Donor substrate binding and enzymatic mechanism of human core α1,6-fucosyltransferase (FUT8)

Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a maj...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1820; no. 12; pp. 1915 - 1925
Main Authors Kötzler, Miriam P., Blank, Simon, Bantleon, Frank I., Spillner, Edzard, Meyer, Bernd
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2012
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/j.bbagen.2012.08.018

Cover

Loading…
Abstract Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme. We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations. Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time. Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques. The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors. ► First detailed model of donor substrate binding for human fucosyltransferase FUT8. ► Model is based on X-ray structures combined with ligand-based NMR data and SPR data. ► Refinement with molecular dynamics simulation yields substrate binding mode. ► Major donor binding of FUT8 originates from β-phosphate group. ► The key catalytic residue Arg365 orientates fucose residue and assists GDP release.
AbstractList BACKGROUND: Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme. METHODS: We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations. RESULTS: Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time. CONCLUSIONS: Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques. GENERAL SIGNIFICANCE: The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors.
Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme.BACKGROUNDFucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme.We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations.METHODSWe provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations.Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time.RESULTSGuanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time.Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques.CONCLUSIONSDiscovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques.The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors.GENERAL SIGNIFICANCEThe model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors.
Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme. We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations. Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time. Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques. The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors.
Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions. Biosynthesis of fucosylated glycans is accomplished by fucosyltransferases. The enzymatic product of core α1,6-fucosyltransferase (FUT8) plays a major role in a plethora of pathological conditions, e.g. in prognosis of hepatocellular carcinoma and in colon cancer. Detailed knowledge of the binding mode of its substrates is required for the design of molecules that can modulate the activity of the enzyme. We provide a detailed description of binding interactions of human FUT8 with its natural donor substrate GDP-fucose and related compounds. GDP-Fuc was placed in FUT8 by structural analogy to the structure of protein-O-fucosyltransferase (cePOFUT) co-crystallized with GDP-Fuc. The epitope of the donor substrate bound to FUT8 was determined by STD NMR. The in silico model is further supported by experimental data from SPR binding assays. The complex was optimized by molecular dynamics simulations. Guanine is specifically recognized by His363 and Asp453. Furthermore, the pyrophosphate is tightly bound via numerous hydrogen bonds and contributes affinity to a major part. Arg365 was found to bind both the β-phosphate and the fucose moiety at the same time. Discovery of a novel structural analogy between cePOFUT and FUT8 allows the placement of the donor substrate GDP-Fuc. The positioning was confirmed by various experimental and computational techniques. The model illustrates details of the molecular basis of substrate recognition for a human fucosyltransferase for the first time and, thus, provides a basis for structure-based design of inhibitors. ► First detailed model of donor substrate binding for human fucosyltransferase FUT8. ► Model is based on X-ray structures combined with ligand-based NMR data and SPR data. ► Refinement with molecular dynamics simulation yields substrate binding mode. ► Major donor binding of FUT8 originates from β-phosphate group. ► The key catalytic residue Arg365 orientates fucose residue and assists GDP release.
Author Bantleon, Frank I.
Kötzler, Miriam P.
Spillner, Edzard
Meyer, Bernd
Blank, Simon
Author_xml – sequence: 1
  givenname: Miriam P.
  surname: Kötzler
  fullname: Kötzler, Miriam P.
  organization: Institute of Organic Chemistry, University of Hamburg, Germany
– sequence: 2
  givenname: Simon
  surname: Blank
  fullname: Blank, Simon
  organization: Institute of Biochemistry and Molecular Biology, University of Hamburg, Germany
– sequence: 3
  givenname: Frank I.
  surname: Bantleon
  fullname: Bantleon, Frank I.
  organization: Institute of Biochemistry and Molecular Biology, University of Hamburg, Germany
– sequence: 4
  givenname: Edzard
  surname: Spillner
  fullname: Spillner, Edzard
  organization: Institute of Biochemistry and Molecular Biology, University of Hamburg, Germany
– sequence: 5
  givenname: Bernd
  surname: Meyer
  fullname: Meyer, Bernd
  email: bernd.meyer@chemie.uni-hamburg.de
  organization: Institute of Organic Chemistry, University of Hamburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22982178$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1uFDEQhS0URCYDN0DgZZDoxuX-c7NAQoEAUiQWZJbIctvliUfTdrC7kYZbcRHOhEedbFiQ2tTme69U752REx88EvIcWAkM2je7chjUFn3JGfCSiZKBeERWIDpeCMbaE7JiFauLGtrmlJyltGN5mr55Qk457wWHTqzI9w_Bh0jTPKQpqgnp4LxxfkuVNxT9r8OoJqfpiPpGeZdGGiy9mUflqQ4R6Z_f8Lot7KxDOuyzgU8Wo0pIzy831-LVU_LYqn3CZ3d7TTaXH68vPhdXXz99uXh_VeiasakADpUWogKjTa-0AqN6hcb22nSD7WColYWG2R4HaIEzYxuBbd9WvWbcVFityfniexvDjxnTJEeXNO73ymOYk-TH1wH6mj-IAuRLbd10TUZf3KHzMKKRt9GNKh7kfXoZeLsAOoaUIlqp3ZTzCj5H4fYSmDxWJXdyqUoeq5JMyFxVFtf_iO_9H5C9XGRWBam20SW5-ZaBNn_Ia5ZDWZN3C4E58Z8Oo0zaoddoXEQ9SRPc_0_8BT0RuHQ
CitedBy_id crossref_primary_10_1016_j_ajhg_2017_12_009
crossref_primary_10_4052_tigg_2025_1E
crossref_primary_10_1002_elsc_201600255
crossref_primary_10_1016_j_bmc_2017_02_036
crossref_primary_10_1039_C7OB00954B
crossref_primary_10_1016_j_mam_2020_100905
crossref_primary_10_4052_tigg_2025_1J
crossref_primary_10_1055_a_2221_9096
crossref_primary_10_1515_pac_2016_0923
crossref_primary_10_3748_wjg_v25_i23_2947
crossref_primary_10_1002_glia_24345
crossref_primary_10_1039_D0CC04847J
crossref_primary_10_1111_tpj_13628
crossref_primary_10_3390_molecules26175203
crossref_primary_10_1002_cbic_201900289
crossref_primary_10_1016_j_bbagen_2020_129596
crossref_primary_10_1016_j_bbagen_2018_12_008
crossref_primary_10_1016_j_brainresbull_2024_110959
crossref_primary_10_1016_j_schres_2016_10_024
crossref_primary_10_1038_s41598_020_58559_6
crossref_primary_10_1021_cb400140u
crossref_primary_10_1074_jbc_RA120_013291
Cites_doi 10.1093/glycob/8.1.87
10.1016/0167-4838(91)90007-M
10.1016/S0021-9258(18)54676-7
10.1107/S0907444911053157
10.1021/ja00214a001
10.1021/bi9015154
10.1093/glycob/10.5.503
10.1093/oxfordjournals.jbchem.a021631
10.1146/annurev.biochem.76.061005.092322
10.1002/1521-3773(20011119)40:22<4189::AID-ANIE4189>3.0.CO;2-A
10.1021/ja063550r
10.1016/S0006-291X(76)80218-5
10.1515/BC.2009.072
10.1002/anie.200390233
10.1063/1.449071
10.1074/jbc.M202069200
10.1074/jbc.272.47.29721
10.1016/j.mimet.2004.06.013
10.1021/ja0100120
10.1016/j.jmb.2006.12.015
10.1093/glycob/10.6.637
10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q
10.1093/glycob/cwj068
10.1074/jbc.M210665200
10.1016/j.bbapap.2011.10.011
10.1074/jbc.M510893200
10.1021/jp212550z
10.1074/jbc.271.44.27810
10.1093/glycob/cwi028
10.18388/abp.2007_3227
10.1093/jb/mvp022
10.1002/cbic.201100642
10.1371/journal.pone.0025365
10.1016/j.jmr.2009.11.015
10.1016/0008-6215(94)84283-3
10.1063/1.464397
10.1016/j.tibs.2004.11.005
10.1006/abio.1994.1050
10.1016/S0008-6215(00)81049-6
10.1074/jbc.M608764200
10.1074/jbc.M100573200
10.1002/1097-0282(200106)58:7<617::AID-BIP1035>3.0.CO;2-1
10.1074/jbc.M600424200
10.1016/j.ibmb.2011.11.004
10.1073/pnas.0507375102
10.1002/(SICI)1097-0215(19980130)75:3<444::AID-IJC19>3.0.CO;2-8
10.1093/glycob/cwq064
10.1016/j.carres.2009.04.031
10.1063/1.467468
10.1093/glycob/cwm094
10.1093/glycob/9.4.323
10.1023/A:1006959915435
10.1016/S0304-4165(99)00166-X
10.1111/j.1349-7006.2009.01125.x
10.1093/glycob/cwg113
10.1021/bi00159a012
10.1074/jbc.M610285200
10.1016/0076-6879(95)49031-0
10.1002/hep.510280408
10.1093/glycob/cwl079
ContentType Journal Article
Copyright 2012
Copyright © 2012. Published by Elsevier B.V.
Copyright_xml – notice: 2012
– notice: Copyright © 2012. Published by Elsevier B.V.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2012.08.018
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 1925
ExternalDocumentID 22982178
10_1016_j_bbagen_2012_08_018
US201600024096
S0304416512002449
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
L.6
ID FETCH-LOGICAL-c400t-1213c8831dcd9aca1da9aedf9cd7bf71b4af150f9eb16120df58e69639c02d3e3
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Fri Jul 11 15:24:58 EDT 2025
Fri Jul 11 06:15:46 EDT 2025
Thu Apr 03 06:59:49 EDT 2025
Tue Jul 01 00:21:59 EDT 2025
Thu Apr 24 23:04:18 EDT 2025
Thu Apr 03 09:44:36 EDT 2025
Fri Feb 23 02:34:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords STD
GT-B
Glycosyltransferase
SPC
Saturation transfer difference nuclear magnetic resonance
ADP
OPLS
BSA
FUT8
IDP
SPR
MD
GDP-fucose
GlcNAc
T1
FID
EGF
XDP
MS
RMSF
PME
cePOFUT1
RMSD
Fucosyltransferase
Molecular dynamics simulation
HEK
MALDI TOF
MWCO
NMR
NodZ
VGF
Fcγ
TGFβ
GDP-Fuc
Mes
Substrate recognition
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-1213c8831dcd9aca1da9aedf9cd7bf71b4af150f9eb16120df58e69639c02d3e3
Notes http://dx.doi.org/10.1016/j.bbagen.2012.08.018
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22982178
PQID 1115064575
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2000011942
proquest_miscellaneous_1115064575
pubmed_primary_22982178
crossref_citationtrail_10_1016_j_bbagen_2012_08_018
crossref_primary_10_1016_j_bbagen_2012_08_018
fao_agris_US201600024096
elsevier_sciencedirect_doi_10_1016_j_bbagen_2012_08_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-00
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-00
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Osumi, Takahashi, Miyoshi, Yokoe, Lee, Noda, Nakamori, Gu, Ikeda, Kuroki, Sengoku, Ishikawa, Taniguchi (bb0035) 2009; 100
Ihara, Ikeda, Taniguchi (bb0135) 2006; 16
Costache, Apoil, Cailleau, Elmgren, Larson, Henry, Blancher, Iordachescu, Oriol, Mollicone (bb0105) 1997; 272
Angulo, Langpap, Blume, Biet, Meyer, Krishna, Peters, Palcic, Peters (bb0170) 2006; 128
Tamura, Wadhwa, Rice (bb0210) 1994; 216
Kötzler, Blank, Behnken, Alpers, Bantleon, Spillner, Meyer (bb0180) 2012; 42
Kemper, Patel, Errey, Davis, Jones, Claridge (bb0220) 2010; 203
Martinez-Duncker, Mollicone, Candelier, Breton, Oriol (bb0115) 2003; 13
Manger, Rademacher, Dwek (bb0215) 1992; 31
Evans, Holian (bb0245) 1985; 83
Lairson, Henrissat, Davies, Withers (bb0325) 2008; 77
Biet, Peters (bb0315) 2001; 40
Nishima, Miyashita, Yamaguchi, Sugita, Re (bb0075) 2012; 116
Wang, Fukuda, Li, Gao, Kondo, Matsumoto, Miyoshi, Taniguchi, Gu (bb0030) 2009; 145
Beredsen, Postma, van Gunsteren, Hermans (bb0235) 1981
Petrova, Monteiro, de Penhoat, Koca, Imberty (bb0320) 2001; 58
Liu, Meng, Moremen, Prestegard (bb0305) 2009; 48
Qasba, Ramakrishnan, Boeggeman (bb0165) 2005; 30
Shields, Lai, Keck, O'Connell, Hong, Meng, Weikert, Presta (bb0060) 2002; 277
Jorgensen, Tirado-Rives (bb0230) 1988; 110
Shao, Sokolik, Wold (bb0185) 1994; 251
Orsi, Tipton, Daniel (bb0270) 1979; vol. 63
Yanagidani, Uozumi, Ihara, Miyoshi, Yamaguchi, Taniguchi (bb0095) 1997; 121
Yamaguchi, Ikeda, Takahashi, Ihara, Tanaka, Sasho, Uozumi, Yanagidani, Inoue, Fujii, Taniguchi (bb0110) 2000; 10
Exnowitz, Meyer, Hackl (bb0255) 2012; 1824
Macnaughtan, Kamar, Alvarez-Manilla, Venot, Glushka, Pierce, Prestegard (bb0310) 2007; 366
Breton, Oriol, Imberty (bb0120) 1998; 8
Shinkawa, Nakamura, Yamane, Shoji-Hosaka, Kanda, Sakurada, Uchida, Anazawa, Satoh, Yamasaki, Hanai, Shitara (bb0065) 2003; 278
Martyna, Tobias, Klein (bb0250) 1994; 101
Helfgott, Seier (bb0280) 2007; vol. 7
Mayer, Meyer (bb0285) 1999; 38
Voynow, Kaiser, Scanlin, Glick (bb0100) 1991; 266
Duggleby (bb0260) 1995; 249
Zhao, Itoh, Wang, Isaji, Miyoshi, Kariya, Miyazaki, Kawasaki, Taniguchi, Gu (bb0040) 2006; 281
Duggleby, Clarke (bb0265) 1991; 1080
André, Kožár, Kojima, Unverzagt, Gabius (bb0070) 2009; 390
Uozumi, Yanagidani, Miyoshi, Ihara, Sakuma, Gao, Teshima, Fujii, Shiba, Taniguchi (bb0090) 1996; 271
Oriol, Mollicone, Cailleau, Balanzino, Breton (bb0125) 1999; 9
Lira-Navarrete, Valero-González, Villanueva, Martínez-Júlvez, Tejero, Merino, Panjikar, Hurtado-Guerrero (bb0205) 2011; 6
Takahashi, Kuroki, Ohtsubo, Taniguchi (bb0015) 2009; 344
Mayer, Meyer (bb0290) 2001; 123
Brzezinski, Stepkowski, Panjikar, Bujacz, Jaskolski (bb0150) 2007; 54
Meyer, Peters (bb0295) 2003; 42
Moriwaki, Noda, Nakagawa, Asahi, Yoshihara, Taniguchi, Hayashi, Miyoshi (bb0055) 2007; 17
Wilson, Williams, Schachter (bb0005) 1976; 72
Takahashi, Ikeda, Tateishi, Yamaguchi, Ishikawa, Taniguchi (bb0130) 2000; 10
Darden, York, Pedersen (bb0240) 1993; 98
Sun, Lin, Ko, Pan, Liu, Lin, Wang, Lin (bb0200) 2007; 282
Kaminska, Glick, Koscielak (bb0190) 1998; 15
Paschinger, Staudacher, Stemmer, Fabini, Wilson (bb0195) 2005; 15
Wang, Inoue, Gu, Miyoshi, Noda, Li, Mizuno-Horikawa, Nakano, Asahi, Takahashi, Uozumi, Ihara, Lee, Ikeda, Yamaguchi, Aze, Tomiyama, Fujii, Suzuki, Kondo, Shapiro, Lopez-Otin, Kuwaki, Okabe, Honke, Taniguchi (bb0025) 2005; 102
Noda, Miyoshi, Uozumi, Yanagidani, Ikeda, Gao, Suzuki, Yoshihara, Yoshikawa, Kawano, Hayashi, Hori, Taniguchi (bb0050) 1998; 28
Fabini, Freilinger, Altmann, Wilson (bb0175) 2001; 276
Schmidt, Jung (bb0085) 2003; vol. 2
Blume, Angulo, Biet, Peters, Benie, Palcic, Peters (bb0300) 2006; 281
Ihara, Ikeda, Toma, Wang, Suzuki, Gu, Miyoshi, Tsukihara, Honke, Matsumoto, Nakagawa, Taniguchi (bb0140) 2007; 17
Miyoshi, Noda, Yamaguchi, Inoue, Ikeda, Wang, Ko, Uozumi, Li, Taniguchi (bb0010) 1999; 1473
Ihara, Hanashima, Okada, Ito, Yamaguchi, Taniguchi, Ikeda (bb0155) 2010; 20
Goudar, Harris, McInerney, Suflita (bb0275) 2004; 59
Bowers, Chow, Huafeng, Dror, Eastwood, Gregersen, Klepeis, Kolossvary, Moraes, Sacerdoti, Salmon, Yibing, Shaw (bb0225) 2006
Noda, Miyoshi, Uozumi, Gao, Suzuki, Hayashi, Hori, Taniguchi (bb0045) 1998; 75
Schaefer, Albers, Sindhuwinata, Peters, Meyer (bb0080) 2012; 13
Brzezinski, Dauter, Jaskolski (bb0145) 2012; 68
Longmore, Schachter (bb0160) 1982; 100
Wang, Gu, Ihara, Miyoshi, Honke, Taniguchi (bb0020) 2006; 281
Helfgott (10.1016/j.bbagen.2012.08.018_bb0280) 2007; vol. 7
Kaminska (10.1016/j.bbagen.2012.08.018_bb0190) 1998; 15
Lira-Navarrete (10.1016/j.bbagen.2012.08.018_bb0205) 2011; 6
Wilson (10.1016/j.bbagen.2012.08.018_bb0005) 1976; 72
Wang (10.1016/j.bbagen.2012.08.018_bb0025) 2005; 102
Blume (10.1016/j.bbagen.2012.08.018_bb0300) 2006; 281
Longmore (10.1016/j.bbagen.2012.08.018_bb0160) 1982; 100
Goudar (10.1016/j.bbagen.2012.08.018_bb0275) 2004; 59
André (10.1016/j.bbagen.2012.08.018_bb0070) 2009; 390
Sun (10.1016/j.bbagen.2012.08.018_bb0200) 2007; 282
Liu (10.1016/j.bbagen.2012.08.018_bb0305) 2009; 48
Noda (10.1016/j.bbagen.2012.08.018_bb0045) 1998; 75
Tamura (10.1016/j.bbagen.2012.08.018_bb0210) 1994; 216
Breton (10.1016/j.bbagen.2012.08.018_bb0120) 1998; 8
Takahashi (10.1016/j.bbagen.2012.08.018_bb0130) 2000; 10
Angulo (10.1016/j.bbagen.2012.08.018_bb0170) 2006; 128
Darden (10.1016/j.bbagen.2012.08.018_bb0240) 1993; 98
Exnowitz (10.1016/j.bbagen.2012.08.018_bb0255) 2012; 1824
Kötzler (10.1016/j.bbagen.2012.08.018_bb0180) 2012; 42
Paschinger (10.1016/j.bbagen.2012.08.018_bb0195) 2005; 15
Takahashi (10.1016/j.bbagen.2012.08.018_bb0015) 2009; 344
Zhao (10.1016/j.bbagen.2012.08.018_bb0040) 2006; 281
Ihara (10.1016/j.bbagen.2012.08.018_bb0155) 2010; 20
Shields (10.1016/j.bbagen.2012.08.018_bb0060) 2002; 277
Oriol (10.1016/j.bbagen.2012.08.018_bb0125) 1999; 9
Meyer (10.1016/j.bbagen.2012.08.018_bb0295) 2003; 42
Yamaguchi (10.1016/j.bbagen.2012.08.018_bb0110) 2000; 10
Mayer (10.1016/j.bbagen.2012.08.018_bb0285) 1999; 38
Osumi (10.1016/j.bbagen.2012.08.018_bb0035) 2009; 100
Miyoshi (10.1016/j.bbagen.2012.08.018_bb0010) 1999; 1473
Martyna (10.1016/j.bbagen.2012.08.018_bb0250) 1994; 101
Nishima (10.1016/j.bbagen.2012.08.018_bb0075) 2012; 116
Ihara (10.1016/j.bbagen.2012.08.018_bb0135) 2006; 16
Yanagidani (10.1016/j.bbagen.2012.08.018_bb0095) 1997; 121
Evans (10.1016/j.bbagen.2012.08.018_bb0245) 1985; 83
Bowers (10.1016/j.bbagen.2012.08.018_bb0225) 2006
Brzezinski (10.1016/j.bbagen.2012.08.018_bb0145) 2012; 68
Jorgensen (10.1016/j.bbagen.2012.08.018_bb0230) 1988; 110
Schmidt (10.1016/j.bbagen.2012.08.018_bb0085) 2003; vol. 2
Biet (10.1016/j.bbagen.2012.08.018_bb0315) 2001; 40
Duggleby (10.1016/j.bbagen.2012.08.018_bb0260) 1995; 249
Manger (10.1016/j.bbagen.2012.08.018_bb0215) 1992; 31
Kemper (10.1016/j.bbagen.2012.08.018_bb0220) 2010; 203
Martinez-Duncker (10.1016/j.bbagen.2012.08.018_bb0115) 2003; 13
Petrova (10.1016/j.bbagen.2012.08.018_bb0320) 2001; 58
Wang (10.1016/j.bbagen.2012.08.018_bb0030) 2009; 145
Costache (10.1016/j.bbagen.2012.08.018_bb0105) 1997; 272
Voynow (10.1016/j.bbagen.2012.08.018_bb0100) 1991; 266
Wang (10.1016/j.bbagen.2012.08.018_bb0020) 2006; 281
Uozumi (10.1016/j.bbagen.2012.08.018_bb0090) 1996; 271
Orsi (10.1016/j.bbagen.2012.08.018_bb0270) 1979; vol. 63
Macnaughtan (10.1016/j.bbagen.2012.08.018_bb0310) 2007; 366
Beredsen (10.1016/j.bbagen.2012.08.018_bb0235) 1981
Noda (10.1016/j.bbagen.2012.08.018_bb0050) 1998; 28
Shinkawa (10.1016/j.bbagen.2012.08.018_bb0065) 2003; 278
Lairson (10.1016/j.bbagen.2012.08.018_bb0325) 2008; 77
Qasba (10.1016/j.bbagen.2012.08.018_bb0165) 2005; 30
Moriwaki (10.1016/j.bbagen.2012.08.018_bb0055) 2007; 17
Duggleby (10.1016/j.bbagen.2012.08.018_bb0265) 1991; 1080
Mayer (10.1016/j.bbagen.2012.08.018_bb0290) 2001; 123
Schaefer (10.1016/j.bbagen.2012.08.018_bb0080) 2012; 13
Fabini (10.1016/j.bbagen.2012.08.018_bb0175) 2001; 276
Ihara (10.1016/j.bbagen.2012.08.018_bb0140) 2007; 17
Brzezinski (10.1016/j.bbagen.2012.08.018_bb0150) 2007; 54
Shao (10.1016/j.bbagen.2012.08.018_bb0185) 1994; 251
References_xml – volume: 58
  start-page: 617
  year: 2001
  end-page: 635
  ident: bb0320
  article-title: Conformational behavior of nucleotide-sugar in solution: molecular dynamics and NMR study of solvated uridine diphosphate-glucose in the presence of monovalent cations
  publication-title: Biopolymers
– volume: 1080
  start-page: 231
  year: 1991
  end-page: 236
  ident: bb0265
  article-title: Experimental designs for estimating the parameters of the Michaelis–Menten equation from progress curves of enzyme-catalyzed reactions
  publication-title: Biochim. Biophys. Acta
– volume: 271
  start-page: 27810
  year: 1996
  end-page: 27817
  ident: bb0090
  article-title: Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-β-
  publication-title: J. Biol. Chem.
– year: 1981
  ident: bb0235
  article-title: Intermolecular Forces
– volume: 1473
  start-page: 9
  year: 1999
  end-page: 20
  ident: bb0010
  article-title: The α1,6-fucosyltransferase gene and its biological significance
  publication-title: Biochim. Biophys. Acta
– volume: 116
  start-page: 8504
  year: 2012
  end-page: 8512
  ident: bb0075
  article-title: Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution
  publication-title: J. Phys. Chem. B
– volume: 123
  start-page: 6108
  year: 2001
  end-page: 6117
  ident: bb0290
  article-title: Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 626
  year: 1997
  end-page: 632
  ident: bb0095
  article-title: Purification and cDNA cloning of GDP-L-Fuc:N-acetyl-β-
  publication-title: J. Biochem.
– volume: 249
  start-page: 61
  year: 1995
  end-page: 90
  ident: bb0260
  article-title: Analysis of enzyme progress curves by nonlinear regression
  publication-title: Methods Enzymol.
– volume: 281
  start-page: 32728
  year: 2006
  end-page: 32740
  ident: bb0300
  article-title: Fragment-based screening of the donor substrate specificity of human blood group B galactosyltransferase using saturation transfer difference NMR
  publication-title: J. Biol. Chem.
– volume: 390
  start-page: 557
  year: 2009
  ident: bb0070
  article-title: From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans
  publication-title: Biol. Chem.
– volume: 38
  start-page: 1784
  year: 1999
  end-page: 1788
  ident: bb0285
  article-title: Characterization of ligand binding by saturation transfer difference NMR spectroscopy
  publication-title: Angew. Chem. Int. Ed.
– start-page: 43
  year: 2006
  ident: bb0225
  article-title: Scalable algorithms for molecular dynamics simulations on commodity clusters
  publication-title: SC 2006 Conference, Proceedings of the ACM/IEEE
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  ident: bb0240
  article-title: Particle mesh Ewald — an N. Log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 455
  year: 2007
  end-page: 466
  ident: bb0140
  article-title: Crystal structure of mammalian α1,6-fucosyltransferase, FUT8
  publication-title: Glycobiology
– volume: 54
  start-page: 537
  year: 2007
  end-page: 549
  ident: bb0150
  article-title: High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor
  publication-title: Acta Biochim. Pol.
– volume: 100
  start-page: 888
  year: 2009
  end-page: 895
  ident: bb0035
  article-title: Core fucosylation of E-cadherin enhances cell–cell adhesion in human colon carcinoma WiDr cells
  publication-title: Cancer Sci.
– volume: 203
  start-page: 1
  year: 2010
  end-page: 10
  ident: bb0220
  article-title: Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments
  publication-title: J. Magn. Reson.
– volume: 42
  start-page: 864
  year: 2003
  end-page: 890
  ident: bb0295
  article-title: NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors
  publication-title: Angew. Chem. Int. Ed.
– volume: 40
  start-page: 4189
  year: 2001
  end-page: 4192
  ident: bb0315
  article-title: Molecular recognition of UDP-Gal by beta-1,4-galactosyltransferase T1
  publication-title: Angew. Chem. Int. Ed.
– volume: 278
  start-page: 3466
  year: 2003
  end-page: 3473
  ident: bb0065
  article-title: The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity
  publication-title: J. Biol. Chem.
– volume: 1824
  start-page: 443
  year: 2012
  end-page: 449
  ident: bb0255
  article-title: NMR for direct determination of Km and Vmax of enzyme reactions based on the Lambert W function-analysis of progress curves
  publication-title: Biochim. Biophys. Acta
– volume: 20
  start-page: 1021
  year: 2010
  end-page: 1033
  ident: bb0155
  article-title: Fucosylation of chitooligosaccharides by human α1,6-fucosyltransferase requires a nonreducing terminal chitotriose unit as a minimal structure
  publication-title: Glycobiology
– volume: 281
  start-page: 2572
  year: 2006
  end-page: 2577
  ident: bb0020
  article-title: Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling
  publication-title: J. Biol. Chem.
– volume: 366
  start-page: 1266
  year: 2007
  end-page: 1281
  ident: bb0310
  article-title: NMR structural characterization of substrates bound to N-acetylglucosaminyltransferase V
  publication-title: J. Mol. Biol.
– volume: 13
  start-page: 443
  year: 2012
  end-page: 450
  ident: bb0080
  article-title: A new concept for glycosyltransferase inhibitors: nonionic mimics of the nucleotide donor of the human blood group B galactosyltransferase
  publication-title: ChemBioChem
– volume: 101
  start-page: 4177
  year: 1994
  end-page: 4189
  ident: bb0250
  article-title: Constant-pressure molecular-dynamics algorithms
  publication-title: J. Chem. Phys.
– volume: 72
  start-page: 909
  year: 1976
  end-page: 916
  ident: bb0005
  article-title: Control of glycoprotein synthesis—N-acetylglucosamine linkage to a mannose residue as a signal for attachment of
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 48
  start-page: 11211
  year: 2009
  end-page: 11219
  ident: bb0305
  article-title: Nuclear magnetic resonance structural characterization of substrates bound to the α2,6-sialyltransferase, ST6Gal-I
  publication-title: Biochemistry
– volume: 75
  start-page: 444
  year: 1998
  end-page: 450
  ident: bb0045
  article-title: High expression of α1,6-fucosyltransferase during rat hepatocarcinogenesis
  publication-title: Int. J. Cancer
– volume: 77
  start-page: 521
  year: 2008
  end-page: 555
  ident: bb0325
  article-title: Glycosyltransferases: structures, functions, and mechanisms
  publication-title: Annu. Rev. Biochem.
– volume: 110
  start-page: 1657
  year: 1988
  end-page: 1666
  ident: bb0230
  article-title: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1311
  year: 2007
  end-page: 1320
  ident: bb0055
  article-title: A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation
  publication-title: Glycobiology
– volume: 15
  start-page: 783
  year: 1998
  end-page: 788
  ident: bb0190
  article-title: Purification and characterization of GDP-L-Fuc: N-acetyl β-
  publication-title: Glycoconj. J.
– volume: 102
  start-page: 15791
  year: 2005
  end-page: 15796
  ident: bb0025
  article-title: Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: vol. 2
  start-page: 609
  year: 2003
  end-page: 659
  ident: bb0085
  article-title: Glycosyltransferase inhibitors
  publication-title: Carbohydrate-based Drug Discovery
– volume: 277
  start-page: 26733
  year: 2002
  end-page: 26740
  ident: bb0060
  article-title: Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 323
  year: 1999
  end-page: 334
  ident: bb0125
  article-title: Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria
  publication-title: Glycobiology
– volume: 251
  start-page: 163
  year: 1994
  end-page: 173
  ident: bb0185
  article-title: Specificity studies of the GDP-L-fucose—2-acetamido-2-deoxy-β-
  publication-title: Carbohydr. Res.
– volume: 30
  start-page: 53
  year: 2005
  end-page: 62
  ident: bb0165
  article-title: Substrate-induced conformational changes in glycosyltransferases
  publication-title: Trends Biochem. Sci.
– volume: 68
  start-page: 160
  year: 2012
  end-page: 168
  ident: bb0145
  article-title: Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 42
  start-page: 116
  year: 2012
  end-page: 125
  ident: bb0180
  article-title: Formation of the immunogenic α1,3-fucose epitope: elucidation of substrate specificity and of enzyme mechanism of core fucosyltransferase A
  publication-title: Insect Biochem. Mol. Biol.
– volume: 145
  start-page: 643
  year: 2009
  end-page: 651
  ident: bb0030
  article-title: Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice
  publication-title: J. Biochem.
– volume: 10
  start-page: 503
  year: 2000
  end-page: 510
  ident: bb0130
  article-title: A sequence motif involved in the donor substrate binding by α1,6-fucosyltransferase: the role of the conserved arginine residues
  publication-title: Glycobiology
– volume: 344
  start-page: 1387
  year: 2009
  end-page: 1390
  ident: bb0015
  article-title: Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins
  publication-title: Carbohydr. Res.
– volume: 216
  start-page: 335
  year: 1994
  end-page: 344
  ident: bb0210
  article-title: Reducing-end modification of N-linked oligosaccharides with tyrosine
  publication-title: Anal. Biochem.
– volume: 281
  start-page: 38343
  year: 2006
  end-page: 38350
  ident: bb0040
  article-title: Deletion of core fucosylation on α3β1 integrin down-regulates its functions
  publication-title: J. Biol. Chem.
– volume: 59
  start-page: 317
  year: 2004
  end-page: 326
  ident: bb0275
  article-title: Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function
  publication-title: J. Microbiol. Methods
– volume: 276
  start-page: 28058
  year: 2001
  end-page: 28067
  ident: bb0175
  article-title: Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 10724
  year: 1992
  end-page: 10732
  ident: bb0215
  article-title: 1-N-glycyl β-oligosaccharide derivatives as stable intermediates for the formation of glycoconjugate probes
  publication-title: Biochemistry
– volume: 16
  start-page: 333
  year: 2006
  end-page: 342
  ident: bb0135
  article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8
  publication-title: Glycobiology
– volume: 10
  start-page: 637
  year: 2000
  end-page: 643
  ident: bb0110
  article-title: Genomic structure and promoter analysis of the human α1,6-fucosyltransferase gene (FUT8)
  publication-title: Glycobiology
– volume: vol. 63
  start-page: 159
  year: 1979
  end-page: 183
  ident: bb0270
  article-title: Kinetic analysis of progress curves
  publication-title: Methods Enzymol.
– volume: 100
  start-page: 365
  year: 1982
  end-page: 392
  ident: bb0160
  article-title: Product-identification and substrate-specificity studies of the GDP-
  publication-title: Carbohydr. Res.
– volume: 282
  start-page: 9973
  year: 2007
  end-page: 9982
  ident: bb0200
  article-title: Structure and mechanism of
  publication-title: J. Biol. Chem.
– volume: 272
  start-page: 29721
  year: 1997
  end-page: 29728
  ident: bb0105
  article-title: Evolution of fucosyltransferase genes in vertebrates
  publication-title: J. Biol. Chem.
– volume: 266
  start-page: 21572
  year: 1991
  end-page: 21577
  ident: bb0100
  article-title: Purification and characterization of GDP-
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 87
  year: 1998
  end-page: 94
  ident: bb0120
  article-title: Conserved structural features in eukaryotic and prokaryotic fucosyltransferases
  publication-title: Glycobiology
– volume: 128
  start-page: 13529
  year: 2006
  end-page: 13538
  ident: bb0170
  article-title: Blood group B galactosyltransferase: insights into substrate binding from NMR experiments
  publication-title: J. Am. Chem. Soc.
– volume: vol. 7
  start-page: 1
  year: 2007
  end-page: 34
  ident: bb0280
  article-title: Some mathematical and statistical aspects of enzyme kinetics
  publication-title: J. Online Math. Appl.
– volume: 6
  start-page: e25365
  year: 2011
  ident: bb0205
  article-title: Structural insights into the mechanism of protein O-fucosylation
  publication-title: PLoS One
– volume: 83
  start-page: 4069
  year: 1985
  end-page: 4074
  ident: bb0245
  article-title: The Nose–Hoover thermostat
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 944
  year: 1998
  end-page: 952
  ident: bb0050
  article-title: Gene expression of α1,6-fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein
  publication-title: Hepatology
– volume: 15
  start-page: 463
  year: 2005
  end-page: 474
  ident: bb0195
  article-title: Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates
  publication-title: Glycobiology
– volume: 13
  start-page: 1C
  year: 2003
  end-page: 5C
  ident: bb0115
  article-title: A new superfamily of protein-O-fucosyltransferases, α2-fucosyltransferases, and α6-fucosyltransferases: phylogeny and identification of conserved peptide motifs
  publication-title: Glycobiology
– volume: 8
  start-page: 87
  year: 1998
  ident: 10.1016/j.bbagen.2012.08.018_bb0120
  article-title: Conserved structural features in eukaryotic and prokaryotic fucosyltransferases
  publication-title: Glycobiology
  doi: 10.1093/glycob/8.1.87
– volume: 1080
  start-page: 231
  year: 1991
  ident: 10.1016/j.bbagen.2012.08.018_bb0265
  article-title: Experimental designs for estimating the parameters of the Michaelis–Menten equation from progress curves of enzyme-catalyzed reactions
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4838(91)90007-M
– volume: 266
  start-page: 21572
  year: 1991
  ident: 10.1016/j.bbagen.2012.08.018_bb0100
  article-title: Purification and characterization of GDP-l-fucose-N-acetyl β-d-glucosaminide α1,6-fucosyltransferase from cultured human skin fibroblasts. Requirement of a specific biantennary oligosaccharide as substrate
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54676-7
– volume: 68
  start-page: 160
  year: 2012
  ident: 10.1016/j.bbagen.2012.08.018_bb0145
  article-title: Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444911053157
– volume: 110
  start-page: 1657
  year: 1988
  ident: 10.1016/j.bbagen.2012.08.018_bb0230
  article-title: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00214a001
– volume: 48
  start-page: 11211
  year: 2009
  ident: 10.1016/j.bbagen.2012.08.018_bb0305
  article-title: Nuclear magnetic resonance structural characterization of substrates bound to the α2,6-sialyltransferase, ST6Gal-I
  publication-title: Biochemistry
  doi: 10.1021/bi9015154
– volume: 10
  start-page: 503
  year: 2000
  ident: 10.1016/j.bbagen.2012.08.018_bb0130
  article-title: A sequence motif involved in the donor substrate binding by α1,6-fucosyltransferase: the role of the conserved arginine residues
  publication-title: Glycobiology
  doi: 10.1093/glycob/10.5.503
– volume: vol. 7
  start-page: 1
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.018_bb0280
  article-title: Some mathematical and statistical aspects of enzyme kinetics
– volume: 121
  start-page: 626
  year: 1997
  ident: 10.1016/j.bbagen.2012.08.018_bb0095
  article-title: Purification and cDNA cloning of GDP-L-Fuc:N-acetyl-β-d-glucosaminide:α1,6-fucosyltransferase (α1,6 FucT) from human gastric cancer MKN45 cells
  publication-title: J. Biochem.
  doi: 10.1093/oxfordjournals.jbchem.a021631
– volume: 77
  start-page: 521
  year: 2008
  ident: 10.1016/j.bbagen.2012.08.018_bb0325
  article-title: Glycosyltransferases: structures, functions, and mechanisms
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.061005.092322
– volume: 40
  start-page: 4189
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.018_bb0315
  article-title: Molecular recognition of UDP-Gal by beta-1,4-galactosyltransferase T1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20011119)40:22<4189::AID-ANIE4189>3.0.CO;2-A
– volume: 128
  start-page: 13529
  year: 2006
  ident: 10.1016/j.bbagen.2012.08.018_bb0170
  article-title: Blood group B galactosyltransferase: insights into substrate binding from NMR experiments
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063550r
– volume: 72
  start-page: 909
  year: 1976
  ident: 10.1016/j.bbagen.2012.08.018_bb0005
  article-title: Control of glycoprotein synthesis—N-acetylglucosamine linkage to a mannose residue as a signal for attachment of l-fucose to asparagine-linked N-acetylglucosamine residue of glycopeptide from α1-acid glycoprotein
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(76)80218-5
– volume: 390
  start-page: 557
  year: 2009
  ident: 10.1016/j.bbagen.2012.08.018_bb0070
  article-title: From structural to functional glycomics: core substitutions as molecular switches for shape and lectin affinity of N-glycans
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2009.072
– volume: 42
  start-page: 864
  year: 2003
  ident: 10.1016/j.bbagen.2012.08.018_bb0295
  article-title: NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200390233
– volume: 83
  start-page: 4069
  year: 1985
  ident: 10.1016/j.bbagen.2012.08.018_bb0245
  article-title: The Nose–Hoover thermostat
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449071
– volume: 277
  start-page: 26733
  year: 2002
  ident: 10.1016/j.bbagen.2012.08.018_bb0060
  article-title: Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202069200
– volume: 272
  start-page: 29721
  year: 1997
  ident: 10.1016/j.bbagen.2012.08.018_bb0105
  article-title: Evolution of fucosyltransferase genes in vertebrates
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.47.29721
– volume: 59
  start-page: 317
  year: 2004
  ident: 10.1016/j.bbagen.2012.08.018_bb0275
  article-title: Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2004.06.013
– year: 1981
  ident: 10.1016/j.bbagen.2012.08.018_bb0235
– volume: 123
  start-page: 6108
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.018_bb0290
  article-title: Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0100120
– volume: 366
  start-page: 1266
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.018_bb0310
  article-title: NMR structural characterization of substrates bound to N-acetylglucosaminyltransferase V
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.12.015
– volume: 10
  start-page: 637
  year: 2000
  ident: 10.1016/j.bbagen.2012.08.018_bb0110
  article-title: Genomic structure and promoter analysis of the human α1,6-fucosyltransferase gene (FUT8)
  publication-title: Glycobiology
  doi: 10.1093/glycob/10.6.637
– volume: 38
  start-page: 1784
  year: 1999
  ident: 10.1016/j.bbagen.2012.08.018_bb0285
  article-title: Characterization of ligand binding by saturation transfer difference NMR spectroscopy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q
– volume: 16
  start-page: 333
  year: 2006
  ident: 10.1016/j.bbagen.2012.08.018_bb0135
  article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwj068
– volume: vol. 63
  start-page: 159
  year: 1979
  ident: 10.1016/j.bbagen.2012.08.018_bb0270
  article-title: Kinetic analysis of progress curves
– volume: 278
  start-page: 3466
  year: 2003
  ident: 10.1016/j.bbagen.2012.08.018_bb0065
  article-title: The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210665200
– volume: 1824
  start-page: 443
  year: 2012
  ident: 10.1016/j.bbagen.2012.08.018_bb0255
  article-title: NMR for direct determination of Km and Vmax of enzyme reactions based on the Lambert W function-analysis of progress curves
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2011.10.011
– volume: 281
  start-page: 2572
  year: 2006
  ident: 10.1016/j.bbagen.2012.08.018_bb0020
  article-title: Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M510893200
– volume: 116
  start-page: 8504
  year: 2012
  ident: 10.1016/j.bbagen.2012.08.018_bb0075
  article-title: Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp212550z
– volume: 271
  start-page: 27810
  year: 1996
  ident: 10.1016/j.bbagen.2012.08.018_bb0090
  article-title: Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-β-d-glucosaminide α1,6-fucosyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.44.27810
– volume: 15
  start-page: 463
  year: 2005
  ident: 10.1016/j.bbagen.2012.08.018_bb0195
  article-title: Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwi028
– start-page: 43
  year: 2006
  ident: 10.1016/j.bbagen.2012.08.018_bb0225
  article-title: Scalable algorithms for molecular dynamics simulations on commodity clusters
– volume: 54
  start-page: 537
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.018_bb0150
  article-title: High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2007_3227
– volume: 145
  start-page: 643
  year: 2009
  ident: 10.1016/j.bbagen.2012.08.018_bb0030
  article-title: Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvp022
– volume: 13
  start-page: 443
  year: 2012
  ident: 10.1016/j.bbagen.2012.08.018_bb0080
  article-title: A new concept for glycosyltransferase inhibitors: nonionic mimics of the nucleotide donor of the human blood group B galactosyltransferase
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201100642
– volume: 6
  start-page: e25365
  year: 2011
  ident: 10.1016/j.bbagen.2012.08.018_bb0205
  article-title: Structural insights into the mechanism of protein O-fucosylation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025365
– volume: 203
  start-page: 1
  year: 2010
  ident: 10.1016/j.bbagen.2012.08.018_bb0220
  article-title: Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2009.11.015
– volume: 251
  start-page: 163
  year: 1994
  ident: 10.1016/j.bbagen.2012.08.018_bb0185
  article-title: Specificity studies of the GDP-L-fucose—2-acetamido-2-deoxy-β-d-glucoside (Fuc-Asn-linked GlcNAc) 6-α-fucosyl-transferase from rat-liver golgi membranes
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(94)84283-3
– volume: 98
  start-page: 10089
  year: 1993
  ident: 10.1016/j.bbagen.2012.08.018_bb0240
  article-title: Particle mesh Ewald — an N. Log(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 30
  start-page: 53
  year: 2005
  ident: 10.1016/j.bbagen.2012.08.018_bb0165
  article-title: Substrate-induced conformational changes in glycosyltransferases
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2004.11.005
– volume: 216
  start-page: 335
  year: 1994
  ident: 10.1016/j.bbagen.2012.08.018_bb0210
  article-title: Reducing-end modification of N-linked oligosaccharides with tyrosine
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1994.1050
– volume: 100
  start-page: 365
  year: 1982
  ident: 10.1016/j.bbagen.2012.08.018_bb0160
  article-title: Product-identification and substrate-specificity studies of the GDP-l-fucose:2-acetamido-2-deoxy-β-d-glucoside (FUC goes to Asn-linked GlcNAc) 6-α-l-fucosyltransferase in a Golgi-rich fraction from porcine liver
  publication-title: Carbohydr. Res.
  doi: 10.1016/S0008-6215(00)81049-6
– volume: vol. 2
  start-page: 609
  year: 2003
  ident: 10.1016/j.bbagen.2012.08.018_bb0085
  article-title: Glycosyltransferase inhibitors
– volume: 281
  start-page: 38343
  year: 2006
  ident: 10.1016/j.bbagen.2012.08.018_bb0040
  article-title: Deletion of core fucosylation on α3β1 integrin down-regulates its functions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608764200
– volume: 276
  start-page: 28058
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.018_bb0175
  article-title: Identification of core α1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100573200
– volume: 58
  start-page: 617
  year: 2001
  ident: 10.1016/j.bbagen.2012.08.018_bb0320
  article-title: Conformational behavior of nucleotide-sugar in solution: molecular dynamics and NMR study of solvated uridine diphosphate-glucose in the presence of monovalent cations
  publication-title: Biopolymers
  doi: 10.1002/1097-0282(200106)58:7<617::AID-BIP1035>3.0.CO;2-1
– volume: 281
  start-page: 32728
  year: 2006
  ident: 10.1016/j.bbagen.2012.08.018_bb0300
  article-title: Fragment-based screening of the donor substrate specificity of human blood group B galactosyltransferase using saturation transfer difference NMR
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600424200
– volume: 42
  start-page: 116
  year: 2012
  ident: 10.1016/j.bbagen.2012.08.018_bb0180
  article-title: Formation of the immunogenic α1,3-fucose epitope: elucidation of substrate specificity and of enzyme mechanism of core fucosyltransferase A
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2011.11.004
– volume: 102
  start-page: 15791
  year: 2005
  ident: 10.1016/j.bbagen.2012.08.018_bb0025
  article-title: Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507375102
– volume: 75
  start-page: 444
  year: 1998
  ident: 10.1016/j.bbagen.2012.08.018_bb0045
  article-title: High expression of α1,6-fucosyltransferase during rat hepatocarcinogenesis
  publication-title: Int. J. Cancer
  doi: 10.1002/(SICI)1097-0215(19980130)75:3<444::AID-IJC19>3.0.CO;2-8
– volume: 20
  start-page: 1021
  year: 2010
  ident: 10.1016/j.bbagen.2012.08.018_bb0155
  article-title: Fucosylation of chitooligosaccharides by human α1,6-fucosyltransferase requires a nonreducing terminal chitotriose unit as a minimal structure
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwq064
– volume: 344
  start-page: 1387
  year: 2009
  ident: 10.1016/j.bbagen.2012.08.018_bb0015
  article-title: Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2009.04.031
– volume: 101
  start-page: 4177
  year: 1994
  ident: 10.1016/j.bbagen.2012.08.018_bb0250
  article-title: Constant-pressure molecular-dynamics algorithms
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467468
– volume: 17
  start-page: 1311
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.018_bb0055
  article-title: A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwm094
– volume: 9
  start-page: 323
  year: 1999
  ident: 10.1016/j.bbagen.2012.08.018_bb0125
  article-title: Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria
  publication-title: Glycobiology
  doi: 10.1093/glycob/9.4.323
– volume: 15
  start-page: 783
  year: 1998
  ident: 10.1016/j.bbagen.2012.08.018_bb0190
  article-title: Purification and characterization of GDP-L-Fuc: N-acetyl β-d-glucosaminide α1,6-fucosyltransferase from human blood platelets
  publication-title: Glycoconj. J.
  doi: 10.1023/A:1006959915435
– volume: 1473
  start-page: 9
  year: 1999
  ident: 10.1016/j.bbagen.2012.08.018_bb0010
  article-title: The α1,6-fucosyltransferase gene and its biological significance
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(99)00166-X
– volume: 100
  start-page: 888
  year: 2009
  ident: 10.1016/j.bbagen.2012.08.018_bb0035
  article-title: Core fucosylation of E-cadherin enhances cell–cell adhesion in human colon carcinoma WiDr cells
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2009.01125.x
– volume: 13
  start-page: 1C
  year: 2003
  ident: 10.1016/j.bbagen.2012.08.018_bb0115
  article-title: A new superfamily of protein-O-fucosyltransferases, α2-fucosyltransferases, and α6-fucosyltransferases: phylogeny and identification of conserved peptide motifs
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwg113
– volume: 31
  start-page: 10724
  year: 1992
  ident: 10.1016/j.bbagen.2012.08.018_bb0215
  article-title: 1-N-glycyl β-oligosaccharide derivatives as stable intermediates for the formation of glycoconjugate probes
  publication-title: Biochemistry
  doi: 10.1021/bi00159a012
– volume: 282
  start-page: 9973
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.018_bb0200
  article-title: Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M610285200
– volume: 249
  start-page: 61
  year: 1995
  ident: 10.1016/j.bbagen.2012.08.018_bb0260
  article-title: Analysis of enzyme progress curves by nonlinear regression
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(95)49031-0
– volume: 28
  start-page: 944
  year: 1998
  ident: 10.1016/j.bbagen.2012.08.018_bb0050
  article-title: Gene expression of α1,6-fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein
  publication-title: Hepatology
  doi: 10.1002/hep.510280408
– volume: 17
  start-page: 455
  year: 2007
  ident: 10.1016/j.bbagen.2012.08.018_bb0140
  article-title: Crystal structure of mammalian α1,6-fucosyltransferase, FUT8
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwl079
SSID ssj0000595
ssj0025309
Score 2.1507626
Snippet Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen interactions....
BACKGROUND: Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell–cell recognition and host–pathogen...
Fucosylation is essential for various biological processes including tumorigenesis, inflammation, cell-cell recognition and host-pathogen interactions....
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1915
SubjectTerms biosynthesis
carcinogenesis
Catalysis
colorectal neoplasms
enzyme activity
epitopes
fucose
Fucosyltransferase
Fucosyltransferases - chemistry
Fucosyltransferases - genetics
Fucosyltransferases - isolation & purification
Fucosyltransferases - metabolism
GDP-fucose
Glycosyltransferase
guanine
Guanosine Diphosphate Fucose - metabolism
hepatoma
host-pathogen relationships
Humans
hydrogen bonding
inflammation
Magnetic Resonance Spectroscopy
Models, Molecular
molecular dynamics
Molecular Dynamics Simulation
nuclear magnetic resonance spectroscopy
polysaccharides
prognosis
Protein Conformation
Saturation transfer difference nuclear magnetic resonance
Substrate recognition
Surface Plasmon Resonance
Title Donor substrate binding and enzymatic mechanism of human core α1,6-fucosyltransferase (FUT8)
URI https://dx.doi.org/10.1016/j.bbagen.2012.08.018
https://www.ncbi.nlm.nih.gov/pubmed/22982178
https://www.proquest.com/docview/1115064575
https://www.proquest.com/docview/2000011942
Volume 1820
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXBOXR5VEZiQNIuJuHEzvHaulqYUUPtCt6QZYT22hRm1S728Ny4D_xR_qbOuMkRZWoKnGKEtlS4hnPfM7MfAPwNjaWmMs8lzaRXDhZcYNi5gJ9nRVR6ipPxclfDvLJTHw-zo43YNTXwlBaZWf7W5serHX3ZNit5vBsPh8eUlAP4QR6LHI0gor4hJCk5bu__6Z5IHzI2kiC4DS6L58LOV5liZuWWFDpj6Dajaj1x7_d0x1vmptBaHBG40fwsEORbK990cew4eotuNf2lVxvwf1R38btCXz_2NTNgi3RQAQiWlbOQyELM7Vlrv61Dpyt7NRRCfB8ecoaz0LjPkYEl-ziT_wh557y2tcnq4By3QI9H3s3nh2p909hNt4_Gk1411OBV7hbV5wY3Cql0thWtjCViS3Rc1tfVFaWXsalMB4xoi_QhiP4iazPlMtxlxZVlNjUpc9gs25qtw2Mzh5OeJdLPFNFUalcbAvh0P97XxqTDSDtl1JXHeE49b040X1m2U_dCkCTADS1w4zVAPjVrLOWcOOW8bKXkr6mOBp9wi0zt1Go2vxAa6pnhwlx7QXKtyIfwJte0hrFRTEUU7vmfEkHpkDxJ7ObxyQhZBIXIhnA81ZNrj4lSQqFp0D14r9f-yU8oLs2peYVbK4W5-41AqNVuRM0fwfu7n2aTg7oOv36bXoJ62wL1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61W6FyQVAeXShgJA4g4W4eTuIcqy2rLW330l2pF2Q5sY0WtUm1uz0s_4o_wm_qjJMUIbWqxDWxJcfjecUz3wfwMdSGkMscz0yUcWGzkmsUMxfo64wIYls6ak4-naTjmfh2npxvwLDrhaGyytb2NzbdW-v2yaDdzcHVfD44o0s9DCfQY5GjEfkmbBE6VdKDrYOj4_Hkr0FOPPkKjec0oeug82VeRYF6S0Co9FNQ7gfE_nG3h9p0ur4_DvX-aPQUnrSBJDto1voMNmy1A48aasn1DmwPOya35_D9sK7qBVuijfBYtKyY-14WpivDbPVr7WFb2aWlLuD58pLVjnnuPkYYl-zP7_BLyh2Vtq8vVj7QtQt0fuzTaDaVn1_AbPR1OhzzllaBl6iwK04gbqWUcWhKk-tSh4YQuo3LS5MVLgsLoR2GiS5HM47xT2BcIm2KipqXQWRiG7-EXlVXdhcYpR9WOJtmmFYFQSFtaHJhMQRwrtA66UPcbaUqW8xxor64UF1x2U_VCECRABQxYoayD_x21lWDufHA-KyTkvrn7Ch0Cw_M3EWhKv0DDaqanUUEt-dR3_K0Dx86SSsUF12j6MrW10vKmTzKX5bcPybytyZhLqI-vGqOye2nRFEuMRGUr_972e9hezw9PVEnR5PjN_CY3jQVNnvQWy2u7VuMk1bFu1YPbgCwQgzj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Donor+substrate+binding+and+enzymatic+mechanism+of+human+core+%CE%B11%2C6-fucosyltransferase+%28FUT8%29&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=K%C3%B6tzler%2C+Miriam+P&rft.au=Blank%2C+Simon&rft.au=Bantleon%2C+Frank+I&rft.au=Spillner%2C+Edzard&rft.date=2012-12-01&rft.issn=0304-4165&rft.volume=1820&rft.issue=12+p.1915-1925&rft.spage=1915&rft.epage=1925&rft_id=info:doi/10.1016%2Fj.bbagen.2012.08.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon