Covalent organic frameworks for photocatalytic applications

[Display omitted] •The COFs photocatalysts were reviewed according to the classification of building blocks.•The principle for designing photocatalytic active COFs were summarized.•The method for synthesis COFs were reviewed.•The potential photocatalytic applications were discussed. Semiconductor ph...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 276; p. 119174
Main Authors Yang, Qing, Luo, Maolan, Liu, Kewei, Cao, Hongmei, Yan, Hongjian
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The COFs photocatalysts were reviewed according to the classification of building blocks.•The principle for designing photocatalytic active COFs were summarized.•The method for synthesis COFs were reviewed.•The potential photocatalytic applications were discussed. Semiconductor photocatalysts are the main platform and play an essential role in photocatalysis. In recent years, covalent organic frameworks (COFs) materials have attracted extensive research interest. COFs feature periodic organic units, high thermal and chemical stability, high porosity, large surface area, π-conjugated structure and π-π stacking layers, as well as broad visible-light absorption range and high charge separation efficiency. Furthermore, the band structure of COFs can be rationally tuned by integrating different molecular building blocks with appropriate linkage, constructing π-conjugated system and introducing electron donor-acceptor units into the conjugated framework. These unique properties make COFs promising in photocatalytic water splitting, dye degradation, CO2 reduction, and organic transformation, etc. In this review, the research progress on COF photocatalysts were discussed, including the principles for designing photocatalytic active COFs, the synthetic methods, the classification of COFs based on the building blocks, and their potential applications in photocatalysis field.
AbstractList Semiconductor photocatalysts are the main platform and play an essential role in photocatalysis. In recent years, covalent organic frameworks (COFs) materials have attracted extensive research interest. COFs feature periodic organic units, high thermal and chemical stability, high porosity, large surface area, π-conjugated structure and π-π stacking layers, as well as broad visible-light absorption range and high charge separation efficiency. Furthermore, the band structure of COFs can be rationally tuned by integrating different molecular building blocks with appropriate linkage, constructing π-conjugated system and introducing electron donor-acceptor units into the conjugated framework. These unique properties make COFs promising in photocatalytic water splitting, dye degradation, CO2 reduction, and organic transformation, etc. In this review, the research progress on COF photocatalysts were discussed, including the principles for designing photocatalytic active COFs, the synthetic methods, the classification of COFs based on the building blocks, and their potential applications in photocatalysis field.
[Display omitted] •The COFs photocatalysts were reviewed according to the classification of building blocks.•The principle for designing photocatalytic active COFs were summarized.•The method for synthesis COFs were reviewed.•The potential photocatalytic applications were discussed. Semiconductor photocatalysts are the main platform and play an essential role in photocatalysis. In recent years, covalent organic frameworks (COFs) materials have attracted extensive research interest. COFs feature periodic organic units, high thermal and chemical stability, high porosity, large surface area, π-conjugated structure and π-π stacking layers, as well as broad visible-light absorption range and high charge separation efficiency. Furthermore, the band structure of COFs can be rationally tuned by integrating different molecular building blocks with appropriate linkage, constructing π-conjugated system and introducing electron donor-acceptor units into the conjugated framework. These unique properties make COFs promising in photocatalytic water splitting, dye degradation, CO2 reduction, and organic transformation, etc. In this review, the research progress on COF photocatalysts were discussed, including the principles for designing photocatalytic active COFs, the synthetic methods, the classification of COFs based on the building blocks, and their potential applications in photocatalysis field.
ArticleNumber 119174
Author Liu, Kewei
Cao, Hongmei
Luo, Maolan
Yang, Qing
Yan, Hongjian
Author_xml – sequence: 1
  givenname: Qing
  surname: Yang
  fullname: Yang, Qing
– sequence: 2
  givenname: Maolan
  surname: Luo
  fullname: Luo, Maolan
– sequence: 3
  givenname: Kewei
  surname: Liu
  fullname: Liu, Kewei
– sequence: 4
  givenname: Hongmei
  surname: Cao
  fullname: Cao, Hongmei
– sequence: 5
  givenname: Hongjian
  orcidid: 0000-0002-5583-2555
  surname: Yan
  fullname: Yan, Hongjian
  email: hjyan@scu.edu.cn
BookMark eNqFUMtOwzAQtFCRKIU_4BCJc4rXTvMACQlVvKRKXOBsOc4aHNI42G5R_x6XcOIAp9XuzszuzDGZ9LZHQs6AzoFCftHO5aBkqOeMsjiCCorsgEyhLHjKy5JPyJRWLE85L_gROfa-pZQyzsopuVrareywD4l1r7I3KtFOrvHTunefaOuS4c0GG8VltwtxK4ehM7E1tvcn5FDLzuPpT52Rl7vb5-VDunq6f1zerFKVURpSgIYiNNWiljmUugZKdZXVkFdQKq2gwoYzmukM43u4QIYNcEkLyUCVNcv4jJyPuoOzHxv0QbR24_p4UrBswSD6zKuIuhxRylnvHWqhTPh-NDhpOgFU7MMSrRjDEvuwxBhWJGe_yIMza-l2_9GuRxpG-1uDTnhlsFfYGIcqiMaavwW-AH_Ih2o
CitedBy_id crossref_primary_10_1016_j_talanta_2024_126505
crossref_primary_10_3390_ma14195600
crossref_primary_10_1039_D1TA06006F
crossref_primary_10_1002_smll_202101017
crossref_primary_10_1016_j_arabjc_2023_105090
crossref_primary_10_1016_j_aca_2022_340204
crossref_primary_10_3390_catal12111338
crossref_primary_10_1007_s10562_022_04071_7
crossref_primary_10_1039_D4SC05999A
crossref_primary_10_1039_D1TB00041A
crossref_primary_10_1016_j_cej_2024_158745
crossref_primary_10_1039_D4YA00082J
crossref_primary_10_1002_adfm_202419735
crossref_primary_10_1007_s11708_022_0817_9
crossref_primary_10_1016_j_cej_2022_136713
crossref_primary_10_1016_j_colsurfa_2024_135437
crossref_primary_10_1016_j_ijhydene_2025_01_427
crossref_primary_10_1021_acs_joc_3c01594
crossref_primary_10_1039_D2TA07562H
crossref_primary_10_12677_MS_2024_142017
crossref_primary_10_1016_j_apcatb_2024_124043
crossref_primary_10_1016_j_jece_2024_114074
crossref_primary_10_1039_D1MA01173A
crossref_primary_10_1016_j_seppur_2022_122964
crossref_primary_10_1002_anie_202217416
crossref_primary_10_1016_j_seppur_2022_121981
crossref_primary_10_1016_j_cej_2023_145256
crossref_primary_10_1016_j_talanta_2023_124613
crossref_primary_10_1002_adma_202405399
crossref_primary_10_1016_j_ccr_2024_215814
crossref_primary_10_1039_D1SE00358E
crossref_primary_10_3390_polym13081184
crossref_primary_10_1039_D3CY01139A
crossref_primary_10_1016_j_jece_2024_114501
crossref_primary_10_1016_j_jwpe_2023_103572
crossref_primary_10_1039_D2SC03793A
crossref_primary_10_1016_j_cej_2022_137011
crossref_primary_10_1002_anie_202318136
crossref_primary_10_1016_j_enchem_2022_100078
crossref_primary_10_1039_D3CS00259D
crossref_primary_10_3390_ma15207215
crossref_primary_10_1016_j_apcatb_2023_122393
crossref_primary_10_1021_acsami_1c10748
crossref_primary_10_1016_j_micromeso_2022_112107
crossref_primary_10_1016_j_apsusc_2022_155966
crossref_primary_10_1021_acs_langmuir_1c01801
crossref_primary_10_1002_aesr_202200129
crossref_primary_10_1016_j_polymer_2024_127639
crossref_primary_10_1002_asia_202100357
crossref_primary_10_1039_D1CY00581B
crossref_primary_10_1016_j_colsurfa_2022_130201
crossref_primary_10_1016_j_cej_2022_139202
crossref_primary_10_1016_j_colsurfa_2023_131570
crossref_primary_10_1039_D1TA05428G
crossref_primary_10_3390_nano12234299
crossref_primary_10_1016_j_apcatb_2024_123899
crossref_primary_10_3390_catal13050850
crossref_primary_10_1039_D2TA04748A
crossref_primary_10_3390_pr11020347
crossref_primary_10_1002_batt_202200434
crossref_primary_10_1016_j_arabjc_2024_105908
crossref_primary_10_3390_catal11101222
crossref_primary_10_1007_s40242_022_2219_2
crossref_primary_10_1039_D4CC02516D
crossref_primary_10_1039_D4TA02594F
crossref_primary_10_1002_cjoc_202200664
crossref_primary_10_1021_acsami_4c15460
crossref_primary_10_1039_D4QI01480D
crossref_primary_10_1002_ange_202200261
crossref_primary_10_1002_smll_202302570
crossref_primary_10_1016_j_jfca_2024_106500
crossref_primary_10_1002_adfm_202309060
crossref_primary_10_1016_j_cej_2024_148922
crossref_primary_10_1002_smll_202201314
crossref_primary_10_1002_advs_202308535
crossref_primary_10_1016_j_ccr_2022_214939
crossref_primary_10_1016_j_electacta_2021_139301
crossref_primary_10_1002_adfm_202304604
crossref_primary_10_1016_j_seppur_2022_122739
crossref_primary_10_1021_acs_chemmater_1c01383
crossref_primary_10_1039_D1QM00015B
crossref_primary_10_1002_smll_202300035
crossref_primary_10_1016_j_jpcs_2024_112548
crossref_primary_10_1002_smll_202302456
crossref_primary_10_1002_cjoc_202200355
crossref_primary_10_1002_chem_202303244
crossref_primary_10_1016_j_colsurfa_2023_131554
crossref_primary_10_1016_j_jphotochemrev_2021_100418
crossref_primary_10_1246_cl_200834
crossref_primary_10_1038_s41699_024_00496_3
crossref_primary_10_1016_j_ccr_2023_215066
crossref_primary_10_1016_j_cej_2024_150098
crossref_primary_10_1016_j_scitotenv_2021_146838
crossref_primary_10_1016_j_seppur_2024_128588
crossref_primary_10_1039_D3EY00047H
crossref_primary_10_1016_j_envres_2025_121166
crossref_primary_10_1016_j_cej_2024_152843
crossref_primary_10_1002_smll_202307853
crossref_primary_10_1016_j_ijhydene_2023_08_178
crossref_primary_10_1021_acsami_1c23465
crossref_primary_10_1016_j_gresc_2022_07_006
crossref_primary_10_1021_acsami_2c05037
crossref_primary_10_1039_D1DT03869A
crossref_primary_10_1016_j_enmm_2024_100990
crossref_primary_10_1002_adma_202004697
crossref_primary_10_2139_ssrn_4127828
crossref_primary_10_1021_acs_est_4c06351
crossref_primary_10_1016_j_jcis_2024_01_213
crossref_primary_10_1002_ange_202200003
crossref_primary_10_1016_j_cej_2021_128619
crossref_primary_10_1039_D4CC06092J
crossref_primary_10_1021_acs_energyfuels_1c03374
crossref_primary_10_1016_j_ica_2023_121892
crossref_primary_10_1002_ange_202217479
crossref_primary_10_1016_j_cej_2022_136883
crossref_primary_10_1016_j_apcata_2023_119433
crossref_primary_10_1039_D4TA00087K
crossref_primary_10_1002_cssc_202300021
crossref_primary_10_1002_adfm_202413943
crossref_primary_10_1016_j_chemosphere_2023_139930
crossref_primary_10_3390_biomimetics8020171
crossref_primary_10_1016_j_talanta_2024_125711
crossref_primary_10_1080_10408347_2022_2089838
crossref_primary_10_1016_j_ica_2024_122132
crossref_primary_10_1016_j_jcis_2023_06_062
crossref_primary_10_1016_j_jclepro_2024_142364
crossref_primary_10_1016_j_poly_2024_116958
crossref_primary_10_1016_j_micromeso_2023_112916
crossref_primary_10_1002_cssc_202300377
crossref_primary_10_1016_j_microc_2023_109531
crossref_primary_10_1016_j_apcatb_2022_122284
crossref_primary_10_1002_chem_202402736
crossref_primary_10_1016_j_jhazmat_2025_137876
crossref_primary_10_1002_chem_202101587
crossref_primary_10_1016_j_micromeso_2023_112479
crossref_primary_10_1039_D4CP00359D
crossref_primary_10_1007_s11426_024_2446_7
crossref_primary_10_1021_acsami_3c14870
crossref_primary_10_1038_s41467_024_53834_w
crossref_primary_10_1039_D2NR04727F
crossref_primary_10_1021_acsaem_2c03897
crossref_primary_10_1016_j_apcatb_2021_120108
crossref_primary_10_1016_j_micromeso_2022_112297
crossref_primary_10_1016_j_partic_2023_12_008
crossref_primary_10_1126_sciadv_adk8564
crossref_primary_10_1002_anie_202204938
crossref_primary_10_1039_D2TA04541A
crossref_primary_10_1039_D4CS00029C
crossref_primary_10_1016_j_jcis_2024_04_090
crossref_primary_10_1016_j_ceramint_2023_06_075
crossref_primary_10_1016_j_jphotochem_2025_116264
crossref_primary_10_1007_s11426_021_1088_2
crossref_primary_10_1039_D4CY00402G
crossref_primary_10_1016_j_cej_2022_139812
crossref_primary_10_1016_j_trac_2024_117604
crossref_primary_10_1002_asia_202300196
crossref_primary_10_1021_acsanm_0c02401
crossref_primary_10_1039_D1NJ04229G
crossref_primary_10_1021_acsapm_4c01483
crossref_primary_10_1016_j_mtchem_2024_102439
crossref_primary_10_1007_s40820_023_01100_x
crossref_primary_10_1021_acscatal_4c06754
crossref_primary_10_1016_j_seppur_2022_121204
crossref_primary_10_1016_j_seppur_2023_124459
crossref_primary_10_1039_D1CC02373J
crossref_primary_10_1007_s10853_022_07898_y
crossref_primary_10_1021_acsami_0c14610
crossref_primary_10_1016_j_inoche_2024_113262
crossref_primary_10_1021_acs_jpcc_1c05376
crossref_primary_10_1002_cplu_202400139
crossref_primary_10_1002_elt2_39
crossref_primary_10_1088_2515_7647_ad5777
crossref_primary_10_1002_anie_202200261
crossref_primary_10_1016_j_chemosphere_2023_141028
crossref_primary_10_1002_ange_202204938
crossref_primary_10_1016_j_apcatb_2023_122419
crossref_primary_10_1039_D0CY02061C
crossref_primary_10_1007_s12274_024_6509_5
crossref_primary_10_1016_j_rser_2021_111298
crossref_primary_10_3390_nano12203615
crossref_primary_10_1016_j_enchem_2024_100121
crossref_primary_10_1039_D2EN00278G
crossref_primary_10_1016_j_apcatb_2022_121174
crossref_primary_10_6023_cjoc202107030
crossref_primary_10_1038_s41467_022_28409_2
crossref_primary_10_1039_D4SC05065G
crossref_primary_10_1038_s41467_022_29781_9
crossref_primary_10_1002_aenm_202401619
crossref_primary_10_1002_cctc_202301732
crossref_primary_10_1007_s00604_023_06128_9
crossref_primary_10_1016_j_poly_2023_116731
crossref_primary_10_1016_j_mtchem_2024_102299
crossref_primary_10_1021_acs_chemmater_2c03282
crossref_primary_10_1016_j_chemosphere_2024_142522
crossref_primary_10_1016_j_jiec_2023_11_007
crossref_primary_10_1002_ange_202318136
crossref_primary_10_1039_D3NA00442B
crossref_primary_10_1002_chem_202303615
crossref_primary_10_1016_j_ccr_2024_215894
crossref_primary_10_1039_D2NJ04430G
crossref_primary_10_1002_adfm_202309367
crossref_primary_10_1007_s41061_025_00494_z
crossref_primary_10_3724_2097_213X_2024_JFCT_0001
crossref_primary_10_1021_acssuschemeng_3c07026
crossref_primary_10_1039_D3AY01166F
crossref_primary_10_1016_j_cej_2021_129984
crossref_primary_10_1016_j_jcis_2023_04_017
crossref_primary_10_1016_j_jhazmat_2023_130756
crossref_primary_10_1021_acscatal_3c00126
crossref_primary_10_1016_j_apcatb_2022_122135
crossref_primary_10_1039_D3TA01470C
crossref_primary_10_1039_D4TA03251A
crossref_primary_10_1016_j_apcatb_2021_120817
crossref_primary_10_1021_acscatal_4c02738
crossref_primary_10_1002_pol_20230889
crossref_primary_10_1002_asia_202401349
crossref_primary_10_1002_cssc_202401903
crossref_primary_10_1039_D0TA12425G
crossref_primary_10_1021_acs_inorgchem_2c00688
crossref_primary_10_1002_adfm_202400506
crossref_primary_10_1007_s42247_024_00833_8
crossref_primary_10_1016_j_apcata_2023_119269
crossref_primary_10_1021_acsami_1c20729
crossref_primary_10_1002_anie_202200003
crossref_primary_10_1002_cctc_202200935
crossref_primary_10_1039_D1TA02547C
crossref_primary_10_1021_acsami_0c21370
crossref_primary_10_1039_D0TA11820F
crossref_primary_10_1002_smll_202202928
crossref_primary_10_1039_D4TA07330D
crossref_primary_10_1002_cjoc_202401245
crossref_primary_10_1039_D2NJ05225C
crossref_primary_10_1016_j_fuel_2023_130654
crossref_primary_10_1016_j_micromeso_2023_112798
crossref_primary_10_1002_anie_202217479
crossref_primary_10_1002_cssc_202401353
crossref_primary_10_1016_j_ijhydene_2024_05_448
crossref_primary_10_1002_ange_202010829
crossref_primary_10_1016_j_gee_2021_09_002
crossref_primary_10_1039_D1CY00293G
crossref_primary_10_1016_j_jcat_2022_07_023
crossref_primary_10_1021_acs_macromol_3c02490
crossref_primary_10_3390_catal13101331
crossref_primary_10_1055_a_1932_6937
crossref_primary_10_1007_s11426_022_1391_0
crossref_primary_10_1002_smll_202205758
crossref_primary_10_1002_chem_202302304
crossref_primary_10_1002_inf2_12646
crossref_primary_10_1016_j_ccr_2022_214542
crossref_primary_10_1016_j_jece_2024_111899
crossref_primary_10_1016_j_apcatb_2022_121144
crossref_primary_10_1021_acsami_3c16724
crossref_primary_10_1016_j_chroma_2021_462612
crossref_primary_10_1016_j_jre_2024_07_010
crossref_primary_10_1016_j_ijhydene_2021_02_176
crossref_primary_10_1039_D2CY00167E
crossref_primary_10_1002_anie_202010829
crossref_primary_10_1039_D3MA00994G
crossref_primary_10_1002_cptc_202400013
crossref_primary_10_1002_ange_202217416
crossref_primary_10_1016_j_micromeso_2022_112401
crossref_primary_10_1002_cplu_202200281
crossref_primary_10_1016_j_jiec_2022_06_009
crossref_primary_10_1039_D3TC00430A
crossref_primary_10_1039_D3LF00126A
crossref_primary_10_1016_j_heliyon_2024_e41296
crossref_primary_10_1021_jacs_2c09482
crossref_primary_10_1002_smll_202408395
crossref_primary_10_1016_j_ccr_2022_214414
crossref_primary_10_1016_j_saa_2024_125022
crossref_primary_10_1021_acsapm_4c00664
crossref_primary_10_1016_j_apcatb_2022_121374
crossref_primary_10_1039_D4TA02087A
crossref_primary_10_1016_j_molstruc_2024_140088
crossref_primary_10_1021_acsapm_3c01665
crossref_primary_10_1002_cctc_202101800
crossref_primary_10_1021_acsami_3c13966
crossref_primary_10_1016_j_fuel_2023_130157
crossref_primary_10_1002_adfm_202305527
crossref_primary_10_1021_acs_energyfuels_3c00162
crossref_primary_10_1002_cssc_202101510
crossref_primary_10_3390_ijms23041929
crossref_primary_10_1016_j_apcatb_2022_121257
crossref_primary_10_1016_j_cej_2023_147365
crossref_primary_10_1016_j_micromeso_2023_112893
crossref_primary_10_3390_sym15091803
crossref_primary_10_1039_D3CE01285A
crossref_primary_10_1016_j_cej_2021_132817
crossref_primary_10_1039_D4QI02904F
crossref_primary_10_3390_nano14030256
crossref_primary_10_1007_s11426_023_1644_x
crossref_primary_10_1016_j_apcatb_2021_120605
crossref_primary_10_1016_j_apcatb_2021_120846
crossref_primary_10_1021_acs_jctc_3c01302
crossref_primary_10_1002_anie_202423368
crossref_primary_10_1016_j_vacuum_2024_113235
crossref_primary_10_1021_acsnano_3c01758
crossref_primary_10_1002_adfm_202312729
crossref_primary_10_1016_j_ccr_2022_214882
crossref_primary_10_1016_j_cej_2022_135153
crossref_primary_10_1016_j_jece_2024_114306
crossref_primary_10_1007_s00604_022_05432_0
crossref_primary_10_1016_j_jcis_2024_04_158
crossref_primary_10_1111_php_13959
crossref_primary_10_1007_s11947_024_03426_9
crossref_primary_10_1016_j_ajps_2020_12_003
crossref_primary_10_1007_s11356_023_26728_5
crossref_primary_10_1016_j_apcatb_2022_121920
crossref_primary_10_1002_smll_202303884
crossref_primary_10_1016_j_chemosphere_2021_131254
crossref_primary_10_1002_anie_202217989
crossref_primary_10_1016_j_cej_2020_128397
crossref_primary_10_1039_D4SE00056K
crossref_primary_10_1016_j_jwpe_2023_104297
crossref_primary_10_1002_smll_202400688
crossref_primary_10_1016_j_talanta_2023_125236
crossref_primary_10_1016_j_ijhydene_2023_08_303
crossref_primary_10_1016_j_envres_2023_118018
crossref_primary_10_1039_D1QM00887K
crossref_primary_10_3390_molecules26144181
crossref_primary_10_1002_asia_202401423
crossref_primary_10_1016_j_ccr_2024_216177
crossref_primary_10_1016_j_jcis_2025_01_247
crossref_primary_10_1016_j_jcis_2023_08_073
crossref_primary_10_1039_D2GC04459E
crossref_primary_10_1002_solr_202000641
crossref_primary_10_1002_ange_202423368
crossref_primary_10_1016_j_jece_2022_108097
crossref_primary_10_1007_s40843_023_2599_9
crossref_primary_10_3390_su16062334
crossref_primary_10_1021_acsanm_1c01038
crossref_primary_10_3390_molecules29071637
crossref_primary_10_3390_w16111588
crossref_primary_10_1007_s42114_024_01177_x
crossref_primary_10_1016_j_jphotochem_2021_113546
crossref_primary_10_1016_j_mtchem_2022_101037
crossref_primary_10_3390_polym16182578
crossref_primary_10_1002_smll_202303632
crossref_primary_10_1016_j_apcatb_2024_123698
crossref_primary_10_1039_D2TA09375H
crossref_primary_10_1002_aenm_202303346
crossref_primary_10_1002_ange_202217989
crossref_primary_10_1016_j_heliyon_2024_e32202
crossref_primary_10_1016_j_seppur_2022_120644
crossref_primary_10_1039_D4TA01917B
crossref_primary_10_1002_adfm_202402676
crossref_primary_10_1016_j_ccr_2024_215997
crossref_primary_10_1016_j_matchemphys_2023_128158
crossref_primary_10_1016_j_chemosphere_2023_141073
crossref_primary_10_1016_j_est_2022_105375
crossref_primary_10_1016_j_jece_2024_113470
crossref_primary_10_1021_acscatal_1c03441
crossref_primary_10_1007_s12613_023_2761_z
crossref_primary_10_1016_j_colsurfa_2023_131124
crossref_primary_10_1016_j_ccr_2025_216465
crossref_primary_10_1016_j_jssc_2024_125025
crossref_primary_10_1039_D2NJ06362J
crossref_primary_10_1002_smll_202404139
crossref_primary_10_1016_j_ccr_2023_215210
crossref_primary_10_1002_adsu_202400653
crossref_primary_10_1002_smll_202402993
crossref_primary_10_1039_D2PY01350A
crossref_primary_10_1002_marc_202200108
crossref_primary_10_1021_acssuschemeng_4c02542
crossref_primary_10_1039_D2NR03706H
crossref_primary_10_1002_fft2_241
crossref_primary_10_1039_D1CY01311D
crossref_primary_10_1002_cssc_202301175
crossref_primary_10_1002_smll_202303069
crossref_primary_10_1039_D4CY00575A
Cites_doi 10.1038/nmat4220
10.1021/acsami.9b08394
10.1021/cr00033a004
10.1039/C5CS00878F
10.1021/acsami.8b14446
10.1039/C5TA10521H
10.1021/ja904991p
10.1002/cssc.201903545
10.1002/anie.200400655
10.1039/C7GC02231J
10.1021/jacs.6b01233
10.1039/C6CC06363B
10.1002/anie.201106203
10.1021/ja065986c
10.1002/adma.201807865
10.1021/jacs.7b06081
10.1021/jacs.5b10666
10.1002/jccs.201300333
10.1002/anie.201607375
10.1021/cs200131g
10.1002/anie.201107070
10.1021/cm802981m
10.1021/jacs.9b09502
10.1021/jacs.9b01891
10.1021/jacs.6b12005
10.1039/c2jm31248d
10.1038/s41467-018-06719-8
10.1016/j.mattod.2018.04.009
10.1039/c2ra21531d
10.1021/ja2052396
10.1021/jacs.8b00571
10.1021/ja00278a055
10.1002/adma.201200751
10.1039/C9CC02144B
10.1021/ja8096256
10.1021/jacs.7b06599
10.1021/acs.chemmater.9b03088
10.1039/C7TA07691F
10.1007/s11705-019-1884-2
10.1039/C6TA04711D
10.1002/anie.201806664
10.1002/anie.201708548
10.1016/j.jhazmat.2019.02.046
10.1002/macp.201500404
10.1021/acsami.7b18917
10.1021/acssuschemeng.7b02170
10.1002/adfm.201700233
10.1126/science.1139915
10.1002/anie.201005919
10.1002/marc.201500270
10.1002/anie.201300256
10.1088/1361-6528/ab4a3f
10.1021/ja206242v
10.1039/c3sc52034j
10.1039/C9CS00322C
10.1021/ja809307s
10.1039/C7CS00071E
10.1021/acsami.7b06030
10.1039/C4CS00126E
10.1016/j.ces.2016.12.071
10.1039/c0cc03792c
10.1002/anie.201101924
10.1039/C6TA01828A
10.1002/anie.201901194
10.1016/j.jcis.2019.07.002
10.1038/ncomms9508
10.1039/c2cc33929c
10.1038/natrevmats.2016.68
10.1021/jp802640x
10.1039/C4CS00250D
10.1021/ja203807h
10.1021/ja206846p
10.1021/acs.nanolett.6b00870
10.1021/jacs.6b05304
10.1002/anie.200462057
10.1021/acs.jced.8b01085
10.1021/cr200304e
10.1002/ejic.201700165
10.1039/B204251G
10.1038/ncomms3736
10.1021/jacs.6b03472
10.1002/anie.201902543
10.1021/ja403008j
10.1021/ja511552k
10.1021/acsami.8b10022
10.1021/jp411854f
10.1016/j.apcatb.2018.08.005
10.1021/acs.cgd.9b00166
10.1002/adma.201601694
10.1021/acscatal.8b02607
10.1039/C9CS00299E
10.1021/cr900271s
10.1039/C8CS00376A
10.1021/jacs.9b02997
10.1039/C7CC01827D
10.1016/S1872-2067(18)63057-8
10.1016/j.scib.2019.10.015
10.1021/acsenergylett.7b01123
10.1021/nl904082k
10.1021/jacs.6b09787
10.1021/jacs.6b02553
10.1021/acs.cgd.7b01367
10.1002/adma.200903436
10.1039/C4CC03389B
10.1039/C9CC01732A
10.1002/anie.201806862
10.1039/C7CC04515H
10.1039/C5TA07408H
10.1016/j.polymer.2017.04.017
10.1126/science.aan0202
10.1039/C9TA13212K
10.1021/acscatal.7b01719
10.1021/acsami.5b12370
10.1021/jacs.8b09705
10.1021/ja509602c
10.1039/C8CC07784C
10.1002/asia.201800506
10.1021/acsami.9b02640
10.1021/jacs.7b04141
10.1039/C5EE02574E
10.1126/science.1120411
10.1021/acscatal.5b00069
10.1002/anie.200900881
10.1021/ja048296m
10.1002/anie.201712925
10.1021/acssuschemeng.6b01183
10.1002/adma.201705454
10.1039/c0cc04386a
10.1021/acsaem.8b01432
10.1021/ja8007825
10.1021/ma201648t
10.1039/C7EE02981K
10.1039/C4TA03438D
10.1039/C6TA01625A
10.1039/C4SC00016A
10.1002/cssc.201702220
10.1016/S1872-2067(15)60974-3
10.1016/j.apcatb.2018.10.043
10.1016/j.jcat.2008.09.017
10.1039/B800489G
10.1002/chem.201403800
10.1016/j.jhazmat.2019.121514
10.1021/ja4017842
10.1039/c0cc04057f
10.1002/anie.200705710
10.1038/s41557-018-0141-5
10.1021/es900806c
10.1039/C2CS35072F
10.1021/jacs.9b03591
10.1021/acsami.9b19870
10.1039/C7TA08366A
10.1126/science.1200448
10.1002/anie.201801112
10.1016/j.apcatb.2018.12.065
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Nov 5, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 5, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.119174
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_119174
S0926337320305890
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-11d0e1d95ba618fb100f94b16918cfc19ed3204f4e373e5e2ed13a07a21c8b243
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 04:38:01 EDT 2025
Tue Jul 01 04:35:06 EDT 2025
Thu Apr 24 22:55:25 EDT 2025
Sat Mar 02 16:00:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Covalent organic frameworks
Synthesis
Designing principles
Photocatalysts
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-11d0e1d95ba618fb100f94b16918cfc19ed3204f4e373e5e2ed13a07a21c8b243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5583-2555
PQID 2452118769
PQPubID 2045281
ParticipantIDs proquest_journals_2452118769
crossref_citationtrail_10_1016_j_apcatb_2020_119174
crossref_primary_10_1016_j_apcatb_2020_119174
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-05
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Xiao, Zhou, Xin, Zhang, Zhang, Wang, Sun (bib0285) 2016; 217
Zhang, Ying (bib0105) 2015; 5
Zhou, Yang, You (bib0255) 2012; 45
Schwinghammer, Hug, Mesch, Senker, Lotsch (bib0560) 2015; 8
Yang, Kim, Cho, Kim, Ahn (bib0510) 2012; 2
Preet, Gupta, Kotal, Kansal, Salunke, Sharma, Sahoo, Van Der Voort, Roy (bib0715) 2019; 19
Li, Wang, Xing, Zhou, Liu, Li, Zheng, Ye, Zou (bib0695) 2019; 243
Jin, Li, Geng, Jiang, Xu, Xu, Jiang (bib0755) 2018; 9
Lin, Ding, Chen, Peng, Wang, Wang (bib0780) 2017; 139
Tsuji, Kato, Kobayashi, Kudo (bib0075) 2004; 126
Hu, Zhang, Liu, Liu, Pang (bib0385) 2019; 11
Feng, Liu, Honsho, Saeki, Seki, Irle, Dong, Nagai, Jiang (bib0315) 2012; 51
Zhang, Dai, Shao, Tian, Lin, Chen, Zeng (bib0365) 2018; 10
Jin, Asada, Xu, Dalapati, Addicoat, Brady, Xu, Nakamura, Heine, Chen, Jiang (bib0750) 2017; 357
Yang, Peng, Xiang (bib0390) 2017; 162
Zhang, Wu, Ma, Wang, Xu (bib0155) 2019; 48
Uribe-Romo, Hunt, Furukawa, Klöck, O’Keeffe, Yaghi (bib0395) 2009; 131
Ding, Chen, Honsho, Feng, Saengsawang, Guo, Saeki, Seki, Irle, Nagase, Parasuk, Jiang (bib0160) 2011; 133
Auras, Ascherl, Hakimioun, Margraf, Hanusch, Reuter, Bessinger, Döblinger, Hettstedt, Karaghiosoff, Herbert, Knochel, Clark, Bein (bib0605) 2016; 138
Jiang, Wang, Zhao (bib0110) 2015; 3
Han, Li, Yang, Lin (bib0030) 2015; 36
Chen, Lan, Cai, Sun, Li, He, Zheng, Fan, Liu, Zhang (bib0415) 2019; 11
Liu, Huang, Wang, Li, Li, Jin, Tan (bib0585) 2018; 57
Liu, Liao, Ma, Xiang (bib0305) 2018; 10
Cheng, Wang, Wang, Xi, Ma, Zang (bib0660) 2018; 54
Kudo, Miseki (bib0730) 2009; 38
Zhong, Sa, Li, He, Li, Bi, Zhuang, Yu, Zou (bib0545) 2019; 141
Stegbauer, Zech, Savasci, Banerjee, Podjaski, Schwinghammer, Ochsenfeld, Lotsch (bib0620) 2018; 8
Jhuo, Yeh, Liao, Li, Cheng, Chen (bib0265) 2014; 61
Zhang, Yuan, Feng, Li, Zhou, Wang (bib0005) 2016; 138
Butchosa, McDonald, Cooper, Adams, Zwijnenburg (bib0260) 2014; 118
Chen, Addicoat, Jin, Zhai, Xu, Huang, Guo, Liu, Irle, Jiang (bib0290) 2015; 137
Kuecken, Acharjya, Zhi, Schwarze, Schomäcker, Thomas (bib0565) 2017; 53
Hu, Yan, Ge, Gao (bib0225) 2018; 39
Wang, Yang, Yang, Zhao, Wang, Chen, Zeng, Yan, Huang, Jiang (bib0345) 2018; 8
Banerjee, Gottschling, Savasci, Ochsenfeld, Lotsch (bib0100) 2018; 3
Li, Sun, Yuan, Zhu, Ma (bib0735) 2018; 57
Wang, Chavez, Thomas, Li, Flanders, Sun, Strauss, Chen, Markvoort, Bredas, Dichtel (bib0420) 2019; 31
Li, Zhi, Shao, Xia, Li, Feng, Chen, Shi, Liu (bib0185) 2019; 245
Pan, Guo, Zhang, Wang, Jin, Tan (bib0700) 2018; 13
Li, Xie, Song, Zhao, Zhang (bib0725) 2017; 9
Huang, Wang, Ma, Ghasimi, Gehrig, Laquai, Landfester, Zhang (bib0275) 2016; 4
Shi, Qi, Peng, Guo, Wan, Cao, Xiang (bib0640) 2018; 1
Meier, Sprick, Monti, Guiglion, Lee, Zwijnenburg, Cooper (bib0170) 2017; 126
Clarke, Durrant (bib0325) 2010; 110
Yadav, Kumar, Park, Kong, Baeg (bib0200) 2016; 4
Gao, Wang, Wei, Yin, Tian, Liu, Wang, Zhang, Zhang, Li, Liu, Li (bib0785) 2020; 12
Low, Yu, Jaroniec, Wageh, Al-Ghamdi (bib0080) 2017; 29
Zhi, Li, Feng, Xi, Zhang, Shi, Mu, Liu (bib0205) 2017; 5
Yao, Hu, Hu, Chen, Yu, Gao, Wang (bib0705) 2019; 554
Liu, Jiang, Ding, Wang, Zhang, Liu, Zhan, Cheng, Li, Chen, Jin, Tan (bib0580) 2019; 31
Kenji, Shuhei, Mio, Hiromitsu, Osami, Susumu (bib0665) 2011; 50
Spitler, Koo, Novotney, Colson, Uribe-Romo, Gutierrez, Clancy, Dichtel (bib0410) 2011; 133
Tuziuti, Yasui, Lee, Kozuka, Towata, Iida (bib0500) 2008; 112
Segura, Mancheño, Zamora (bib0675) 2016; 45
Liu, Huang, Lai, Zeng, Qin, Wang, Yi, Li, Liu, Zhang, Deng, Fu, Li, Xue, Chen (bib0145) 2019; 48
Ghosh, Kouamé, Ramos, Remita, Dazzi, Besseau, Beaunier, Goubard, Aubert, Remita (bib0745) 2015; 14
Li, Sullivan, Rosi (bib0670) 2013; 135
Wang, Yang, Wang, Guo, Cheng, Zhang, Jin, Tan, Cooper (bib0575) 2017; 56
Kong, Zheng, Kobielusz, Wang, Bai, Macyk, Wang, Tang (bib0215) 2018; 21
Yong, Lu, Li, Wang, Zhang (bib0740) 2018; 10
Chen, Liu, Yu, Mao (bib0025) 2011; 331
Shinde, Aiyappa, Bhadra, Biswal, Wadge, Kandambeth, Garai, Kundu, Kurungot, Banerjee (bib0470) 2016; 4
Wei, Qi, Wang, Ding, Yu, Liu, Wang, Wang, An, Wang (bib0720) 2018; 140
Zong, Yan, Wu, Ma, Wen, Wang, Li (bib0055) 2008; 130
Wang, Zeng, Xu, Li, Zeng, Xiao, Tang, Huang, Tang, Lai, Jiang, Liu, Yi, Qin, Ye, Ren, Tang (bib0150) 2019; 48
Das, Shinde, Kandambeth, Biswal, Banerjee (bib0485) 2014; 50
Lv, Zhao, Niu, He, Tang, Wu, Giesy (bib0195) 2019; 369
Ding, Gao, Wang, Zhang, Song, Su, Wang (bib0435) 2011; 133
S.Vyas, Haase, Stegbauer, Savasci, Podjaski, Ochsenfeld, Lotsch (bib0115) 2015; 6
Ding, Wang (bib0220) 2013; 42
Feng, Chen, Dong, Jiang (bib0440) 2011; 47
Huang, Byun, Rçrich, Ramanan, Blom, Lu, Wang, da Silva, Li, Wang, Landfester, Zhang (bib0635) 2018; 57
Bessinger, Ascherl, Auras, Bein (bib0610) 2017; 139
Rao, Fang, Feyter, Perepichka (bib0350) 2017; 139
Zhu, Qi, Fang, Zhao, Wu, Han (bib0655) 2018; 18
Zhou, Li, Zhao, Wang, Zhao, Ge, Cai (bib0120) 2018; 6
Li, Cai, Wu, Lo, Zhang, Chen, Yu (bib0340) 2016; 138
Choi, Kim, Lee, Tak (bib0070) 2020; 31
Wu, Cheng, Cheng, Hsu (bib0625) 2015; 44
Ding, Feng, Saeki, Seki, Nagaia, Jiang (bib0320) 2012; 48
Jiang, Sun, Bi, Liang, Li, Yu, Wu (bib0650) 2018; 11
Köhler, Bässler (bib0235) 2015
Wei, Qi, Wang, Ding, Yu, Liu, Wang, Wang, An, Wang (bib0615) 2018; 140
Elseman, Rashad, Hassan (bib0475) 2016; 4
Zhang, Cheng, Guo, Wang, Tan, Jin (bib0770) 2020; 59
Stegbauer, Schwinghammer, Lotsch (bib0455) 2014; 5
Yoshida, Yamakata, Takanabe, Kubota, Osawa, Domen (bib0065) 2009; 131
Yoo, Cho, Jung, Kim, Choi, Kim, Lee, Kwak, Lee (bib0515) 2016; 16
Chan-Thaw, Villa, Katekomol, Su, Thomas, Prati (bib0550) 2010; 10
Schwab, Hamburger, Feng, Shu, Spiess, Wang, Antonietti, Müllen (bib0165) 2010; 46
Biswal, Chandra, Kandambeth, Lukose, Heine, Banerjee (bib0490) 2013; 135
Liu, Li, Wang, Pan, Liu, Wang, Zeng, Wang, Jiang (bib0425) 2019; 141
Wang, Maeda, Chen, Takanabe, Domen, Hou, Fu, Antonietti (bib0090) 2009; 131
Campbell, Clowes, Ritchie, Cooper (bib0450) 2009; 21
Yang, Zhang, Han, Zhang, Xue, Gao, Li, Huang, Yi, Liu, Li (bib0300) 2016; 8
Jiang, Zhao, Yaghi (bib0680) 2016; 138
Kuhn, Antonietti, Thomas (bib0520) 2008; 47
Huang, Wang, Jiang (bib0140) 2016; 1
Yang, Hu, Zhang, He, Pattengale, Liu, Cendejas, Hermans, Zhang, Zhang, Huang (bib0245) 2018; 140
Hug, Tauchert, Li, Pachmayr, Lotsch (bib0555) 2012; 22
Stock, Biswas (bib0505) 2012; 112
Nagai, Chen, Feng, Ding, Guo, Jiang (bib0295) 2013; 52
Li, Fang, Zhang, Bi, He, Wang, Su (bib0600) 2016; 4
Gurney, Mendoza, Zhou, Fischer, Miller, Geethakumar, de la Rue du Can (bib0010) 2009; 43
Lyu, Gao, He, Ding, Tang, Crittenden (bib0480) 2017; 5
Chaoui, Trunk, Dawson, Schmidt, Thomas (bib0630) 2017; 46
Luo, Yang, Liu, Cao, Yan (bib0710) 2019; 55
Periyasamy, Viswanathan (bib0380) 2019; 64
Lanni, Tilford, Bharathy, Lavigne (bib0445) 2011; 13
Zhang, Gong, Zhang, Liu, Cao, Yan, Zhu (bib0045) 2017; 2017
Wang, Chen, Chong, Little, Wu, Zhu, Clowes, Yan, Zwijnenburg, Sprick, Cooper (bib0180) 2018; 10
Torben, Alexander, Jonathan, Ilina, Mona, Julian, Austin, Markus, Simon, Kristina (bib0240) 2018; 140
Ren, Bojdys, Dawson, Laybourn, Khimyak, Adams, Cooper (bib0465) 2012; 24
Wang, Zeng, Xiong, Wu, Xia, Xie, Zou, Luo (bib0760) 2020; 65
Guo, Xu, Jin, Chen, Kaji, Honsho, Addicoat, Kim, Saeki, Ihee, Seki, Irle, Hiramoto, Gao, Jiang (bib0125) 2013; 4
Zhao, Liu, Wu, Zhang, Pan, Hu, Wang, Li, Huang, Li (bib0355) 2019; 58
Huang, Wu, Zheng, Dong, Wang (bib0590) 2018; 20
Niu, Smith, Lavigne (bib0375) 2006; 128
Zhang, Sheng, Yang, Sun, Tang, Lu, Dong, Shen, Liu, Lan (bib0690) 2018; 57
Hoffmann, Martin, Choi, Bahnemann (bib0020) 1995; 95
Ding, Feng, Saeki, Seki, Nagai, Jiang (bib0280) 2012; 48
Wan, Guo, Kim, Ihee, Jiang (bib0330) 2009; 48
Jin, Furukawa, Addicoat, Chen, Takahashi, Irle, Nakamura, Jiang (bib0230) 2013; 4
Afshari, Dinari (bib0430) 2020; 385
Suslick, Hammerton, Cline (bib0495) 1986; 108
Zhang, Lan, Wang (bib0095) 2016; 55
Ayed, Huang, Zhang (bib0775) 2020; 14
Kaur, Hupp, Nguyen (bib0130) 2011; 1
Yassin, Trunk, Czerny, Fayon, Trewin, Schmidt, Thomas (bib0360) 2017; 27
Bi, Fang, Li, Wang, Liang, He, Liu, Wu (bib0190) 2015; 36
Sprick, Jiang, Bonillo, Ren, Ratvijitvech, Guiglion, Zwijnenburg, Adams, Cooper (bib0335) 2015; 137
Hu, Ren, Guo, Liang, Cao, Wan, Bai (bib0060) 2005; 44
Ajayaghosh (bib0270) 2003; 32
Lei, Wang, Ye, Kou, Deng, Ma, Wang, Kong (bib0790) 2020; 13
He, Rong, Niu, Cai (bib0795) 2017; 53
Bai, Wilbraham, Slater, Zwijnenburg, Sprick, Cooper (bib0540) 2019; 141
Kappe (bib0460) 2004; 43
Côté, Benin, Ockwig, O’Keeffe, Matzger, Yaghi (bib0370) 2005; 310
Bojdys, Jeromenok, Thomas, Antonietti (bib0525) 2010; 22
Gao, Shu, Zhang, Ma, Ren, Wang, Chen, Zeng, Jiang (bib0765) 2020; 8
Gong, Ma, Mao, Liu, Cao, Yan (bib0035) 2016; 52
Yang, Luo, Liu, Cao, Yan (bib0040) 2019; 55
He, Yin, Niu, Cai (bib0595) 2018; 239
Ding, Guo, Feng, Honsho, Guo, Seki, Maitarad, Saeki, Nagase, Jiang (bib0310) 2011; 50
Peng, Zhao, Chen, Zhang, Huang, Dai, Lai, Cui, Tan, Zhang (bib0685) 2018; 30
Wang, Zhang, Chen, Hu, Li, Wang, Liu, Wang (bib0015) 2014; 43
Nguyen, Gandara, Furukawa, Doan, Cordova, Yaghi (bib0210) 2016; 138
Spitler, Colson, Uribe‐Romo, Woll, Giovino, Saldivar, Dichtel (bib0400) 2012; 51
Dogru, Sonnauer, Gavryushin, Knochel, Bein (bib0405) 2011; 47
Huang, Ma, Lu, Li, Wang, Landfester, Zhang (bib0135) 2017; 8
Thote, Aiyappa, Deshpande, Díaz, Kurungot, Banerjee (bib0645) 2014; 20
Kuecken, Schmidt, Zhi, Thomas (bib0530) 2015; 3
Xie, Shevlin, Ruan, Moniz, Liu, Liu, Li, Lau, Guo, Tang (bib0570) 2018; 11
Iwase, Yoshino, Takayama, Ng, Amal, Kudo (bib0085) 2016; 138
Chen, Shi, Ma, Lin, Lang, Wang (bib0175) 2019; 58
El-Kaderi, Hunt, Mendoza-Cortés, Côté, Taylor, O’Keeffe, Yaghi (bib0535) 2009; 316
Ma, Yan, Shi, Zong, Lei, Li (bib0050) 2008; 260
Bhadra, Kandambeth, Sahoo, Addicoat, Balaraman, Banerjee (bib0250) 2019; 141
Yadav (10.1016/j.apcatb.2020.119174_bib0200) 2016; 4
Iwase (10.1016/j.apcatb.2020.119174_bib0085) 2016; 138
Xiao (10.1016/j.apcatb.2020.119174_bib0285) 2016; 217
Kong (10.1016/j.apcatb.2020.119174_bib0215) 2018; 21
Ding (10.1016/j.apcatb.2020.119174_bib0320) 2012; 48
Chan-Thaw (10.1016/j.apcatb.2020.119174_bib0550) 2010; 10
Huang (10.1016/j.apcatb.2020.119174_bib0590) 2018; 20
Huang (10.1016/j.apcatb.2020.119174_bib0275) 2016; 4
Chen (10.1016/j.apcatb.2020.119174_bib0025) 2011; 331
Ding (10.1016/j.apcatb.2020.119174_bib0435) 2011; 133
Cheng (10.1016/j.apcatb.2020.119174_bib0660) 2018; 54
Jhuo (10.1016/j.apcatb.2020.119174_bib0265) 2014; 61
Yang (10.1016/j.apcatb.2020.119174_bib0040) 2019; 55
Periyasamy (10.1016/j.apcatb.2020.119174_bib0380) 2019; 64
Kappe (10.1016/j.apcatb.2020.119174_bib0460) 2004; 43
Kuecken (10.1016/j.apcatb.2020.119174_bib0530) 2015; 3
Feng (10.1016/j.apcatb.2020.119174_bib0315) 2012; 51
Bojdys (10.1016/j.apcatb.2020.119174_bib0525) 2010; 22
Zhi (10.1016/j.apcatb.2020.119174_bib0205) 2017; 5
Tuziuti (10.1016/j.apcatb.2020.119174_bib0500) 2008; 112
Li (10.1016/j.apcatb.2020.119174_bib0670) 2013; 135
Choi (10.1016/j.apcatb.2020.119174_bib0070) 2020; 31
Wei (10.1016/j.apcatb.2020.119174_bib0615) 2018; 140
Yong (10.1016/j.apcatb.2020.119174_bib0740) 2018; 10
Gao (10.1016/j.apcatb.2020.119174_bib0765) 2020; 8
Ding (10.1016/j.apcatb.2020.119174_bib0310) 2011; 50
Zhou (10.1016/j.apcatb.2020.119174_bib0120) 2018; 6
Kudo (10.1016/j.apcatb.2020.119174_bib0730) 2009; 38
Campbell (10.1016/j.apcatb.2020.119174_bib0450) 2009; 21
Jiang (10.1016/j.apcatb.2020.119174_bib0110) 2015; 3
Lv (10.1016/j.apcatb.2020.119174_bib0195) 2019; 369
Li (10.1016/j.apcatb.2020.119174_bib0600) 2016; 4
Lanni (10.1016/j.apcatb.2020.119174_bib0445) 2011; 13
Yoo (10.1016/j.apcatb.2020.119174_bib0515) 2016; 16
Nagai (10.1016/j.apcatb.2020.119174_bib0295) 2013; 52
Nguyen (10.1016/j.apcatb.2020.119174_bib0210) 2016; 138
Liu (10.1016/j.apcatb.2020.119174_bib0425) 2019; 141
Hoffmann (10.1016/j.apcatb.2020.119174_bib0020) 1995; 95
Bi (10.1016/j.apcatb.2020.119174_bib0190) 2015; 36
Banerjee (10.1016/j.apcatb.2020.119174_bib0100) 2018; 3
Butchosa (10.1016/j.apcatb.2020.119174_bib0260) 2014; 118
Wang (10.1016/j.apcatb.2020.119174_bib0760) 2020; 65
Wan (10.1016/j.apcatb.2020.119174_bib0330) 2009; 48
Stegbauer (10.1016/j.apcatb.2020.119174_bib0455) 2014; 5
S.Vyas (10.1016/j.apcatb.2020.119174_bib0115) 2015; 6
Chen (10.1016/j.apcatb.2020.119174_bib0290) 2015; 137
Pan (10.1016/j.apcatb.2020.119174_bib0700) 2018; 13
Zong (10.1016/j.apcatb.2020.119174_bib0055) 2008; 130
Hu (10.1016/j.apcatb.2020.119174_bib0225) 2018; 39
Yang (10.1016/j.apcatb.2020.119174_bib0300) 2016; 8
Liu (10.1016/j.apcatb.2020.119174_bib0145) 2019; 48
Wang (10.1016/j.apcatb.2020.119174_bib0420) 2019; 31
El-Kaderi (10.1016/j.apcatb.2020.119174_bib0535) 2009; 316
Segura (10.1016/j.apcatb.2020.119174_bib0675) 2016; 45
Spitler (10.1016/j.apcatb.2020.119174_bib0400) 2012; 51
Xie (10.1016/j.apcatb.2020.119174_bib0570) 2018; 11
Wu (10.1016/j.apcatb.2020.119174_bib0625) 2015; 44
Bessinger (10.1016/j.apcatb.2020.119174_bib0610) 2017; 139
Luo (10.1016/j.apcatb.2020.119174_bib0710) 2019; 55
Biswal (10.1016/j.apcatb.2020.119174_bib0490) 2013; 135
Wei (10.1016/j.apcatb.2020.119174_bib0720) 2018; 140
Zhou (10.1016/j.apcatb.2020.119174_bib0255) 2012; 45
Wang (10.1016/j.apcatb.2020.119174_bib0575) 2017; 56
Stegbauer (10.1016/j.apcatb.2020.119174_bib0620) 2018; 8
Jiang (10.1016/j.apcatb.2020.119174_bib0680) 2016; 138
Niu (10.1016/j.apcatb.2020.119174_bib0375) 2006; 128
Li (10.1016/j.apcatb.2020.119174_bib0185) 2019; 245
Ren (10.1016/j.apcatb.2020.119174_bib0465) 2012; 24
Afshari (10.1016/j.apcatb.2020.119174_bib0430) 2020; 385
Jin (10.1016/j.apcatb.2020.119174_bib0755) 2018; 9
Zhang (10.1016/j.apcatb.2020.119174_bib0095) 2016; 55
Peng (10.1016/j.apcatb.2020.119174_bib0685) 2018; 30
Liu (10.1016/j.apcatb.2020.119174_bib0585) 2018; 57
Li (10.1016/j.apcatb.2020.119174_bib0735) 2018; 57
Rao (10.1016/j.apcatb.2020.119174_bib0350) 2017; 139
Kaur (10.1016/j.apcatb.2020.119174_bib0130) 2011; 1
Schwinghammer (10.1016/j.apcatb.2020.119174_bib0560) 2015; 8
Ding (10.1016/j.apcatb.2020.119174_bib0280) 2012; 48
Côté (10.1016/j.apcatb.2020.119174_bib0370) 2005; 310
Hu (10.1016/j.apcatb.2020.119174_bib0060) 2005; 44
Wang (10.1016/j.apcatb.2020.119174_bib0345) 2018; 8
Ma (10.1016/j.apcatb.2020.119174_bib0050) 2008; 260
Liu (10.1016/j.apcatb.2020.119174_bib0305) 2018; 10
Meier (10.1016/j.apcatb.2020.119174_bib0170) 2017; 126
Jin (10.1016/j.apcatb.2020.119174_bib0230) 2013; 4
Kuhn (10.1016/j.apcatb.2020.119174_bib0520) 2008; 47
Liu (10.1016/j.apcatb.2020.119174_bib0580) 2019; 31
Auras (10.1016/j.apcatb.2020.119174_bib0605) 2016; 138
Wang (10.1016/j.apcatb.2020.119174_bib0150) 2019; 48
Das (10.1016/j.apcatb.2020.119174_bib0485) 2014; 50
Chaoui (10.1016/j.apcatb.2020.119174_bib0630) 2017; 46
Yang (10.1016/j.apcatb.2020.119174_bib0510) 2012; 2
Zhang (10.1016/j.apcatb.2020.119174_bib0005) 2016; 138
Ding (10.1016/j.apcatb.2020.119174_bib0220) 2013; 42
Zhong (10.1016/j.apcatb.2020.119174_bib0545) 2019; 141
Zhang (10.1016/j.apcatb.2020.119174_bib0690) 2018; 57
Zhang (10.1016/j.apcatb.2020.119174_bib0770) 2020; 59
Zhang (10.1016/j.apcatb.2020.119174_bib0155) 2019; 48
Hu (10.1016/j.apcatb.2020.119174_bib0385) 2019; 11
Wang (10.1016/j.apcatb.2020.119174_bib0090) 2009; 131
Li (10.1016/j.apcatb.2020.119174_bib0340) 2016; 138
Huang (10.1016/j.apcatb.2020.119174_bib0140) 2016; 1
Preet (10.1016/j.apcatb.2020.119174_bib0715) 2019; 19
Schwab (10.1016/j.apcatb.2020.119174_bib0165) 2010; 46
Lyu (10.1016/j.apcatb.2020.119174_bib0480) 2017; 5
Kuecken (10.1016/j.apcatb.2020.119174_bib0565) 2017; 53
Elseman (10.1016/j.apcatb.2020.119174_bib0475) 2016; 4
Hug (10.1016/j.apcatb.2020.119174_bib0555) 2012; 22
Zhang (10.1016/j.apcatb.2020.119174_bib0105) 2015; 5
Lin (10.1016/j.apcatb.2020.119174_bib0780) 2017; 139
Lei (10.1016/j.apcatb.2020.119174_bib0790) 2020; 13
Jiang (10.1016/j.apcatb.2020.119174_bib0650) 2018; 11
Gurney (10.1016/j.apcatb.2020.119174_bib0010) 2009; 43
Yang (10.1016/j.apcatb.2020.119174_bib0245) 2018; 140
Torben (10.1016/j.apcatb.2020.119174_bib0240) 2018; 140
Wang (10.1016/j.apcatb.2020.119174_bib0180) 2018; 10
Suslick (10.1016/j.apcatb.2020.119174_bib0495) 1986; 108
Thote (10.1016/j.apcatb.2020.119174_bib0645) 2014; 20
Zhu (10.1016/j.apcatb.2020.119174_bib0655) 2018; 18
Han (10.1016/j.apcatb.2020.119174_bib0030) 2015; 36
Ajayaghosh (10.1016/j.apcatb.2020.119174_bib0270) 2003; 32
Zhao (10.1016/j.apcatb.2020.119174_bib0355) 2019; 58
Gong (10.1016/j.apcatb.2020.119174_bib0035) 2016; 52
Yao (10.1016/j.apcatb.2020.119174_bib0705) 2019; 554
Yang (10.1016/j.apcatb.2020.119174_bib0390) 2017; 162
Huang (10.1016/j.apcatb.2020.119174_bib0135) 2017; 8
Spitler (10.1016/j.apcatb.2020.119174_bib0410) 2011; 133
Zhang (10.1016/j.apcatb.2020.119174_bib0365) 2018; 10
Zhang (10.1016/j.apcatb.2020.119174_bib0045) 2017; 2017
Kenji (10.1016/j.apcatb.2020.119174_bib0665) 2011; 50
He (10.1016/j.apcatb.2020.119174_bib0795) 2017; 53
He (10.1016/j.apcatb.2020.119174_bib0595) 2018; 239
Shi (10.1016/j.apcatb.2020.119174_bib0640) 2018; 1
Yoshida (10.1016/j.apcatb.2020.119174_bib0065) 2009; 131
Chen (10.1016/j.apcatb.2020.119174_bib0415) 2019; 11
Tsuji (10.1016/j.apcatb.2020.119174_bib0075) 2004; 126
Low (10.1016/j.apcatb.2020.119174_bib0080) 2017; 29
Uribe-Romo (10.1016/j.apcatb.2020.119174_bib0395) 2009; 131
Clarke (10.1016/j.apcatb.2020.119174_bib0325) 2010; 110
Wang (10.1016/j.apcatb.2020.119174_bib0015) 2014; 43
Sprick (10.1016/j.apcatb.2020.119174_bib0335) 2015; 137
Feng (10.1016/j.apcatb.2020.119174_bib0440) 2011; 47
Li (10.1016/j.apcatb.2020.119174_bib0725) 2017; 9
Bai (10.1016/j.apcatb.2020.119174_bib0540) 2019; 141
Huang (10.1016/j.apcatb.2020.119174_bib0635) 2018; 57
Köhler (10.1016/j.apcatb.2020.119174_bib0235) 2015
Bhadra (10.1016/j.apcatb.2020.119174_bib0250) 2019; 141
Li (10.1016/j.apcatb.2020.119174_bib0695) 2019; 243
Shinde (10.1016/j.apcatb.2020.119174_bib0470) 2016; 4
Ding (10.1016/j.apcatb.2020.119174_bib0160) 2011; 133
Chen (10.1016/j.apcatb.2020.119174_bib0175) 2019; 58
Gao (10.1016/j.apcatb.2020.119174_bib0785) 2020; 12
Guo (10.1016/j.apcatb.2020.119174_bib0125) 2013; 4
Ayed (10.1016/j.apcatb.2020.119174_bib0775) 2020; 14
Yassin (10.1016/j.apcatb.2020.119174_bib0360) 2017; 27
Dogru (10.1016/j.apcatb.2020.119174_bib0405) 2011; 47
Stock (10.1016/j.apcatb.2020.119174_bib0505) 2012; 112
Ghosh (10.1016/j.apcatb.2020.119174_bib0745) 2015; 14
Jin (10.1016/j.apcatb.2020.119174_bib0750) 2017; 357
References_xml – volume: 56
  start-page: 14149
  year: 2017
  end-page: 14153
  ident: bib0575
  article-title: Covalent triazine frameworks via a low-temperature polycondensation approach
  publication-title: Angew. Chem. Int. Ed.
– volume: 112
  start-page: 4875
  year: 2008
  end-page: 4878
  ident: bib0500
  article-title: Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound
  publication-title: J. Phys. Chem. A
– volume: 43
  start-page: 6250
  year: 2004
  end-page: 6284
  ident: bib0460
  article-title: Controlled microwave heating in modern organic synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 2202
  year: 2010
  ident: bib0525
  article-title: Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1601694
  year: 2017
  end-page: 1601714
  ident: bib0080
  article-title: Heterojunction photocatalysts
  publication-title: Adv. Mater.
– volume: 46
  start-page: 3302
  year: 2017
  end-page: 3321
  ident: bib0630
  article-title: Trends and challenges for microporous polymers
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 4623
  year: 2018
  end-page: 4631
  ident: bib0615
  article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 16466
  year: 2006
  end-page: 16467
  ident: bib0375
  article-title: Self-assembling poly(dioxaborole)s as blue-emissive materials
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 12830
  year: 2019
  end-page: 12837
  ident: bib0415
  article-title: Stable hydrazone-linked covalent organic frameworks containing O,N,O’-chelating sites for Fe(III) detection in water
  publication-title: ACS Appl. Mater. Inter.
– volume: 4
  start-page: 12402
  year: 2016
  end-page: 12406
  ident: bib0600
  article-title: Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light
  publication-title: J. Mater. Chem. A.
– volume: 126
  start-page: 283
  year: 2017
  end-page: 290
  ident: bib0170
  article-title: Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water
  publication-title: Polymer
– volume: 137
  start-page: 3241
  year: 2015
  end-page: 3247
  ident: bib0290
  article-title: Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 1680
  year: 2009
  end-page: 1681
  ident: bib0090
  article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4875
  year: 2016
  end-page: 4886
  ident: bib0475
  article-title: Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique
  publication-title: ACS Sustain. Chem. Eng.
– volume: 21
  start-page: 897
  year: 2018
  end-page: 924
  ident: bib0215
  article-title: Recent advances in visible light-driven water oxidation and reduction in suspension systems
  publication-title: Mater. Today
– volume: 137
  start-page: 3265
  year: 2015
  end-page: 3270
  ident: bib0335
  article-title: Tunable organic photocatalysts for visible-light-driven hydrogen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 2421
  year: 2017
  end-page: 2427
  ident: bib0350
  article-title: Conjugated covalent organic frameworks via michael addition-elimination
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 607
  year: 2012
  end-page: 632
  ident: bib0255
  article-title: Rational design of high performance conjugated polymers for organic solar cells
  publication-title: Macromolecules
– volume: 133
  start-page: 19816
  year: 2011
  end-page: 19822
  ident: bib0435
  article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 24422
  year: 2015
  end-page: 24427
  ident: bib0530
  article-title: Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks
  publication-title: J. Mater. Chem. A.
– volume: 31
  start-page: 1807865
  year: 2019
  ident: bib0580
  article-title: Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks
  publication-title: Adv. Mater.
– volume: 135
  start-page: 9984
  year: 2013
  end-page: 9987
  ident: bib0670
  article-title: Design and preparation of a core-shell metal-organic framework for selective CO
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 5728
  year: 2019
  end-page: 5731
  ident: bib0040
  article-title: A composite of single-crystalline Bi
  publication-title: Chem. Commun.
– volume: 14
  start-page: 505
  year: 2015
  end-page: 511
  ident: bib0745
  article-title: Conducting polymer nanostructures for photocatalysis under visible light
  publication-title: Nat. Mater.
– volume: 316
  start-page: 268
  year: 2009
  end-page: 272
  ident: bib0535
  article-title: Designed synthesis of 3D covalent organic frameworks
  publication-title: Science
– volume: 10
  start-page: 537
  year: 2010
  end-page: 541
  ident: bib0550
  article-title: Covalent triazine framework as catalytic support for liquid phase reaction
  publication-title: Nano Lett.
– volume: 43
  start-page: 5535
  year: 2009
  end-page: 5541
  ident: bib0010
  article-title: High resolution fossil fuel combustion CO
  publication-title: Environ. Sci. Technol.
– volume: 95
  start-page: 69
  year: 1995
  end-page: 96
  ident: bib0020
  article-title: Environmental applications of semiconductor photocatalysis
  publication-title: Chem. Rev.
– volume: 140
  start-page: 14614
  year: 2018
  end-page: 14618
  ident: bib0245
  article-title: 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 13956
  year: 2012
  end-page: 13964
  ident: bib0555
  article-title: A functional triazine framework based on N-heterocyclic building blocks
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 819
  year: 2011
  end-page: 835
  ident: bib0130
  article-title: Porous organic polymers in catalysis: opportunities and challenges
  publication-title: ACS Catal.
– volume: 43
  start-page: 5234
  year: 2014
  end-page: 5244
  ident: bib0015
  article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 9568
  year: 2017
  end-page: 9585
  ident: bib0480
  article-title: Ball-milled carbon nanomaterials for energy and environmental applications
  publication-title: ACS Sustainable Chem. Eng.
– volume: 58
  start-page: 5376
  year: 2019
  end-page: 5381
  ident: bib0355
  article-title: Fully conjugated two-dimensional sp
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 11968
  year: 2018
  end-page: 11972
  ident: bib0585
  article-title: Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 2
  year: 2020
  end-page: 10
  ident: bib0770
  article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting
  publication-title: Angew. Chem. Int. Ed.
– volume: 139
  start-page: 12035
  year: 2017
  end-page: 12042
  ident: bib0610
  article-title: Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 13406
  year: 2004
  end-page: 13413
  ident: bib0075
  article-title: Photocatalytic H
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 4623
  year: 2018
  end-page: 4631
  ident: bib0720
  article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 4314
  year: 2014
  end-page: 4324
  ident: bib0260
  article-title: Shining a light on s-Triazine-Based polymers
  publication-title: J. Phys. Chem. C.
– volume: 38
  start-page: 253
  year: 2009
  end-page: 278
  ident: bib0730
  article-title: Heterogeneous photocatalyst materials for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 5854
  year: 2017
  end-page: 5857
  ident: bib0565
  article-title: Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution
  publication-title: Chem. Commun.
– volume: 357
  start-page: 673
  year: 2017
  end-page: 676
  ident: bib0750
  article-title: Two dimensional sp
  publication-title: Science
– volume: 8
  start-page: 2404
  year: 2020
  end-page: 2411
  ident: bib0765
  article-title: Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity
  publication-title: J. Mater. Chem. A.
– volume: 4
  start-page: 7555
  year: 2016
  end-page: 7559
  ident: bib0275
  article-title: Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 7104
  year: 2019
  end-page: 7111
  ident: bib0420
  article-title: Pathway complexity in the stacking of imine-linked macrocycles related to two-dimensional covalent organic frameworks
  publication-title: Chem. Mater.
– volume: 14
  start-page: 397
  year: 2020
  end-page: 404
  ident: bib0775
  article-title: Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media
  publication-title: Front. Chem. Sci. Eng.
– volume: 21
  start-page: 204
  year: 2009
  end-page: 206
  ident: bib0450
  article-title: Rapid microwave synthesis and purification of porous covalent organic frameworks
  publication-title: Chem. Mater.
– volume: 48
  start-page: 5266
  year: 2019
  end-page: 5302
  ident: bib0145
  article-title: Recent advances in covalent organic frameworks (COFs) as a smart sensing material
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 5785
  year: 2016
  end-page: 5788
  ident: bib0005
  article-title: Preparation of nanofibrous metal-organic framework filters for efficient air pollution control
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 1289
  year: 2011
  end-page: 1293
  ident: bib0310
  article-title: Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 2789
  year: 2014
  end-page: 2793
  ident: bib0455
  article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production
  publication-title: Chem. Sci.
– volume: 8
  start-page: 5366
  year: 2016
  end-page: 5375
  ident: bib0300
  article-title: High conductive two-dimensional covalent organic framework for lithium storage with large capacity
  publication-title: ACS Appl. Mater. Inter.
– volume: 39
  start-page: 1167
  year: 2018
  end-page: 1179
  ident: bib0225
  article-title: Covalent organic frameworks as heterogeneous catalysts
  publication-title: Chinese J. Catal.
– volume: 11
  start-page: 1617
  year: 2018
  end-page: 1624
  ident: bib0570
  article-title: Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework
  publication-title: Energy Environ. Sci.
– volume: 239
  start-page: 147
  year: 2018
  end-page: 153
  ident: bib0595
  article-title: Targeted synthesis of visible-light-driven covalent organic framework photocatalyst via molecular design and precise construction
  publication-title: Appl. Catal. B
– volume: 11
  start-page: 1108
  year: 2018
  end-page: 1113
  ident: bib0650
  article-title: MoS
  publication-title: ChemSusChem.
– volume: 138
  start-page: 10260
  year: 2016
  end-page: 10264
  ident: bib0085
  article-title: Water splitting and CO
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1404
  year: 2020
  end-page: 1411
  ident: bib0785
  article-title: Water-soluble 3D covalent organic framework that displays an enhanced enrichment effect of photosensitizers and catalysts for the reduction of protons to H
  publication-title: ACS Appl. Mater. Interfaces
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  ident: bib0370
  article-title: Porous, Crystalline, covalent organic frameworks
  publication-title: Science
– volume: 13
  start-page: 1725
  year: 2020
  end-page: 1729
  ident: bib0790
  article-title: A metal-free donor-acceptor covalent organic framework photocatalyst for visible-light-driven reduction of CO
  publication-title: ChemSusChem.
– volume: 260
  start-page: 134
  year: 2008
  end-page: 140
  ident: bib0050
  article-title: Direct splitting of H
  publication-title: J. Catal.
– volume: 4
  start-page: 2736
  year: 2013
  ident: bib0125
  article-title: Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds
  publication-title: Nat. Commun.
– volume: 138
  start-page: 3255
  year: 2016
  end-page: 3265
  ident: bib0680
  article-title: Covalent chemistry beyond molecules
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 9636
  year: 2017
  end-page: 9639
  ident: bib0795
  article-title: Construction of a superior visible-light-driven photocatalyst based on a C
  publication-title: Chem. Commun.
– volume: 47
  start-page: 1707
  year: 2011
  end-page: 1709
  ident: bib0405
  article-title: A covalent organic framework with 4 nm open pores
  publication-title: Chem. Commun
– volume: 2017
  start-page: 2990
  year: 2017
  end-page: 2997
  ident: bib0045
  article-title: The controllable synthesis of octadecahedral BiVO
  publication-title: Eur. J. Inorg. Chem.
– volume: 44
  start-page: 1269
  year: 2005
  end-page: 1273
  ident: bib0060
  article-title: Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 8316
  year: 2018
  end-page: 8320
  ident: bib0635
  article-title: Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade
  publication-title: Angew. Chem. Int. Ed
– volume: 48
  start-page: 5439
  year: 2009
  end-page: 5442
  ident: bib0330
  article-title: A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 19416
  year: 2011
  end-page: 19421
  ident: bib0410
  article-title: A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 8952
  year: 2012
  end-page: 8954
  ident: bib0280
  article-title: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions
  publication-title: Chem. Commun.
– volume: 138
  start-page: 16703
  year: 2016
  end-page: 16710
  ident: bib0605
  article-title: Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 2119
  year: 2015
  end-page: 2126
  ident: bib0030
  article-title: Fabrication of a Bi
  publication-title: Chinese J. Catal.
– volume: 8
  start-page: 3345
  year: 2015
  end-page: 3353
  ident: bib0560
  article-title: Phenyl-triazine oligomers for light-driven hydrogen evolution
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2018
  ident: bib0620
  article-title: Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2682
  year: 2016
  end-page: 2690
  ident: bib0470
  article-title: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte
  publication-title: J. Mater. Chem. A.
– volume: 46
  start-page: 8932
  year: 2010
  end-page: 8934
  ident: bib0165
  article-title: Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks
  publication-title: Chem. Commun.
– volume: 1
  start-page: 16068
  year: 2016
  ident: bib0140
  article-title: Covalent organic frameworks: a materials platform for structural and functional designs
  publication-title: Nat. Rev. Mater.
– volume: 20
  start-page: 15961
  year: 2014
  end-page: 15965
  ident: bib0645
  article-title: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production
  publication-title: Chem. Eur. J.
– volume: 1
  start-page: 7007
  year: 2018
  end-page: 7013
  ident: bib0640
  article-title: Pyrene-based covalent organic polymers for enhanced photovoltaic performance and solar-driven hydrogen production
  publication-title: ACS Appl. Energy Mater.
– volume: 32
  start-page: 181
  year: 2003
  end-page: 191
  ident: bib0270
  article-title: Donor-acceptor type low band gap polymers: polysquaraines and related systems
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 4143
  year: 2018
  ident: bib0755
  article-title: Designed synthesis of stable light-emitting two-dimensional sp
  publication-title: Nat. Commun.
– volume: 52
  start-page: 11979
  year: 2016
  end-page: 11982
  ident: bib0035
  article-title: Light-induced spatial separation of charges toward different crystal facets of square-like WO
  publication-title: Chem. Commun.
– volume: 20
  start-page: 664
  year: 2018
  end-page: 670
  ident: bib0590
  article-title: A sustainable method toward melamine-based conjugated polymer semiconductors for efficient photocatalytic hydrogen production under visible light
  publication-title: Green Chem.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib0115
  article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation
  publication-title: Nat.Commun.
– volume: 27
  year: 2017
  ident: bib0360
  article-title: Structure-thermodynamic-property relationships in cyanovinyl-based microporous polymer networks for the future design of advanced carbon capture materials
  publication-title: Adv. Funct. Mater.
– volume: 112
  start-page: 933
  year: 2012
  end-page: 969
  ident: bib0505
  article-title: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites
  publication-title: Chem. Rev.
– volume: 48
  start-page: 3811
  year: 2019
  end-page: 3841
  ident: bib0155
  article-title: Ultrathin metal/covalent-organic framework membranes towards ultimate separation
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 5438
  year: 2017
  end-page: 5442
  ident: bib0135
  article-title: Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework
  publication-title: ACS Catal.
– volume: 331
  start-page: 746
  year: 2011
  end-page: 750
  ident: bib0025
  article-title: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
  publication-title: Sci.
– volume: 2
  start-page: 10179
  year: 2012
  end-page: 10181
  ident: bib0510
  article-title: Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method
  publication-title: RSC Adv.
– volume: 65
  start-page: 113
  year: 2020
  end-page: 122
  ident: bib0760
  article-title: Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light
  publication-title: Sci. Bull.
– year: 2015
  ident: bib0235
  article-title: Electronic Processes in Organic Semiconductors
– volume: 61
  start-page: 115
  year: 2014
  end-page: 126
  ident: bib0265
  article-title: Review on the recent progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells
  publication-title: J. Chin. Chem. Soc.
– volume: 138
  start-page: 7681
  year: 2016
  end-page: 7686
  ident: bib0340
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2681
  year: 2015
  end-page: 2691
  ident: bib0105
  article-title: Main-Chain organic frameworks with advanced catalytic functionalities
  publication-title: ACS Catal.
– volume: 11
  start-page: 23072
  year: 2019
  end-page: 23082
  ident: bib0385
  article-title: Monodispersed CuSe sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy
  publication-title: ACS Appl. Mater. Inter.
– volume: 245
  start-page: 334
  year: 2019
  end-page: 342
  ident: bib0185
  article-title: Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light
  publication-title: Appl. Catal. B
– volume: 130
  start-page: 7176
  year: 2008
  end-page: 7177
  ident: bib0055
  article-title: Enhancement of photocatalytic H
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 22933
  year: 2017
  end-page: 22938
  ident: bib0205
  article-title: Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations
  publication-title: J. Mater. Chem. A.
– volume: 139
  start-page: 8705
  year: 2017
  end-page: 8709
  ident: bib0780
  article-title: 3D porphyrin-based covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2618
  year: 2012
  end-page: 2622
  ident: bib0315
  article-title: High-Rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 10828
  year: 2018
  end-page: 108342
  ident: bib0740
  article-title: Photocatalytic hydrogen production with conjugated polymers as photosensitizers
  publication-title: ACS Appl. Mater. Inter.
– volume: 140
  start-page: 2085
  year: 2018
  end-page: 2092
  ident: bib0240
  article-title: Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2623
  year: 2012
  end-page: 2627
  ident: bib0400
  article-title: Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films
  publication-title: Angew. Chem. Int. Ed.
– volume: 385
  year: 2020
  ident: bib0430
  article-title: Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform
  publication-title: J. Hazard. Mater.
– volume: 58
  start-page: 6430
  year: 2019
  end-page: 6434
  ident: bib0175
  article-title: Designed synthesis of a 2D porphyrin-based sp
  publication-title: Angew. Chem. Int. Ed.
– volume: 369
  start-page: 494
  year: 2019
  end-page: 502
  ident: bib0195
  article-title: Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants
  publication-title: J. Hazard. Mater.
– volume: 64
  start-page: 2280
  year: 2019
  end-page: 2291
  ident: bib0380
  article-title: Hydrothermal synthesis of melamine-functionalized covalent organic polymer-blended alginate beads for iron removal from water
  publication-title: J. Chem. Eng. Data
– volume: 141
  start-page: 17431
  year: 2019
  end-page: 17440
  ident: bib0425
  article-title: A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2020
  ident: bib0070
  article-title: Nb-doped TiO
  publication-title: Nanotechnology
– volume: 6
  start-page: 1621
  year: 2018
  end-page: 1629
  ident: bib0120
  article-title: Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance
  publication-title: J. Mater. Chem. A.
– volume: 8
  start-page: 8590
  year: 2018
  end-page: 8596
  ident: bib0345
  article-title: Dibenzothiophene dioxide based conjugated microporous polymers for visible-light-driven hydrogen production
  publication-title: ACS Catal.
– volume: 4
  start-page: 4505
  year: 2013
  end-page: 4511
  ident: bib0230
  article-title: Large pore donor-acceptor covalent organic frameworks
  publication-title: Chem. Sci.
– volume: 52
  start-page: 3770
  year: 2013
  end-page: 3774
  ident: bib0295
  article-title: A squaraine-linked mesoporous covalent organic framework
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 14510
  year: 2011
  end-page: 14513
  ident: bib0160
  article-title: An n-channel two-dimensional covalent organic framework
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 8057
  year: 2011
  end-page: 8061
  ident: bib0665
  article-title: Sequential functionalization of porous coordination polymer crystals
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 9063
  year: 2019
  end-page: 9071
  ident: bib0540
  article-title: Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 7615
  year: 2019
  end-page: 7621
  ident: bib0545
  article-title: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 15712
  year: 2016
  end-page: 15727
  ident: bib0095
  article-title: Conjugated polymers: catalysts for photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 12615
  year: 2014
  end-page: 12618
  ident: bib0485
  article-title: Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding
  publication-title: Chem. Commun.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  ident: bib0220
  article-title: Covalent organic frameworks (COFs): from design to applications
  publication-title: Chem. Soc. Rev.
– volume: 243
  start-page: 621
  year: 2019
  end-page: 628
  ident: bib0695
  article-title: Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modifcation: an efcient strategy to boost the visible-light-driven photocatalytic performance
  publication-title: Appl. Catal. B
– volume: 44
  start-page: 1113
  year: 2015
  end-page: 1154
  ident: bib0625
  article-title: Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1180
  year: 2018
  end-page: 1189
  ident: bib0180
  article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water
  publication-title: Nat. Chem.
– volume: 55
  start-page: 5829
  year: 2019
  end-page: 5832
  ident: bib0710
  article-title: Boosting photocatalytic H
  publication-title: Chem. Commun.
– volume: 16
  start-page: 3292
  year: 2016
  end-page: 3300
  ident: bib0515
  article-title: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries
  publication-title: Nano Lett.
– volume: 18
  start-page: 883
  year: 2018
  end-page: 891
  ident: bib0655
  article-title: Covalent triazine framework modified BiOBr nanoflake with enhanced photocatalytic activity for antibiotic removal
  publication-title: Cryst. Growth Des.
– volume: 30
  start-page: 1705454
  year: 2018
  ident: bib0685
  article-title: Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials
  publication-title: Adv. Mater.
– volume: 9
  start-page: 24577
  year: 2017
  end-page: 24583
  ident: bib0725
  article-title: Enhanced photocarrier separation in hierarchical graphitic-C
  publication-title: ACS Appl. Mater. Inter.
– volume: 57
  start-page: 3222
  year: 2018
  end-page: 3227
  ident: bib0735
  article-title: Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution
  publication-title: Angew. Chem., Int. Ed.
– volume: 554
  start-page: 376
  year: 2019
  end-page: 387
  ident: bib0705
  article-title: Metal-free catalysts of graphitic carbon nitride-covalent organic frameworks for efficient pollutant destruction in water
  publication-title: J. Colloid Inter. Sci.
– volume: 47
  start-page: 1979
  year: 2011
  end-page: 1981
  ident: bib0440
  article-title: Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters
  publication-title: Chem. Commun.
– volume: 48
  start-page: 488
  year: 2019
  end-page: 516
  ident: bib0150
  article-title: Recent progress in covalent organic framework thin films: fabrications, applications and perspectives
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 400
  year: 2018
  end-page: 409
  ident: bib0100
  article-title: H
  publication-title: ACS Energy Lett.
– volume: 217
  start-page: 599
  year: 2016
  end-page: 604
  ident: bib0285
  article-title: Iron(III) Porphyrin-based porous material as photocatalyst for highly efficient and selective degradation of congo red
  publication-title: Macromol. Chem. Phys.
– volume: 13
  start-page: 13975
  year: 2011
  end-page: 13983
  ident: bib0445
  article-title: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 6152
  year: 2019
  end-page: 6156
  ident: bib0250
  article-title: Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z Isomerization of olefins
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 5635
  year: 2016
  end-page: 5671
  ident: bib0675
  article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 1674
  year: 2018
  end-page: 1677
  ident: bib0700
  article-title: Embedding carbon nitride into a covalent organic framework with enhanced photocatalysis performance
  publication-title: Chem. Asian J.
– volume: 19
  start-page: 2525
  year: 2019
  end-page: 2530
  ident: bib0715
  article-title: Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye
  publication-title: Cryst. Growth Des.
– volume: 3
  start-page: 7750
  year: 2015
  end-page: 7758
  ident: bib0110
  article-title: 2D covalent triazine framework: a new class of organic photocatalyst for water splitting
  publication-title: J.Mater.Chem. A
– volume: 162
  start-page: 33
  year: 2017
  end-page: 40
  ident: bib0390
  article-title: Covalent organic polymer modified TiO
  publication-title: Chem. Eng. Sci.
– volume: 10
  start-page: 43595
  year: 2018
  end-page: 43602
  ident: bib0365
  article-title: Insights into high conductivity of the two-dimensional iodine-oxidized sp
  publication-title: ACS Appl. Mater. Inter.
– volume: 10
  start-page: 30698
  year: 2018
  end-page: 30705
  ident: bib0305
  article-title: Ultrastable and efficient visible-light-driven hydrogen production based on donor-acceptor copolymerized covalent organic polymer
  publication-title: ACS Appl. Mater. Inter.
– volume: 110
  start-page: 6736
  year: 2010
  end-page: 6767
  ident: bib0325
  article-title: Charge photogeneration in organic solar cells
  publication-title: Chem. Rev.
– volume: 131
  start-page: 4570
  year: 2009
  end-page: 4571
  ident: bib0395
  article-title: A crystalline imine-linked 3-D porous covalent organic framework
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 3450
  year: 2008
  end-page: 3453
  ident: bib0520
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 9413
  year: 2016
  end-page: 9418
  ident: bib0200
  article-title: A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO
  publication-title: J. Mater. Chem. A.
– volume: 24
  start-page: 2357
  year: 2012
  end-page: 2361
  ident: bib0465
  article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis
  publication-title: Adv. Mater.
– volume: 138
  start-page: 4330
  year: 2016
  end-page: 4333
  ident: bib0210
  article-title: A titanium-organic framework as an exemplar of combining the chemistry of metal-and covalent-organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 8952
  year: 2012
  end-page: 8954
  ident: bib0320
  article-title: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions
  publication-title: Chem. Commun.
– volume: 135
  start-page: 5328
  year: 2013
  end-page: 5331
  ident: bib0490
  article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 12106
  year: 2018
  end-page: 12110
  ident: bib0690
  article-title: Rational design of MOF/COF hybrid materials for photocatalytic H
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 13218
  year: 2009
  end-page: 13219
  ident: bib0065
  article-title: ATR-SEIRAS investigation of the fermi Level of Pt cocatalyst on a GaN photocatalyst for hydrogen evolution under irradiation
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 13563
  year: 2018
  end-page: 13566
  ident: bib0660
  article-title: Encapsulating [Mo
  publication-title: Chem. Commun.
– volume: 36
  start-page: 1799
  year: 2015
  end-page: 1805
  ident: bib0190
  article-title: Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water
  publication-title: Macromol. Rapid Commun.
– volume: 108
  start-page: 5641
  year: 1986
  end-page: 5642
  ident: bib0495
  article-title: Sonochemical hot spot
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 505
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0745
  article-title: Conducting polymer nanostructures for photocatalysis under visible light
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4220
– volume: 11
  start-page: 23072
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0385
  article-title: Monodispersed CuSe sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.9b08394
– volume: 95
  start-page: 69
  year: 1995
  ident: 10.1016/j.apcatb.2020.119174_bib0020
  article-title: Environmental applications of semiconductor photocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr00033a004
– volume: 45
  start-page: 5635
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0675
  article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00878F
– volume: 10
  start-page: 43595
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0365
  article-title: Insights into high conductivity of the two-dimensional iodine-oxidized sp2-c-COF
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b14446
– volume: 4
  start-page: 2682
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0470
  article-title: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA10521H
– volume: 131
  start-page: 13218
  year: 2009
  ident: 10.1016/j.apcatb.2020.119174_bib0065
  article-title: ATR-SEIRAS investigation of the fermi Level of Pt cocatalyst on a GaN photocatalyst for hydrogen evolution under irradiation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja904991p
– volume: 13
  start-page: 1725
  year: 2020
  ident: 10.1016/j.apcatb.2020.119174_bib0790
  article-title: A metal-free donor-acceptor covalent organic framework photocatalyst for visible-light-driven reduction of CO2 with H2O
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201903545
– volume: 43
  start-page: 6250
  year: 2004
  ident: 10.1016/j.apcatb.2020.119174_bib0460
  article-title: Controlled microwave heating in modern organic synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200400655
– volume: 20
  start-page: 664
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0590
  article-title: A sustainable method toward melamine-based conjugated polymer semiconductors for efficient photocatalytic hydrogen production under visible light
  publication-title: Green Chem.
  doi: 10.1039/C7GC02231J
– volume: 138
  start-page: 4330
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0210
  article-title: A titanium-organic framework as an exemplar of combining the chemistry of metal-and covalent-organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01233
– volume: 52
  start-page: 11979
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0035
  article-title: Light-induced spatial separation of charges toward different crystal facets of square-like WO3
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06363B
– volume: 51
  start-page: 2618
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0315
  article-title: High-Rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201106203
– volume: 128
  start-page: 16466
  year: 2006
  ident: 10.1016/j.apcatb.2020.119174_bib0375
  article-title: Self-assembling poly(dioxaborole)s as blue-emissive materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065986c
– volume: 31
  start-page: 1807865
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0580
  article-title: Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807865
– volume: 140
  start-page: 2085
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0240
  article-title: Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06081
– volume: 138
  start-page: 3255
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0680
  article-title: Covalent chemistry beyond molecules
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10666
– volume: 61
  start-page: 115
  year: 2014
  ident: 10.1016/j.apcatb.2020.119174_bib0265
  article-title: Review on the recent progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells
  publication-title: J. Chin. Chem. Soc.
  doi: 10.1002/jccs.201300333
– volume: 55
  start-page: 15712
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0095
  article-title: Conjugated polymers: catalysts for photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201607375
– volume: 1
  start-page: 819
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0130
  article-title: Porous organic polymers in catalysis: opportunities and challenges
  publication-title: ACS Catal.
  doi: 10.1021/cs200131g
– volume: 51
  start-page: 2623
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0400
  article-title: Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201107070
– volume: 21
  start-page: 204
  year: 2009
  ident: 10.1016/j.apcatb.2020.119174_bib0450
  article-title: Rapid microwave synthesis and purification of porous covalent organic frameworks
  publication-title: Chem. Mater.
  doi: 10.1021/cm802981m
– volume: 141
  start-page: 17431
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0425
  article-title: A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09502
– volume: 141
  start-page: 6152
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0250
  article-title: Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z Isomerization of olefins
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01891
– volume: 139
  start-page: 2421
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0350
  article-title: Conjugated covalent organic frameworks via michael addition-elimination
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12005
– volume: 22
  start-page: 13956
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0555
  article-title: A functional triazine framework based on N-heterocyclic building blocks
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31248d
– volume: 9
  start-page: 4143
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0755
  article-title: Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06719-8
– volume: 21
  start-page: 897
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0215
  article-title: Recent advances in visible light-driven water oxidation and reduction in suspension systems
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.04.009
– volume: 2
  start-page: 10179
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0510
  article-title: Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method
  publication-title: RSC Adv.
  doi: 10.1039/c2ra21531d
– volume: 133
  start-page: 14510
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0160
  article-title: An n-channel two-dimensional covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2052396
– volume: 140
  start-page: 4623
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0720
  article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00571
– volume: 108
  start-page: 5641
  year: 1986
  ident: 10.1016/j.apcatb.2020.119174_bib0495
  article-title: Sonochemical hot spot
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00278a055
– volume: 24
  start-page: 2357
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0465
  article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200751
– volume: 55
  start-page: 5829
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0710
  article-title: Boosting photocatalytic H2 evolution on g-C3N4 by modifying covalent organic frameworks (COFs)
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02144B
– volume: 131
  start-page: 4570
  year: 2009
  ident: 10.1016/j.apcatb.2020.119174_bib0395
  article-title: A crystalline imine-linked 3-D porous covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8096256
– volume: 139
  start-page: 12035
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0610
  article-title: Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06599
– volume: 31
  start-page: 7104
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0420
  article-title: Pathway complexity in the stacking of imine-linked macrocycles related to two-dimensional covalent organic frameworks
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03088
– volume: 5
  start-page: 22933
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0205
  article-title: Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA07691F
– volume: 14
  start-page: 397
  year: 2020
  ident: 10.1016/j.apcatb.2020.119174_bib0775
  article-title: Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-019-1884-2
– volume: 4
  start-page: 12402
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0600
  article-title: Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA04711D
– volume: 57
  start-page: 11968
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0585
  article-title: Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806664
– volume: 56
  start-page: 14149
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0575
  article-title: Covalent triazine frameworks via a low-temperature polycondensation approach
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708548
– volume: 369
  start-page: 494
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0195
  article-title: Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.02.046
– volume: 217
  start-page: 599
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0285
  article-title: Iron(III) Porphyrin-based porous material as photocatalyst for highly efficient and selective degradation of congo red
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201500404
– volume: 10
  start-page: 10828
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0740
  article-title: Photocatalytic hydrogen production with conjugated polymers as photosensitizers
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b18917
– volume: 5
  start-page: 9568
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0480
  article-title: Ball-milled carbon nanomaterials for energy and environmental applications
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02170
– volume: 27
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0360
  article-title: Structure-thermodynamic-property relationships in cyanovinyl-based microporous polymer networks for the future design of advanced carbon capture materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700233
– volume: 316
  start-page: 268
  year: 2009
  ident: 10.1016/j.apcatb.2020.119174_bib0535
  article-title: Designed synthesis of 3D covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1139915
– volume: 50
  start-page: 1289
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0310
  article-title: Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005919
– volume: 36
  start-page: 1799
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0190
  article-title: Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201500270
– volume: 52
  start-page: 3770
  year: 2013
  ident: 10.1016/j.apcatb.2020.119174_bib0295
  article-title: A squaraine-linked mesoporous covalent organic framework
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201300256
– volume: 31
  year: 2020
  ident: 10.1016/j.apcatb.2020.119174_bib0070
  article-title: Nb-doped TiO2 support with enhanced durability as a cathode for polymer electrolyte membrane fuel cells
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab4a3f
– volume: 133
  start-page: 19416
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0410
  article-title: A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206242v
– volume: 4
  start-page: 4505
  year: 2013
  ident: 10.1016/j.apcatb.2020.119174_bib0230
  article-title: Large pore donor-acceptor covalent organic frameworks
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc52034j
– volume: 48
  start-page: 3811
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0155
  article-title: Ultrathin metal/covalent-organic framework membranes towards ultimate separation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00322C
– volume: 131
  start-page: 1680
  year: 2009
  ident: 10.1016/j.apcatb.2020.119174_bib0090
  article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809307s
– volume: 46
  start-page: 3302
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0630
  article-title: Trends and challenges for microporous polymers
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00071E
– volume: 9
  start-page: 24577
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0725
  article-title: Enhanced photocarrier separation in hierarchical graphitic-C3N4-supported CuInS2 for noble-metal-free Z-scheme photocatalytic water splitting
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b06030
– volume: 43
  start-page: 5234
  year: 2014
  ident: 10.1016/j.apcatb.2020.119174_bib0015
  article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00126E
– volume: 162
  start-page: 33
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0390
  article-title: Covalent organic polymer modified TiO2 nanosheets as highly efficient photocatalysts for hydrogen generation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.12.071
– volume: 47
  start-page: 1707
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0405
  article-title: A covalent organic framework with 4 nm open pores
  publication-title: Chem. Commun
  doi: 10.1039/c0cc03792c
– volume: 50
  start-page: 8057
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0665
  article-title: Sequential functionalization of porous coordination polymer crystals
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101924
– volume: 4
  start-page: 7555
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0275
  article-title: Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01828A
– volume: 58
  start-page: 5376
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0355
  article-title: Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901194
– volume: 554
  start-page: 376
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0705
  article-title: Metal-free catalysts of graphitic carbon nitride-covalent organic frameworks for efficient pollutant destruction in water
  publication-title: J. Colloid Inter. Sci.
  doi: 10.1016/j.jcis.2019.07.002
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0115
  article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation
  publication-title: Nat.Commun.
  doi: 10.1038/ncomms9508
– volume: 48
  start-page: 8952
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0320
  article-title: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33929c
– volume: 1
  start-page: 16068
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0140
  article-title: Covalent organic frameworks: a materials platform for structural and functional designs
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 112
  start-page: 4875
  year: 2008
  ident: 10.1016/j.apcatb.2020.119174_bib0500
  article-title: Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp802640x
– volume: 44
  start-page: 1113
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0625
  article-title: Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00250D
– volume: 13
  start-page: 13975
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0445
  article-title: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203807h
– volume: 133
  start-page: 19816
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0435
  article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206846p
– volume: 16
  start-page: 3292
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0515
  article-title: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00870
– volume: 138
  start-page: 10260
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0085
  article-title: Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05304
– volume: 44
  start-page: 1269
  year: 2005
  ident: 10.1016/j.apcatb.2020.119174_bib0060
  article-title: Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462057
– volume: 64
  start-page: 2280
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0380
  article-title: Hydrothermal synthesis of melamine-functionalized covalent organic polymer-blended alginate beads for iron removal from water
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.8b01085
– volume: 112
  start-page: 933
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0505
  article-title: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites
  publication-title: Chem. Rev.
  doi: 10.1021/cr200304e
– volume: 2017
  start-page: 2990
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0045
  article-title: The controllable synthesis of octadecahedral BiVO4 with exposed {111} facets
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201700165
– volume: 32
  start-page: 181
  year: 2003
  ident: 10.1016/j.apcatb.2020.119174_bib0270
  article-title: Donor-acceptor type low band gap polymers: polysquaraines and related systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B204251G
– volume: 4
  start-page: 2736
  year: 2013
  ident: 10.1016/j.apcatb.2020.119174_bib0125
  article-title: Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3736
– year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0235
– volume: 138
  start-page: 7681
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0340
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03472
– volume: 59
  start-page: 2
  year: 2020
  ident: 10.1016/j.apcatb.2020.119174_bib0770
  article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 6430
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0175
  article-title: Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902543
– volume: 135
  start-page: 9984
  year: 2013
  ident: 10.1016/j.apcatb.2020.119174_bib0670
  article-title: Design and preparation of a core-shell metal-organic framework for selective CO2 capture
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403008j
– volume: 137
  start-page: 3265
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0335
  article-title: Tunable organic photocatalysts for visible-light-driven hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511552k
– volume: 10
  start-page: 30698
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0305
  article-title: Ultrastable and efficient visible-light-driven hydrogen production based on donor-acceptor copolymerized covalent organic polymer
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b10022
– volume: 118
  start-page: 4314
  year: 2014
  ident: 10.1016/j.apcatb.2020.119174_bib0260
  article-title: Shining a light on s-Triazine-Based polymers
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp411854f
– volume: 239
  start-page: 147
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0595
  article-title: Targeted synthesis of visible-light-driven covalent organic framework photocatalyst via molecular design and precise construction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.08.005
– volume: 19
  start-page: 2525
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0715
  article-title: Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00166
– volume: 29
  start-page: 1601694
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0080
  article-title: Heterojunction photocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601694
– volume: 8
  start-page: 8590
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0345
  article-title: Dibenzothiophene dioxide based conjugated microporous polymers for visible-light-driven hydrogen production
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02607
– volume: 48
  start-page: 5266
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0145
  article-title: Recent advances in covalent organic frameworks (COFs) as a smart sensing material
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00299E
– volume: 110
  start-page: 6736
  year: 2010
  ident: 10.1016/j.apcatb.2020.119174_bib0325
  article-title: Charge photogeneration in organic solar cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr900271s
– volume: 48
  start-page: 488
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0150
  article-title: Recent progress in covalent organic framework thin films: fabrications, applications and perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00376A
– volume: 141
  start-page: 7615
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0545
  article-title: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02997
– volume: 53
  start-page: 5854
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0565
  article-title: Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01827D
– volume: 39
  start-page: 1167
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0225
  article-title: Covalent organic frameworks as heterogeneous catalysts
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(18)63057-8
– volume: 65
  start-page: 113
  year: 2020
  ident: 10.1016/j.apcatb.2020.119174_bib0760
  article-title: Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.10.015
– volume: 3
  start-page: 400
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0100
  article-title: H2 evolution with covalent organic framework photocatalysts
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01123
– volume: 10
  start-page: 537
  year: 2010
  ident: 10.1016/j.apcatb.2020.119174_bib0550
  article-title: Covalent triazine framework as catalytic support for liquid phase reaction
  publication-title: Nano Lett.
  doi: 10.1021/nl904082k
– volume: 138
  start-page: 16703
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0605
  article-title: Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09787
– volume: 138
  start-page: 5785
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0005
  article-title: Preparation of nanofibrous metal-organic framework filters for efficient air pollution control
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02553
– volume: 18
  start-page: 883
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0655
  article-title: Covalent triazine framework modified BiOBr nanoflake with enhanced photocatalytic activity for antibiotic removal
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01367
– volume: 22
  start-page: 2202
  year: 2010
  ident: 10.1016/j.apcatb.2020.119174_bib0525
  article-title: Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903436
– volume: 50
  start-page: 12615
  year: 2014
  ident: 10.1016/j.apcatb.2020.119174_bib0485
  article-title: Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03389B
– volume: 55
  start-page: 5728
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0040
  article-title: A composite of single-crystalline Bi2WO6 and polycrystalline BiOCl with a high percentage of exposed (00l) facets for highly efficient photocatalytic degradation of organic pollutants
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01732A
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0620
  article-title: Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 12106
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0690
  article-title: Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806862
– volume: 53
  start-page: 9636
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0795
  article-title: Construction of a superior visible-light-driven photocatalyst based on a C3N4 active centrephotoelectron shift platform-electron withdrawing unit triadic structure covalent organic framework
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04515H
– volume: 3
  start-page: 24422
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0530
  article-title: Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA07408H
– volume: 126
  start-page: 283
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0170
  article-title: Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.04.017
– volume: 357
  start-page: 673
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0750
  article-title: Two dimensional sp2 carbon-conjugated covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.aan0202
– volume: 48
  start-page: 8952
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0280
  article-title: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33929c
– volume: 8
  start-page: 2404
  year: 2020
  ident: 10.1016/j.apcatb.2020.119174_bib0765
  article-title: Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA13212K
– volume: 8
  start-page: 5438
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0135
  article-title: Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01719
– volume: 8
  start-page: 5366
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0300
  article-title: High conductive two-dimensional covalent organic framework for lithium storage with large capacity
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.5b12370
– volume: 140
  start-page: 14614
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0245
  article-title: 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09705
– volume: 137
  start-page: 3241
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0290
  article-title: Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509602c
– volume: 54
  start-page: 13563
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0660
  article-title: Encapsulating [Mo3S13]2− clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07784C
– volume: 13
  start-page: 1674
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0700
  article-title: Embedding carbon nitride into a covalent organic framework with enhanced photocatalysis performance
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201800506
– volume: 11
  start-page: 12830
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0415
  article-title: Stable hydrazone-linked covalent organic frameworks containing O,N,O’-chelating sites for Fe(III) detection in water
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.9b02640
– volume: 139
  start-page: 8705
  year: 2017
  ident: 10.1016/j.apcatb.2020.119174_bib0780
  article-title: 3D porphyrin-based covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04141
– volume: 8
  start-page: 3345
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0560
  article-title: Phenyl-triazine oligomers for light-driven hydrogen evolution
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02574E
– volume: 310
  start-page: 1166
  year: 2005
  ident: 10.1016/j.apcatb.2020.119174_bib0370
  article-title: Porous, Crystalline, covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 5
  start-page: 2681
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0105
  article-title: Main-Chain organic frameworks with advanced catalytic functionalities
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00069
– volume: 48
  start-page: 5439
  year: 2009
  ident: 10.1016/j.apcatb.2020.119174_bib0330
  article-title: A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200900881
– volume: 126
  start-page: 13406
  year: 2004
  ident: 10.1016/j.apcatb.2020.119174_bib0075
  article-title: Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja048296m
– volume: 57
  start-page: 3222
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0735
  article-title: Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712925
– volume: 4
  start-page: 4875
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0475
  article-title: Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01183
– volume: 30
  start-page: 1705454
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0685
  article-title: Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705454
– volume: 47
  start-page: 1979
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0440
  article-title: Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc04386a
– volume: 1
  start-page: 7007
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0640
  article-title: Pyrene-based covalent organic polymers for enhanced photovoltaic performance and solar-driven hydrogen production
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01432
– volume: 130
  start-page: 7176
  year: 2008
  ident: 10.1016/j.apcatb.2020.119174_bib0055
  article-title: Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8007825
– volume: 45
  start-page: 607
  year: 2012
  ident: 10.1016/j.apcatb.2020.119174_bib0255
  article-title: Rational design of high performance conjugated polymers for organic solar cells
  publication-title: Macromolecules
  doi: 10.1021/ma201648t
– volume: 11
  start-page: 1617
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0570
  article-title: Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02981K
– volume: 3
  start-page: 7750
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0110
  article-title: 2D covalent triazine framework: a new class of organic photocatalyst for water splitting
  publication-title: J.Mater.Chem. A
  doi: 10.1039/C4TA03438D
– volume: 4
  start-page: 9413
  year: 2016
  ident: 10.1016/j.apcatb.2020.119174_bib0200
  article-title: A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO2
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA01625A
– volume: 5
  start-page: 2789
  year: 2014
  ident: 10.1016/j.apcatb.2020.119174_bib0455
  article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC00016A
– volume: 11
  start-page: 1108
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0650
  article-title: MoS2 quantum dots-modified covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201702220
– volume: 36
  start-page: 2119
  year: 2015
  ident: 10.1016/j.apcatb.2020.119174_bib0030
  article-title: Fabrication of a Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(15)60974-3
– volume: 243
  start-page: 621
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0695
  article-title: Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modifcation: an efcient strategy to boost the visible-light-driven photocatalytic performance
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.10.043
– volume: 260
  start-page: 134
  year: 2008
  ident: 10.1016/j.apcatb.2020.119174_bib0050
  article-title: Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.09.017
– volume: 38
  start-page: 253
  year: 2009
  ident: 10.1016/j.apcatb.2020.119174_bib0730
  article-title: Heterogeneous photocatalyst materials for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 20
  start-page: 15961
  year: 2014
  ident: 10.1016/j.apcatb.2020.119174_bib0645
  article-title: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201403800
– volume: 385
  year: 2020
  ident: 10.1016/j.apcatb.2020.119174_bib0430
  article-title: Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121514
– volume: 140
  start-page: 4623
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0615
  article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00571
– volume: 135
  start-page: 5328
  year: 2013
  ident: 10.1016/j.apcatb.2020.119174_bib0490
  article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4017842
– volume: 46
  start-page: 8932
  year: 2010
  ident: 10.1016/j.apcatb.2020.119174_bib0165
  article-title: Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc04057f
– volume: 47
  start-page: 3450
  year: 2008
  ident: 10.1016/j.apcatb.2020.119174_bib0520
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 10
  start-page: 1180
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0180
  article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0141-5
– volume: 43
  start-page: 5535
  year: 2009
  ident: 10.1016/j.apcatb.2020.119174_bib0010
  article-title: High resolution fossil fuel combustion CO2 emission fluxes, for the United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900806c
– volume: 42
  start-page: 548
  year: 2013
  ident: 10.1016/j.apcatb.2020.119174_bib0220
  article-title: Covalent organic frameworks (COFs): from design to applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35072F
– volume: 141
  start-page: 9063
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0540
  article-title: Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03591
– volume: 12
  start-page: 1404
  year: 2020
  ident: 10.1016/j.apcatb.2020.119174_bib0785
  article-title: Water-soluble 3D covalent organic framework that displays an enhanced enrichment effect of photosensitizers and catalysts for the reduction of protons to H2
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19870
– volume: 6
  start-page: 1621
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0120
  article-title: Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA08366A
– volume: 331
  start-page: 746
  year: 2011
  ident: 10.1016/j.apcatb.2020.119174_bib0025
  article-title: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
  publication-title: Sci.
  doi: 10.1126/science.1200448
– volume: 57
  start-page: 8316
  year: 2018
  ident: 10.1016/j.apcatb.2020.119174_bib0635
  article-title: Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade
  publication-title: Angew. Chem. Int. Ed
  doi: 10.1002/anie.201801112
– volume: 245
  start-page: 334
  year: 2019
  ident: 10.1016/j.apcatb.2020.119174_bib0185
  article-title: Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.12.065
SSID ssj0002328
Score 2.703128
SecondaryResourceType review_article
Snippet [Display omitted] •The COFs photocatalysts were reviewed according to the classification of building blocks.•The principle for designing photocatalytic active...
Semiconductor photocatalysts are the main platform and play an essential role in photocatalysis. In recent years, covalent organic frameworks (COFs) materials...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119174
SubjectTerms Carbon dioxide
Charge efficiency
Classification
Covalent organic frameworks
Designing principles
Electromagnetic absorption
Photocatalysis
Photocatalysts
Photodegradation
Porosity
Surface stability
Synthesis
Water splitting
Title Covalent organic frameworks for photocatalytic applications
URI https://dx.doi.org/10.1016/j.apcatb.2020.119174
https://www.proquest.com/docview/2452118769
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MeVAPotPhdI4evNY1bfqFp1E2psIuOtgtNGmKE1mLqwcv_u2-tImbggy8teGlLb-8vI_mfQBcSxmiHnJ9W_jStZXGt2M3R2clIDILgxRt2Lra5yyYzun9wl-0IDG5MCqsUsv-RqbX0lqPDDWaw3K5HD46sRt4Xui5imejWPntlIaKy28-N2EeaDHU0hiJbUVt0ufqGK-0FGnF0Ut0lexAz4X-pZ5-Cepa-0yO4Uibjdao-bITaMlVB_YT062tA4dbhQU70B1v8tdwmt7A61O4TQpkLRy1mnZOwspNdNbaQvvVKp-Lqqj_6Xzgq6zt8-0zmE_GT8nU1v0TbIE7s7IJyRxJstjnaUCinBPHyWPKVXmcSOSCxDJD8GhOJeIica1kRrzUCVOXiIi71OtCe1Ws5DlYFP0QL6ehINynKY_iQF1EaYb-obKheuAZ2JjQxcVVj4tXZqLIXlgDNlNgswbsHtjfs8qmuMYO-tCsCPvBJAzl_46ZfbOATG_SNVOHzqrbehBf_PvBl3Cg7ursRL8P7ertXV6hmVLxQc2HA9gb3T1MZ1_iMeU_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHtCDUZSIovagx0p3u33FeDCIQUUuQsJtbbfbiDFApMZw8U_5B51tt74SQ2LCrdl2H52dfjPTnQfAkZQeyiHqmMKR1FQS3wxogsaKS2TsuSHqsFm2z67b7rPrgTNYgvciFka5VWrszzE9Q2vd0tDUbEyGw8adFVDXtj2bKp71A0t7Vt7I2SvabdOzqwvc5GNKL1u9ZtvUpQVMgUybmoTEliRx4EShS_wkIpaVBCxSmWN8kQgSyBjHZQmTOIHE15AxsUPLCykRfkSZjeMuwwpDuFBlE07evvxKUEXJ4B9XZ6rlFfF6mVNZOBFhGqFZShVYoanE_pKHvyRDJu4uN2Bd66nGeU6KTViSowqUm0V5uAqsfctkWIFq6ytgDrtpxJhuwWlzjLyMrUZeP0oYSeEONjVQYTYmD-N0nP1EmuFUxvcD9W3oL4SqVSiNxiO5AwZDw8dOmCdI5LAw8gNXXfhhjAapUtpqYBdk40JnM1dFNZ544bb2yHNic0VsnhO7BuZnr0mezWPO816xI_wHV3IUOHN61osN5BoVplydcqvy7m6w---BD6Hc7t12eOeqe7MHq-pOFhrp1KGUPr_IfdSR0ugg40kD7hf9EXwAbHYgag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+organic+frameworks+for+photocatalytic+applications&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Yang%2C+Qing&rft.au=Luo%2C+Maolan&rft.au=Liu%2C+Kewei&rft.au=Cao%2C+Hongmei&rft.date=2020-11-05&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=276&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119174&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon