Donor substrate binding and enzymatic mechanism of human core α1,6-fucosyltransferase (FUT8)
Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a maj...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1820; no. 12; pp. 1915 - 1925 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/j.bbagen.2012.08.018 |
Cover
Loading…
Abstract | Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme.
We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations.
Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time.
Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques.
The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors.
► First detailed model of donor substrate binding for human fucosyltransferase FUT8. ► Model is based on X-ray structures combined with ligand-based NMR data and SPR data. ► Refinement with molecular dynamics simulation yields substrate binding mode. ► Major donor binding of FUT8 originates from β-phosphate group. ► The key catalytic residue Arg365 orientates fucose residue and assists GDP release. |
---|---|
AbstractList | BACKGROUND: Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme. METHODS: We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations. RESULTS: Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time. CONCLUSIONS: Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques. GENERAL SIGNIFICANCE: The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors. Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme.BACKGROUNDFucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme.We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations.METHODSWe provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations.Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time.RESULTSGuanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time.Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques.CONCLUSIONSDiscovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques.The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors.GENERAL SIGNIFICANCEThe model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors. Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme. We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations. Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time. Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques. The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors. Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme. We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations. Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time. Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques. The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors. ► First detailed model of donor substrate binding for human fucosyltransferase FUT8. ► Model is based on X-ray structures combined with ligand-based NMR data and SPR data. ► Refinement with molecular dynamics simulation yields substrate binding mode. ► Major donor binding of FUT8 originates from β-phosphate group. ► The key catalytic residue Arg365 orientates fucose residue and assists GDP release. |
Author | Bantleon, Frank I. Kötzler, Miriam P. Spillner, Edzard Meyer, Bernd Blank, Simon |
Author_xml | – sequence: 1 givenname: Miriam P. surname: Kötzler fullname: Kötzler, Miriam P. organization: Institute of Organic Chemistry, University of Hamburg, Germany – sequence: 2 givenname: Simon surname: Blank fullname: Blank, Simon organization: Institute of Biochemistry and Molecular Biology, University of Hamburg, Germany – sequence: 3 givenname: Frank I. surname: Bantleon fullname: Bantleon, Frank I. organization: Institute of Biochemistry and Molecular Biology, University of Hamburg, Germany – sequence: 4 givenname: Edzard surname: Spillner fullname: Spillner, Edzard organization: Institute of Biochemistry and Molecular Biology, University of Hamburg, Germany – sequence: 5 givenname: Bernd surname: Meyer fullname: Meyer, Bernd email: bernd.meyer@chemie.uni-hamburg.de organization: Institute of Organic Chemistry, University of Hamburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22982178$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1uFDEQhS0URCYDN0DgZZDoxuX-c7NAQoEAUiQWZJbIctvliUfTdrC7kYZbcRHOhEedbFiQ2tTme69U752REx88EvIcWAkM2je7chjUFn3JGfCSiZKBeERWIDpeCMbaE7JiFauLGtrmlJyltGN5mr55Qk457wWHTqzI9w_Bh0jTPKQpqgnp4LxxfkuVNxT9r8OoJqfpiPpGeZdGGiy9mUflqQ4R6Z_f8Lot7KxDOuyzgU8Wo0pIzy831-LVU_LYqn3CZ3d7TTaXH68vPhdXXz99uXh_VeiasakADpUWogKjTa-0AqN6hcb22nSD7WColYWG2R4HaIEzYxuBbd9WvWbcVFityfniexvDjxnTJEeXNO73ymOYk-TH1wH6mj-IAuRLbd10TUZf3KHzMKKRt9GNKh7kfXoZeLsAOoaUIlqp3ZTzCj5H4fYSmDxWJXdyqUoeq5JMyFxVFtf_iO_9H5C9XGRWBam20SW5-ZaBNn_Ia5ZDWZN3C4E58Z8Oo0zaoddoXEQ9SRPc_0_8BT0RuHQ |
CitedBy_id | crossref_primary_10_1016_j_ajhg_2017_12_009 crossref_primary_10_4052_tigg_2025_1E crossref_primary_10_1002_elsc_201600255 crossref_primary_10_1016_j_bmc_2017_02_036 crossref_primary_10_1039_C7OB00954B crossref_primary_10_1016_j_mam_2020_100905 crossref_primary_10_4052_tigg_2025_1J crossref_primary_10_1055_a_2221_9096 crossref_primary_10_1515_pac_2016_0923 crossref_primary_10_3748_wjg_v25_i23_2947 crossref_primary_10_1002_glia_24345 crossref_primary_10_1039_D0CC04847J crossref_primary_10_1111_tpj_13628 crossref_primary_10_3390_molecules26175203 crossref_primary_10_1002_cbic_201900289 crossref_primary_10_1016_j_bbagen_2020_129596 crossref_primary_10_1016_j_bbagen_2018_12_008 crossref_primary_10_1016_j_brainresbull_2024_110959 crossref_primary_10_1016_j_schres_2016_10_024 crossref_primary_10_1038_s41598_020_58559_6 crossref_primary_10_1021_cb400140u crossref_primary_10_1074_jbc_RA120_013291 |
Cites_doi | 10.1093/glycob/8.1.87 10.1016/0167-4838(91)90007-M 10.1016/S0021-9258(18)54676-7 10.1107/S0907444911053157 10.1021/ja00214a001 10.1021/bi9015154 10.1093/glycob/10.5.503 10.1093/oxfordjournals.jbchem.a021631 10.1146/annurev.biochem.76.061005.092322 10.1002/1521-3773(20011119)40:22<4189::AID-ANIE4189>3.0.CO;2-A 10.1021/ja063550r 10.1016/S0006-291X(76)80218-5 10.1515/BC.2009.072 10.1002/anie.200390233 10.1063/1.449071 10.1074/jbc.M202069200 10.1074/jbc.272.47.29721 10.1016/j.mimet.2004.06.013 10.1021/ja0100120 10.1016/j.jmb.2006.12.015 10.1093/glycob/10.6.637 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q 10.1093/glycob/cwj068 10.1074/jbc.M210665200 10.1016/j.bbapap.2011.10.011 10.1074/jbc.M510893200 10.1021/jp212550z 10.1074/jbc.271.44.27810 10.1093/glycob/cwi028 10.18388/abp.2007_3227 10.1093/jb/mvp022 10.1002/cbic.201100642 10.1371/journal.pone.0025365 10.1016/j.jmr.2009.11.015 10.1016/0008-6215(94)84283-3 10.1063/1.464397 10.1016/j.tibs.2004.11.005 10.1006/abio.1994.1050 10.1016/S0008-6215(00)81049-6 10.1074/jbc.M608764200 10.1074/jbc.M100573200 10.1002/1097-0282(200106)58:7<617::AID-BIP1035>3.0.CO;2-1 10.1074/jbc.M600424200 10.1016/j.ibmb.2011.11.004 10.1073/pnas.0507375102 10.1002/(SICI)1097-0215(19980130)75:3<444::AID-IJC19>3.0.CO;2-8 10.1093/glycob/cwq064 10.1016/j.carres.2009.04.031 10.1063/1.467468 10.1093/glycob/cwm094 10.1093/glycob/9.4.323 10.1023/A:1006959915435 10.1016/S0304-4165(99)00166-X 10.1111/j.1349-7006.2009.01125.x 10.1093/glycob/cwg113 10.1021/bi00159a012 10.1074/jbc.M610285200 10.1016/0076-6879(95)49031-0 10.1002/hep.510280408 10.1093/glycob/cwl079 |
ContentType | Journal Article |
Copyright | 2012 Copyright © 2012. Published by Elsevier B.V. |
Copyright_xml | – notice: 2012 – notice: Copyright © 2012. Published by Elsevier B.V. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2012.08.018 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1925 |
ExternalDocumentID | 22982178 10_1016_j_bbagen_2012_08_018 US201600024096 S0304416512002449 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEIPS AFJKZ AKRWK ANKPU FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c400t-1213c8831dcd9aca1da9aedf9cd7bf71b4af150f9eb16120df58e69639c02d3e3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri Jul 11 15:24:58 EDT 2025 Fri Jul 11 06:15:46 EDT 2025 Thu Apr 03 06:59:49 EDT 2025 Tue Jul 01 00:21:59 EDT 2025 Thu Apr 24 23:04:18 EDT 2025 Thu Apr 03 09:44:36 EDT 2025 Fri Feb 23 02:34:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | STD GT-B Glycosyltransferase SPC Saturation transfer difference nuclear magnetic resonance ADP OPLS BSA FUT8 IDP SPR MD GDP-fucose GlcNAc T1 FID EGF XDP MS RMSF PME cePOFUT1 RMSD Fucosyltransferase Molecular dynamics simulation HEK MALDI TOF MWCO NMR NodZ VGF Fcγ TGFβ GDP-Fuc Mes Substrate recognition |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-1213c8831dcd9aca1da9aedf9cd7bf71b4af150f9eb16120df58e69639c02d3e3 |
Notes | http://dx.doi.org/10.1016/j.bbagen.2012.08.018 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22982178 |
PQID | 1115064575 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000011942 proquest_miscellaneous_1115064575 pubmed_primary_22982178 crossref_citationtrail_10_1016_j_bbagen_2012_08_018 crossref_primary_10_1016_j_bbagen_2012_08_018 fao_agris_US201600024096 elsevier_sciencedirect_doi_10_1016_j_bbagen_2012_08_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-00 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-00 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Osumi, Takahashi, Miyoshi, Yokoe, Lee, Noda, Nakamori, Gu, Ikeda, Kuroki, Sengoku, Ishikawa, Taniguchi (bb0035) 2009; 100 Ihara, Ikeda, Taniguchi (bb0135) 2006; 16 Costache, Apoil, Cailleau, Elmgren, Larson, Henry, Blancher, Iordachescu, Oriol, Mollicone (bb0105) 1997; 272 Angulo, Langpap, Blume, Biet, Meyer, Krishna, Peters, Palcic, Peters (bb0170) 2006; 128 Tamura, Wadhwa, Rice (bb0210) 1994; 216 Kötzler, Blank, Behnken, Alpers, Bantleon, Spillner, Meyer (bb0180) 2012; 42 Kemper, Patel, Errey, Davis, Jones, Claridge (bb0220) 2010; 203 Martinez-Duncker, Mollicone, Candelier, Breton, Oriol (bb0115) 2003; 13 Manger, Rademacher, Dwek (bb0215) 1992; 31 Evans, Holian (bb0245) 1985; 83 Lairson, Henrissat, Davies, Withers (bb0325) 2008; 77 Biet, Peters (bb0315) 2001; 40 Nishima, Miyashita, Yamaguchi, Sugita, Re (bb0075) 2012; 116 Wang, Fukuda, Li, Gao, Kondo, Matsumoto, Miyoshi, Taniguchi, Gu (bb0030) 2009; 145 Beredsen, Postma, van Gunsteren, Hermans (bb0235) 1981 Petrova, Monteiro, de Penhoat, Koca, Imberty (bb0320) 2001; 58 Liu, Meng, Moremen, Prestegard (bb0305) 2009; 48 Qasba, Ramakrishnan, Boeggeman (bb0165) 2005; 30 Shields, Lai, Keck, O'Connell, Hong, Meng, Weikert, Presta (bb0060) 2002; 277 Jorgensen, Tirado-Rives (bb0230) 1988; 110 Shao, Sokolik, Wold (bb0185) 1994; 251 Orsi, Tipton, Daniel (bb0270) 1979; vol. 63 Yanagidani, Uozumi, Ihara, Miyoshi, Yamaguchi, Taniguchi (bb0095) 1997; 121 Yamaguchi, Ikeda, Takahashi, Ihara, Tanaka, Sasho, Uozumi, Yanagidani, Inoue, Fujii, Taniguchi (bb0110) 2000; 10 Exnowitz, Meyer, Hackl (bb0255) 2012; 1824 Macnaughtan, Kamar, Alvarez-Manilla, Venot, Glushka, Pierce, Prestegard (bb0310) 2007; 366 Breton, Oriol, Imberty (bb0120) 1998; 8 Shinkawa, Nakamura, Yamane, Shoji-Hosaka, Kanda, Sakurada, Uchida, Anazawa, Satoh, Yamasaki, Hanai, Shitara (bb0065) 2003; 278 Martyna, Tobias, Klein (bb0250) 1994; 101 Helfgott, Seier (bb0280) 2007; vol. 7 Mayer, Meyer (bb0285) 1999; 38 Voynow, Kaiser, Scanlin, Glick (bb0100) 1991; 266 Duggleby (bb0260) 1995; 249 Zhao, Itoh, Wang, Isaji, Miyoshi, Kariya, Miyazaki, Kawasaki, Taniguchi, Gu (bb0040) 2006; 281 Duggleby, Clarke (bb0265) 1991; 1080 André, Kožár, Kojima, Unverzagt, Gabius (bb0070) 2009; 390 Uozumi, Yanagidani, Miyoshi, Ihara, Sakuma, Gao, Teshima, Fujii, Shiba, Taniguchi (bb0090) 1996; 271 Oriol, Mollicone, Cailleau, Balanzino, Breton (bb0125) 1999; 9 Lira-Navarrete, Valero-González, Villanueva, Martínez-Júlvez, Tejero, Merino, Panjikar, Hurtado-Guerrero (bb0205) 2011; 6 Takahashi, Kuroki, Ohtsubo, Taniguchi (bb0015) 2009; 344 Mayer, Meyer (bb0290) 2001; 123 Brzezinski, Stepkowski, Panjikar, Bujacz, Jaskolski (bb0150) 2007; 54 Meyer, Peters (bb0295) 2003; 42 Moriwaki, Noda, Nakagawa, Asahi, Yoshihara, Taniguchi, Hayashi, Miyoshi (bb0055) 2007; 17 Wilson, Williams, Schachter (bb0005) 1976; 72 Takahashi, Ikeda, Tateishi, Yamaguchi, Ishikawa, Taniguchi (bb0130) 2000; 10 Darden, York, Pedersen (bb0240) 1993; 98 Sun, Lin, Ko, Pan, Liu, Lin, Wang, Lin (bb0200) 2007; 282 Kaminska, Glick, Koscielak (bb0190) 1998; 15 Paschinger, Staudacher, Stemmer, Fabini, Wilson (bb0195) 2005; 15 Wang, Inoue, Gu, Miyoshi, Noda, Li, Mizuno-Horikawa, Nakano, Asahi, Takahashi, Uozumi, Ihara, Lee, Ikeda, Yamaguchi, Aze, Tomiyama, Fujii, Suzuki, Kondo, Shapiro, Lopez-Otin, Kuwaki, Okabe, Honke, Taniguchi (bb0025) 2005; 102 Noda, Miyoshi, Uozumi, Yanagidani, Ikeda, Gao, Suzuki, Yoshihara, Yoshikawa, Kawano, Hayashi, Hori, Taniguchi (bb0050) 1998; 28 Fabini, Freilinger, Altmann, Wilson (bb0175) 2001; 276 Schmidt, Jung (bb0085) 2003; vol. 2 Blume, Angulo, Biet, Peters, Benie, Palcic, Peters (bb0300) 2006; 281 Ihara, Ikeda, Toma, Wang, Suzuki, Gu, Miyoshi, Tsukihara, Honke, Matsumoto, Nakagawa, Taniguchi (bb0140) 2007; 17 Miyoshi, Noda, Yamaguchi, Inoue, Ikeda, Wang, Ko, Uozumi, Li, Taniguchi (bb0010) 1999; 1473 Ihara, Hanashima, Okada, Ito, Yamaguchi, Taniguchi, Ikeda (bb0155) 2010; 20 Goudar, Harris, McInerney, Suflita (bb0275) 2004; 59 Bowers, Chow, Huafeng, Dror, Eastwood, Gregersen, Klepeis, Kolossvary, Moraes, Sacerdoti, Salmon, Yibing, Shaw (bb0225) 2006 Noda, Miyoshi, Uozumi, Gao, Suzuki, Hayashi, Hori, Taniguchi (bb0045) 1998; 75 Schaefer, Albers, Sindhuwinata, Peters, Meyer (bb0080) 2012; 13 Brzezinski, Dauter, Jaskolski (bb0145) 2012; 68 Longmore, Schachter (bb0160) 1982; 100 Wang, Gu, Ihara, Miyoshi, Honke, Taniguchi (bb0020) 2006; 281 Helfgott (10.1016/j.bbagen.2012.08.018_bb0280) 2007; vol. 7 Kaminska (10.1016/j.bbagen.2012.08.018_bb0190) 1998; 15 Lira-Navarrete (10.1016/j.bbagen.2012.08.018_bb0205) 2011; 6 Wilson (10.1016/j.bbagen.2012.08.018_bb0005) 1976; 72 Wang (10.1016/j.bbagen.2012.08.018_bb0025) 2005; 102 Blume (10.1016/j.bbagen.2012.08.018_bb0300) 2006; 281 Longmore (10.1016/j.bbagen.2012.08.018_bb0160) 1982; 100 Goudar (10.1016/j.bbagen.2012.08.018_bb0275) 2004; 59 André (10.1016/j.bbagen.2012.08.018_bb0070) 2009; 390 Sun (10.1016/j.bbagen.2012.08.018_bb0200) 2007; 282 Liu (10.1016/j.bbagen.2012.08.018_bb0305) 2009; 48 Noda (10.1016/j.bbagen.2012.08.018_bb0045) 1998; 75 Tamura (10.1016/j.bbagen.2012.08.018_bb0210) 1994; 216 Breton (10.1016/j.bbagen.2012.08.018_bb0120) 1998; 8 Takahashi (10.1016/j.bbagen.2012.08.018_bb0130) 2000; 10 Angulo (10.1016/j.bbagen.2012.08.018_bb0170) 2006; 128 Darden (10.1016/j.bbagen.2012.08.018_bb0240) 1993; 98 Exnowitz (10.1016/j.bbagen.2012.08.018_bb0255) 2012; 1824 Kötzler (10.1016/j.bbagen.2012.08.018_bb0180) 2012; 42 Paschinger (10.1016/j.bbagen.2012.08.018_bb0195) 2005; 15 Takahashi (10.1016/j.bbagen.2012.08.018_bb0015) 2009; 344 Zhao (10.1016/j.bbagen.2012.08.018_bb0040) 2006; 281 Ihara (10.1016/j.bbagen.2012.08.018_bb0155) 2010; 20 Shields (10.1016/j.bbagen.2012.08.018_bb0060) 2002; 277 Oriol (10.1016/j.bbagen.2012.08.018_bb0125) 1999; 9 Meyer (10.1016/j.bbagen.2012.08.018_bb0295) 2003; 42 Yamaguchi (10.1016/j.bbagen.2012.08.018_bb0110) 2000; 10 Mayer (10.1016/j.bbagen.2012.08.018_bb0285) 1999; 38 Osumi (10.1016/j.bbagen.2012.08.018_bb0035) 2009; 100 Miyoshi (10.1016/j.bbagen.2012.08.018_bb0010) 1999; 1473 Martyna (10.1016/j.bbagen.2012.08.018_bb0250) 1994; 101 Nishima (10.1016/j.bbagen.2012.08.018_bb0075) 2012; 116 Ihara (10.1016/j.bbagen.2012.08.018_bb0135) 2006; 16 Yanagidani (10.1016/j.bbagen.2012.08.018_bb0095) 1997; 121 Evans (10.1016/j.bbagen.2012.08.018_bb0245) 1985; 83 Bowers (10.1016/j.bbagen.2012.08.018_bb0225) 2006 Brzezinski (10.1016/j.bbagen.2012.08.018_bb0145) 2012; 68 Jorgensen (10.1016/j.bbagen.2012.08.018_bb0230) 1988; 110 Schmidt (10.1016/j.bbagen.2012.08.018_bb0085) 2003; vol. 2 Biet (10.1016/j.bbagen.2012.08.018_bb0315) 2001; 40 Duggleby (10.1016/j.bbagen.2012.08.018_bb0260) 1995; 249 Manger (10.1016/j.bbagen.2012.08.018_bb0215) 1992; 31 Kemper (10.1016/j.bbagen.2012.08.018_bb0220) 2010; 203 Martinez-Duncker (10.1016/j.bbagen.2012.08.018_bb0115) 2003; 13 Petrova (10.1016/j.bbagen.2012.08.018_bb0320) 2001; 58 Wang (10.1016/j.bbagen.2012.08.018_bb0030) 2009; 145 Costache (10.1016/j.bbagen.2012.08.018_bb0105) 1997; 272 Voynow (10.1016/j.bbagen.2012.08.018_bb0100) 1991; 266 Wang (10.1016/j.bbagen.2012.08.018_bb0020) 2006; 281 Uozumi (10.1016/j.bbagen.2012.08.018_bb0090) 1996; 271 Orsi (10.1016/j.bbagen.2012.08.018_bb0270) 1979; vol. 63 Macnaughtan (10.1016/j.bbagen.2012.08.018_bb0310) 2007; 366 Beredsen (10.1016/j.bbagen.2012.08.018_bb0235) 1981 Noda (10.1016/j.bbagen.2012.08.018_bb0050) 1998; 28 Shinkawa (10.1016/j.bbagen.2012.08.018_bb0065) 2003; 278 Lairson (10.1016/j.bbagen.2012.08.018_bb0325) 2008; 77 Qasba (10.1016/j.bbagen.2012.08.018_bb0165) 2005; 30 Moriwaki (10.1016/j.bbagen.2012.08.018_bb0055) 2007; 17 Duggleby (10.1016/j.bbagen.2012.08.018_bb0265) 1991; 1080 Mayer (10.1016/j.bbagen.2012.08.018_bb0290) 2001; 123 Schaefer (10.1016/j.bbagen.2012.08.018_bb0080) 2012; 13 Fabini (10.1016/j.bbagen.2012.08.018_bb0175) 2001; 276 Ihara (10.1016/j.bbagen.2012.08.018_bb0140) 2007; 17 Brzezinski (10.1016/j.bbagen.2012.08.018_bb0150) 2007; 54 Shao (10.1016/j.bbagen.2012.08.018_bb0185) 1994; 251 |
References_xml | – volume: 58 start-page: 617 year: 2001 end-page: 635 ident: bb0320 article-title: Conformational behavior of nucleotide-sugar in solution: molecular dynamics and NMR study of solvated uridine diphosphate-glucose in the presence of monovalent cations publication-title: Biopolymers – volume: 1080 start-page: 231 year: 1991 end-page: 236 ident: bb0265 article-title: Experimental designs for estimating the parameters of the Michaelis–Menten equation from progress curves of enzyme-catalyzed reactions publication-title: Biochim. Biophys. Acta – volume: 271 start-page: 27810 year: 1996 end-page: 27817 ident: bb0090 article-title: Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-β- publication-title: J. Biol. Chem. – year: 1981 ident: bb0235 article-title: Intermolecular Forces – volume: 1473 start-page: 9 year: 1999 end-page: 20 ident: bb0010 article-title: The α1,6-fucosyltransferase gene and its biological significance publication-title: Biochim. Biophys. Acta – volume: 116 start-page: 8504 year: 2012 end-page: 8512 ident: bb0075 article-title: Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution publication-title: J. Phys. Chem. B – volume: 123 start-page: 6108 year: 2001 end-page: 6117 ident: bb0290 article-title: Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 626 year: 1997 end-page: 632 ident: bb0095 article-title: Purification and cDNA cloning of GDP-L-Fuc:N-acetyl-β- publication-title: J. Biochem. – volume: 249 start-page: 61 year: 1995 end-page: 90 ident: bb0260 article-title: Analysis of enzyme progress curves by nonlinear regression publication-title: Methods Enzymol. – volume: 281 start-page: 32728 year: 2006 end-page: 32740 ident: bb0300 article-title: Fragment-based screening of the donor substrate specificity of human blood group B galactosyltransferase using saturation transfer difference NMR publication-title: J. Biol. Chem. – volume: 390 start-page: 557 year: 2009 ident: bb0070 article-title: From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans publication-title: Biol. Chem. – volume: 38 start-page: 1784 year: 1999 end-page: 1788 ident: bb0285 article-title: Characterization of ligand binding by saturation transfer difference NMR spectroscopy publication-title: Angew. Chem. Int. Ed. – start-page: 43 year: 2006 ident: bb0225 article-title: Scalable algorithms for molecular dynamics simulations on commodity clusters publication-title: SC 2006 Conference, Proceedings of the ACM/IEEE – volume: 98 start-page: 10089 year: 1993 end-page: 10092 ident: bb0240 article-title: Particle mesh Ewald — an N. Log(N) method for Ewald sums in large systems publication-title: J. Chem. Phys. – volume: 17 start-page: 455 year: 2007 end-page: 466 ident: bb0140 article-title: Crystal structure of mammalian α1,6-fucosyltransferase, FUT8 publication-title: Glycobiology – volume: 54 start-page: 537 year: 2007 end-page: 549 ident: bb0150 article-title: High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor publication-title: Acta Biochim. Pol. – volume: 100 start-page: 888 year: 2009 end-page: 895 ident: bb0035 article-title: Core fucosylation of E-cadherin enhances cell–cell adhesion in human colon carcinoma WiDr cells publication-title: Cancer Sci. – volume: 203 start-page: 1 year: 2010 end-page: 10 ident: bb0220 article-title: Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments publication-title: J. Magn. Reson. – volume: 42 start-page: 864 year: 2003 end-page: 890 ident: bb0295 article-title: NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors publication-title: Angew. Chem. Int. Ed. – volume: 40 start-page: 4189 year: 2001 end-page: 4192 ident: bb0315 article-title: Molecular recognition of UDP-Gal by beta-1,4-galactosyltransferase T1 publication-title: Angew. Chem. Int. Ed. – volume: 278 start-page: 3466 year: 2003 end-page: 3473 ident: bb0065 article-title: The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity publication-title: J. Biol. Chem. – volume: 1824 start-page: 443 year: 2012 end-page: 449 ident: bb0255 article-title: NMR for direct determination of Km and Vmax of enzyme reactions based on the Lambert W function-analysis of progress curves publication-title: Biochim. Biophys. Acta – volume: 20 start-page: 1021 year: 2010 end-page: 1033 ident: bb0155 article-title: Fucosylation of chitooligosaccharides by human α1,6-fucosyltransferase requires a nonreducing terminal chitotriose unit as a minimal structure publication-title: Glycobiology – volume: 281 start-page: 2572 year: 2006 end-page: 2577 ident: bb0020 article-title: Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling publication-title: J. Biol. Chem. – volume: 366 start-page: 1266 year: 2007 end-page: 1281 ident: bb0310 article-title: NMR structural characterization of substrates bound to N-acetylglucosaminyltransferase V publication-title: J. Mol. Biol. – volume: 13 start-page: 443 year: 2012 end-page: 450 ident: bb0080 article-title: A new concept for glycosyltransferase inhibitors: nonionic mimics of the nucleotide donor of the human blood group B galactosyltransferase publication-title: ChemBioChem – volume: 101 start-page: 4177 year: 1994 end-page: 4189 ident: bb0250 article-title: Constant-pressure molecular-dynamics algorithms publication-title: J. Chem. Phys. – volume: 72 start-page: 909 year: 1976 end-page: 916 ident: bb0005 article-title: Control of glycoprotein synthesis—N-acetylglucosamine linkage to a mannose residue as a signal for attachment of publication-title: Biochem. Biophys. Res. Commun. – volume: 48 start-page: 11211 year: 2009 end-page: 11219 ident: bb0305 article-title: Nuclear magnetic resonance structural characterization of substrates bound to the α2,6-sialyltransferase, ST6Gal-I publication-title: Biochemistry – volume: 75 start-page: 444 year: 1998 end-page: 450 ident: bb0045 article-title: High expression of α1,6-fucosyltransferase during rat hepatocarcinogenesis publication-title: Int. J. Cancer – volume: 77 start-page: 521 year: 2008 end-page: 555 ident: bb0325 article-title: Glycosyltransferases: structures, functions, and mechanisms publication-title: Annu. Rev. Biochem. – volume: 110 start-page: 1657 year: 1988 end-page: 1666 ident: bb0230 article-title: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1311 year: 2007 end-page: 1320 ident: bb0055 article-title: A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation publication-title: Glycobiology – volume: 15 start-page: 783 year: 1998 end-page: 788 ident: bb0190 article-title: Purification and characterization of GDP-L-Fuc: N-acetyl β- publication-title: Glycoconj. J. – volume: 102 start-page: 15791 year: 2005 end-page: 15796 ident: bb0025 article-title: Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: vol. 2 start-page: 609 year: 2003 end-page: 659 ident: bb0085 article-title: Glycosyltransferase inhibitors publication-title: Carbohydrate-based Drug Discovery – volume: 277 start-page: 26733 year: 2002 end-page: 26740 ident: bb0060 article-title: Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity publication-title: J. Biol. Chem. – volume: 9 start-page: 323 year: 1999 end-page: 334 ident: bb0125 article-title: Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria publication-title: Glycobiology – volume: 251 start-page: 163 year: 1994 end-page: 173 ident: bb0185 article-title: Specificity studies of the GDP-L-fucose—2-acetamido-2-deoxy-β- publication-title: Carbohydr. Res. – volume: 30 start-page: 53 year: 2005 end-page: 62 ident: bb0165 article-title: Substrate-induced conformational changes in glycosyltransferases publication-title: Trends Biochem. Sci. – volume: 68 start-page: 160 year: 2012 end-page: 168 ident: bb0145 article-title: Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 42 start-page: 116 year: 2012 end-page: 125 ident: bb0180 article-title: Formation of the immunogenic α1,3-fucose epitope: elucidation of substrate specificity and of enzyme mechanism of core fucosyltransferase A publication-title: Insect Biochem. Mol. Biol. – volume: 145 start-page: 643 year: 2009 end-page: 651 ident: bb0030 article-title: Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice publication-title: J. Biochem. – volume: 10 start-page: 503 year: 2000 end-page: 510 ident: bb0130 article-title: A sequence motif involved in the donor substrate binding by α1,6-fucosyltransferase: the role of the conserved arginine residues publication-title: Glycobiology – volume: 344 start-page: 1387 year: 2009 end-page: 1390 ident: bb0015 article-title: Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins publication-title: Carbohydr. Res. – volume: 216 start-page: 335 year: 1994 end-page: 344 ident: bb0210 article-title: Reducing-end modification of N-linked oligosaccharides with tyrosine publication-title: Anal. Biochem. – volume: 281 start-page: 38343 year: 2006 end-page: 38350 ident: bb0040 article-title: Deletion of core fucosylation on α3β1 integrin down-regulates its functions publication-title: J. Biol. Chem. – volume: 59 start-page: 317 year: 2004 end-page: 326 ident: bb0275 article-title: Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function publication-title: J. Microbiol. Methods – volume: 276 start-page: 28058 year: 2001 end-page: 28067 ident: bb0175 article-title: Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from publication-title: J. Biol. Chem. – volume: 31 start-page: 10724 year: 1992 end-page: 10732 ident: bb0215 article-title: 1-N-glycyl β-oligosaccharide derivatives as stable intermediates for the formation of glycoconjugate probes publication-title: Biochemistry – volume: 16 start-page: 333 year: 2006 end-page: 342 ident: bb0135 article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8 publication-title: Glycobiology – volume: 10 start-page: 637 year: 2000 end-page: 643 ident: bb0110 article-title: Genomic structure and promoter analysis of the human α1,6-fucosyltransferase gene (FUT8) publication-title: Glycobiology – volume: vol. 63 start-page: 159 year: 1979 end-page: 183 ident: bb0270 article-title: Kinetic analysis of progress curves publication-title: Methods Enzymol. – volume: 100 start-page: 365 year: 1982 end-page: 392 ident: bb0160 article-title: Product-identification and substrate-specificity studies of the GDP- publication-title: Carbohydr. Res. – volume: 282 start-page: 9973 year: 2007 end-page: 9982 ident: bb0200 article-title: Structure and mechanism of publication-title: J. Biol. Chem. – volume: 272 start-page: 29721 year: 1997 end-page: 29728 ident: bb0105 article-title: Evolution of fucosyltransferase genes in vertebrates publication-title: J. Biol. Chem. – volume: 266 start-page: 21572 year: 1991 end-page: 21577 ident: bb0100 article-title: Purification and characterization of GDP- publication-title: J. Biol. Chem. – volume: 8 start-page: 87 year: 1998 end-page: 94 ident: bb0120 article-title: Conserved structural features in eukaryotic and prokaryotic fucosyltransferases publication-title: Glycobiology – volume: 128 start-page: 13529 year: 2006 end-page: 13538 ident: bb0170 article-title: Blood group B galactosyltransferase: insights into substrate binding from NMR experiments publication-title: J. Am. Chem. Soc. – volume: vol. 7 start-page: 1 year: 2007 end-page: 34 ident: bb0280 article-title: Some mathematical and statistical aspects of enzyme kinetics publication-title: J. Online Math. Appl. – volume: 6 start-page: e25365 year: 2011 ident: bb0205 article-title: Structural insights into the mechanism of protein O-fucosylation publication-title: PLoS One – volume: 83 start-page: 4069 year: 1985 end-page: 4074 ident: bb0245 article-title: The Nose–Hoover thermostat publication-title: J. Chem. Phys. – volume: 28 start-page: 944 year: 1998 end-page: 952 ident: bb0050 article-title: Gene expression of α1,6-fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein publication-title: Hepatology – volume: 15 start-page: 463 year: 2005 end-page: 474 ident: bb0195 article-title: Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates publication-title: Glycobiology – volume: 13 start-page: 1C year: 2003 end-page: 5C ident: bb0115 article-title: A new superfamily of protein-O-fucosyltransferases, α2-fucosyltransferases, and α6-fucosyltransferases: phylogeny and identification of conserved peptide motifs publication-title: Glycobiology – volume: 8 start-page: 87 year: 1998 ident: 10.1016/j.bbagen.2012.08.018_bb0120 article-title: Conserved structural features in eukaryotic and prokaryotic fucosyltransferases publication-title: Glycobiology doi: 10.1093/glycob/8.1.87 – volume: 1080 start-page: 231 year: 1991 ident: 10.1016/j.bbagen.2012.08.018_bb0265 article-title: Experimental designs for estimating the parameters of the Michaelis–Menten equation from progress curves of enzyme-catalyzed reactions publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(91)90007-M – volume: 266 start-page: 21572 year: 1991 ident: 10.1016/j.bbagen.2012.08.018_bb0100 article-title: Purification and characterization of GDP-l-fucose-N-acetyl β-d-glucosaminide α1,6-fucosyltransferase from cultured human skin fibroblasts. Requirement of a specific biantennary oligosaccharide as substrate publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54676-7 – volume: 68 start-page: 160 year: 2012 ident: 10.1016/j.bbagen.2012.08.018_bb0145 article-title: Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444911053157 – volume: 110 start-page: 1657 year: 1988 ident: 10.1016/j.bbagen.2012.08.018_bb0230 article-title: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00214a001 – volume: 48 start-page: 11211 year: 2009 ident: 10.1016/j.bbagen.2012.08.018_bb0305 article-title: Nuclear magnetic resonance structural characterization of substrates bound to the α2,6-sialyltransferase, ST6Gal-I publication-title: Biochemistry doi: 10.1021/bi9015154 – volume: 10 start-page: 503 year: 2000 ident: 10.1016/j.bbagen.2012.08.018_bb0130 article-title: A sequence motif involved in the donor substrate binding by α1,6-fucosyltransferase: the role of the conserved arginine residues publication-title: Glycobiology doi: 10.1093/glycob/10.5.503 – volume: vol. 7 start-page: 1 year: 2007 ident: 10.1016/j.bbagen.2012.08.018_bb0280 article-title: Some mathematical and statistical aspects of enzyme kinetics – volume: 121 start-page: 626 year: 1997 ident: 10.1016/j.bbagen.2012.08.018_bb0095 article-title: Purification and cDNA cloning of GDP-L-Fuc:N-acetyl-β-d-glucosaminide:α1,6-fucosyltransferase (α1,6 FucT) from human gastric cancer MKN45 cells publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a021631 – volume: 77 start-page: 521 year: 2008 ident: 10.1016/j.bbagen.2012.08.018_bb0325 article-title: Glycosyltransferases: structures, functions, and mechanisms publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.061005.092322 – volume: 40 start-page: 4189 year: 2001 ident: 10.1016/j.bbagen.2012.08.018_bb0315 article-title: Molecular recognition of UDP-Gal by beta-1,4-galactosyltransferase T1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20011119)40:22<4189::AID-ANIE4189>3.0.CO;2-A – volume: 128 start-page: 13529 year: 2006 ident: 10.1016/j.bbagen.2012.08.018_bb0170 article-title: Blood group B galactosyltransferase: insights into substrate binding from NMR experiments publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063550r – volume: 72 start-page: 909 year: 1976 ident: 10.1016/j.bbagen.2012.08.018_bb0005 article-title: Control of glycoprotein synthesis—N-acetylglucosamine linkage to a mannose residue as a signal for attachment of l-fucose to asparagine-linked N-acetylglucosamine residue of glycopeptide from α1-acid glycoprotein publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(76)80218-5 – volume: 390 start-page: 557 year: 2009 ident: 10.1016/j.bbagen.2012.08.018_bb0070 article-title: From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans publication-title: Biol. Chem. doi: 10.1515/BC.2009.072 – volume: 42 start-page: 864 year: 2003 ident: 10.1016/j.bbagen.2012.08.018_bb0295 article-title: NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200390233 – volume: 83 start-page: 4069 year: 1985 ident: 10.1016/j.bbagen.2012.08.018_bb0245 article-title: The Nose–Hoover thermostat publication-title: J. Chem. Phys. doi: 10.1063/1.449071 – volume: 277 start-page: 26733 year: 2002 ident: 10.1016/j.bbagen.2012.08.018_bb0060 article-title: Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202069200 – volume: 272 start-page: 29721 year: 1997 ident: 10.1016/j.bbagen.2012.08.018_bb0105 article-title: Evolution of fucosyltransferase genes in vertebrates publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.47.29721 – volume: 59 start-page: 317 year: 2004 ident: 10.1016/j.bbagen.2012.08.018_bb0275 article-title: Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2004.06.013 – year: 1981 ident: 10.1016/j.bbagen.2012.08.018_bb0235 – volume: 123 start-page: 6108 year: 2001 ident: 10.1016/j.bbagen.2012.08.018_bb0290 article-title: Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0100120 – volume: 366 start-page: 1266 year: 2007 ident: 10.1016/j.bbagen.2012.08.018_bb0310 article-title: NMR structural characterization of substrates bound to N-acetylglucosaminyltransferase V publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.12.015 – volume: 10 start-page: 637 year: 2000 ident: 10.1016/j.bbagen.2012.08.018_bb0110 article-title: Genomic structure and promoter analysis of the human α1,6-fucosyltransferase gene (FUT8) publication-title: Glycobiology doi: 10.1093/glycob/10.6.637 – volume: 38 start-page: 1784 year: 1999 ident: 10.1016/j.bbagen.2012.08.018_bb0285 article-title: Characterization of ligand binding by saturation transfer difference NMR spectroscopy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q – volume: 16 start-page: 333 year: 2006 ident: 10.1016/j.bbagen.2012.08.018_bb0135 article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8 publication-title: Glycobiology doi: 10.1093/glycob/cwj068 – volume: vol. 63 start-page: 159 year: 1979 ident: 10.1016/j.bbagen.2012.08.018_bb0270 article-title: Kinetic analysis of progress curves – volume: 278 start-page: 3466 year: 2003 ident: 10.1016/j.bbagen.2012.08.018_bb0065 article-title: The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210665200 – volume: 1824 start-page: 443 year: 2012 ident: 10.1016/j.bbagen.2012.08.018_bb0255 article-title: NMR for direct determination of Km and Vmax of enzyme reactions based on the Lambert W function-analysis of progress curves publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2011.10.011 – volume: 281 start-page: 2572 year: 2006 ident: 10.1016/j.bbagen.2012.08.018_bb0020 article-title: Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M510893200 – volume: 116 start-page: 8504 year: 2012 ident: 10.1016/j.bbagen.2012.08.018_bb0075 article-title: Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution publication-title: J. Phys. Chem. B doi: 10.1021/jp212550z – volume: 271 start-page: 27810 year: 1996 ident: 10.1016/j.bbagen.2012.08.018_bb0090 article-title: Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-β-d-glucosaminide α1,6-fucosyltransferase publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.44.27810 – volume: 15 start-page: 463 year: 2005 ident: 10.1016/j.bbagen.2012.08.018_bb0195 article-title: Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates publication-title: Glycobiology doi: 10.1093/glycob/cwi028 – start-page: 43 year: 2006 ident: 10.1016/j.bbagen.2012.08.018_bb0225 article-title: Scalable algorithms for molecular dynamics simulations on commodity clusters – volume: 54 start-page: 537 year: 2007 ident: 10.1016/j.bbagen.2012.08.018_bb0150 article-title: High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2007_3227 – volume: 145 start-page: 643 year: 2009 ident: 10.1016/j.bbagen.2012.08.018_bb0030 article-title: Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice publication-title: J. Biochem. doi: 10.1093/jb/mvp022 – volume: 13 start-page: 443 year: 2012 ident: 10.1016/j.bbagen.2012.08.018_bb0080 article-title: A new concept for glycosyltransferase inhibitors: nonionic mimics of the nucleotide donor of the human blood group B galactosyltransferase publication-title: ChemBioChem doi: 10.1002/cbic.201100642 – volume: 6 start-page: e25365 year: 2011 ident: 10.1016/j.bbagen.2012.08.018_bb0205 article-title: Structural insights into the mechanism of protein O-fucosylation publication-title: PLoS One doi: 10.1371/journal.pone.0025365 – volume: 203 start-page: 1 year: 2010 ident: 10.1016/j.bbagen.2012.08.018_bb0220 article-title: Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2009.11.015 – volume: 251 start-page: 163 year: 1994 ident: 10.1016/j.bbagen.2012.08.018_bb0185 article-title: Specificity studies of the GDP-L-fucose—2-acetamido-2-deoxy-β-d-glucoside (Fuc-Asn-linked GlcNAc) 6-α-fucosyl-transferase from rat-liver golgi membranes publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(94)84283-3 – volume: 98 start-page: 10089 year: 1993 ident: 10.1016/j.bbagen.2012.08.018_bb0240 article-title: Particle mesh Ewald — an N. Log(N) method for Ewald sums in large systems publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 30 start-page: 53 year: 2005 ident: 10.1016/j.bbagen.2012.08.018_bb0165 article-title: Substrate-induced conformational changes in glycosyltransferases publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2004.11.005 – volume: 216 start-page: 335 year: 1994 ident: 10.1016/j.bbagen.2012.08.018_bb0210 article-title: Reducing-end modification of N-linked oligosaccharides with tyrosine publication-title: Anal. Biochem. doi: 10.1006/abio.1994.1050 – volume: 100 start-page: 365 year: 1982 ident: 10.1016/j.bbagen.2012.08.018_bb0160 article-title: Product-identification and substrate-specificity studies of the GDP-l-fucose:2-acetamido-2-deoxy-β-d-glucoside (FUC goes to Asn-linked GlcNAc) 6-α-l-fucosyltransferase in a Golgi-rich fraction from porcine liver publication-title: Carbohydr. Res. doi: 10.1016/S0008-6215(00)81049-6 – volume: vol. 2 start-page: 609 year: 2003 ident: 10.1016/j.bbagen.2012.08.018_bb0085 article-title: Glycosyltransferase inhibitors – volume: 281 start-page: 38343 year: 2006 ident: 10.1016/j.bbagen.2012.08.018_bb0040 article-title: Deletion of core fucosylation on α3β1 integrin down-regulates its functions publication-title: J. Biol. Chem. doi: 10.1074/jbc.M608764200 – volume: 276 start-page: 28058 year: 2001 ident: 10.1016/j.bbagen.2012.08.018_bb0175 article-title: Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster publication-title: J. Biol. Chem. doi: 10.1074/jbc.M100573200 – volume: 58 start-page: 617 year: 2001 ident: 10.1016/j.bbagen.2012.08.018_bb0320 article-title: Conformational behavior of nucleotide-sugar in solution: molecular dynamics and NMR study of solvated uridine diphosphate-glucose in the presence of monovalent cations publication-title: Biopolymers doi: 10.1002/1097-0282(200106)58:7<617::AID-BIP1035>3.0.CO;2-1 – volume: 281 start-page: 32728 year: 2006 ident: 10.1016/j.bbagen.2012.08.018_bb0300 article-title: Fragment-based screening of the donor substrate specificity of human blood group B galactosyltransferase using saturation transfer difference NMR publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600424200 – volume: 42 start-page: 116 year: 2012 ident: 10.1016/j.bbagen.2012.08.018_bb0180 article-title: Formation of the immunogenic α1,3-fucose epitope: elucidation of substrate specificity and of enzyme mechanism of core fucosyltransferase A publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2011.11.004 – volume: 102 start-page: 15791 year: 2005 ident: 10.1016/j.bbagen.2012.08.018_bb0025 article-title: Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507375102 – volume: 75 start-page: 444 year: 1998 ident: 10.1016/j.bbagen.2012.08.018_bb0045 article-title: High expression of α1,6-fucosyltransferase during rat hepatocarcinogenesis publication-title: Int. J. Cancer doi: 10.1002/(SICI)1097-0215(19980130)75:3<444::AID-IJC19>3.0.CO;2-8 – volume: 20 start-page: 1021 year: 2010 ident: 10.1016/j.bbagen.2012.08.018_bb0155 article-title: Fucosylation of chitooligosaccharides by human α1,6-fucosyltransferase requires a nonreducing terminal chitotriose unit as a minimal structure publication-title: Glycobiology doi: 10.1093/glycob/cwq064 – volume: 344 start-page: 1387 year: 2009 ident: 10.1016/j.bbagen.2012.08.018_bb0015 article-title: Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2009.04.031 – volume: 101 start-page: 4177 year: 1994 ident: 10.1016/j.bbagen.2012.08.018_bb0250 article-title: Constant-pressure molecular-dynamics algorithms publication-title: J. Chem. Phys. doi: 10.1063/1.467468 – volume: 17 start-page: 1311 year: 2007 ident: 10.1016/j.bbagen.2012.08.018_bb0055 article-title: A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation publication-title: Glycobiology doi: 10.1093/glycob/cwm094 – volume: 9 start-page: 323 year: 1999 ident: 10.1016/j.bbagen.2012.08.018_bb0125 article-title: Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria publication-title: Glycobiology doi: 10.1093/glycob/9.4.323 – volume: 15 start-page: 783 year: 1998 ident: 10.1016/j.bbagen.2012.08.018_bb0190 article-title: Purification and characterization of GDP-L-Fuc: N-acetyl β-d-glucosaminide α1,6-fucosyltransferase from human blood platelets publication-title: Glycoconj. J. doi: 10.1023/A:1006959915435 – volume: 1473 start-page: 9 year: 1999 ident: 10.1016/j.bbagen.2012.08.018_bb0010 article-title: The α1,6-fucosyltransferase gene and its biological significance publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(99)00166-X – volume: 100 start-page: 888 year: 2009 ident: 10.1016/j.bbagen.2012.08.018_bb0035 article-title: Core fucosylation of E-cadherin enhances cell–cell adhesion in human colon carcinoma WiDr cells publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2009.01125.x – volume: 13 start-page: 1C year: 2003 ident: 10.1016/j.bbagen.2012.08.018_bb0115 article-title: A new superfamily of protein-O-fucosyltransferases, α2-fucosyltransferases, and α6-fucosyltransferases: phylogeny and identification of conserved peptide motifs publication-title: Glycobiology doi: 10.1093/glycob/cwg113 – volume: 31 start-page: 10724 year: 1992 ident: 10.1016/j.bbagen.2012.08.018_bb0215 article-title: 1-N-glycyl β-oligosaccharide derivatives as stable intermediates for the formation of glycoconjugate probes publication-title: Biochemistry doi: 10.1021/bi00159a012 – volume: 282 start-page: 9973 year: 2007 ident: 10.1016/j.bbagen.2012.08.018_bb0200 article-title: Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design publication-title: J. Biol. Chem. doi: 10.1074/jbc.M610285200 – volume: 249 start-page: 61 year: 1995 ident: 10.1016/j.bbagen.2012.08.018_bb0260 article-title: Analysis of enzyme progress curves by nonlinear regression publication-title: Methods Enzymol. doi: 10.1016/0076-6879(95)49031-0 – volume: 28 start-page: 944 year: 1998 ident: 10.1016/j.bbagen.2012.08.018_bb0050 article-title: Gene expression of α1,6-fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein publication-title: Hepatology doi: 10.1002/hep.510280408 – volume: 17 start-page: 455 year: 2007 ident: 10.1016/j.bbagen.2012.08.018_bb0140 article-title: Crystal structure of mammalian α1,6-fucosyltransferase, FUT8 publication-title: Glycobiology doi: 10.1093/glycob/cwl079 |
SSID | ssj0000595 ssj0025309 |
Score | 2.1507626 |
Snippet | Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions.... BACKGROUND: Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen... Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions.... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1915 |
SubjectTerms | biosynthesis carcinogenesis Catalysis colorectal neoplasms enzyme activity epitopes fucose Fucosyltransferase Fucosyltransferases - chemistry Fucosyltransferases - genetics Fucosyltransferases - isolation & purification Fucosyltransferases - metabolism GDP-fucose Glycosyltransferase guanine Guanosine Diphosphate Fucose - metabolism hepatoma host-pathogen relationships Humans hydrogen bonding inflammation Magnetic Resonance Spectroscopy Models, Molecular molecular dynamics Molecular Dynamics Simulation nuclear magnetic resonance spectroscopy polysaccharides prognosis Protein Conformation Saturation transfer difference nuclear magnetic resonance Substrate recognition Surface Plasmon Resonance |
Title | Donor substrate binding and enzymatic mechanism of human core α1,6-fucosyltransferase (FUT8) |
URI | https://dx.doi.org/10.1016/j.bbagen.2012.08.018 https://www.ncbi.nlm.nih.gov/pubmed/22982178 https://www.proquest.com/docview/1115064575 https://www.proquest.com/docview/2000011942 |
Volume | 1820 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXBOXR5VEZiQNIuJuHEzvHaulqYUUPtCt6QZYT22hRm1S728Ny4D_xR_qbOuMkRZWoKnGKEtlS4hnPfM7MfAPwNjaWmMs8lzaRXDhZcYNi5gJ9nRVR6ipPxclfDvLJTHw-zo43YNTXwlBaZWf7W5serHX3ZNit5vBsPh8eUlAP4QR6LHI0gor4hJCk5bu__6Z5IHzI2kiC4DS6L58LOV5liZuWWFDpj6Dajaj1x7_d0x1vmptBaHBG40fwsEORbK990cew4eotuNf2lVxvwf1R38btCXz_2NTNgi3RQAQiWlbOQyELM7Vlrv61Dpyt7NRRCfB8ecoaz0LjPkYEl-ziT_wh557y2tcnq4By3QI9H3s3nh2p909hNt4_Gk1411OBV7hbV5wY3Cql0thWtjCViS3Rc1tfVFaWXsalMB4xoi_QhiP4iazPlMtxlxZVlNjUpc9gs25qtw2Mzh5OeJdLPFNFUalcbAvh0P97XxqTDSDtl1JXHeE49b040X1m2U_dCkCTADS1w4zVAPjVrLOWcOOW8bKXkr6mOBp9wi0zt1Go2vxAa6pnhwlx7QXKtyIfwJte0hrFRTEUU7vmfEkHpkDxJ7ObxyQhZBIXIhnA81ZNrj4lSQqFp0D14r9f-yU8oLs2peYVbK4W5-41AqNVuRM0fwfu7n2aTg7oOv36bXoJ62wL1Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61W6FyQVAeXShgJA4g4W4eTuIcqy2rLW330l2pF2Q5sY0WtUm1uz0s_4o_wm_qjJMUIbWqxDWxJcfjecUz3wfwMdSGkMscz0yUcWGzkmsUMxfo64wIYls6ak4-naTjmfh2npxvwLDrhaGyytb2NzbdW-v2yaDdzcHVfD44o0s9DCfQY5GjEfkmbBE6VdKDrYOj4_Hkr0FOPPkKjec0oeug82VeRYF6S0Co9FNQ7gfE_nG3h9p0ur4_DvX-aPQUnrSBJDto1voMNmy1A48aasn1DmwPOya35_D9sK7qBVuijfBYtKyY-14WpivDbPVr7WFb2aWlLuD58pLVjnnuPkYYl-zP7_BLyh2Vtq8vVj7QtQt0fuzTaDaVn1_AbPR1OhzzllaBl6iwK04gbqWUcWhKk-tSh4YQuo3LS5MVLgsLoR2GiS5HM47xT2BcIm2KipqXQWRiG7-EXlVXdhcYpR9WOJtmmFYFQSFtaHJhMQRwrtA66UPcbaUqW8xxor64UF1x2U_VCECRABQxYoayD_x21lWDufHA-KyTkvrn7Ch0Cw_M3EWhKv0DDaqanUUEt-dR3_K0Dx86SSsUF12j6MrW10vKmTzKX5bcPybytyZhLqI-vGqOye2nRFEuMRGUr_972e9hezw9PVEnR5PjN_CY3jQVNnvQWy2u7VuMk1bFu1YPbgCwQgzj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Donor+substrate+binding+and+enzymatic+mechanism+of+human+core+%CE%B11%2C6-fucosyltransferase+%28FUT8%29&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=K%C3%B6tzler%2C+Miriam+P&rft.au=Blank%2C+Simon&rft.au=Bantleon%2C+Frank+I&rft.au=Spillner%2C+Edzard&rft.date=2012-12-01&rft.issn=0304-4165&rft.volume=1820&rft.issue=12+p.1915-1925&rft.spage=1915&rft.epage=1925&rft_id=info:doi/10.1016%2Fj.bbagen.2012.08.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |