A novel markerless gait analysis method to detect alterations in inter-joint coupling patterns of human foot during cross-slope walking
Walking on uneven surfaces alters foot joint kinematics and challenges gait stability. The intricate joint coupling relationship of the human foot, which is essential for biomechanical adaptations, particularly when encountering uneven surfaces, remains unclear. This study focused on quantifying foo...
Saved in:
Published in | Journal of biomechanics Vol. 188; p. 112766 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.07.2025
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Walking on uneven surfaces alters foot joint kinematics and challenges gait stability. The intricate joint coupling relationship of the human foot, which is essential for biomechanical adaptations, particularly when encountering uneven surfaces, remains unclear. This study focused on quantifying foot joint coordination on cross-slopes using a markerless gait analysis method. Twelve healthy subjects performed walking tests on a gait platform under level, 8° everted and 8° inverted surface conditions. Segmental motion between rearfoot, midfoot, forefoot, and hallux were analyzed using a point cloud-based multi-segment foot model (MSFM). Adaptive changes of multi-segmental foot kinematics and inter-joint coupling relationships were compared across different cross-slope conditions. The results indicated that the rearfoot dominated frontal plane motion during everted surface walking in both middle and late stance, while the forefoot and midfoot dominated during inverted surface walking, respectively. In contrast to level walking, the sagittal-plane motion of the midtarsal joints during everted and inverted surface walking did not significantly contribute to foot kinematics at push-off. Further analysis reveals that significant variabilities exist in joint coupling behavior at different phases of the cross-slope walking.These findings demonstrate the effectiveness of the proposed method in detecting the complex inter-joint kinematics and coupling patterns of the human foot during cross-slope walking. The results provide insights into the kinematic changes of foot joints for terrain adaptation in uneven walking surfaces and advocate the application of novel motion analysis methods for tracking natural gait patterns. |
---|---|
AbstractList | Walking on uneven surfaces alters foot joint kinematics and challenges gait stability. The intricate joint coupling relationship of the human foot, which is essential for biomechanical adaptations, particularly when encountering uneven surfaces, remains unclear. This study focused on quantifying foot joint coordination on cross-slopes using a markerless gait analysis method. Twelve healthy subjects performed walking tests on a gait platform under level, 8° everted and 8° inverted surface conditions. Segmental motion between rearfoot, midfoot, forefoot, and hallux were analyzed using a point cloud-based multi-segment foot model (MSFM). Adaptive changes of multi-segmental foot kinematics and inter-joint coupling relationships were compared across different cross-slope conditions. The results indicated that the rearfoot dominated frontal plane motion during everted surface walking in both middle and late stance, while the forefoot and midfoot dominated during inverted surface walking, respectively. In contrast to level walking, the sagittal-plane motion of the midtarsal joints during everted and inverted surface walking did not significantly contribute to foot kinematics at push-off. Further analysis reveals that significant variabilities exist in joint coupling behavior at different phases of the cross-slope walking.These findings demonstrate the effectiveness of the proposed method in detecting the complex inter-joint kinematics and coupling patterns of the human foot during cross-slope walking. The results provide insights into the kinematic changes of foot joints for terrain adaptation in uneven walking surfaces and advocate the application of novel motion analysis methods for tracking natural gait patterns. Walking on uneven surfaces alters foot joint kinematics and challenges gait stability. The intricate joint coupling relationship of the human foot, which is essential for biomechanical adaptations, particularly when encountering uneven surfaces, remains unclear. This study focused on quantifying foot joint coordination on cross-slopes using a markerless gait analysis method. Twelve healthy subjects performed walking tests on a gait platform under level, 8° everted and 8° inverted surface conditions. Segmental motion between rearfoot, midfoot, forefoot, and hallux were analyzed using a point cloud-based multi-segment foot model (MSFM). Adaptive changes of multi-segmental foot kinematics and inter-joint coupling relationships were compared across different cross-slope conditions. The results indicated that the rearfoot dominated frontal plane motion during everted surface walking in both middle and late stance, while the forefoot and midfoot dominated during inverted surface walking, respectively. In contrast to level walking, the sagittal-plane motion of the midtarsal joints during everted and inverted surface walking did not significantly contribute to foot kinematics at push-off. Further analysis reveals that significant variabilities exist in joint coupling behavior at different phases of the cross-slope walking.These findings demonstrate the effectiveness of the proposed method in detecting the complex inter-joint kinematics and coupling patterns of the human foot during cross-slope walking. The results provide insights into the kinematic changes of foot joints for terrain adaptation in uneven walking surfaces and advocate the application of novel motion analysis methods for tracking natural gait patterns.Walking on uneven surfaces alters foot joint kinematics and challenges gait stability. The intricate joint coupling relationship of the human foot, which is essential for biomechanical adaptations, particularly when encountering uneven surfaces, remains unclear. This study focused on quantifying foot joint coordination on cross-slopes using a markerless gait analysis method. Twelve healthy subjects performed walking tests on a gait platform under level, 8° everted and 8° inverted surface conditions. Segmental motion between rearfoot, midfoot, forefoot, and hallux were analyzed using a point cloud-based multi-segment foot model (MSFM). Adaptive changes of multi-segmental foot kinematics and inter-joint coupling relationships were compared across different cross-slope conditions. The results indicated that the rearfoot dominated frontal plane motion during everted surface walking in both middle and late stance, while the forefoot and midfoot dominated during inverted surface walking, respectively. In contrast to level walking, the sagittal-plane motion of the midtarsal joints during everted and inverted surface walking did not significantly contribute to foot kinematics at push-off. Further analysis reveals that significant variabilities exist in joint coupling behavior at different phases of the cross-slope walking.These findings demonstrate the effectiveness of the proposed method in detecting the complex inter-joint kinematics and coupling patterns of the human foot during cross-slope walking. The results provide insights into the kinematic changes of foot joints for terrain adaptation in uneven walking surfaces and advocate the application of novel motion analysis methods for tracking natural gait patterns. |
ArticleNumber | 112766 |
Author | Li, Jie-Wen Ma, Xin Chen, Wen-Ming |
Author_xml | – sequence: 1 givenname: Jie-Wen orcidid: 0000-0003-1156-5165 surname: Li fullname: Li, Jie-Wen organization: Academy for Engineering and Technology, Fudan University, Shanghai, China – sequence: 2 givenname: Xin surname: Ma fullname: Ma, Xin organization: Academy for Engineering and Technology, Fudan University, Shanghai, China – sequence: 3 givenname: Wen-Ming orcidid: 0000-0003-0409-5118 surname: Chen fullname: Chen, Wen-Ming email: chenwm@fudan.edu.cn organization: Academy for Engineering and Technology, Fudan University, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40446489$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1q3TAQhUVJaW7SvkIQdNONb_VjS_amNIT-QaCbdi1kaZQrx5ZcyU64T9DXrm5u0kU2LQgGzXxzYM45QychBkDogpItJVS8H7ZD7-MEZrdlhDVbSpkU4gXa0FbyivGWnKANIYxWHevIKTrLeSCEyFp2r9BpTepa1G23Qb8vcYh3MOJJp1tII-SMb7RfsA563Gef8QTLLlq8RGxhAVMm4wJJLz6GjH0or3yrIZaKTVzn0YcbPOuldAsQHd6tkw7Yxbhgu6bD1KSYc5XHOAO-1-Nt6b1GL50eM7x5rOfo5-dPP66-Vtffv3y7uryuTE3IUlHWt11Daic0ddC4ljnXi94BN6R3tWg70WnSSd1Yy422XJoGXO-4bSWjsuPn6N1Rd07x1wp5UZPPBsZRB4hrVpzRmlPJeVPQt8_QIa6p2PJASSEpbUmhLh6ptZ_Aqjn5YuVePVlcAHEEHq5O4P4ilKhDlmpQT1mqQ5bqmGVZ_HhchOLHnYeksvEQDFifSg7KRv9viQ_PJEyJx5viOez_R-APHQDB3Q |
Cites_doi | 10.1123/jab.16.4.407 10.1080/00222895.1987.10735403 10.1016/j.medntd.2023.100212 10.1016/j.jbiomech.2015.07.023 10.1016/j.gaitpost.2006.05.017 10.1037/0096-1523.21.1.183 10.1123/jab.26.1.17 10.4085/1062-6050-52.11.20 10.1186/s13047-017-0228-z 10.1002/jor.24394 10.1016/S0021-9290(01)00101-4 10.2105/AJPH.2005.083055 10.1136/bjsm.2007.036533 10.1080/00140139.2015.1132013 10.1016/j.jbiomech.2008.07.024 10.1177/107110070202301206 10.1126/scirobotics.abo3996 10.1016/j.jphysparis.2009.07.008 10.1016/j.gaitpost.2019.01.022 10.1111/j.1558-5646.2009.00944.x 10.2519/jospt.1987.9.4.160 10.1016/j.gaitpost.2022.09.009 10.1016/j.gaitpost.2006.04.012 10.1109/86.486054 10.1016/j.fas.2016.05.135 10.1016/j.gaitpost.2017.03.017 10.1016/j.humov.2011.06.004 10.1016/j.gaitpost.2010.07.004 10.1016/j.gaitpost.2012.06.033 10.1016/j.compbiomed.2017.11.006 10.3390/min1010109 10.1115/1.4037563 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 8FD FR3 K9. 7X8 |
DOI | 10.1016/j.jbiomech.2025.112766 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Calcium & Calcified Tissue Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 40446489 10_1016_j_jbiomech_2025_112766 S0021929025002787 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- RIG AAYXX AFCTW AGRNS ALIPV CITATION AFFDN CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 8FD FR3 K9. 7X8 |
ID | FETCH-LOGICAL-c400t-12b89504f6a1fe5f82ffb6bfe3c0bf468969a097a5dd3cad37c5efbf3d8721793 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Wed Jul 02 02:49:43 EDT 2025 Sat Aug 23 12:35:51 EDT 2025 Sat Jun 14 01:31:06 EDT 2025 Thu Jul 24 01:54:30 EDT 2025 Sat Aug 16 17:01:23 EDT 2025 Tue Aug 26 16:32:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vector coding Multi-segment foot model Markerless gait analysis Cross-slopes Kinematics |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-12b89504f6a1fe5f82ffb6bfe3c0bf468969a097a5dd3cad37c5efbf3d8721793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0409-5118 0000-0003-1156-5165 |
PMID | 40446489 |
PQID | 3217671180 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_3214317335 proquest_journals_3217671180 pubmed_primary_40446489 crossref_primary_10_1016_j_jbiomech_2025_112766 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2025_112766 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2025_112766 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Merryweather, Yoo, Bloswick (b0120) 2011; 1 Segal, Yeates, Neptune, Klute (b0140) 2018; 140 Chang, Van Emmerik, Hamill (b0030) 2008; 41 Kidder, Abuzzahab, Harris, Johnson (b0090) 1996; 4 Sparrow, Donovan, van Emmerik, Barry (b0145) 1987; 19 Kim, Kipp (b0095) 2019; 37 Voloshina, Kuo, Daley, Ferris (b0165) 2013; 216 Watanabe, Takabayashi, Watabe, Kikumoto, Kikuchi, Kubo (b0170) 2022; 98 Needham, Naemi, Chockalingam (b0125) 2015; 48 Iaquinto, Kindig, Haynor, Vu, Pepin, Tsai, Sangeorzan, Ledoux (b0080) 2018; 92 Jiang, Li, Geng, Ma, Chen (b0085) 2023; 17 McGrath, Patterson, Persson, Caulfield (b0115) 2017; 52 Damavandi, Dixon, Pearsall (b0045) 2012; 31 Leardini, Benedetti, Berti, Bettinelli, Nativo, Giannini (b0100) 2007; 25 Barnes, Wheat, Milner (b0015) 2008; 42 Pohl, Messenger, Buckley (b0130) 2007; 25 Urry (b0160) 2002; 23 Hamill, Haddad, McDermott (b0075) 2000; 16 Tran, Gabert, Hood, Lenzi (b0155) 2022; 7 Arnold, Mackintosh, Jones, Fraysse, Thewlis (b0005) 2016; 22 Domone, Lawrence, Heller, Hendra, Mawson, Wheat (b0060) 2016; 59 Carson, Harrington, Thompson, O'Connor, Theologis (b0025) 2001; 34 Xu, Nong, Wang, Ma, Chen (b0175) 2024 Donovan, Feger (b0065) 2017; 54 Li, Keegan, Sternfeld, Sidney, Quesenberry, Kelsey (b0110) 2006; 96 Dixon, Pearsall (b0055) 2010; 26 Leardini, Caravaggi, Theologis, Stebbins (b0105) 2019; 69 Diedrich, Warren (b0050) 1995; 21 Damavandi, Dixon, Pearsall (b0040) 2010; 32 Dubbeldam, Nester, Nene, Hermens, Buurke (b0070) 2013; 37 Arnold, Caravaggi, Fraysse, Thewlis, Leardini (b0010) 2017; 10 Buschmann, Lohmeier, Ulbrich (b0020) 2009; 103 Damavandi (b0035) 2015 Rolian, Lieberman, Hallgrimsson (b0135) 2010; 64 Tiberio (b0150) 1987; 9 Domone (10.1016/j.jbiomech.2025.112766_b0060) 2016; 59 Leardini (10.1016/j.jbiomech.2025.112766_b0105) 2019; 69 Arnold (10.1016/j.jbiomech.2025.112766_b0010) 2017; 10 Arnold (10.1016/j.jbiomech.2025.112766_b0005) 2016; 22 Dixon (10.1016/j.jbiomech.2025.112766_b0055) 2010; 26 Merryweather (10.1016/j.jbiomech.2025.112766_b0120) 2011; 1 Segal (10.1016/j.jbiomech.2025.112766_b0140) 2018; 140 Voloshina (10.1016/j.jbiomech.2025.112766_b0165) 2013; 216 Carson (10.1016/j.jbiomech.2025.112766_b0025) 2001; 34 Damavandi (10.1016/j.jbiomech.2025.112766_b0035) 2015 Dubbeldam (10.1016/j.jbiomech.2025.112766_b0070) 2013; 37 Li (10.1016/j.jbiomech.2025.112766_b0110) 2006; 96 Buschmann (10.1016/j.jbiomech.2025.112766_b0020) 2009; 103 Damavandi (10.1016/j.jbiomech.2025.112766_b0045) 2012; 31 Xu (10.1016/j.jbiomech.2025.112766_b0175) 2024 Tiberio (10.1016/j.jbiomech.2025.112766_b0150) 1987; 9 Pohl (10.1016/j.jbiomech.2025.112766_b0130) 2007; 25 Tran (10.1016/j.jbiomech.2025.112766_b0155) 2022; 7 Urry (10.1016/j.jbiomech.2025.112766_b0160) 2002; 23 Sparrow (10.1016/j.jbiomech.2025.112766_b0145) 1987; 19 Iaquinto (10.1016/j.jbiomech.2025.112766_b0080) 2018; 92 Kim (10.1016/j.jbiomech.2025.112766_b0095) 2019; 37 Needham (10.1016/j.jbiomech.2025.112766_b0125) 2015; 48 Watanabe (10.1016/j.jbiomech.2025.112766_b0170) 2022; 98 Hamill (10.1016/j.jbiomech.2025.112766_b0075) 2000; 16 Donovan (10.1016/j.jbiomech.2025.112766_b0065) 2017; 54 Chang (10.1016/j.jbiomech.2025.112766_b0030) 2008; 41 Kidder (10.1016/j.jbiomech.2025.112766_b0090) 1996; 4 Leardini (10.1016/j.jbiomech.2025.112766_b0100) 2007; 25 Rolian (10.1016/j.jbiomech.2025.112766_b0135) 2010; 64 Barnes (10.1016/j.jbiomech.2025.112766_b0015) 2008; 42 McGrath (10.1016/j.jbiomech.2025.112766_b0115) 2017; 52 Damavandi (10.1016/j.jbiomech.2025.112766_b0040) 2010; 32 Diedrich (10.1016/j.jbiomech.2025.112766_b0050) 1995; 21 Jiang (10.1016/j.jbiomech.2025.112766_b0085) 2023; 17 |
References_xml | – volume: 48 start-page: 3506 year: 2015 end-page: 3511 ident: b0125 article-title: A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique publication-title: J. Biomech. – year: 2024 ident: b0175 article-title: Year a bionic ankle-foot prosthesis with active metatarsophalangeal joint mimicking the toe-gripping function of biological limb publication-title: 2024 IEEE Biomedical Circuits and Systems Conference (BioCAS) – volume: 42 start-page: 93 year: 2008 end-page: 98 ident: b0015 article-title: Association between foot type and tibial stress injuries: a systematic review publication-title: Br. J. Sports Med. – volume: 10 start-page: 47 year: 2017 ident: b0010 article-title: Movement coordination patterns between the foot joints during walking publication-title: J. Foot Ankle Res. – volume: 32 start-page: 411 year: 2010 end-page: 415 ident: b0040 article-title: Kinematic adaptations of the hindfoot, forefoot, and hallux during cross-slope walking publication-title: Gait Posture – volume: 92 start-page: 118 year: 2018 end-page: 127 ident: b0080 article-title: Model-based tracking of the bones of the foot: A biplane fluoroscopy validation study publication-title: Comput. Biol. Med. – volume: 34 start-page: 1299 year: 2001 end-page: 1307 ident: b0025 article-title: Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis publication-title: J. Biomech. – volume: 103 start-page: 141 year: 2009 end-page: 148 ident: b0020 article-title: Humanoid robot Lola: design and walking control publication-title: J. Physiol. Paris – volume: 26 start-page: 17 year: 2010 end-page: 25 ident: b0055 article-title: Gait dynamics on a cross-slope walking surface publication-title: J. Appl. Biomech. – volume: 59 start-page: 1089 year: 2016 end-page: 1099 ident: b0060 article-title: Optimal fall indicators for slip induced falls on a cross-slope publication-title: Ergonomics – volume: 25 start-page: 453 year: 2007 end-page: 462 ident: b0100 article-title: Rear-foot, mid-foot and fore-foot motion during the stance phase of gait publication-title: Gait Posture – volume: 96 start-page: 1192 year: 2006 end-page: 1200 ident: b0110 article-title: Outdoor falls among middle-aged and older adults: a neglected public health problem publication-title: Am. J. Public Health – volume: 25 start-page: 295 year: 2007 end-page: 302 ident: b0130 article-title: Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait publication-title: Gait Posture – volume: 1 start-page: 109 year: 2011 end-page: 121 ident: b0120 article-title: Gait Characteristics associated with trip-induced falls on level and sloped irregular surfaces publication-title: Minerals – volume: 7 year: 2022 ident: b0155 article-title: A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint publication-title: Sci. Robot – volume: 17 year: 2023 ident: b0085 article-title: Fast tool to evaluate 3D movements of the foot-ankle complex using multi-view depth sensors publication-title: Med. Novel Technol. Devices – volume: 37 start-page: 2231 year: 2019 end-page: 2240 ident: b0095 article-title: Number of segments within musculoskeletal foot models influences ankle kinematics and strains of ligaments and muscles publication-title: J. Orthop. Res.® – volume: 98 start-page: 173 year: 2022 end-page: 179 ident: b0170 article-title: Coper has altered foot joint coordination pattern compared to individuals with chronic ankle instability during running publication-title: Gait Posture – volume: 4 start-page: 25 year: 1996 end-page: 32 ident: b0090 article-title: A system for the analysis of foot and ankle kinematics during gait publication-title: IEEE Trans. Rehabil. Eng. – volume: 37 start-page: 159 year: 2013 end-page: 164 ident: b0070 article-title: Kinematic coupling relationships exist between non-adjacent segments of the foot and ankle of healthy subjects publication-title: Gait Posture – volume: 19 start-page: 115 year: 1987 end-page: 129 ident: b0145 article-title: Using relative motion plots to measure changes in intra-limb and inter-limb coordination publication-title: J. Mot. Behav. – volume: 22 start-page: 56 year: 2016 ident: b0005 article-title: Foot joint coordination in young and elderly adults: insight into foot function across the lifespan publication-title: Foot Ankle Surg. – volume: 52 start-page: 1019 year: 2017 end-page: 1027 ident: b0115 article-title: Frontal-plane variability in foot orientation during fatiguing running exercise in individuals with chronic ankle instability publication-title: J. Athl. Train. – volume: 21 start-page: 183 year: 1995 end-page: 202 ident: b0050 article-title: Why change gaits? Dynamics of the walk-run transition publication-title: J. Exp. Psychol. Hum. Percept. Perform. – volume: 64 start-page: 1558 year: 2010 end-page: 1568 ident: b0135 article-title: The coevolution of human hands and feet publication-title: Evolution – volume: 140 year: 2018 ident: b0140 article-title: Foot and ankle joint biomechanical adaptations to an unpredictable coronally uneven surface publication-title: J. Biomech. Eng. – volume: 41 start-page: 3101 year: 2008 end-page: 3105 ident: b0030 article-title: Quantifying rearfoot-forefoot coordination in human walking publication-title: J. Biomech. – volume: 216 start-page: 3963 year: 2013 end-page: 3970 ident: b0165 article-title: Biomechanics and energetics of walking on uneven terrain publication-title: J. Exp. Biol. – volume: 69 start-page: 50 year: 2019 end-page: 59 ident: b0105 article-title: Multi-segment foot models and their use in clinical populations publication-title: Gait Posture – volume: 9 start-page: 160 year: 1987 end-page: 165 ident: b0150 article-title: The effect of excessive subtalar joint pronation on patellofemoral mechanics: a theoretical model publication-title: J. Orthop. Sports Phys. Ther. – start-page: 5 year: 2015 ident: b0035 article-title: Kinematics of hip, knee and ankle during cross- slope walking. physical treatments: specific publication-title: Phys. Ther. – volume: 54 start-page: 214 year: 2017 end-page: 220 ident: b0065 article-title: Relationship between ankle frontal plane kinematics during different functional tasks publication-title: Gait Posture – volume: 16 start-page: 407 year: 2000 end-page: 418 ident: b0075 article-title: Issues in quantifying variability from a dynamical systems perspective publication-title: J. Appl. Biomech. – volume: 31 start-page: 182 year: 2012 end-page: 189 ident: b0045 article-title: Ground reaction force adaptations during cross-slope walking and running publication-title: Hum. Mov. Sci. – volume: 23 start-page: 1112 year: 2002 end-page: 1118 ident: b0160 article-title: Redistribution of foot pressure in healthy adults during sideslope walking publication-title: Foot Ankle Int. – volume: 16 start-page: 407 year: 2000 ident: 10.1016/j.jbiomech.2025.112766_b0075 article-title: Issues in quantifying variability from a dynamical systems perspective publication-title: J. Appl. Biomech. doi: 10.1123/jab.16.4.407 – volume: 19 start-page: 115 year: 1987 ident: 10.1016/j.jbiomech.2025.112766_b0145 article-title: Using relative motion plots to measure changes in intra-limb and inter-limb coordination publication-title: J. Mot. Behav. doi: 10.1080/00222895.1987.10735403 – volume: 17 year: 2023 ident: 10.1016/j.jbiomech.2025.112766_b0085 article-title: Fast tool to evaluate 3D movements of the foot-ankle complex using multi-view depth sensors publication-title: Med. Novel Technol. Devices doi: 10.1016/j.medntd.2023.100212 – volume: 48 start-page: 3506 year: 2015 ident: 10.1016/j.jbiomech.2025.112766_b0125 article-title: A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.07.023 – start-page: 5 year: 2015 ident: 10.1016/j.jbiomech.2025.112766_b0035 article-title: Kinematics of hip, knee and ankle during cross- slope walking. physical treatments: specific publication-title: Phys. Ther. – volume: 25 start-page: 453 year: 2007 ident: 10.1016/j.jbiomech.2025.112766_b0100 article-title: Rear-foot, mid-foot and fore-foot motion during the stance phase of gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.05.017 – volume: 21 start-page: 183 year: 1995 ident: 10.1016/j.jbiomech.2025.112766_b0050 article-title: Why change gaits? Dynamics of the walk-run transition publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/0096-1523.21.1.183 – volume: 26 start-page: 17 year: 2010 ident: 10.1016/j.jbiomech.2025.112766_b0055 article-title: Gait dynamics on a cross-slope walking surface publication-title: J. Appl. Biomech. doi: 10.1123/jab.26.1.17 – volume: 52 start-page: 1019 year: 2017 ident: 10.1016/j.jbiomech.2025.112766_b0115 article-title: Frontal-plane variability in foot orientation during fatiguing running exercise in individuals with chronic ankle instability publication-title: J. Athl. Train. doi: 10.4085/1062-6050-52.11.20 – volume: 10 start-page: 47 year: 2017 ident: 10.1016/j.jbiomech.2025.112766_b0010 article-title: Movement coordination patterns between the foot joints during walking publication-title: J. Foot Ankle Res. doi: 10.1186/s13047-017-0228-z – volume: 37 start-page: 2231 year: 2019 ident: 10.1016/j.jbiomech.2025.112766_b0095 article-title: Number of segments within musculoskeletal foot models influences ankle kinematics and strains of ligaments and muscles publication-title: J. Orthop. Res.® doi: 10.1002/jor.24394 – volume: 34 start-page: 1299 year: 2001 ident: 10.1016/j.jbiomech.2025.112766_b0025 article-title: Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00101-4 – volume: 96 start-page: 1192 year: 2006 ident: 10.1016/j.jbiomech.2025.112766_b0110 article-title: Outdoor falls among middle-aged and older adults: a neglected public health problem publication-title: Am. J. Public Health doi: 10.2105/AJPH.2005.083055 – volume: 42 start-page: 93 year: 2008 ident: 10.1016/j.jbiomech.2025.112766_b0015 article-title: Association between foot type and tibial stress injuries: a systematic review publication-title: Br. J. Sports Med. doi: 10.1136/bjsm.2007.036533 – volume: 59 start-page: 1089 year: 2016 ident: 10.1016/j.jbiomech.2025.112766_b0060 article-title: Optimal fall indicators for slip induced falls on a cross-slope publication-title: Ergonomics doi: 10.1080/00140139.2015.1132013 – volume: 41 start-page: 3101 year: 2008 ident: 10.1016/j.jbiomech.2025.112766_b0030 article-title: Quantifying rearfoot-forefoot coordination in human walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.07.024 – volume: 23 start-page: 1112 year: 2002 ident: 10.1016/j.jbiomech.2025.112766_b0160 article-title: Redistribution of foot pressure in healthy adults during sideslope walking publication-title: Foot Ankle Int. doi: 10.1177/107110070202301206 – year: 2024 ident: 10.1016/j.jbiomech.2025.112766_b0175 article-title: Year a bionic ankle-foot prosthesis with active metatarsophalangeal joint mimicking the toe-gripping function of biological limb – volume: 7 year: 2022 ident: 10.1016/j.jbiomech.2025.112766_b0155 article-title: A lightweight robotic leg prosthesis replicating the biomechanics of the knee, ankle, and toe joint publication-title: Sci. Robot doi: 10.1126/scirobotics.abo3996 – volume: 103 start-page: 141 year: 2009 ident: 10.1016/j.jbiomech.2025.112766_b0020 article-title: Humanoid robot Lola: design and walking control publication-title: J. Physiol. Paris doi: 10.1016/j.jphysparis.2009.07.008 – volume: 69 start-page: 50 year: 2019 ident: 10.1016/j.jbiomech.2025.112766_b0105 article-title: Multi-segment foot models and their use in clinical populations publication-title: Gait Posture doi: 10.1016/j.gaitpost.2019.01.022 – volume: 64 start-page: 1558 year: 2010 ident: 10.1016/j.jbiomech.2025.112766_b0135 article-title: The coevolution of human hands and feet publication-title: Evolution doi: 10.1111/j.1558-5646.2009.00944.x – volume: 9 start-page: 160 year: 1987 ident: 10.1016/j.jbiomech.2025.112766_b0150 article-title: The effect of excessive subtalar joint pronation on patellofemoral mechanics: a theoretical model publication-title: J. Orthop. Sports Phys. Ther. doi: 10.2519/jospt.1987.9.4.160 – volume: 98 start-page: 173 year: 2022 ident: 10.1016/j.jbiomech.2025.112766_b0170 article-title: Coper has altered foot joint coordination pattern compared to individuals with chronic ankle instability during running publication-title: Gait Posture doi: 10.1016/j.gaitpost.2022.09.009 – volume: 25 start-page: 295 year: 2007 ident: 10.1016/j.jbiomech.2025.112766_b0130 article-title: Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.04.012 – volume: 4 start-page: 25 year: 1996 ident: 10.1016/j.jbiomech.2025.112766_b0090 article-title: A system for the analysis of foot and ankle kinematics during gait publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.486054 – volume: 22 start-page: 56 year: 2016 ident: 10.1016/j.jbiomech.2025.112766_b0005 article-title: Foot joint coordination in young and elderly adults: insight into foot function across the lifespan publication-title: Foot Ankle Surg. doi: 10.1016/j.fas.2016.05.135 – volume: 54 start-page: 214 year: 2017 ident: 10.1016/j.jbiomech.2025.112766_b0065 article-title: Relationship between ankle frontal plane kinematics during different functional tasks publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.03.017 – volume: 31 start-page: 182 year: 2012 ident: 10.1016/j.jbiomech.2025.112766_b0045 article-title: Ground reaction force adaptations during cross-slope walking and running publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2011.06.004 – volume: 216 start-page: 3963 year: 2013 ident: 10.1016/j.jbiomech.2025.112766_b0165 article-title: Biomechanics and energetics of walking on uneven terrain publication-title: J. Exp. Biol. – volume: 32 start-page: 411 year: 2010 ident: 10.1016/j.jbiomech.2025.112766_b0040 article-title: Kinematic adaptations of the hindfoot, forefoot, and hallux during cross-slope walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.07.004 – volume: 37 start-page: 159 year: 2013 ident: 10.1016/j.jbiomech.2025.112766_b0070 article-title: Kinematic coupling relationships exist between non-adjacent segments of the foot and ankle of healthy subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.06.033 – volume: 92 start-page: 118 year: 2018 ident: 10.1016/j.jbiomech.2025.112766_b0080 article-title: Model-based tracking of the bones of the foot: A biplane fluoroscopy validation study publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.11.006 – volume: 1 start-page: 109 year: 2011 ident: 10.1016/j.jbiomech.2025.112766_b0120 article-title: Gait Characteristics associated with trip-induced falls on level and sloped irregular surfaces publication-title: Minerals doi: 10.3390/min1010109 – volume: 140 year: 2018 ident: 10.1016/j.jbiomech.2025.112766_b0140 article-title: Foot and ankle joint biomechanical adaptations to an unpredictable coronally uneven surface publication-title: J. Biomech. Eng. doi: 10.1115/1.4037563 |
SSID | ssj0007479 |
Score | 2.4729443 |
Snippet | Walking on uneven surfaces alters foot joint kinematics and challenges gait stability. The intricate joint coupling relationship of the human foot, which is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 112766 |
SubjectTerms | Adult Ankle Balance Biomechanical Phenomena Biomechanics Coupling Cross-slopes Feet Female Foot - physiology Foot diseases Foot Joints - physiology Gait Gait - physiology Gait Analysis - methods Humans Injuries Joining Kinematics Male Markerless gait analysis Multi-segment foot model Pressure distribution Sensors Vector coding Walking Walking - physiology Young Adult |
Title | A novel markerless gait analysis method to detect alterations in inter-joint coupling patterns of human foot during cross-slope walking |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929025002787 https://dx.doi.org/10.1016/j.jbiomech.2025.112766 https://www.ncbi.nlm.nih.gov/pubmed/40446489 https://www.proquest.com/docview/3217671180 https://www.proquest.com/docview/3214317335 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELamISF4QNABK4zpkBBvXtvYSezHMm0qoFUIMalvkePYU6surtYUtJe98rc520m3SSCQeEmUxJbsnH139nffmZB3XPBKJmJIKy41RQtdUqmkoMLqPJMaTVZIX3w2zSbn_NMsne2Q444L48MqW90fdXrQ1u2bQfs3B6v53HN8cbYlHiYL8JlnlHOe-1F-dHMb5oHuchvmMaK-9B2W8OJoETjuAZRIUs-midkSf2ug_uSABkN0-pQ8aT1IGMdGPiM7pu6RvXGNq-fLa3gPIaYzbJb3yOM76QZ75OFZC6TvkZ9jqN13s4RLH57jAfc1XKh5A6pNUgLxaGloHFTGAw0QcPW4vwfzGnyeiSu6cHgH7Tae2HsBq5CtEws4C-H0P7DONRC5kBA6TNdLtzLwQy39Jv1zcn568u14QtszGajG2d7QUVIKmQ65zdTImtSKxNoyK61helhangmZSTWUuUqrimlVsVynxpaWVQLXmqgMXpDd2tVmn4CyuNyUQrNUo4k0iSxHjPPUoE4puUqyPhl0gihWMfVG0cWkLYpOdIUXXRFF1yd5J6-iI5aiKizQOvy1ptzWvDf8_qnuQTc0ilYBrAuGnc1yn1-vT95uP-PU9XiMqo3bhDLefWMs7ZOXcUhtO8o90M6FfPUfDXtNHvmnGFx8QHabq415gy5UUx6GOYLXfJYfkgfjj58nU7x_OJl--foLwk0e2w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6FPbxMLZ0H9m67QZjb14SW7alx1BW0rXJUwt9E7IslYTUCo3Tsr9g__b05dDBxgZ7Mtg6kHzS3Um_u58APhFKapbSUVITJhProauECUYTqmVZMGldlqcvns2L6QX5dplf7sFRVwvj0iqj7Q823Vvr-GYY_-ZwvVi4Gl-72lIHk3n4rHwA-46dKu_B_uTkdDrfGWQbMcdMj3HiBO4VCi-_LH2Zu8cl0twV1ATCxN_6qD_FoN4XHT-DpzGIxEno53PYU00fDiaN3UBff8fP6NM6_Xl5H57cYxzsw8NZxNIP4McEG3OrVnjtMnQc5r7BK7FoUUSeEgy3S2NrsFYOa0APrYcjPlw06KgmbpKlsU-UZutqe69w7Qk7bQOj0V8AiNqYFkM5JPoBJ5uVWSu8Eyt3Tv8CLo6_nh9Nk3gtQyLtgm-TcVpRlo-ILsRYq1zTVOuqqLTK5KjSpKCsYGLESpHXdSZFnZUyV7rSWU3tdtPag5fQa0yjXgMKbXecjMosl9ZLqpRV44yQXFmzUhGRFgMYdorg68C-wbu0tCXvVMed6nhQ3QDKTl-8qy211pBbB_FXSbaT_GUG_pPsYTc1eLQBG57ZwRalo9gbwMfdZ7t6HSQjGmW2vo2L4LIsH8CrMKV2AyUOayeUvfmPjn2AR9Pz2Rk_O5mfvoXH7kvINT6EXnuzVe9sRNVW7-OK-QnPnB8L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+markerless+gait+analysis+method+to+detect+alterations+in+inter-joint+coupling+patterns+of+human+foot+during+cross-slope+walking&rft.jtitle=Journal+of+biomechanics&rft.au=Li%2C+Jie-Wen&rft.au=Ma%2C+Xin&rft.au=Chen%2C+Wen-Ming&rft.date=2025-07-01&rft.issn=1873-2380&rft.eissn=1873-2380&rft.volume=188&rft.spage=112766&rft_id=info:doi/10.1016%2Fj.jbiomech.2025.112766&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |