Effect of Mg addition on the physical properties of aluminum nitride
•c-Axis oriented AlxMg1-xN thin films were deposited on Si (100) using rf sputtering.•Low Mg doping to AlN enhanced the piezoelectric response up to 7.4 pC/N.•Low Mg addition into AlN could increase the stiffness of the thin film. We are reporting the effect of magnesium (Mg) addition into aluminum...
Saved in:
Published in | Materials letters Vol. 219; pp. 247 - 250 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.05.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •c-Axis oriented AlxMg1-xN thin films were deposited on Si (100) using rf sputtering.•Low Mg doping to AlN enhanced the piezoelectric response up to 7.4 pC/N.•Low Mg addition into AlN could increase the stiffness of the thin film.
We are reporting the effect of magnesium (Mg) addition into aluminum nitride (AlN) on piezoelectric and mechanical properties. Addition of 2.5 at.% Mg was found to slightly enhance both the piezoelectric constant (d33) (up to 7.4 pC/N) and the relative permittivity (up to 12). Young’s modulus and hardness were decreased when 2.5 at.% Mg was added into AlN and were slightly increased for sample with 5 at.% Mg addition. The dielectric loss was less than 10−2 for samples with Mg addition lower than 8 at.%. However, higher Mg addition (>8 at.%) led to a lower d33, higher relativity permittivity while decreasing Young’s modulus and hardness. |
---|---|
AbstractList | •c-Axis oriented AlxMg1-xN thin films were deposited on Si (100) using rf sputtering.•Low Mg doping to AlN enhanced the piezoelectric response up to 7.4 pC/N.•Low Mg addition into AlN could increase the stiffness of the thin film.
We are reporting the effect of magnesium (Mg) addition into aluminum nitride (AlN) on piezoelectric and mechanical properties. Addition of 2.5 at.% Mg was found to slightly enhance both the piezoelectric constant (d33) (up to 7.4 pC/N) and the relative permittivity (up to 12). Young’s modulus and hardness were decreased when 2.5 at.% Mg was added into AlN and were slightly increased for sample with 5 at.% Mg addition. The dielectric loss was less than 10−2 for samples with Mg addition lower than 8 at.%. However, higher Mg addition (>8 at.%) led to a lower d33, higher relativity permittivity while decreasing Young’s modulus and hardness. We are reporting the effect of magnesium (Mg) addition into aluminum nitride (AlN) on piezoelectric and mechanical properties. Addition of 2.5 at.% Mg was found to slightly enhance both the piezoelectric constant (d33) (up to 7.4 pC/N) and the relative permittivity (up to 12). Young’s modulus and hardness were decreased when 2.5 at.% Mg was added into AlN and were slightly increased for sample with 5 at.% Mg addition. The dielectric loss was less than 10−2 for samples with Mg addition lower than 8 at.%. However, higher Mg addition (>8 at.%) led to a lower d33, higher relativity permittivity while decreasing Young’s modulus and hardness. |
Author | Akiyama, Morito Anggraini, Sri Ayu Yamada, Hiroshi Uehara, Masato |
Author_xml | – sequence: 1 givenname: Sri Ayu surname: Anggraini fullname: Anggraini, Sri Ayu email: ayu-anggraini@aist.go.jp – sequence: 2 givenname: Masato surname: Uehara fullname: Uehara, Masato – sequence: 3 givenname: Hiroshi surname: Yamada fullname: Yamada, Hiroshi – sequence: 4 givenname: Morito surname: Akiyama fullname: Akiyama, Morito |
BookMark | eNqFkE1LxDAURYOM4Iz6D1wUXLcmTaZtXAgyjh8w4kbBXUjTFyelXyapMP_elLpyoRB4m3Pfyz0rtOj6DhC6IDghmGRXddJK34BPUkyKBKcJ5uQILUmR05jxnC_QMmB5vM7z9xO0cq7GGDOO2RLdbbUG5aNeR88fkawq403fReH5PUTD_uCMkk002H4A6w24iZTN2JpubKPOeGsqOEPHWjYOzn_mKXq7375uHuPdy8PT5nYXK4axj8laqbyEolCl4jnjDAglmEueakZB64ooxjNKaLFWnJaSq1RXDKgseGCzkp6iy3lv-M7nCM6Luh9tF06KFGe0yEJJHqjrmVK2d86CFsp4OdXyVppGECwma6IWszUxWRM4FcFaCLNf4cGaVtrDf7GbOQah_pcBK5wy0CmojA16RdWbvxd8A4Noixs |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2021_125394 crossref_primary_10_1080_10408436_2024_2406247 crossref_primary_10_1002_adfm_202001915 crossref_primary_10_1021_acsomega_9b01912 crossref_primary_10_1007_s12540_020_00891_7 crossref_primary_10_3390_mi11070630 crossref_primary_10_1016_j_scriptamat_2018_09_001 crossref_primary_10_1109_JMW_2021_3064825 crossref_primary_10_1016_j_jeurceramsoc_2023_06_050 crossref_primary_10_1038_s41598_020_61285_8 crossref_primary_10_1007_s43673_023_00104_4 crossref_primary_10_1016_j_ceramint_2019_10_041 crossref_primary_10_1016_j_mattod_2024_12_011 crossref_primary_10_1021_acsami_4c07539 |
Cites_doi | 10.1007/s10832-007-9047-0 10.1063/1.4788728 10.1111/j.1151-2916.2000.tb01154.x 10.1002/app.13690 10.1063/1.1725697 10.1063/1.2362582 10.7567/APEX.8.061501 10.1002/app.10082 10.1080/00150190211782 10.1016/j.jallcom.2014.11.095 10.1016/j.jallcom.2014.10.018 10.1002/adma.200802611 10.1016/j.mssp.2016.11.006 10.1063/1.4990533 10.1016/S0038-1098(02)00180-1 10.1016/S0167-9317(03)00386-1 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV May 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV May 15, 2018 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.matlet.2018.02.091 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-4979 |
EndPage | 250 |
ExternalDocumentID | 10_1016_j_matlet_2018_02_091 S0167577X18303057 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSZ T5K XPP ZMT ~02 ~G- 29M AATTM AAXKI AAYWO AAYXX ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS SSH WUQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c400t-15cc7be88cbc97494e13109a92f43effd1c49631385c93ba9c2fd4e3a8994e6b3 |
IEDL.DBID | .~1 |
ISSN | 0167-577X |
IngestDate | Fri Jul 25 04:42:10 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Tue Jul 01 02:10:53 EDT 2025 Fri Feb 23 02:29:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoelectric material AlN Mg Sputtering Thin film |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-15cc7be88cbc97494e13109a92f43effd1c49631385c93ba9c2fd4e3a8994e6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2063861679 |
PQPubID | 2045434 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2063861679 crossref_citationtrail_10_1016_j_matlet_2018_02_091 crossref_primary_10_1016_j_matlet_2018_02_091 elsevier_sciencedirect_doi_10_1016_j_matlet_2018_02_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-15 |
PublicationDateYYYYMMDD | 2018-05-15 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Materials letters |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Akiyama, Kamohara, Kano, Teshigahara, Takeuchi, Kawahara (b0070) 2009; 21 Templeton, Wang, Penn, Webb, Cohen, Alford (b0075) 2000; 83 Jakkaraju, Henn, Shearer, Harris, Rimmer, Rich (b0010) 2003; 70 Yoshiki, Tsuyoshi, Tokihiro, Masanori (b0040) 2015; 8 Yokoyama, Onda, Nishihara, Sasajima, Ueda (b0030) 2014; 64 Ramesh, Kara, Bowen (b0065) 2002; 273 Uehara, Shigemoto, Fujio, Nagase, Aida, Umeda, Akiyama (b0035) 2017; 111 Muralt, Antifakos, Cantoni, Lanz, Martin (b0005) 2005 Shrout, Zhang (b0055) 2007; 19 Slater (b0080) 1964; 41 Akiyama, Umeda, Honda, Nagase (b0060) 2013; 102 Nakarmi, Nepal, Ugolini, Altahtamouni, Lin, Jiang (b0085) 2006; 89 Hu, Wu, Zhang, Li, Zhuo, Yan, Wang, Yan (b0020) 2015; 624 Xue, Kitamura (b0090) 2002; 122 Pampili, Parbrook (b0015) 2017; 62 Rao, Wong (b0045) 2004; 92 Sun, Xiong, Zhang, Liu, Gu (b0025) 2015; 621 Rao, Ogitani, Kohl, Wong (b0050) 2002; 83 Slater (10.1016/j.matlet.2018.02.091_b0080) 1964; 41 Ramesh (10.1016/j.matlet.2018.02.091_b0065) 2002; 273 Muralt (10.1016/j.matlet.2018.02.091_b0005) 2005 Templeton (10.1016/j.matlet.2018.02.091_b0075) 2000; 83 Rao (10.1016/j.matlet.2018.02.091_b0045) 2004; 92 Akiyama (10.1016/j.matlet.2018.02.091_b0060) 2013; 102 Xue (10.1016/j.matlet.2018.02.091_b0090) 2002; 122 Hu (10.1016/j.matlet.2018.02.091_b0020) 2015; 624 Yoshiki (10.1016/j.matlet.2018.02.091_b0040) 2015; 8 Sun (10.1016/j.matlet.2018.02.091_b0025) 2015; 621 Nakarmi (10.1016/j.matlet.2018.02.091_b0085) 2006; 89 Rao (10.1016/j.matlet.2018.02.091_b0050) 2002; 83 Pampili (10.1016/j.matlet.2018.02.091_b0015) 2017; 62 Yokoyama (10.1016/j.matlet.2018.02.091_b0030) 2014; 64 Uehara (10.1016/j.matlet.2018.02.091_b0035) 2017; 111 Shrout (10.1016/j.matlet.2018.02.091_b0055) 2007; 19 Jakkaraju (10.1016/j.matlet.2018.02.091_b0010) 2003; 70 Akiyama (10.1016/j.matlet.2018.02.091_b0070) 2009; 21 |
References_xml | – volume: 21 start-page: 593 year: 2009 end-page: 596 ident: b0070 publication-title: Adv. Mater. – volume: 122 start-page: 537 year: 2002 end-page: 541 ident: b0090 publication-title: Solid State Comm. – start-page: 315 year: 2005 end-page: 320 ident: b0005 publication-title: IEEE Ultrason. Symp. – volume: 621 start-page: 314 year: 2015 end-page: 318 ident: b0025 publication-title: J. Alloys Compd. – volume: 70 start-page: 566 year: 2003 end-page: 570 ident: b0010 publication-title: Microelectron. Eng. – volume: 8 start-page: 061501 year: 2015 ident: b0040 publication-title: Appl. Phys. Express – volume: 19 start-page: 113 year: 2007 end-page: 126 ident: b0055 publication-title: J. Electroceram. – volume: 92 start-page: 2228 year: 2004 end-page: 2231 ident: b0045 publication-title: J. Appl. Polym. Sci. – volume: 41 start-page: 3199 year: 1964 end-page: 3204 ident: b0080 publication-title: J. Chem. Phys. – volume: 64 start-page: 4 year: 2014 ident: b0030 publication-title: IEEE Trans. Ultrason. Ferroelectrics Frequency Control – volume: 83 start-page: 1084 year: 2002 end-page: 1090 ident: b0050 publication-title: J. Appl. Polym. Sci. – volume: 111 start-page: 112901 year: 2017 ident: b0035 publication-title: Appl. Phys. Lett. – volume: 273 start-page: 383 year: 2002 end-page: 388 ident: b0065 publication-title: Ferroelectrics – volume: 89 start-page: 152120 year: 2006 ident: b0085 publication-title: Appl. Phys. Lett. – volume: 83 start-page: 95 year: 2000 end-page: 100 ident: b0075 publication-title: J. Am. Ceram. Soc. – volume: 624 start-page: 241 year: 2015 end-page: 246 ident: b0020 publication-title: J. Alloys Compd. – volume: 62 start-page: 180 year: 2017 end-page: 191 ident: b0015 publication-title: Mater. Sci. Semicond. Process. – volume: 102 start-page: 021915 year: 2013 ident: b0060 publication-title: Appl. Phys. Lett. – volume: 64 start-page: 4 year: 2014 ident: 10.1016/j.matlet.2018.02.091_b0030 publication-title: IEEE Trans. Ultrason. Ferroelectrics Frequency Control – volume: 19 start-page: 113 issue: 1 year: 2007 ident: 10.1016/j.matlet.2018.02.091_b0055 publication-title: J. Electroceram. doi: 10.1007/s10832-007-9047-0 – volume: 102 start-page: 021915 issue: 2 year: 2013 ident: 10.1016/j.matlet.2018.02.091_b0060 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788728 – volume: 83 start-page: 95 issue: 1 year: 2000 ident: 10.1016/j.matlet.2018.02.091_b0075 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01154.x – start-page: 315 year: 2005 ident: 10.1016/j.matlet.2018.02.091_b0005 publication-title: IEEE Ultrason. Symp. – volume: 92 start-page: 2228 issue: 4 year: 2004 ident: 10.1016/j.matlet.2018.02.091_b0045 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.13690 – volume: 41 start-page: 3199 issue: 10 year: 1964 ident: 10.1016/j.matlet.2018.02.091_b0080 publication-title: J. Chem. Phys. doi: 10.1063/1.1725697 – volume: 89 start-page: 152120 issue: 15 year: 2006 ident: 10.1016/j.matlet.2018.02.091_b0085 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2362582 – volume: 8 start-page: 061501 issue: 6 year: 2015 ident: 10.1016/j.matlet.2018.02.091_b0040 publication-title: Appl. Phys. Express doi: 10.7567/APEX.8.061501 – volume: 83 start-page: 1084 issue: 5 year: 2002 ident: 10.1016/j.matlet.2018.02.091_b0050 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.10082 – volume: 273 start-page: 383 issue: 1 year: 2002 ident: 10.1016/j.matlet.2018.02.091_b0065 publication-title: Ferroelectrics doi: 10.1080/00150190211782 – volume: 624 start-page: 241 year: 2015 ident: 10.1016/j.matlet.2018.02.091_b0020 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.11.095 – volume: 621 start-page: 314 year: 2015 ident: 10.1016/j.matlet.2018.02.091_b0025 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.10.018 – volume: 21 start-page: 593 issue: 5 year: 2009 ident: 10.1016/j.matlet.2018.02.091_b0070 publication-title: Adv. Mater. doi: 10.1002/adma.200802611 – volume: 62 start-page: 180 year: 2017 ident: 10.1016/j.matlet.2018.02.091_b0015 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2016.11.006 – volume: 111 start-page: 112901 issue: 11 year: 2017 ident: 10.1016/j.matlet.2018.02.091_b0035 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4990533 – volume: 122 start-page: 537 issue: 10 year: 2002 ident: 10.1016/j.matlet.2018.02.091_b0090 publication-title: Solid State Comm. doi: 10.1016/S0038-1098(02)00180-1 – volume: 70 start-page: 566 issue: 2 year: 2003 ident: 10.1016/j.matlet.2018.02.091_b0010 publication-title: Microelectron. Eng. doi: 10.1016/S0167-9317(03)00386-1 |
SSID | ssj0004904 |
Score | 2.3179927 |
Snippet | •c-Axis oriented AlxMg1-xN thin films were deposited on Si (100) using rf sputtering.•Low Mg doping to AlN enhanced the piezoelectric response up to... We are reporting the effect of magnesium (Mg) addition into aluminum nitride (AlN) on piezoelectric and mechanical properties. Addition of 2.5 at.% Mg was... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 247 |
SubjectTerms | AlN Aluminum nitride Dielectric loss Dielectrics Magnesium Materials science Mechanical properties Modulus of elasticity Permittivity Physical properties Piezoelectric material Piezoelectricity Relativity Sputtering Thin film Thin films |
Title | Effect of Mg addition on the physical properties of aluminum nitride |
URI | https://dx.doi.org/10.1016/j.matlet.2018.02.091 https://www.proquest.com/docview/2063861679 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jIuiD6FSczpEHX-vaJmnTxzEdU9ledLC3kFtlol3Z5dXfbk4v3kAGQl_aJqV8OefkpP3OF4SubBBFVirukZAwj6rCpZj1UslC3ygeSR-qkceTaDSl9zM2a6BBXQsDtMoq9pcxvYjW1ZVehWYvn897j0CgZ3E8c0YJVgsV5ZTGYOXX7180D5r4n_re0Lounys4Xi4pdOgAwYsXyp1J8Nf09CtQF7PP8BAdVGkj7pdvdoQaNmuh_W9igi20W5A59eoY3ZSSxHiR4vEzBsYQoI_d4bI9nFcjg3P4Dr8EQVVoKV2UmmebN-x8fDk39gRNh7dPg5FX7ZbgaeeHay9gWsfKcq6VdouEhNoAVD9lEqaU2DQ1gabO2wLCmU6IkokOU0MtkW7FRW2kyClqZovMniFseEhsxENDfJCbs8roQCmeRsZXTBrWRqQGSehKShx2tHgVNWfsRZTQCoBW-KFw0LaR99krL6U0trSPa_zFD5MQLtpv6dmph0tULrly912oieCv0_m_H3yB9uAM2AMB66Dmermxly4pWatuYXVdtNO_exhNPgChu-Fv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VoopyQPSBWiiwB3o0sfdhrw8cEKFKadMLrZTb4n24CoIkSlJVvfCn-IPM2OtAkVAlpEo-eR-yvhnPzNrffgvwJmR5HiqrE8GFSqRtXikVkrpSPPVW51VKu5GHZ_ngQn4aqdEa_Oz2whCtMsb-NqY30Tre6UU0e7PxuPeZCPSqKEbolOS1RWRWnoSba1y3Ld4d99HIh5wffTz_MEji0QKJQ6ddJplyrrBBa2cdVtSlDBlJZFYlr6UIde0zJ9E1M6GVK4WtSsdrL4OocHkiQ24FzvsAHkoMF3Rswtsfv3klskxXguL0eN1-vYZUhlUomoMYZbqRCi2zf-XDvzJDk-6OnsKTWKey9y0UW7AWJtvw-A_1wm3YaNijbrED_VYDmU1rNrxkRFEiczO8sLxks-gKbEYf_uek4Eo9KwyL48nVd4ZBZT72YRcu7gXDZ7A-mU7CHjCvuQi55l6kpG8XrHeZtbrOfWpV5dU-iA4k46J2OR2h8c10JLWvpoXWELQm5Qah3YdkNWrWanfc0b_o8De3fNBgerlj5EFnLhNjwALbMbbl9Jvr-X9P_BoeDc6Hp-b0-OzkBWxSC1EXMnUA68v5VXiJFdHSvmo8kMGX-3b5XwxKHWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Mg+addition+on+the+physical+properties+of+aluminum+nitride&rft.jtitle=Materials+letters&rft.au=Anggraini%2C+Sri+Ayu&rft.au=Uehara%2C+Masato&rft.au=Yamada%2C+Hiroshi&rft.au=Akiyama%2C+Morito&rft.date=2018-05-15&rft.pub=Elsevier+B.V&rft.issn=0167-577X&rft.eissn=1873-4979&rft.volume=219&rft.spage=247&rft.epage=250&rft_id=info:doi/10.1016%2Fj.matlet.2018.02.091&rft.externalDocID=S0167577X18303057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-577X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-577X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-577X&client=summon |