) 2017; 62
Yokoyama (10.1016/j.matlet.2018.02.091_b0030) 2014; 64
Uehara (10.1016/j.matlet.2018.02.091_b0035) 2017; 111
Shrout (10.1016/j.matlet.2018.02.091_b0055) 2007; 19
Jakkaraju (10.1016/j.matlet.2018.02.091_b0010) 2003; 70
Akiyama (10.1016/j.matlet.2018.02.091_b0070) 2009; 21
References_xml – volume: 21
  start-page: 593
  year: 2009
  end-page: 596
  ident: b0070
  publication-title: Adv. Mater.
– volume: 122
  start-page: 537
  year: 2002
  end-page: 541
  ident: b0090
  publication-title: Solid State Comm.
– start-page: 315
  year: 2005
  end-page: 320
  ident: b0005
  publication-title: IEEE Ultrason. Symp.
– volume: 621
  start-page: 314
  year: 2015
  end-page: 318
  ident: b0025
  publication-title: J. Alloys Compd.
– volume: 70
  start-page: 566
  year: 2003
  end-page: 570
  ident: b0010
  publication-title: Microelectron. Eng.
– volume: 8
  start-page: 061501
  year: 2015
  ident: b0040
  publication-title: Appl. Phys. Express
– volume: 19
  start-page: 113
  year: 2007
  end-page: 126
  ident: b0055
  publication-title: J. Electroceram.
– volume: 92
  start-page: 2228
  year: 2004
  end-page: 2231
  ident: b0045
  publication-title: J. Appl. Polym. Sci.
– volume: 41
  start-page: 3199
  year: 1964
  end-page: 3204
  ident: b0080
  publication-title: J. Chem. Phys.
– volume: 64
  start-page: 4
  year: 2014
  ident: b0030
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Frequency Control
– volume: 83
  start-page: 1084
  year: 2002
  end-page: 1090
  ident: b0050
  publication-title: J. Appl. Polym. Sci.
– volume: 111
  start-page: 112901
  year: 2017
  ident: b0035
  publication-title: Appl. Phys. Lett.
– volume: 273
  start-page: 383
  year: 2002
  end-page: 388
  ident: b0065
  publication-title: Ferroelectrics
– volume: 89
  start-page: 152120
  year: 2006
  ident: b0085
  publication-title: Appl. Phys. Lett.
– volume: 83
  start-page: 95
  year: 2000
  end-page: 100
  ident: b0075
  publication-title: J. Am. Ceram. Soc.
– volume: 624
  start-page: 241
  year: 2015
  end-page: 246
  ident: b0020
  publication-title: J. Alloys Compd.
– volume: 62
  start-page: 180
  year: 2017
  end-page: 191
  ident: b0015
  publication-title: Mater. Sci. Semicond. Process.
– volume: 102
  start-page: 021915
  year: 2013
  ident: b0060
  publication-title: Appl. Phys. Lett.
– volume: 64
  start-page: 4
  year: 2014
  ident: 10.1016/j.matlet.2018.02.091_b0030
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Frequency Control
– volume: 19
  start-page: 113
  issue: 1
  year: 2007
  ident: 10.1016/j.matlet.2018.02.091_b0055
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9047-0
– volume: 102
  start-page: 021915
  issue: 2
  year: 2013
  ident: 10.1016/j.matlet.2018.02.091_b0060
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788728
– volume: 83
  start-page: 95
  issue: 1
  year: 2000
  ident: 10.1016/j.matlet.2018.02.091_b0075
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2000.tb01154.x
– start-page: 315
  year: 2005
  ident: 10.1016/j.matlet.2018.02.091_b0005
  publication-title: IEEE Ultrason. Symp.
– volume: 92
  start-page: 2228
  issue: 4
  year: 2004
  ident: 10.1016/j.matlet.2018.02.091_b0045
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.13690
– volume: 41
  start-page: 3199
  issue: 10
  year: 1964
  ident: 10.1016/j.matlet.2018.02.091_b0080
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1725697
– volume: 89
  start-page: 152120
  issue: 15
  year: 2006
  ident: 10.1016/j.matlet.2018.02.091_b0085
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2362582
– volume: 8
  start-page: 061501
  issue: 6
  year: 2015
  ident: 10.1016/j.matlet.2018.02.091_b0040
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.8.061501
– volume: 83
  start-page: 1084
  issue: 5
  year: 2002
  ident: 10.1016/j.matlet.2018.02.091_b0050
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.10082
– volume: 273
  start-page: 383
  issue: 1
  year: 2002
  ident: 10.1016/j.matlet.2018.02.091_b0065
  publication-title: Ferroelectrics
  doi: 10.1080/00150190211782
– volume: 624
  start-page: 241
  year: 2015
  ident: 10.1016/j.matlet.2018.02.091_b0020
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.11.095
– volume: 621
  start-page: 314
  year: 2015
  ident: 10.1016/j.matlet.2018.02.091_b0025
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.10.018
– volume: 21
  start-page: 593
  issue: 5
  year: 2009
  ident: 10.1016/j.matlet.2018.02.091_b0070
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802611
– volume: 62
  start-page: 180
  year: 2017
  ident: 10.1016/j.matlet.2018.02.091_b0015
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2016.11.006
– volume: 111
  start-page: 112901
  issue: 11
  year: 2017
  ident: 10.1016/j.matlet.2018.02.091_b0035
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4990533
– volume: 122
  start-page: 537
  issue: 10
  year: 2002
  ident: 10.1016/j.matlet.2018.02.091_b0090
  publication-title: Solid State Comm.
  doi: 10.1016/S0038-1098(02)00180-1
– volume: 70
  start-page: 566
  issue: 2
  year: 2003
  ident: 10.1016/j.matlet.2018.02.091_b0010
  publication-title: Microelectron. Eng.
  doi: 10.1016/S0167-9317(03)00386-1
SSID ssj0004904
Score 2.3179927
Snippet •c-Axis oriented AlxMg1-xN thin films were deposited on Si (100) using rf sputtering.•Low Mg doping to AlN enhanced the piezoelectric response up to...
We are reporting the effect of magnesium (Mg) addition into aluminum nitride (AlN) on piezoelectric and mechanical properties. Addition of 2.5 at.% Mg was...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 247
SubjectTerms AlN
Aluminum nitride
Dielectric loss
Dielectrics
Magnesium
Materials science
Mechanical properties
Modulus of elasticity
Permittivity
Physical properties
Piezoelectric material
Piezoelectricity
Relativity
Sputtering
Thin film
Thin films
Title Effect of Mg addition on the physical properties of aluminum nitride
URI https://dx.doi.org/10.1016/j.matlet.2018.02.091
https://www.proquest.com/docview/2063861679
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jIuiD6FSczpEHX-vaJmnTxzEdU9ledLC3kFtlol3Z5dXfbk4v3kAGQl_aJqV8OefkpP3OF4SubBBFVirukZAwj6rCpZj1UslC3ygeSR-qkceTaDSl9zM2a6BBXQsDtMoq9pcxvYjW1ZVehWYvn897j0CgZ3E8c0YJVgsV5ZTGYOXX7180D5r4n_re0Lounys4Xi4pdOgAwYsXyp1J8Nf09CtQF7PP8BAdVGkj7pdvdoQaNmuh_W9igi20W5A59eoY3ZSSxHiR4vEzBsYQoI_d4bI9nFcjg3P4Dr8EQVVoKV2UmmebN-x8fDk39gRNh7dPg5FX7ZbgaeeHay9gWsfKcq6VdouEhNoAVD9lEqaU2DQ1gabO2wLCmU6IkokOU0MtkW7FRW2kyClqZovMniFseEhsxENDfJCbs8roQCmeRsZXTBrWRqQGSehKShx2tHgVNWfsRZTQCoBW-KFw0LaR99krL6U0trSPa_zFD5MQLtpv6dmph0tULrly912oieCv0_m_H3yB9uAM2AMB66Dmermxly4pWatuYXVdtNO_exhNPgChu-Fv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VoopyQPSBWiiwB3o0sfdhrw8cEKFKadMLrZTb4n24CoIkSlJVvfCn-IPM2OtAkVAlpEo-eR-yvhnPzNrffgvwJmR5HiqrE8GFSqRtXikVkrpSPPVW51VKu5GHZ_ngQn4aqdEa_Oz2whCtMsb-NqY30Tre6UU0e7PxuPeZCPSqKEbolOS1RWRWnoSba1y3Ld4d99HIh5wffTz_MEji0QKJQ6ddJplyrrBBa2cdVtSlDBlJZFYlr6UIde0zJ9E1M6GVK4WtSsdrL4OocHkiQ24FzvsAHkoMF3Rswtsfv3klskxXguL0eN1-vYZUhlUomoMYZbqRCi2zf-XDvzJDk-6OnsKTWKey9y0UW7AWJtvw-A_1wm3YaNijbrED_VYDmU1rNrxkRFEiczO8sLxks-gKbEYf_uek4Eo9KwyL48nVd4ZBZT72YRcu7gXDZ7A-mU7CHjCvuQi55l6kpG8XrHeZtbrOfWpV5dU-iA4k46J2OR2h8c10JLWvpoXWELQm5Qah3YdkNWrWanfc0b_o8De3fNBgerlj5EFnLhNjwALbMbbl9Jvr-X9P_BoeDc6Hp-b0-OzkBWxSC1EXMnUA68v5VXiJFdHSvmo8kMGX-3b5XwxKHWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Mg+addition+on+the+physical+properties+of+aluminum+nitride&rft.jtitle=Materials+letters&rft.au=Anggraini%2C+Sri+Ayu&rft.au=Uehara%2C+Masato&rft.au=Yamada%2C+Hiroshi&rft.au=Akiyama%2C+Morito&rft.date=2018-05-15&rft.pub=Elsevier+B.V&rft.issn=0167-577X&rft.eissn=1873-4979&rft.volume=219&rft.spage=247&rft.epage=250&rft_id=info:doi/10.1016%2Fj.matlet.2018.02.091&rft.externalDocID=S0167577X18303057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-577X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-577X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-577X&client=summon