Covalent organic frameworks for photocatalytic applications
[Display omitted] •The COFs photocatalysts were reviewed according to the classification of building blocks.•The principle for designing photocatalytic active COFs were summarized.•The method for synthesis COFs were reviewed.•The potential photocatalytic applications were discussed. Semiconductor ph...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 276; p. 119174 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The COFs photocatalysts were reviewed according to the classification of building blocks.•The principle for designing photocatalytic active COFs were summarized.•The method for synthesis COFs were reviewed.•The potential photocatalytic applications were discussed.
Semiconductor photocatalysts are the main platform and play an essential role in photocatalysis. In recent years, covalent organic frameworks (COFs) materials have attracted extensive research interest. COFs feature periodic organic units, high thermal and chemical stability, high porosity, large surface area, π-conjugated structure and π-π stacking layers, as well as broad visible-light absorption range and high charge separation efficiency. Furthermore, the band structure of COFs can be rationally tuned by integrating different molecular building blocks with appropriate linkage, constructing π-conjugated system and introducing electron donor-acceptor units into the conjugated framework. These unique properties make COFs promising in photocatalytic water splitting, dye degradation, CO2 reduction, and organic transformation, etc. In this review, the research progress on COF photocatalysts were discussed, including the principles for designing photocatalytic active COFs, the synthetic methods, the classification of COFs based on the building blocks, and their potential applications in photocatalysis field. |
---|---|
AbstractList | Semiconductor photocatalysts are the main platform and play an essential role in photocatalysis. In recent years, covalent organic frameworks (COFs) materials have attracted extensive research interest. COFs feature periodic organic units, high thermal and chemical stability, high porosity, large surface area, π-conjugated structure and π-π stacking layers, as well as broad visible-light absorption range and high charge separation efficiency. Furthermore, the band structure of COFs can be rationally tuned by integrating different molecular building blocks with appropriate linkage, constructing π-conjugated system and introducing electron donor-acceptor units into the conjugated framework. These unique properties make COFs promising in photocatalytic water splitting, dye degradation, CO2 reduction, and organic transformation, etc. In this review, the research progress on COF photocatalysts were discussed, including the principles for designing photocatalytic active COFs, the synthetic methods, the classification of COFs based on the building blocks, and their potential applications in photocatalysis field. [Display omitted] •The COFs photocatalysts were reviewed according to the classification of building blocks.•The principle for designing photocatalytic active COFs were summarized.•The method for synthesis COFs were reviewed.•The potential photocatalytic applications were discussed. Semiconductor photocatalysts are the main platform and play an essential role in photocatalysis. In recent years, covalent organic frameworks (COFs) materials have attracted extensive research interest. COFs feature periodic organic units, high thermal and chemical stability, high porosity, large surface area, π-conjugated structure and π-π stacking layers, as well as broad visible-light absorption range and high charge separation efficiency. Furthermore, the band structure of COFs can be rationally tuned by integrating different molecular building blocks with appropriate linkage, constructing π-conjugated system and introducing electron donor-acceptor units into the conjugated framework. These unique properties make COFs promising in photocatalytic water splitting, dye degradation, CO2 reduction, and organic transformation, etc. In this review, the research progress on COF photocatalysts were discussed, including the principles for designing photocatalytic active COFs, the synthetic methods, the classification of COFs based on the building blocks, and their potential applications in photocatalysis field. |
ArticleNumber | 119174 |
Author | Liu, Kewei Cao, Hongmei Luo, Maolan Yang, Qing Yan, Hongjian |
Author_xml | – sequence: 1 givenname: Qing surname: Yang fullname: Yang, Qing – sequence: 2 givenname: Maolan surname: Luo fullname: Luo, Maolan – sequence: 3 givenname: Kewei surname: Liu fullname: Liu, Kewei – sequence: 4 givenname: Hongmei surname: Cao fullname: Cao, Hongmei – sequence: 5 givenname: Hongjian orcidid: 0000-0002-5583-2555 surname: Yan fullname: Yan, Hongjian email: hjyan@scu.edu.cn |
BookMark | eNqFUMtOwzAQtFCRKIU_4BCJc4rXTvMACQlVvKRKXOBsOc4aHNI42G5R_x6XcOIAp9XuzszuzDGZ9LZHQs6AzoFCftHO5aBkqOeMsjiCCorsgEyhLHjKy5JPyJRWLE85L_gROfa-pZQyzsopuVrareywD4l1r7I3KtFOrvHTunefaOuS4c0GG8VltwtxK4ehM7E1tvcn5FDLzuPpT52Rl7vb5-VDunq6f1zerFKVURpSgIYiNNWiljmUugZKdZXVkFdQKq2gwoYzmukM43u4QIYNcEkLyUCVNcv4jJyPuoOzHxv0QbR24_p4UrBswSD6zKuIuhxRylnvHWqhTPh-NDhpOgFU7MMSrRjDEvuwxBhWJGe_yIMza-l2_9GuRxpG-1uDTnhlsFfYGIcqiMaavwW-AH_Ih2o |
CitedBy_id | crossref_primary_10_1016_j_talanta_2024_126505 crossref_primary_10_3390_ma14195600 crossref_primary_10_1039_D1TA06006F crossref_primary_10_1002_smll_202101017 crossref_primary_10_1016_j_arabjc_2023_105090 crossref_primary_10_1016_j_aca_2022_340204 crossref_primary_10_3390_catal12111338 crossref_primary_10_1007_s10562_022_04071_7 crossref_primary_10_1039_D4SC05999A crossref_primary_10_1039_D1TB00041A crossref_primary_10_1016_j_cej_2024_158745 crossref_primary_10_1039_D4YA00082J crossref_primary_10_1002_adfm_202419735 crossref_primary_10_1007_s11708_022_0817_9 crossref_primary_10_1016_j_cej_2022_136713 crossref_primary_10_1016_j_colsurfa_2024_135437 crossref_primary_10_1016_j_ijhydene_2025_01_427 crossref_primary_10_1021_acs_joc_3c01594 crossref_primary_10_1039_D2TA07562H crossref_primary_10_12677_MS_2024_142017 crossref_primary_10_1016_j_apcatb_2024_124043 crossref_primary_10_1016_j_jece_2024_114074 crossref_primary_10_1039_D1MA01173A crossref_primary_10_1016_j_seppur_2022_122964 crossref_primary_10_1002_anie_202217416 crossref_primary_10_1016_j_seppur_2022_121981 crossref_primary_10_1016_j_cej_2023_145256 crossref_primary_10_1016_j_talanta_2023_124613 crossref_primary_10_1002_adma_202405399 crossref_primary_10_1016_j_ccr_2024_215814 crossref_primary_10_1039_D1SE00358E crossref_primary_10_3390_polym13081184 crossref_primary_10_1039_D3CY01139A crossref_primary_10_1016_j_jece_2024_114501 crossref_primary_10_1016_j_jwpe_2023_103572 crossref_primary_10_1039_D2SC03793A crossref_primary_10_1016_j_cej_2022_137011 crossref_primary_10_1002_anie_202318136 crossref_primary_10_1016_j_enchem_2022_100078 crossref_primary_10_1039_D3CS00259D crossref_primary_10_3390_ma15207215 crossref_primary_10_1016_j_apcatb_2023_122393 crossref_primary_10_1021_acsami_1c10748 crossref_primary_10_1016_j_micromeso_2022_112107 crossref_primary_10_1016_j_apsusc_2022_155966 crossref_primary_10_1021_acs_langmuir_1c01801 crossref_primary_10_1002_aesr_202200129 crossref_primary_10_1016_j_polymer_2024_127639 crossref_primary_10_1002_asia_202100357 crossref_primary_10_1039_D1CY00581B crossref_primary_10_1016_j_colsurfa_2022_130201 crossref_primary_10_1016_j_cej_2022_139202 crossref_primary_10_1016_j_colsurfa_2023_131570 crossref_primary_10_1039_D1TA05428G crossref_primary_10_3390_nano12234299 crossref_primary_10_1016_j_apcatb_2024_123899 crossref_primary_10_3390_catal13050850 crossref_primary_10_1039_D2TA04748A crossref_primary_10_3390_pr11020347 crossref_primary_10_1002_batt_202200434 crossref_primary_10_1016_j_arabjc_2024_105908 crossref_primary_10_3390_catal11101222 crossref_primary_10_1007_s40242_022_2219_2 crossref_primary_10_1039_D4CC02516D crossref_primary_10_1039_D4TA02594F crossref_primary_10_1002_cjoc_202200664 crossref_primary_10_1021_acsami_4c15460 crossref_primary_10_1039_D4QI01480D crossref_primary_10_1002_ange_202200261 crossref_primary_10_1002_smll_202302570 crossref_primary_10_1016_j_jfca_2024_106500 crossref_primary_10_1002_adfm_202309060 crossref_primary_10_1016_j_cej_2024_148922 crossref_primary_10_1002_smll_202201314 crossref_primary_10_1002_advs_202308535 crossref_primary_10_1016_j_ccr_2022_214939 crossref_primary_10_1016_j_electacta_2021_139301 crossref_primary_10_1002_adfm_202304604 crossref_primary_10_1016_j_seppur_2022_122739 crossref_primary_10_1021_acs_chemmater_1c01383 crossref_primary_10_1039_D1QM00015B crossref_primary_10_1002_smll_202300035 crossref_primary_10_1016_j_jpcs_2024_112548 crossref_primary_10_1002_smll_202302456 crossref_primary_10_1002_cjoc_202200355 crossref_primary_10_1002_chem_202303244 crossref_primary_10_1016_j_colsurfa_2023_131554 crossref_primary_10_1016_j_jphotochemrev_2021_100418 crossref_primary_10_1246_cl_200834 crossref_primary_10_1038_s41699_024_00496_3 crossref_primary_10_1016_j_ccr_2023_215066 crossref_primary_10_1016_j_cej_2024_150098 crossref_primary_10_1016_j_scitotenv_2021_146838 crossref_primary_10_1016_j_seppur_2024_128588 crossref_primary_10_1039_D3EY00047H crossref_primary_10_1016_j_envres_2025_121166 crossref_primary_10_1016_j_cej_2024_152843 crossref_primary_10_1002_smll_202307853 crossref_primary_10_1016_j_ijhydene_2023_08_178 crossref_primary_10_1021_acsami_1c23465 crossref_primary_10_1016_j_gresc_2022_07_006 crossref_primary_10_1021_acsami_2c05037 crossref_primary_10_1039_D1DT03869A crossref_primary_10_1016_j_enmm_2024_100990 crossref_primary_10_1002_adma_202004697 crossref_primary_10_2139_ssrn_4127828 crossref_primary_10_1021_acs_est_4c06351 crossref_primary_10_1016_j_jcis_2024_01_213 crossref_primary_10_1002_ange_202200003 crossref_primary_10_1016_j_cej_2021_128619 crossref_primary_10_1039_D4CC06092J crossref_primary_10_1021_acs_energyfuels_1c03374 crossref_primary_10_1016_j_ica_2023_121892 crossref_primary_10_1002_ange_202217479 crossref_primary_10_1016_j_cej_2022_136883 crossref_primary_10_1016_j_apcata_2023_119433 crossref_primary_10_1039_D4TA00087K crossref_primary_10_1002_cssc_202300021 crossref_primary_10_1002_adfm_202413943 crossref_primary_10_1016_j_chemosphere_2023_139930 crossref_primary_10_3390_biomimetics8020171 crossref_primary_10_1016_j_talanta_2024_125711 crossref_primary_10_1080_10408347_2022_2089838 crossref_primary_10_1016_j_ica_2024_122132 crossref_primary_10_1016_j_jcis_2023_06_062 crossref_primary_10_1016_j_jclepro_2024_142364 crossref_primary_10_1016_j_poly_2024_116958 crossref_primary_10_1016_j_micromeso_2023_112916 crossref_primary_10_1002_cssc_202300377 crossref_primary_10_1016_j_microc_2023_109531 crossref_primary_10_1016_j_apcatb_2022_122284 crossref_primary_10_1002_chem_202402736 crossref_primary_10_1016_j_jhazmat_2025_137876 crossref_primary_10_1002_chem_202101587 crossref_primary_10_1016_j_micromeso_2023_112479 crossref_primary_10_1039_D4CP00359D crossref_primary_10_1007_s11426_024_2446_7 crossref_primary_10_1021_acsami_3c14870 crossref_primary_10_1038_s41467_024_53834_w crossref_primary_10_1039_D2NR04727F crossref_primary_10_1021_acsaem_2c03897 crossref_primary_10_1016_j_apcatb_2021_120108 crossref_primary_10_1016_j_micromeso_2022_112297 crossref_primary_10_1016_j_partic_2023_12_008 crossref_primary_10_1126_sciadv_adk8564 crossref_primary_10_1002_anie_202204938 crossref_primary_10_1039_D2TA04541A crossref_primary_10_1039_D4CS00029C crossref_primary_10_1016_j_jcis_2024_04_090 crossref_primary_10_1016_j_ceramint_2023_06_075 crossref_primary_10_1016_j_jphotochem_2025_116264 crossref_primary_10_1007_s11426_021_1088_2 crossref_primary_10_1039_D4CY00402G crossref_primary_10_1016_j_cej_2022_139812 crossref_primary_10_1016_j_trac_2024_117604 crossref_primary_10_1002_asia_202300196 crossref_primary_10_1021_acsanm_0c02401 crossref_primary_10_1039_D1NJ04229G crossref_primary_10_1021_acsapm_4c01483 crossref_primary_10_1016_j_mtchem_2024_102439 crossref_primary_10_1007_s40820_023_01100_x crossref_primary_10_1021_acscatal_4c06754 crossref_primary_10_1016_j_seppur_2022_121204 crossref_primary_10_1016_j_seppur_2023_124459 crossref_primary_10_1039_D1CC02373J crossref_primary_10_1007_s10853_022_07898_y crossref_primary_10_1021_acsami_0c14610 crossref_primary_10_1016_j_inoche_2024_113262 crossref_primary_10_1021_acs_jpcc_1c05376 crossref_primary_10_1002_cplu_202400139 crossref_primary_10_1002_elt2_39 crossref_primary_10_1088_2515_7647_ad5777 crossref_primary_10_1002_anie_202200261 crossref_primary_10_1016_j_chemosphere_2023_141028 crossref_primary_10_1002_ange_202204938 crossref_primary_10_1016_j_apcatb_2023_122419 crossref_primary_10_1039_D0CY02061C crossref_primary_10_1007_s12274_024_6509_5 crossref_primary_10_1016_j_rser_2021_111298 crossref_primary_10_3390_nano12203615 crossref_primary_10_1016_j_enchem_2024_100121 crossref_primary_10_1039_D2EN00278G crossref_primary_10_1016_j_apcatb_2022_121174 crossref_primary_10_6023_cjoc202107030 crossref_primary_10_1038_s41467_022_28409_2 crossref_primary_10_1039_D4SC05065G crossref_primary_10_1038_s41467_022_29781_9 crossref_primary_10_1002_aenm_202401619 crossref_primary_10_1002_cctc_202301732 crossref_primary_10_1007_s00604_023_06128_9 crossref_primary_10_1016_j_poly_2023_116731 crossref_primary_10_1016_j_mtchem_2024_102299 crossref_primary_10_1021_acs_chemmater_2c03282 crossref_primary_10_1016_j_chemosphere_2024_142522 crossref_primary_10_1016_j_jiec_2023_11_007 crossref_primary_10_1002_ange_202318136 crossref_primary_10_1039_D3NA00442B crossref_primary_10_1002_chem_202303615 crossref_primary_10_1016_j_ccr_2024_215894 crossref_primary_10_1039_D2NJ04430G crossref_primary_10_1002_adfm_202309367 crossref_primary_10_1007_s41061_025_00494_z crossref_primary_10_3724_2097_213X_2024_JFCT_0001 crossref_primary_10_1021_acssuschemeng_3c07026 crossref_primary_10_1039_D3AY01166F crossref_primary_10_1016_j_cej_2021_129984 crossref_primary_10_1016_j_jcis_2023_04_017 crossref_primary_10_1016_j_jhazmat_2023_130756 crossref_primary_10_1021_acscatal_3c00126 crossref_primary_10_1016_j_apcatb_2022_122135 crossref_primary_10_1039_D3TA01470C crossref_primary_10_1039_D4TA03251A crossref_primary_10_1016_j_apcatb_2021_120817 crossref_primary_10_1021_acscatal_4c02738 crossref_primary_10_1002_pol_20230889 crossref_primary_10_1002_asia_202401349 crossref_primary_10_1002_cssc_202401903 crossref_primary_10_1039_D0TA12425G crossref_primary_10_1021_acs_inorgchem_2c00688 crossref_primary_10_1002_adfm_202400506 crossref_primary_10_1007_s42247_024_00833_8 crossref_primary_10_1016_j_apcata_2023_119269 crossref_primary_10_1021_acsami_1c20729 crossref_primary_10_1002_anie_202200003 crossref_primary_10_1002_cctc_202200935 crossref_primary_10_1039_D1TA02547C crossref_primary_10_1021_acsami_0c21370 crossref_primary_10_1039_D0TA11820F crossref_primary_10_1002_smll_202202928 crossref_primary_10_1039_D4TA07330D crossref_primary_10_1002_cjoc_202401245 crossref_primary_10_1039_D2NJ05225C crossref_primary_10_1016_j_fuel_2023_130654 crossref_primary_10_1016_j_micromeso_2023_112798 crossref_primary_10_1002_anie_202217479 crossref_primary_10_1002_cssc_202401353 crossref_primary_10_1016_j_ijhydene_2024_05_448 crossref_primary_10_1002_ange_202010829 crossref_primary_10_1016_j_gee_2021_09_002 crossref_primary_10_1039_D1CY00293G crossref_primary_10_1016_j_jcat_2022_07_023 crossref_primary_10_1021_acs_macromol_3c02490 crossref_primary_10_3390_catal13101331 crossref_primary_10_1055_a_1932_6937 crossref_primary_10_1007_s11426_022_1391_0 crossref_primary_10_1002_smll_202205758 crossref_primary_10_1002_chem_202302304 crossref_primary_10_1002_inf2_12646 crossref_primary_10_1016_j_ccr_2022_214542 crossref_primary_10_1016_j_jece_2024_111899 crossref_primary_10_1016_j_apcatb_2022_121144 crossref_primary_10_1021_acsami_3c16724 crossref_primary_10_1016_j_chroma_2021_462612 crossref_primary_10_1016_j_jre_2024_07_010 crossref_primary_10_1016_j_ijhydene_2021_02_176 crossref_primary_10_1039_D2CY00167E crossref_primary_10_1002_anie_202010829 crossref_primary_10_1039_D3MA00994G crossref_primary_10_1002_cptc_202400013 crossref_primary_10_1002_ange_202217416 crossref_primary_10_1016_j_micromeso_2022_112401 crossref_primary_10_1002_cplu_202200281 crossref_primary_10_1016_j_jiec_2022_06_009 crossref_primary_10_1039_D3TC00430A crossref_primary_10_1039_D3LF00126A crossref_primary_10_1016_j_heliyon_2024_e41296 crossref_primary_10_1021_jacs_2c09482 crossref_primary_10_1002_smll_202408395 crossref_primary_10_1016_j_ccr_2022_214414 crossref_primary_10_1016_j_saa_2024_125022 crossref_primary_10_1021_acsapm_4c00664 crossref_primary_10_1016_j_apcatb_2022_121374 crossref_primary_10_1039_D4TA02087A crossref_primary_10_1016_j_molstruc_2024_140088 crossref_primary_10_1021_acsapm_3c01665 crossref_primary_10_1002_cctc_202101800 crossref_primary_10_1021_acsami_3c13966 crossref_primary_10_1016_j_fuel_2023_130157 crossref_primary_10_1002_adfm_202305527 crossref_primary_10_1021_acs_energyfuels_3c00162 crossref_primary_10_1002_cssc_202101510 crossref_primary_10_3390_ijms23041929 crossref_primary_10_1016_j_apcatb_2022_121257 crossref_primary_10_1016_j_cej_2023_147365 crossref_primary_10_1016_j_micromeso_2023_112893 crossref_primary_10_3390_sym15091803 crossref_primary_10_1039_D3CE01285A crossref_primary_10_1016_j_cej_2021_132817 crossref_primary_10_1039_D4QI02904F crossref_primary_10_3390_nano14030256 crossref_primary_10_1007_s11426_023_1644_x crossref_primary_10_1016_j_apcatb_2021_120605 crossref_primary_10_1016_j_apcatb_2021_120846 crossref_primary_10_1021_acs_jctc_3c01302 crossref_primary_10_1002_anie_202423368 crossref_primary_10_1016_j_vacuum_2024_113235 crossref_primary_10_1021_acsnano_3c01758 crossref_primary_10_1002_adfm_202312729 crossref_primary_10_1016_j_ccr_2022_214882 crossref_primary_10_1016_j_cej_2022_135153 crossref_primary_10_1016_j_jece_2024_114306 crossref_primary_10_1007_s00604_022_05432_0 crossref_primary_10_1016_j_jcis_2024_04_158 crossref_primary_10_1111_php_13959 crossref_primary_10_1007_s11947_024_03426_9 crossref_primary_10_1016_j_ajps_2020_12_003 crossref_primary_10_1007_s11356_023_26728_5 crossref_primary_10_1016_j_apcatb_2022_121920 crossref_primary_10_1002_smll_202303884 crossref_primary_10_1016_j_chemosphere_2021_131254 crossref_primary_10_1002_anie_202217989 crossref_primary_10_1016_j_cej_2020_128397 crossref_primary_10_1039_D4SE00056K crossref_primary_10_1016_j_jwpe_2023_104297 crossref_primary_10_1002_smll_202400688 crossref_primary_10_1016_j_talanta_2023_125236 crossref_primary_10_1016_j_ijhydene_2023_08_303 crossref_primary_10_1016_j_envres_2023_118018 crossref_primary_10_1039_D1QM00887K crossref_primary_10_3390_molecules26144181 crossref_primary_10_1002_asia_202401423 crossref_primary_10_1016_j_ccr_2024_216177 crossref_primary_10_1016_j_jcis_2025_01_247 crossref_primary_10_1016_j_jcis_2023_08_073 crossref_primary_10_1039_D2GC04459E crossref_primary_10_1002_solr_202000641 crossref_primary_10_1002_ange_202423368 crossref_primary_10_1016_j_jece_2022_108097 crossref_primary_10_1007_s40843_023_2599_9 crossref_primary_10_3390_su16062334 crossref_primary_10_1021_acsanm_1c01038 crossref_primary_10_3390_molecules29071637 crossref_primary_10_3390_w16111588 crossref_primary_10_1007_s42114_024_01177_x crossref_primary_10_1016_j_jphotochem_2021_113546 crossref_primary_10_1016_j_mtchem_2022_101037 crossref_primary_10_3390_polym16182578 crossref_primary_10_1002_smll_202303632 crossref_primary_10_1016_j_apcatb_2024_123698 crossref_primary_10_1039_D2TA09375H crossref_primary_10_1002_aenm_202303346 crossref_primary_10_1002_ange_202217989 crossref_primary_10_1016_j_heliyon_2024_e32202 crossref_primary_10_1016_j_seppur_2022_120644 crossref_primary_10_1039_D4TA01917B crossref_primary_10_1002_adfm_202402676 crossref_primary_10_1016_j_ccr_2024_215997 crossref_primary_10_1016_j_matchemphys_2023_128158 crossref_primary_10_1016_j_chemosphere_2023_141073 crossref_primary_10_1016_j_est_2022_105375 crossref_primary_10_1016_j_jece_2024_113470 crossref_primary_10_1021_acscatal_1c03441 crossref_primary_10_1007_s12613_023_2761_z crossref_primary_10_1016_j_colsurfa_2023_131124 crossref_primary_10_1016_j_ccr_2025_216465 crossref_primary_10_1016_j_jssc_2024_125025 crossref_primary_10_1039_D2NJ06362J crossref_primary_10_1002_smll_202404139 crossref_primary_10_1016_j_ccr_2023_215210 crossref_primary_10_1002_adsu_202400653 crossref_primary_10_1002_smll_202402993 crossref_primary_10_1039_D2PY01350A crossref_primary_10_1002_marc_202200108 crossref_primary_10_1021_acssuschemeng_4c02542 crossref_primary_10_1039_D2NR03706H crossref_primary_10_1002_fft2_241 crossref_primary_10_1039_D1CY01311D crossref_primary_10_1002_cssc_202301175 crossref_primary_10_1002_smll_202303069 crossref_primary_10_1039_D4CY00575A |
Cites_doi | 10.1038/nmat4220 10.1021/acsami.9b08394 10.1021/cr00033a004 10.1039/C5CS00878F 10.1021/acsami.8b14446 10.1039/C5TA10521H 10.1021/ja904991p 10.1002/cssc.201903545 10.1002/anie.200400655 10.1039/C7GC02231J 10.1021/jacs.6b01233 10.1039/C6CC06363B 10.1002/anie.201106203 10.1021/ja065986c 10.1002/adma.201807865 10.1021/jacs.7b06081 10.1021/jacs.5b10666 10.1002/jccs.201300333 10.1002/anie.201607375 10.1021/cs200131g 10.1002/anie.201107070 10.1021/cm802981m 10.1021/jacs.9b09502 10.1021/jacs.9b01891 10.1021/jacs.6b12005 10.1039/c2jm31248d 10.1038/s41467-018-06719-8 10.1016/j.mattod.2018.04.009 10.1039/c2ra21531d 10.1021/ja2052396 10.1021/jacs.8b00571 10.1021/ja00278a055 10.1002/adma.201200751 10.1039/C9CC02144B 10.1021/ja8096256 10.1021/jacs.7b06599 10.1021/acs.chemmater.9b03088 10.1039/C7TA07691F 10.1007/s11705-019-1884-2 10.1039/C6TA04711D 10.1002/anie.201806664 10.1002/anie.201708548 10.1016/j.jhazmat.2019.02.046 10.1002/macp.201500404 10.1021/acsami.7b18917 10.1021/acssuschemeng.7b02170 10.1002/adfm.201700233 10.1126/science.1139915 10.1002/anie.201005919 10.1002/marc.201500270 10.1002/anie.201300256 10.1088/1361-6528/ab4a3f 10.1021/ja206242v 10.1039/c3sc52034j 10.1039/C9CS00322C 10.1021/ja809307s 10.1039/C7CS00071E 10.1021/acsami.7b06030 10.1039/C4CS00126E 10.1016/j.ces.2016.12.071 10.1039/c0cc03792c 10.1002/anie.201101924 10.1039/C6TA01828A 10.1002/anie.201901194 10.1016/j.jcis.2019.07.002 10.1038/ncomms9508 10.1039/c2cc33929c 10.1038/natrevmats.2016.68 10.1021/jp802640x 10.1039/C4CS00250D 10.1021/ja203807h 10.1021/ja206846p 10.1021/acs.nanolett.6b00870 10.1021/jacs.6b05304 10.1002/anie.200462057 10.1021/acs.jced.8b01085 10.1021/cr200304e 10.1002/ejic.201700165 10.1039/B204251G 10.1038/ncomms3736 10.1021/jacs.6b03472 10.1002/anie.201902543 10.1021/ja403008j 10.1021/ja511552k 10.1021/acsami.8b10022 10.1021/jp411854f 10.1016/j.apcatb.2018.08.005 10.1021/acs.cgd.9b00166 10.1002/adma.201601694 10.1021/acscatal.8b02607 10.1039/C9CS00299E 10.1021/cr900271s 10.1039/C8CS00376A 10.1021/jacs.9b02997 10.1039/C7CC01827D 10.1016/S1872-2067(18)63057-8 10.1016/j.scib.2019.10.015 10.1021/acsenergylett.7b01123 10.1021/nl904082k 10.1021/jacs.6b09787 10.1021/jacs.6b02553 10.1021/acs.cgd.7b01367 10.1002/adma.200903436 10.1039/C4CC03389B 10.1039/C9CC01732A 10.1002/anie.201806862 10.1039/C7CC04515H 10.1039/C5TA07408H 10.1016/j.polymer.2017.04.017 10.1126/science.aan0202 10.1039/C9TA13212K 10.1021/acscatal.7b01719 10.1021/acsami.5b12370 10.1021/jacs.8b09705 10.1021/ja509602c 10.1039/C8CC07784C 10.1002/asia.201800506 10.1021/acsami.9b02640 10.1021/jacs.7b04141 10.1039/C5EE02574E 10.1126/science.1120411 10.1021/acscatal.5b00069 10.1002/anie.200900881 10.1021/ja048296m 10.1002/anie.201712925 10.1021/acssuschemeng.6b01183 10.1002/adma.201705454 10.1039/c0cc04386a 10.1021/acsaem.8b01432 10.1021/ja8007825 10.1021/ma201648t 10.1039/C7EE02981K 10.1039/C4TA03438D 10.1039/C6TA01625A 10.1039/C4SC00016A 10.1002/cssc.201702220 10.1016/S1872-2067(15)60974-3 10.1016/j.apcatb.2018.10.043 10.1016/j.jcat.2008.09.017 10.1039/B800489G 10.1002/chem.201403800 10.1016/j.jhazmat.2019.121514 10.1021/ja4017842 10.1039/c0cc04057f 10.1002/anie.200705710 10.1038/s41557-018-0141-5 10.1021/es900806c 10.1039/C2CS35072F 10.1021/jacs.9b03591 10.1021/acsami.9b19870 10.1039/C7TA08366A 10.1126/science.1200448 10.1002/anie.201801112 10.1016/j.apcatb.2018.12.065 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Nov 5, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Nov 5, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.119174 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_119174 S0926337320305890 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-11d0e1d95ba618fb100f94b16918cfc19ed3204f4e373e5e2ed13a07a21c8b243 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 04:38:01 EDT 2025 Tue Jul 01 04:35:06 EDT 2025 Thu Apr 24 22:55:25 EDT 2025 Sat Mar 02 16:00:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic frameworks Synthesis Designing principles Photocatalysts Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-11d0e1d95ba618fb100f94b16918cfc19ed3204f4e373e5e2ed13a07a21c8b243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5583-2555 |
PQID | 2452118769 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2452118769 crossref_citationtrail_10_1016_j_apcatb_2020_119174 crossref_primary_10_1016_j_apcatb_2020_119174 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-05 |
PublicationDateYYYYMMDD | 2020-11-05 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Xiao, Zhou, Xin, Zhang, Zhang, Wang, Sun (bib0285) 2016; 217 Zhang, Ying (bib0105) 2015; 5 Zhou, Yang, You (bib0255) 2012; 45 Schwinghammer, Hug, Mesch, Senker, Lotsch (bib0560) 2015; 8 Yang, Kim, Cho, Kim, Ahn (bib0510) 2012; 2 Preet, Gupta, Kotal, Kansal, Salunke, Sharma, Sahoo, Van Der Voort, Roy (bib0715) 2019; 19 Li, Wang, Xing, Zhou, Liu, Li, Zheng, Ye, Zou (bib0695) 2019; 243 Jin, Li, Geng, Jiang, Xu, Xu, Jiang (bib0755) 2018; 9 Lin, Ding, Chen, Peng, Wang, Wang (bib0780) 2017; 139 Tsuji, Kato, Kobayashi, Kudo (bib0075) 2004; 126 Hu, Zhang, Liu, Liu, Pang (bib0385) 2019; 11 Feng, Liu, Honsho, Saeki, Seki, Irle, Dong, Nagai, Jiang (bib0315) 2012; 51 Zhang, Dai, Shao, Tian, Lin, Chen, Zeng (bib0365) 2018; 10 Jin, Asada, Xu, Dalapati, Addicoat, Brady, Xu, Nakamura, Heine, Chen, Jiang (bib0750) 2017; 357 Yang, Peng, Xiang (bib0390) 2017; 162 Zhang, Wu, Ma, Wang, Xu (bib0155) 2019; 48 Uribe-Romo, Hunt, Furukawa, Klöck, O’Keeffe, Yaghi (bib0395) 2009; 131 Ding, Chen, Honsho, Feng, Saengsawang, Guo, Saeki, Seki, Irle, Nagase, Parasuk, Jiang (bib0160) 2011; 133 Auras, Ascherl, Hakimioun, Margraf, Hanusch, Reuter, Bessinger, Döblinger, Hettstedt, Karaghiosoff, Herbert, Knochel, Clark, Bein (bib0605) 2016; 138 Jiang, Wang, Zhao (bib0110) 2015; 3 Han, Li, Yang, Lin (bib0030) 2015; 36 Chen, Lan, Cai, Sun, Li, He, Zheng, Fan, Liu, Zhang (bib0415) 2019; 11 Liu, Huang, Wang, Li, Li, Jin, Tan (bib0585) 2018; 57 Liu, Liao, Ma, Xiang (bib0305) 2018; 10 Cheng, Wang, Wang, Xi, Ma, Zang (bib0660) 2018; 54 Kudo, Miseki (bib0730) 2009; 38 Zhong, Sa, Li, He, Li, Bi, Zhuang, Yu, Zou (bib0545) 2019; 141 Stegbauer, Zech, Savasci, Banerjee, Podjaski, Schwinghammer, Ochsenfeld, Lotsch (bib0620) 2018; 8 Jhuo, Yeh, Liao, Li, Cheng, Chen (bib0265) 2014; 61 Zhang, Yuan, Feng, Li, Zhou, Wang (bib0005) 2016; 138 Butchosa, McDonald, Cooper, Adams, Zwijnenburg (bib0260) 2014; 118 Chen, Addicoat, Jin, Zhai, Xu, Huang, Guo, Liu, Irle, Jiang (bib0290) 2015; 137 Kuecken, Acharjya, Zhi, Schwarze, Schomäcker, Thomas (bib0565) 2017; 53 Hu, Yan, Ge, Gao (bib0225) 2018; 39 Wang, Yang, Yang, Zhao, Wang, Chen, Zeng, Yan, Huang, Jiang (bib0345) 2018; 8 Banerjee, Gottschling, Savasci, Ochsenfeld, Lotsch (bib0100) 2018; 3 Li, Sun, Yuan, Zhu, Ma (bib0735) 2018; 57 Wang, Chavez, Thomas, Li, Flanders, Sun, Strauss, Chen, Markvoort, Bredas, Dichtel (bib0420) 2019; 31 Li, Zhi, Shao, Xia, Li, Feng, Chen, Shi, Liu (bib0185) 2019; 245 Pan, Guo, Zhang, Wang, Jin, Tan (bib0700) 2018; 13 Li, Xie, Song, Zhao, Zhang (bib0725) 2017; 9 Huang, Wang, Ma, Ghasimi, Gehrig, Laquai, Landfester, Zhang (bib0275) 2016; 4 Shi, Qi, Peng, Guo, Wan, Cao, Xiang (bib0640) 2018; 1 Meier, Sprick, Monti, Guiglion, Lee, Zwijnenburg, Cooper (bib0170) 2017; 126 Clarke, Durrant (bib0325) 2010; 110 Yadav, Kumar, Park, Kong, Baeg (bib0200) 2016; 4 Gao, Wang, Wei, Yin, Tian, Liu, Wang, Zhang, Zhang, Li, Liu, Li (bib0785) 2020; 12 Low, Yu, Jaroniec, Wageh, Al-Ghamdi (bib0080) 2017; 29 Zhi, Li, Feng, Xi, Zhang, Shi, Mu, Liu (bib0205) 2017; 5 Yao, Hu, Hu, Chen, Yu, Gao, Wang (bib0705) 2019; 554 Liu, Jiang, Ding, Wang, Zhang, Liu, Zhan, Cheng, Li, Chen, Jin, Tan (bib0580) 2019; 31 Kenji, Shuhei, Mio, Hiromitsu, Osami, Susumu (bib0665) 2011; 50 Spitler, Koo, Novotney, Colson, Uribe-Romo, Gutierrez, Clancy, Dichtel (bib0410) 2011; 133 Tuziuti, Yasui, Lee, Kozuka, Towata, Iida (bib0500) 2008; 112 Segura, Mancheño, Zamora (bib0675) 2016; 45 Liu, Huang, Lai, Zeng, Qin, Wang, Yi, Li, Liu, Zhang, Deng, Fu, Li, Xue, Chen (bib0145) 2019; 48 Ghosh, Kouamé, Ramos, Remita, Dazzi, Besseau, Beaunier, Goubard, Aubert, Remita (bib0745) 2015; 14 Li, Sullivan, Rosi (bib0670) 2013; 135 Wang, Yang, Wang, Guo, Cheng, Zhang, Jin, Tan, Cooper (bib0575) 2017; 56 Kong, Zheng, Kobielusz, Wang, Bai, Macyk, Wang, Tang (bib0215) 2018; 21 Yong, Lu, Li, Wang, Zhang (bib0740) 2018; 10 Chen, Liu, Yu, Mao (bib0025) 2011; 331 Shinde, Aiyappa, Bhadra, Biswal, Wadge, Kandambeth, Garai, Kundu, Kurungot, Banerjee (bib0470) 2016; 4 Wei, Qi, Wang, Ding, Yu, Liu, Wang, Wang, An, Wang (bib0720) 2018; 140 Zong, Yan, Wu, Ma, Wen, Wang, Li (bib0055) 2008; 130 Wang, Zeng, Xu, Li, Zeng, Xiao, Tang, Huang, Tang, Lai, Jiang, Liu, Yi, Qin, Ye, Ren, Tang (bib0150) 2019; 48 Das, Shinde, Kandambeth, Biswal, Banerjee (bib0485) 2014; 50 Lv, Zhao, Niu, He, Tang, Wu, Giesy (bib0195) 2019; 369 Ding, Gao, Wang, Zhang, Song, Su, Wang (bib0435) 2011; 133 S.Vyas, Haase, Stegbauer, Savasci, Podjaski, Ochsenfeld, Lotsch (bib0115) 2015; 6 Ding, Wang (bib0220) 2013; 42 Feng, Chen, Dong, Jiang (bib0440) 2011; 47 Huang, Byun, Rçrich, Ramanan, Blom, Lu, Wang, da Silva, Li, Wang, Landfester, Zhang (bib0635) 2018; 57 Bessinger, Ascherl, Auras, Bein (bib0610) 2017; 139 Rao, Fang, Feyter, Perepichka (bib0350) 2017; 139 Zhu, Qi, Fang, Zhao, Wu, Han (bib0655) 2018; 18 Zhou, Li, Zhao, Wang, Zhao, Ge, Cai (bib0120) 2018; 6 Li, Cai, Wu, Lo, Zhang, Chen, Yu (bib0340) 2016; 138 Choi, Kim, Lee, Tak (bib0070) 2020; 31 Wu, Cheng, Cheng, Hsu (bib0625) 2015; 44 Ding, Feng, Saeki, Seki, Nagaia, Jiang (bib0320) 2012; 48 Jiang, Sun, Bi, Liang, Li, Yu, Wu (bib0650) 2018; 11 Köhler, Bässler (bib0235) 2015 Wei, Qi, Wang, Ding, Yu, Liu, Wang, Wang, An, Wang (bib0615) 2018; 140 Elseman, Rashad, Hassan (bib0475) 2016; 4 Zhang, Cheng, Guo, Wang, Tan, Jin (bib0770) 2020; 59 Stegbauer, Schwinghammer, Lotsch (bib0455) 2014; 5 Yoshida, Yamakata, Takanabe, Kubota, Osawa, Domen (bib0065) 2009; 131 Yoo, Cho, Jung, Kim, Choi, Kim, Lee, Kwak, Lee (bib0515) 2016; 16 Chan-Thaw, Villa, Katekomol, Su, Thomas, Prati (bib0550) 2010; 10 Schwab, Hamburger, Feng, Shu, Spiess, Wang, Antonietti, Müllen (bib0165) 2010; 46 Biswal, Chandra, Kandambeth, Lukose, Heine, Banerjee (bib0490) 2013; 135 Liu, Li, Wang, Pan, Liu, Wang, Zeng, Wang, Jiang (bib0425) 2019; 141 Wang, Maeda, Chen, Takanabe, Domen, Hou, Fu, Antonietti (bib0090) 2009; 131 Campbell, Clowes, Ritchie, Cooper (bib0450) 2009; 21 Yang, Zhang, Han, Zhang, Xue, Gao, Li, Huang, Yi, Liu, Li (bib0300) 2016; 8 Jiang, Zhao, Yaghi (bib0680) 2016; 138 Kuhn, Antonietti, Thomas (bib0520) 2008; 47 Huang, Wang, Jiang (bib0140) 2016; 1 Yang, Hu, Zhang, He, Pattengale, Liu, Cendejas, Hermans, Zhang, Zhang, Huang (bib0245) 2018; 140 Hug, Tauchert, Li, Pachmayr, Lotsch (bib0555) 2012; 22 Stock, Biswas (bib0505) 2012; 112 Nagai, Chen, Feng, Ding, Guo, Jiang (bib0295) 2013; 52 Li, Fang, Zhang, Bi, He, Wang, Su (bib0600) 2016; 4 Gurney, Mendoza, Zhou, Fischer, Miller, Geethakumar, de la Rue du Can (bib0010) 2009; 43 Lyu, Gao, He, Ding, Tang, Crittenden (bib0480) 2017; 5 Chaoui, Trunk, Dawson, Schmidt, Thomas (bib0630) 2017; 46 Luo, Yang, Liu, Cao, Yan (bib0710) 2019; 55 Periyasamy, Viswanathan (bib0380) 2019; 64 Lanni, Tilford, Bharathy, Lavigne (bib0445) 2011; 13 Zhang, Gong, Zhang, Liu, Cao, Yan, Zhu (bib0045) 2017; 2017 Wang, Chen, Chong, Little, Wu, Zhu, Clowes, Yan, Zwijnenburg, Sprick, Cooper (bib0180) 2018; 10 Torben, Alexander, Jonathan, Ilina, Mona, Julian, Austin, Markus, Simon, Kristina (bib0240) 2018; 140 Ren, Bojdys, Dawson, Laybourn, Khimyak, Adams, Cooper (bib0465) 2012; 24 Wang, Zeng, Xiong, Wu, Xia, Xie, Zou, Luo (bib0760) 2020; 65 Guo, Xu, Jin, Chen, Kaji, Honsho, Addicoat, Kim, Saeki, Ihee, Seki, Irle, Hiramoto, Gao, Jiang (bib0125) 2013; 4 Zhao, Liu, Wu, Zhang, Pan, Hu, Wang, Li, Huang, Li (bib0355) 2019; 58 Huang, Wu, Zheng, Dong, Wang (bib0590) 2018; 20 Niu, Smith, Lavigne (bib0375) 2006; 128 Zhang, Sheng, Yang, Sun, Tang, Lu, Dong, Shen, Liu, Lan (bib0690) 2018; 57 Hoffmann, Martin, Choi, Bahnemann (bib0020) 1995; 95 Ding, Feng, Saeki, Seki, Nagai, Jiang (bib0280) 2012; 48 Wan, Guo, Kim, Ihee, Jiang (bib0330) 2009; 48 Jin, Furukawa, Addicoat, Chen, Takahashi, Irle, Nakamura, Jiang (bib0230) 2013; 4 Afshari, Dinari (bib0430) 2020; 385 Suslick, Hammerton, Cline (bib0495) 1986; 108 Zhang, Lan, Wang (bib0095) 2016; 55 Ayed, Huang, Zhang (bib0775) 2020; 14 Kaur, Hupp, Nguyen (bib0130) 2011; 1 Yassin, Trunk, Czerny, Fayon, Trewin, Schmidt, Thomas (bib0360) 2017; 27 Bi, Fang, Li, Wang, Liang, He, Liu, Wu (bib0190) 2015; 36 Sprick, Jiang, Bonillo, Ren, Ratvijitvech, Guiglion, Zwijnenburg, Adams, Cooper (bib0335) 2015; 137 Hu, Ren, Guo, Liang, Cao, Wan, Bai (bib0060) 2005; 44 Ajayaghosh (bib0270) 2003; 32 Lei, Wang, Ye, Kou, Deng, Ma, Wang, Kong (bib0790) 2020; 13 He, Rong, Niu, Cai (bib0795) 2017; 53 Bai, Wilbraham, Slater, Zwijnenburg, Sprick, Cooper (bib0540) 2019; 141 Kappe (bib0460) 2004; 43 Côté, Benin, Ockwig, O’Keeffe, Matzger, Yaghi (bib0370) 2005; 310 Bojdys, Jeromenok, Thomas, Antonietti (bib0525) 2010; 22 Gao, Shu, Zhang, Ma, Ren, Wang, Chen, Zeng, Jiang (bib0765) 2020; 8 Gong, Ma, Mao, Liu, Cao, Yan (bib0035) 2016; 52 Yang, Luo, Liu, Cao, Yan (bib0040) 2019; 55 He, Yin, Niu, Cai (bib0595) 2018; 239 Ding, Guo, Feng, Honsho, Guo, Seki, Maitarad, Saeki, Nagase, Jiang (bib0310) 2011; 50 Peng, Zhao, Chen, Zhang, Huang, Dai, Lai, Cui, Tan, Zhang (bib0685) 2018; 30 Wang, Zhang, Chen, Hu, Li, Wang, Liu, Wang (bib0015) 2014; 43 Nguyen, Gandara, Furukawa, Doan, Cordova, Yaghi (bib0210) 2016; 138 Spitler, Colson, Uribe‐Romo, Woll, Giovino, Saldivar, Dichtel (bib0400) 2012; 51 Dogru, Sonnauer, Gavryushin, Knochel, Bein (bib0405) 2011; 47 Huang, Ma, Lu, Li, Wang, Landfester, Zhang (bib0135) 2017; 8 Thote, Aiyappa, Deshpande, Díaz, Kurungot, Banerjee (bib0645) 2014; 20 Kuecken, Schmidt, Zhi, Thomas (bib0530) 2015; 3 Xie, Shevlin, Ruan, Moniz, Liu, Liu, Li, Lau, Guo, Tang (bib0570) 2018; 11 Iwase, Yoshino, Takayama, Ng, Amal, Kudo (bib0085) 2016; 138 Chen, Shi, Ma, Lin, Lang, Wang (bib0175) 2019; 58 El-Kaderi, Hunt, Mendoza-Cortés, Côté, Taylor, O’Keeffe, Yaghi (bib0535) 2009; 316 Ma, Yan, Shi, Zong, Lei, Li (bib0050) 2008; 260 Bhadra, Kandambeth, Sahoo, Addicoat, Balaraman, Banerjee (bib0250) 2019; 141 Yadav (10.1016/j.apcatb.2020.119174_bib0200) 2016; 4 Iwase (10.1016/j.apcatb.2020.119174_bib0085) 2016; 138 Xiao (10.1016/j.apcatb.2020.119174_bib0285) 2016; 217 Kong (10.1016/j.apcatb.2020.119174_bib0215) 2018; 21 Ding (10.1016/j.apcatb.2020.119174_bib0320) 2012; 48 Chan-Thaw (10.1016/j.apcatb.2020.119174_bib0550) 2010; 10 Huang (10.1016/j.apcatb.2020.119174_bib0590) 2018; 20 Huang (10.1016/j.apcatb.2020.119174_bib0275) 2016; 4 Chen (10.1016/j.apcatb.2020.119174_bib0025) 2011; 331 Ding (10.1016/j.apcatb.2020.119174_bib0435) 2011; 133 Cheng (10.1016/j.apcatb.2020.119174_bib0660) 2018; 54 Jhuo (10.1016/j.apcatb.2020.119174_bib0265) 2014; 61 Yang (10.1016/j.apcatb.2020.119174_bib0040) 2019; 55 Periyasamy (10.1016/j.apcatb.2020.119174_bib0380) 2019; 64 Kappe (10.1016/j.apcatb.2020.119174_bib0460) 2004; 43 Kuecken (10.1016/j.apcatb.2020.119174_bib0530) 2015; 3 Feng (10.1016/j.apcatb.2020.119174_bib0315) 2012; 51 Bojdys (10.1016/j.apcatb.2020.119174_bib0525) 2010; 22 Zhi (10.1016/j.apcatb.2020.119174_bib0205) 2017; 5 Tuziuti (10.1016/j.apcatb.2020.119174_bib0500) 2008; 112 Li (10.1016/j.apcatb.2020.119174_bib0670) 2013; 135 Choi (10.1016/j.apcatb.2020.119174_bib0070) 2020; 31 Wei (10.1016/j.apcatb.2020.119174_bib0615) 2018; 140 Yong (10.1016/j.apcatb.2020.119174_bib0740) 2018; 10 Gao (10.1016/j.apcatb.2020.119174_bib0765) 2020; 8 Ding (10.1016/j.apcatb.2020.119174_bib0310) 2011; 50 Zhou (10.1016/j.apcatb.2020.119174_bib0120) 2018; 6 Kudo (10.1016/j.apcatb.2020.119174_bib0730) 2009; 38 Campbell (10.1016/j.apcatb.2020.119174_bib0450) 2009; 21 Jiang (10.1016/j.apcatb.2020.119174_bib0110) 2015; 3 Lv (10.1016/j.apcatb.2020.119174_bib0195) 2019; 369 Li (10.1016/j.apcatb.2020.119174_bib0600) 2016; 4 Lanni (10.1016/j.apcatb.2020.119174_bib0445) 2011; 13 Yoo (10.1016/j.apcatb.2020.119174_bib0515) 2016; 16 Nagai (10.1016/j.apcatb.2020.119174_bib0295) 2013; 52 Nguyen (10.1016/j.apcatb.2020.119174_bib0210) 2016; 138 Liu (10.1016/j.apcatb.2020.119174_bib0425) 2019; 141 Hoffmann (10.1016/j.apcatb.2020.119174_bib0020) 1995; 95 Bi (10.1016/j.apcatb.2020.119174_bib0190) 2015; 36 Banerjee (10.1016/j.apcatb.2020.119174_bib0100) 2018; 3 Butchosa (10.1016/j.apcatb.2020.119174_bib0260) 2014; 118 Wang (10.1016/j.apcatb.2020.119174_bib0760) 2020; 65 Wan (10.1016/j.apcatb.2020.119174_bib0330) 2009; 48 Stegbauer (10.1016/j.apcatb.2020.119174_bib0455) 2014; 5 S.Vyas (10.1016/j.apcatb.2020.119174_bib0115) 2015; 6 Chen (10.1016/j.apcatb.2020.119174_bib0290) 2015; 137 Pan (10.1016/j.apcatb.2020.119174_bib0700) 2018; 13 Zong (10.1016/j.apcatb.2020.119174_bib0055) 2008; 130 Hu (10.1016/j.apcatb.2020.119174_bib0225) 2018; 39 Yang (10.1016/j.apcatb.2020.119174_bib0300) 2016; 8 Liu (10.1016/j.apcatb.2020.119174_bib0145) 2019; 48 Wang (10.1016/j.apcatb.2020.119174_bib0420) 2019; 31 El-Kaderi (10.1016/j.apcatb.2020.119174_bib0535) 2009; 316 Segura (10.1016/j.apcatb.2020.119174_bib0675) 2016; 45 Spitler (10.1016/j.apcatb.2020.119174_bib0400) 2012; 51 Xie (10.1016/j.apcatb.2020.119174_bib0570) 2018; 11 Wu (10.1016/j.apcatb.2020.119174_bib0625) 2015; 44 Bessinger (10.1016/j.apcatb.2020.119174_bib0610) 2017; 139 Luo (10.1016/j.apcatb.2020.119174_bib0710) 2019; 55 Biswal (10.1016/j.apcatb.2020.119174_bib0490) 2013; 135 Wei (10.1016/j.apcatb.2020.119174_bib0720) 2018; 140 Zhou (10.1016/j.apcatb.2020.119174_bib0255) 2012; 45 Wang (10.1016/j.apcatb.2020.119174_bib0575) 2017; 56 Stegbauer (10.1016/j.apcatb.2020.119174_bib0620) 2018; 8 Jiang (10.1016/j.apcatb.2020.119174_bib0680) 2016; 138 Niu (10.1016/j.apcatb.2020.119174_bib0375) 2006; 128 Li (10.1016/j.apcatb.2020.119174_bib0185) 2019; 245 Ren (10.1016/j.apcatb.2020.119174_bib0465) 2012; 24 Afshari (10.1016/j.apcatb.2020.119174_bib0430) 2020; 385 Jin (10.1016/j.apcatb.2020.119174_bib0755) 2018; 9 Zhang (10.1016/j.apcatb.2020.119174_bib0095) 2016; 55 Peng (10.1016/j.apcatb.2020.119174_bib0685) 2018; 30 Liu (10.1016/j.apcatb.2020.119174_bib0585) 2018; 57 Li (10.1016/j.apcatb.2020.119174_bib0735) 2018; 57 Rao (10.1016/j.apcatb.2020.119174_bib0350) 2017; 139 Kaur (10.1016/j.apcatb.2020.119174_bib0130) 2011; 1 Schwinghammer (10.1016/j.apcatb.2020.119174_bib0560) 2015; 8 Ding (10.1016/j.apcatb.2020.119174_bib0280) 2012; 48 Côté (10.1016/j.apcatb.2020.119174_bib0370) 2005; 310 Hu (10.1016/j.apcatb.2020.119174_bib0060) 2005; 44 Wang (10.1016/j.apcatb.2020.119174_bib0345) 2018; 8 Ma (10.1016/j.apcatb.2020.119174_bib0050) 2008; 260 Liu (10.1016/j.apcatb.2020.119174_bib0305) 2018; 10 Meier (10.1016/j.apcatb.2020.119174_bib0170) 2017; 126 Jin (10.1016/j.apcatb.2020.119174_bib0230) 2013; 4 Kuhn (10.1016/j.apcatb.2020.119174_bib0520) 2008; 47 Liu (10.1016/j.apcatb.2020.119174_bib0580) 2019; 31 Auras (10.1016/j.apcatb.2020.119174_bib0605) 2016; 138 Wang (10.1016/j.apcatb.2020.119174_bib0150) 2019; 48 Das (10.1016/j.apcatb.2020.119174_bib0485) 2014; 50 Chaoui (10.1016/j.apcatb.2020.119174_bib0630) 2017; 46 Yang (10.1016/j.apcatb.2020.119174_bib0510) 2012; 2 Zhang (10.1016/j.apcatb.2020.119174_bib0005) 2016; 138 Ding (10.1016/j.apcatb.2020.119174_bib0220) 2013; 42 Zhong (10.1016/j.apcatb.2020.119174_bib0545) 2019; 141 Zhang (10.1016/j.apcatb.2020.119174_bib0690) 2018; 57 Zhang (10.1016/j.apcatb.2020.119174_bib0770) 2020; 59 Zhang (10.1016/j.apcatb.2020.119174_bib0155) 2019; 48 Hu (10.1016/j.apcatb.2020.119174_bib0385) 2019; 11 Wang (10.1016/j.apcatb.2020.119174_bib0090) 2009; 131 Li (10.1016/j.apcatb.2020.119174_bib0340) 2016; 138 Huang (10.1016/j.apcatb.2020.119174_bib0140) 2016; 1 Preet (10.1016/j.apcatb.2020.119174_bib0715) 2019; 19 Schwab (10.1016/j.apcatb.2020.119174_bib0165) 2010; 46 Lyu (10.1016/j.apcatb.2020.119174_bib0480) 2017; 5 Kuecken (10.1016/j.apcatb.2020.119174_bib0565) 2017; 53 Elseman (10.1016/j.apcatb.2020.119174_bib0475) 2016; 4 Hug (10.1016/j.apcatb.2020.119174_bib0555) 2012; 22 Zhang (10.1016/j.apcatb.2020.119174_bib0105) 2015; 5 Lin (10.1016/j.apcatb.2020.119174_bib0780) 2017; 139 Lei (10.1016/j.apcatb.2020.119174_bib0790) 2020; 13 Jiang (10.1016/j.apcatb.2020.119174_bib0650) 2018; 11 Gurney (10.1016/j.apcatb.2020.119174_bib0010) 2009; 43 Yang (10.1016/j.apcatb.2020.119174_bib0245) 2018; 140 Torben (10.1016/j.apcatb.2020.119174_bib0240) 2018; 140 Wang (10.1016/j.apcatb.2020.119174_bib0180) 2018; 10 Suslick (10.1016/j.apcatb.2020.119174_bib0495) 1986; 108 Thote (10.1016/j.apcatb.2020.119174_bib0645) 2014; 20 Zhu (10.1016/j.apcatb.2020.119174_bib0655) 2018; 18 Han (10.1016/j.apcatb.2020.119174_bib0030) 2015; 36 Ajayaghosh (10.1016/j.apcatb.2020.119174_bib0270) 2003; 32 Zhao (10.1016/j.apcatb.2020.119174_bib0355) 2019; 58 Gong (10.1016/j.apcatb.2020.119174_bib0035) 2016; 52 Yao (10.1016/j.apcatb.2020.119174_bib0705) 2019; 554 Yang (10.1016/j.apcatb.2020.119174_bib0390) 2017; 162 Huang (10.1016/j.apcatb.2020.119174_bib0135) 2017; 8 Spitler (10.1016/j.apcatb.2020.119174_bib0410) 2011; 133 Zhang (10.1016/j.apcatb.2020.119174_bib0365) 2018; 10 Zhang (10.1016/j.apcatb.2020.119174_bib0045) 2017; 2017 Kenji (10.1016/j.apcatb.2020.119174_bib0665) 2011; 50 He (10.1016/j.apcatb.2020.119174_bib0795) 2017; 53 He (10.1016/j.apcatb.2020.119174_bib0595) 2018; 239 Shi (10.1016/j.apcatb.2020.119174_bib0640) 2018; 1 Yoshida (10.1016/j.apcatb.2020.119174_bib0065) 2009; 131 Chen (10.1016/j.apcatb.2020.119174_bib0415) 2019; 11 Tsuji (10.1016/j.apcatb.2020.119174_bib0075) 2004; 126 Low (10.1016/j.apcatb.2020.119174_bib0080) 2017; 29 Uribe-Romo (10.1016/j.apcatb.2020.119174_bib0395) 2009; 131 Clarke (10.1016/j.apcatb.2020.119174_bib0325) 2010; 110 Wang (10.1016/j.apcatb.2020.119174_bib0015) 2014; 43 Sprick (10.1016/j.apcatb.2020.119174_bib0335) 2015; 137 Feng (10.1016/j.apcatb.2020.119174_bib0440) 2011; 47 Li (10.1016/j.apcatb.2020.119174_bib0725) 2017; 9 Bai (10.1016/j.apcatb.2020.119174_bib0540) 2019; 141 Huang (10.1016/j.apcatb.2020.119174_bib0635) 2018; 57 Köhler (10.1016/j.apcatb.2020.119174_bib0235) 2015 Bhadra (10.1016/j.apcatb.2020.119174_bib0250) 2019; 141 Li (10.1016/j.apcatb.2020.119174_bib0695) 2019; 243 Shinde (10.1016/j.apcatb.2020.119174_bib0470) 2016; 4 Ding (10.1016/j.apcatb.2020.119174_bib0160) 2011; 133 Chen (10.1016/j.apcatb.2020.119174_bib0175) 2019; 58 Gao (10.1016/j.apcatb.2020.119174_bib0785) 2020; 12 Guo (10.1016/j.apcatb.2020.119174_bib0125) 2013; 4 Ayed (10.1016/j.apcatb.2020.119174_bib0775) 2020; 14 Yassin (10.1016/j.apcatb.2020.119174_bib0360) 2017; 27 Dogru (10.1016/j.apcatb.2020.119174_bib0405) 2011; 47 Stock (10.1016/j.apcatb.2020.119174_bib0505) 2012; 112 Ghosh (10.1016/j.apcatb.2020.119174_bib0745) 2015; 14 Jin (10.1016/j.apcatb.2020.119174_bib0750) 2017; 357 |
References_xml | – volume: 56 start-page: 14149 year: 2017 end-page: 14153 ident: bib0575 article-title: Covalent triazine frameworks via a low-temperature polycondensation approach publication-title: Angew. Chem. Int. Ed. – volume: 112 start-page: 4875 year: 2008 end-page: 4878 ident: bib0500 article-title: Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound publication-title: J. Phys. Chem. A – volume: 43 start-page: 6250 year: 2004 end-page: 6284 ident: bib0460 article-title: Controlled microwave heating in modern organic synthesis publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 2202 year: 2010 ident: bib0525 article-title: Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity publication-title: Adv. Mater. – volume: 29 start-page: 1601694 year: 2017 end-page: 1601714 ident: bib0080 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. – volume: 46 start-page: 3302 year: 2017 end-page: 3321 ident: bib0630 article-title: Trends and challenges for microporous polymers publication-title: Chem. Soc. Rev. – volume: 140 start-page: 4623 year: 2018 end-page: 4631 ident: bib0615 article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 16466 year: 2006 end-page: 16467 ident: bib0375 article-title: Self-assembling poly(dioxaborole)s as blue-emissive materials publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 12830 year: 2019 end-page: 12837 ident: bib0415 article-title: Stable hydrazone-linked covalent organic frameworks containing O,N,O’-chelating sites for Fe(III) detection in water publication-title: ACS Appl. Mater. Inter. – volume: 4 start-page: 12402 year: 2016 end-page: 12406 ident: bib0600 article-title: Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light publication-title: J. Mater. Chem. A. – volume: 126 start-page: 283 year: 2017 end-page: 290 ident: bib0170 article-title: Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water publication-title: Polymer – volume: 137 start-page: 3241 year: 2015 end-page: 3247 ident: bib0290 article-title: Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 1680 year: 2009 end-page: 1681 ident: bib0090 article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4875 year: 2016 end-page: 4886 ident: bib0475 article-title: Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique publication-title: ACS Sustain. Chem. Eng. – volume: 21 start-page: 897 year: 2018 end-page: 924 ident: bib0215 article-title: Recent advances in visible light-driven water oxidation and reduction in suspension systems publication-title: Mater. Today – volume: 137 start-page: 3265 year: 2015 end-page: 3270 ident: bib0335 article-title: Tunable organic photocatalysts for visible-light-driven hydrogen evolution publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 2421 year: 2017 end-page: 2427 ident: bib0350 article-title: Conjugated covalent organic frameworks via michael addition-elimination publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 607 year: 2012 end-page: 632 ident: bib0255 article-title: Rational design of high performance conjugated polymers for organic solar cells publication-title: Macromolecules – volume: 133 start-page: 19816 year: 2011 end-page: 19822 ident: bib0435 article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 24422 year: 2015 end-page: 24427 ident: bib0530 article-title: Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks publication-title: J. Mater. Chem. A. – volume: 31 start-page: 1807865 year: 2019 ident: bib0580 article-title: Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks publication-title: Adv. Mater. – volume: 135 start-page: 9984 year: 2013 end-page: 9987 ident: bib0670 article-title: Design and preparation of a core-shell metal-organic framework for selective CO publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 5728 year: 2019 end-page: 5731 ident: bib0040 article-title: A composite of single-crystalline Bi publication-title: Chem. Commun. – volume: 14 start-page: 505 year: 2015 end-page: 511 ident: bib0745 article-title: Conducting polymer nanostructures for photocatalysis under visible light publication-title: Nat. Mater. – volume: 316 start-page: 268 year: 2009 end-page: 272 ident: bib0535 article-title: Designed synthesis of 3D covalent organic frameworks publication-title: Science – volume: 10 start-page: 537 year: 2010 end-page: 541 ident: bib0550 article-title: Covalent triazine framework as catalytic support for liquid phase reaction publication-title: Nano Lett. – volume: 43 start-page: 5535 year: 2009 end-page: 5541 ident: bib0010 article-title: High resolution fossil fuel combustion CO publication-title: Environ. Sci. Technol. – volume: 95 start-page: 69 year: 1995 end-page: 96 ident: bib0020 article-title: Environmental applications of semiconductor photocatalysis publication-title: Chem. Rev. – volume: 140 start-page: 14614 year: 2018 end-page: 14618 ident: bib0245 article-title: 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 13956 year: 2012 end-page: 13964 ident: bib0555 article-title: A functional triazine framework based on N-heterocyclic building blocks publication-title: J. Mater. Chem. – volume: 1 start-page: 819 year: 2011 end-page: 835 ident: bib0130 article-title: Porous organic polymers in catalysis: opportunities and challenges publication-title: ACS Catal. – volume: 43 start-page: 5234 year: 2014 end-page: 5244 ident: bib0015 article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances publication-title: Chem. Soc. Rev. – volume: 5 start-page: 9568 year: 2017 end-page: 9585 ident: bib0480 article-title: Ball-milled carbon nanomaterials for energy and environmental applications publication-title: ACS Sustainable Chem. Eng. – volume: 58 start-page: 5376 year: 2019 end-page: 5381 ident: bib0355 article-title: Fully conjugated two-dimensional sp publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 11968 year: 2018 end-page: 11972 ident: bib0585 article-title: Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers publication-title: Angew. Chem. Int. Ed. – volume: 59 start-page: 2 year: 2020 end-page: 10 ident: bib0770 article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 12035 year: 2017 end-page: 12042 ident: bib0610 article-title: Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 13406 year: 2004 end-page: 13413 ident: bib0075 article-title: Photocatalytic H publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 4623 year: 2018 end-page: 4631 ident: bib0720 article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 4314 year: 2014 end-page: 4324 ident: bib0260 article-title: Shining a light on s-Triazine-Based polymers publication-title: J. Phys. Chem. C. – volume: 38 start-page: 253 year: 2009 end-page: 278 ident: bib0730 article-title: Heterogeneous photocatalyst materials for water splitting publication-title: Chem. Soc. Rev. – volume: 53 start-page: 5854 year: 2017 end-page: 5857 ident: bib0565 article-title: Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution publication-title: Chem. Commun. – volume: 357 start-page: 673 year: 2017 end-page: 676 ident: bib0750 article-title: Two dimensional sp publication-title: Science – volume: 8 start-page: 2404 year: 2020 end-page: 2411 ident: bib0765 article-title: Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity publication-title: J. Mater. Chem. A. – volume: 4 start-page: 7555 year: 2016 end-page: 7559 ident: bib0275 article-title: Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity publication-title: J. Mater. Chem. A – volume: 31 start-page: 7104 year: 2019 end-page: 7111 ident: bib0420 article-title: Pathway complexity in the stacking of imine-linked macrocycles related to two-dimensional covalent organic frameworks publication-title: Chem. Mater. – volume: 14 start-page: 397 year: 2020 end-page: 404 ident: bib0775 article-title: Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media publication-title: Front. Chem. Sci. Eng. – volume: 21 start-page: 204 year: 2009 end-page: 206 ident: bib0450 article-title: Rapid microwave synthesis and purification of porous covalent organic frameworks publication-title: Chem. Mater. – volume: 48 start-page: 5266 year: 2019 end-page: 5302 ident: bib0145 article-title: Recent advances in covalent organic frameworks (COFs) as a smart sensing material publication-title: Chem. Soc. Rev. – volume: 138 start-page: 5785 year: 2016 end-page: 5788 ident: bib0005 article-title: Preparation of nanofibrous metal-organic framework filters for efficient air pollution control publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 1289 year: 2011 end-page: 1293 ident: bib0310 article-title: Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 2789 year: 2014 end-page: 2793 ident: bib0455 article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production publication-title: Chem. Sci. – volume: 8 start-page: 5366 year: 2016 end-page: 5375 ident: bib0300 article-title: High conductive two-dimensional covalent organic framework for lithium storage with large capacity publication-title: ACS Appl. Mater. Inter. – volume: 39 start-page: 1167 year: 2018 end-page: 1179 ident: bib0225 article-title: Covalent organic frameworks as heterogeneous catalysts publication-title: Chinese J. Catal. – volume: 11 start-page: 1617 year: 2018 end-page: 1624 ident: bib0570 article-title: Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework publication-title: Energy Environ. Sci. – volume: 239 start-page: 147 year: 2018 end-page: 153 ident: bib0595 article-title: Targeted synthesis of visible-light-driven covalent organic framework photocatalyst via molecular design and precise construction publication-title: Appl. Catal. B – volume: 11 start-page: 1108 year: 2018 end-page: 1113 ident: bib0650 article-title: MoS publication-title: ChemSusChem. – volume: 138 start-page: 10260 year: 2016 end-page: 10264 ident: bib0085 article-title: Water splitting and CO publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1404 year: 2020 end-page: 1411 ident: bib0785 article-title: Water-soluble 3D covalent organic framework that displays an enhanced enrichment effect of photosensitizers and catalysts for the reduction of protons to H publication-title: ACS Appl. Mater. Interfaces – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: bib0370 article-title: Porous, Crystalline, covalent organic frameworks publication-title: Science – volume: 13 start-page: 1725 year: 2020 end-page: 1729 ident: bib0790 article-title: A metal-free donor-acceptor covalent organic framework photocatalyst for visible-light-driven reduction of CO publication-title: ChemSusChem. – volume: 260 start-page: 134 year: 2008 end-page: 140 ident: bib0050 article-title: Direct splitting of H publication-title: J. Catal. – volume: 4 start-page: 2736 year: 2013 ident: bib0125 article-title: Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds publication-title: Nat. Commun. – volume: 138 start-page: 3255 year: 2016 end-page: 3265 ident: bib0680 article-title: Covalent chemistry beyond molecules publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 9636 year: 2017 end-page: 9639 ident: bib0795 article-title: Construction of a superior visible-light-driven photocatalyst based on a C publication-title: Chem. Commun. – volume: 47 start-page: 1707 year: 2011 end-page: 1709 ident: bib0405 article-title: A covalent organic framework with 4 nm open pores publication-title: Chem. Commun – volume: 2017 start-page: 2990 year: 2017 end-page: 2997 ident: bib0045 article-title: The controllable synthesis of octadecahedral BiVO publication-title: Eur. J. Inorg. Chem. – volume: 44 start-page: 1269 year: 2005 end-page: 1273 ident: bib0060 article-title: Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 8316 year: 2018 end-page: 8320 ident: bib0635 article-title: Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade publication-title: Angew. Chem. Int. Ed – volume: 48 start-page: 5439 year: 2009 end-page: 5442 ident: bib0330 article-title: A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 19416 year: 2011 end-page: 19421 ident: bib0410 article-title: A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 8952 year: 2012 end-page: 8954 ident: bib0280 article-title: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions publication-title: Chem. Commun. – volume: 138 start-page: 16703 year: 2016 end-page: 16710 ident: bib0605 article-title: Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 2119 year: 2015 end-page: 2126 ident: bib0030 article-title: Fabrication of a Bi publication-title: Chinese J. Catal. – volume: 8 start-page: 3345 year: 2015 end-page: 3353 ident: bib0560 article-title: Phenyl-triazine oligomers for light-driven hydrogen evolution publication-title: Energy Environ. Sci. – volume: 8 year: 2018 ident: bib0620 article-title: Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation publication-title: Adv. Energy Mater. – volume: 4 start-page: 2682 year: 2016 end-page: 2690 ident: bib0470 article-title: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte publication-title: J. Mater. Chem. A. – volume: 46 start-page: 8932 year: 2010 end-page: 8934 ident: bib0165 article-title: Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks publication-title: Chem. Commun. – volume: 1 start-page: 16068 year: 2016 ident: bib0140 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: Nat. Rev. Mater. – volume: 20 start-page: 15961 year: 2014 end-page: 15965 ident: bib0645 article-title: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production publication-title: Chem. Eur. J. – volume: 1 start-page: 7007 year: 2018 end-page: 7013 ident: bib0640 article-title: Pyrene-based covalent organic polymers for enhanced photovoltaic performance and solar-driven hydrogen production publication-title: ACS Appl. Energy Mater. – volume: 32 start-page: 181 year: 2003 end-page: 191 ident: bib0270 article-title: Donor-acceptor type low band gap polymers: polysquaraines and related systems publication-title: Chem. Soc. Rev. – volume: 9 start-page: 4143 year: 2018 ident: bib0755 article-title: Designed synthesis of stable light-emitting two-dimensional sp publication-title: Nat. Commun. – volume: 52 start-page: 11979 year: 2016 end-page: 11982 ident: bib0035 article-title: Light-induced spatial separation of charges toward different crystal facets of square-like WO publication-title: Chem. Commun. – volume: 20 start-page: 664 year: 2018 end-page: 670 ident: bib0590 article-title: A sustainable method toward melamine-based conjugated polymer semiconductors for efficient photocatalytic hydrogen production under visible light publication-title: Green Chem. – volume: 6 start-page: 1 year: 2015 end-page: 9 ident: bib0115 article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation publication-title: Nat.Commun. – volume: 27 year: 2017 ident: bib0360 article-title: Structure-thermodynamic-property relationships in cyanovinyl-based microporous polymer networks for the future design of advanced carbon capture materials publication-title: Adv. Funct. Mater. – volume: 112 start-page: 933 year: 2012 end-page: 969 ident: bib0505 article-title: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites publication-title: Chem. Rev. – volume: 48 start-page: 3811 year: 2019 end-page: 3841 ident: bib0155 article-title: Ultrathin metal/covalent-organic framework membranes towards ultimate separation publication-title: Chem. Soc. Rev. – volume: 8 start-page: 5438 year: 2017 end-page: 5442 ident: bib0135 article-title: Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework publication-title: ACS Catal. – volume: 331 start-page: 746 year: 2011 end-page: 750 ident: bib0025 article-title: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals publication-title: Sci. – volume: 2 start-page: 10179 year: 2012 end-page: 10181 ident: bib0510 article-title: Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method publication-title: RSC Adv. – volume: 65 start-page: 113 year: 2020 end-page: 122 ident: bib0760 article-title: Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light publication-title: Sci. Bull. – year: 2015 ident: bib0235 article-title: Electronic Processes in Organic Semiconductors – volume: 61 start-page: 115 year: 2014 end-page: 126 ident: bib0265 article-title: Review on the recent progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells publication-title: J. Chin. Chem. Soc. – volume: 138 start-page: 7681 year: 2016 end-page: 7686 ident: bib0340 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2681 year: 2015 end-page: 2691 ident: bib0105 article-title: Main-Chain organic frameworks with advanced catalytic functionalities publication-title: ACS Catal. – volume: 11 start-page: 23072 year: 2019 end-page: 23082 ident: bib0385 article-title: Monodispersed CuSe sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy publication-title: ACS Appl. Mater. Inter. – volume: 245 start-page: 334 year: 2019 end-page: 342 ident: bib0185 article-title: Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light publication-title: Appl. Catal. B – volume: 130 start-page: 7176 year: 2008 end-page: 7177 ident: bib0055 article-title: Enhancement of photocatalytic H publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 22933 year: 2017 end-page: 22938 ident: bib0205 article-title: Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations publication-title: J. Mater. Chem. A. – volume: 139 start-page: 8705 year: 2017 end-page: 8709 ident: bib0780 article-title: 3D porphyrin-based covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2618 year: 2012 end-page: 2622 ident: bib0315 article-title: High-Rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 10828 year: 2018 end-page: 108342 ident: bib0740 article-title: Photocatalytic hydrogen production with conjugated polymers as photosensitizers publication-title: ACS Appl. Mater. Inter. – volume: 140 start-page: 2085 year: 2018 end-page: 2092 ident: bib0240 article-title: Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2623 year: 2012 end-page: 2627 ident: bib0400 article-title: Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films publication-title: Angew. Chem. Int. Ed. – volume: 385 year: 2020 ident: bib0430 article-title: Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform publication-title: J. Hazard. Mater. – volume: 58 start-page: 6430 year: 2019 end-page: 6434 ident: bib0175 article-title: Designed synthesis of a 2D porphyrin-based sp publication-title: Angew. Chem. Int. Ed. – volume: 369 start-page: 494 year: 2019 end-page: 502 ident: bib0195 article-title: Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants publication-title: J. Hazard. Mater. – volume: 64 start-page: 2280 year: 2019 end-page: 2291 ident: bib0380 article-title: Hydrothermal synthesis of melamine-functionalized covalent organic polymer-blended alginate beads for iron removal from water publication-title: J. Chem. Eng. Data – volume: 141 start-page: 17431 year: 2019 end-page: 17440 ident: bib0425 article-title: A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO publication-title: J. Am. Chem. Soc. – volume: 31 year: 2020 ident: bib0070 article-title: Nb-doped TiO publication-title: Nanotechnology – volume: 6 start-page: 1621 year: 2018 end-page: 1629 ident: bib0120 article-title: Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance publication-title: J. Mater. Chem. A. – volume: 8 start-page: 8590 year: 2018 end-page: 8596 ident: bib0345 article-title: Dibenzothiophene dioxide based conjugated microporous polymers for visible-light-driven hydrogen production publication-title: ACS Catal. – volume: 4 start-page: 4505 year: 2013 end-page: 4511 ident: bib0230 article-title: Large pore donor-acceptor covalent organic frameworks publication-title: Chem. Sci. – volume: 52 start-page: 3770 year: 2013 end-page: 3774 ident: bib0295 article-title: A squaraine-linked mesoporous covalent organic framework publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 14510 year: 2011 end-page: 14513 ident: bib0160 article-title: An n-channel two-dimensional covalent organic framework publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 8057 year: 2011 end-page: 8061 ident: bib0665 article-title: Sequential functionalization of porous coordination polymer crystals publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 9063 year: 2019 end-page: 9071 ident: bib0540 article-title: Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 7615 year: 2019 end-page: 7621 ident: bib0545 article-title: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 15712 year: 2016 end-page: 15727 ident: bib0095 article-title: Conjugated polymers: catalysts for photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 12615 year: 2014 end-page: 12618 ident: bib0485 article-title: Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding publication-title: Chem. Commun. – volume: 42 start-page: 548 year: 2013 end-page: 568 ident: bib0220 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. – volume: 243 start-page: 621 year: 2019 end-page: 628 ident: bib0695 article-title: Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modifcation: an efcient strategy to boost the visible-light-driven photocatalytic performance publication-title: Appl. Catal. B – volume: 44 start-page: 1113 year: 2015 end-page: 1154 ident: bib0625 article-title: Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1180 year: 2018 end-page: 1189 ident: bib0180 article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water publication-title: Nat. Chem. – volume: 55 start-page: 5829 year: 2019 end-page: 5832 ident: bib0710 article-title: Boosting photocatalytic H publication-title: Chem. Commun. – volume: 16 start-page: 3292 year: 2016 end-page: 3300 ident: bib0515 article-title: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries publication-title: Nano Lett. – volume: 18 start-page: 883 year: 2018 end-page: 891 ident: bib0655 article-title: Covalent triazine framework modified BiOBr nanoflake with enhanced photocatalytic activity for antibiotic removal publication-title: Cryst. Growth Des. – volume: 30 start-page: 1705454 year: 2018 ident: bib0685 article-title: Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials publication-title: Adv. Mater. – volume: 9 start-page: 24577 year: 2017 end-page: 24583 ident: bib0725 article-title: Enhanced photocarrier separation in hierarchical graphitic-C publication-title: ACS Appl. Mater. Inter. – volume: 57 start-page: 3222 year: 2018 end-page: 3227 ident: bib0735 article-title: Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution publication-title: Angew. Chem., Int. Ed. – volume: 554 start-page: 376 year: 2019 end-page: 387 ident: bib0705 article-title: Metal-free catalysts of graphitic carbon nitride-covalent organic frameworks for efficient pollutant destruction in water publication-title: J. Colloid Inter. Sci. – volume: 47 start-page: 1979 year: 2011 end-page: 1981 ident: bib0440 article-title: Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters publication-title: Chem. Commun. – volume: 48 start-page: 488 year: 2019 end-page: 516 ident: bib0150 article-title: Recent progress in covalent organic framework thin films: fabrications, applications and perspectives publication-title: Chem. Soc. Rev. – volume: 3 start-page: 400 year: 2018 end-page: 409 ident: bib0100 article-title: H publication-title: ACS Energy Lett. – volume: 217 start-page: 599 year: 2016 end-page: 604 ident: bib0285 article-title: Iron(III) Porphyrin-based porous material as photocatalyst for highly efficient and selective degradation of congo red publication-title: Macromol. Chem. Phys. – volume: 13 start-page: 13975 year: 2011 end-page: 13983 ident: bib0445 article-title: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 6152 year: 2019 end-page: 6156 ident: bib0250 article-title: Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z Isomerization of olefins publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 5635 year: 2016 end-page: 5671 ident: bib0675 article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications publication-title: Chem. Soc. Rev. – volume: 13 start-page: 1674 year: 2018 end-page: 1677 ident: bib0700 article-title: Embedding carbon nitride into a covalent organic framework with enhanced photocatalysis performance publication-title: Chem. Asian J. – volume: 19 start-page: 2525 year: 2019 end-page: 2530 ident: bib0715 article-title: Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye publication-title: Cryst. Growth Des. – volume: 3 start-page: 7750 year: 2015 end-page: 7758 ident: bib0110 article-title: 2D covalent triazine framework: a new class of organic photocatalyst for water splitting publication-title: J.Mater.Chem. A – volume: 162 start-page: 33 year: 2017 end-page: 40 ident: bib0390 article-title: Covalent organic polymer modified TiO publication-title: Chem. Eng. Sci. – volume: 10 start-page: 43595 year: 2018 end-page: 43602 ident: bib0365 article-title: Insights into high conductivity of the two-dimensional iodine-oxidized sp publication-title: ACS Appl. Mater. Inter. – volume: 10 start-page: 30698 year: 2018 end-page: 30705 ident: bib0305 article-title: Ultrastable and efficient visible-light-driven hydrogen production based on donor-acceptor copolymerized covalent organic polymer publication-title: ACS Appl. Mater. Inter. – volume: 110 start-page: 6736 year: 2010 end-page: 6767 ident: bib0325 article-title: Charge photogeneration in organic solar cells publication-title: Chem. Rev. – volume: 131 start-page: 4570 year: 2009 end-page: 4571 ident: bib0395 article-title: A crystalline imine-linked 3-D porous covalent organic framework publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 3450 year: 2008 end-page: 3453 ident: bib0520 article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 9413 year: 2016 end-page: 9418 ident: bib0200 article-title: A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO publication-title: J. Mater. Chem. A. – volume: 24 start-page: 2357 year: 2012 end-page: 2361 ident: bib0465 article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis publication-title: Adv. Mater. – volume: 138 start-page: 4330 year: 2016 end-page: 4333 ident: bib0210 article-title: A titanium-organic framework as an exemplar of combining the chemistry of metal-and covalent-organic frameworks publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 8952 year: 2012 end-page: 8954 ident: bib0320 article-title: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions publication-title: Chem. Commun. – volume: 135 start-page: 5328 year: 2013 end-page: 5331 ident: bib0490 article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 12106 year: 2018 end-page: 12110 ident: bib0690 article-title: Rational design of MOF/COF hybrid materials for photocatalytic H publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 13218 year: 2009 end-page: 13219 ident: bib0065 article-title: ATR-SEIRAS investigation of the fermi Level of Pt cocatalyst on a GaN photocatalyst for hydrogen evolution under irradiation publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 13563 year: 2018 end-page: 13566 ident: bib0660 article-title: Encapsulating [Mo publication-title: Chem. Commun. – volume: 36 start-page: 1799 year: 2015 end-page: 1805 ident: bib0190 article-title: Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water publication-title: Macromol. Rapid Commun. – volume: 108 start-page: 5641 year: 1986 end-page: 5642 ident: bib0495 article-title: Sonochemical hot spot publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 505 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0745 article-title: Conducting polymer nanostructures for photocatalysis under visible light publication-title: Nat. Mater. doi: 10.1038/nmat4220 – volume: 11 start-page: 23072 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0385 article-title: Monodispersed CuSe sensitized covalent organic framework photosensitizer with an enhanced photodynamic and photothermal effect for cancer therapy publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.9b08394 – volume: 95 start-page: 69 year: 1995 ident: 10.1016/j.apcatb.2020.119174_bib0020 article-title: Environmental applications of semiconductor photocatalysis publication-title: Chem. Rev. doi: 10.1021/cr00033a004 – volume: 45 start-page: 5635 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0675 article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00878F – volume: 10 start-page: 43595 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0365 article-title: Insights into high conductivity of the two-dimensional iodine-oxidized sp2-c-COF publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b14446 – volume: 4 start-page: 2682 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0470 article-title: A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA10521H – volume: 131 start-page: 13218 year: 2009 ident: 10.1016/j.apcatb.2020.119174_bib0065 article-title: ATR-SEIRAS investigation of the fermi Level of Pt cocatalyst on a GaN photocatalyst for hydrogen evolution under irradiation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904991p – volume: 13 start-page: 1725 year: 2020 ident: 10.1016/j.apcatb.2020.119174_bib0790 article-title: A metal-free donor-acceptor covalent organic framework photocatalyst for visible-light-driven reduction of CO2 with H2O publication-title: ChemSusChem. doi: 10.1002/cssc.201903545 – volume: 43 start-page: 6250 year: 2004 ident: 10.1016/j.apcatb.2020.119174_bib0460 article-title: Controlled microwave heating in modern organic synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200400655 – volume: 20 start-page: 664 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0590 article-title: A sustainable method toward melamine-based conjugated polymer semiconductors for efficient photocatalytic hydrogen production under visible light publication-title: Green Chem. doi: 10.1039/C7GC02231J – volume: 138 start-page: 4330 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0210 article-title: A titanium-organic framework as an exemplar of combining the chemistry of metal-and covalent-organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01233 – volume: 52 start-page: 11979 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0035 article-title: Light-induced spatial separation of charges toward different crystal facets of square-like WO3 publication-title: Chem. Commun. doi: 10.1039/C6CC06363B – volume: 51 start-page: 2618 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0315 article-title: High-Rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201106203 – volume: 128 start-page: 16466 year: 2006 ident: 10.1016/j.apcatb.2020.119174_bib0375 article-title: Self-assembling poly(dioxaborole)s as blue-emissive materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065986c – volume: 31 start-page: 1807865 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0580 article-title: Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks publication-title: Adv. Mater. doi: 10.1002/adma.201807865 – volume: 140 start-page: 2085 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0240 article-title: Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06081 – volume: 138 start-page: 3255 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0680 article-title: Covalent chemistry beyond molecules publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10666 – volume: 61 start-page: 115 year: 2014 ident: 10.1016/j.apcatb.2020.119174_bib0265 article-title: Review on the recent progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells publication-title: J. Chin. Chem. Soc. doi: 10.1002/jccs.201300333 – volume: 55 start-page: 15712 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0095 article-title: Conjugated polymers: catalysts for photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607375 – volume: 1 start-page: 819 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0130 article-title: Porous organic polymers in catalysis: opportunities and challenges publication-title: ACS Catal. doi: 10.1021/cs200131g – volume: 51 start-page: 2623 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0400 article-title: Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107070 – volume: 21 start-page: 204 year: 2009 ident: 10.1016/j.apcatb.2020.119174_bib0450 article-title: Rapid microwave synthesis and purification of porous covalent organic frameworks publication-title: Chem. Mater. doi: 10.1021/cm802981m – volume: 141 start-page: 17431 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0425 article-title: A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09502 – volume: 141 start-page: 6152 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0250 article-title: Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z Isomerization of olefins publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01891 – volume: 139 start-page: 2421 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0350 article-title: Conjugated covalent organic frameworks via michael addition-elimination publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12005 – volume: 22 start-page: 13956 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0555 article-title: A functional triazine framework based on N-heterocyclic building blocks publication-title: J. Mater. Chem. doi: 10.1039/c2jm31248d – volume: 9 start-page: 4143 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0755 article-title: Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks publication-title: Nat. Commun. doi: 10.1038/s41467-018-06719-8 – volume: 21 start-page: 897 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0215 article-title: Recent advances in visible light-driven water oxidation and reduction in suspension systems publication-title: Mater. Today doi: 10.1016/j.mattod.2018.04.009 – volume: 2 start-page: 10179 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0510 article-title: Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method publication-title: RSC Adv. doi: 10.1039/c2ra21531d – volume: 133 start-page: 14510 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0160 article-title: An n-channel two-dimensional covalent organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2052396 – volume: 140 start-page: 4623 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0720 article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00571 – volume: 108 start-page: 5641 year: 1986 ident: 10.1016/j.apcatb.2020.119174_bib0495 article-title: Sonochemical hot spot publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00278a055 – volume: 24 start-page: 2357 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0465 article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis publication-title: Adv. Mater. doi: 10.1002/adma.201200751 – volume: 55 start-page: 5829 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0710 article-title: Boosting photocatalytic H2 evolution on g-C3N4 by modifying covalent organic frameworks (COFs) publication-title: Chem. Commun. doi: 10.1039/C9CC02144B – volume: 131 start-page: 4570 year: 2009 ident: 10.1016/j.apcatb.2020.119174_bib0395 article-title: A crystalline imine-linked 3-D porous covalent organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8096256 – volume: 139 start-page: 12035 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0610 article-title: Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06599 – volume: 31 start-page: 7104 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0420 article-title: Pathway complexity in the stacking of imine-linked macrocycles related to two-dimensional covalent organic frameworks publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03088 – volume: 5 start-page: 22933 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0205 article-title: Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA07691F – volume: 14 start-page: 397 year: 2020 ident: 10.1016/j.apcatb.2020.119174_bib0775 article-title: Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-019-1884-2 – volume: 4 start-page: 12402 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0600 article-title: Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA04711D – volume: 57 start-page: 11968 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0585 article-title: Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806664 – volume: 56 start-page: 14149 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0575 article-title: Covalent triazine frameworks via a low-temperature polycondensation approach publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708548 – volume: 369 start-page: 494 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0195 article-title: Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.02.046 – volume: 217 start-page: 599 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0285 article-title: Iron(III) Porphyrin-based porous material as photocatalyst for highly efficient and selective degradation of congo red publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201500404 – volume: 10 start-page: 10828 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0740 article-title: Photocatalytic hydrogen production with conjugated polymers as photosensitizers publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b18917 – volume: 5 start-page: 9568 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0480 article-title: Ball-milled carbon nanomaterials for energy and environmental applications publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b02170 – volume: 27 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0360 article-title: Structure-thermodynamic-property relationships in cyanovinyl-based microporous polymer networks for the future design of advanced carbon capture materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700233 – volume: 316 start-page: 268 year: 2009 ident: 10.1016/j.apcatb.2020.119174_bib0535 article-title: Designed synthesis of 3D covalent organic frameworks publication-title: Science doi: 10.1126/science.1139915 – volume: 50 start-page: 1289 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0310 article-title: Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005919 – volume: 36 start-page: 1799 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0190 article-title: Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201500270 – volume: 52 start-page: 3770 year: 2013 ident: 10.1016/j.apcatb.2020.119174_bib0295 article-title: A squaraine-linked mesoporous covalent organic framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300256 – volume: 31 year: 2020 ident: 10.1016/j.apcatb.2020.119174_bib0070 article-title: Nb-doped TiO2 support with enhanced durability as a cathode for polymer electrolyte membrane fuel cells publication-title: Nanotechnology doi: 10.1088/1361-6528/ab4a3f – volume: 133 start-page: 19416 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0410 article-title: A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206242v – volume: 4 start-page: 4505 year: 2013 ident: 10.1016/j.apcatb.2020.119174_bib0230 article-title: Large pore donor-acceptor covalent organic frameworks publication-title: Chem. Sci. doi: 10.1039/c3sc52034j – volume: 48 start-page: 3811 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0155 article-title: Ultrathin metal/covalent-organic framework membranes towards ultimate separation publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00322C – volume: 131 start-page: 1680 year: 2009 ident: 10.1016/j.apcatb.2020.119174_bib0090 article-title: Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809307s – volume: 46 start-page: 3302 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0630 article-title: Trends and challenges for microporous polymers publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00071E – volume: 9 start-page: 24577 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0725 article-title: Enhanced photocarrier separation in hierarchical graphitic-C3N4-supported CuInS2 for noble-metal-free Z-scheme photocatalytic water splitting publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b06030 – volume: 43 start-page: 5234 year: 2014 ident: 10.1016/j.apcatb.2020.119174_bib0015 article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00126E – volume: 162 start-page: 33 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0390 article-title: Covalent organic polymer modified TiO2 nanosheets as highly efficient photocatalysts for hydrogen generation publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.12.071 – volume: 47 start-page: 1707 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0405 article-title: A covalent organic framework with 4 nm open pores publication-title: Chem. Commun doi: 10.1039/c0cc03792c – volume: 50 start-page: 8057 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0665 article-title: Sequential functionalization of porous coordination polymer crystals publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101924 – volume: 4 start-page: 7555 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0275 article-title: Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01828A – volume: 58 start-page: 5376 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0355 article-title: Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901194 – volume: 554 start-page: 376 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0705 article-title: Metal-free catalysts of graphitic carbon nitride-covalent organic frameworks for efficient pollutant destruction in water publication-title: J. Colloid Inter. Sci. doi: 10.1016/j.jcis.2019.07.002 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0115 article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation publication-title: Nat.Commun. doi: 10.1038/ncomms9508 – volume: 48 start-page: 8952 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0320 article-title: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions publication-title: Chem. Commun. doi: 10.1039/c2cc33929c – volume: 1 start-page: 16068 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0140 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 112 start-page: 4875 year: 2008 ident: 10.1016/j.apcatb.2020.119174_bib0500 article-title: Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound publication-title: J. Phys. Chem. A doi: 10.1021/jp802640x – volume: 44 start-page: 1113 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0625 article-title: Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00250D – volume: 13 start-page: 13975 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0445 article-title: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203807h – volume: 133 start-page: 19816 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0435 article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206846p – volume: 16 start-page: 3292 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0515 article-title: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00870 – volume: 138 start-page: 10260 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0085 article-title: Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05304 – volume: 44 start-page: 1269 year: 2005 ident: 10.1016/j.apcatb.2020.119174_bib0060 article-title: Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462057 – volume: 64 start-page: 2280 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0380 article-title: Hydrothermal synthesis of melamine-functionalized covalent organic polymer-blended alginate beads for iron removal from water publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.8b01085 – volume: 112 start-page: 933 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0505 article-title: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites publication-title: Chem. Rev. doi: 10.1021/cr200304e – volume: 2017 start-page: 2990 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0045 article-title: The controllable synthesis of octadecahedral BiVO4 with exposed {111} facets publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201700165 – volume: 32 start-page: 181 year: 2003 ident: 10.1016/j.apcatb.2020.119174_bib0270 article-title: Donor-acceptor type low band gap polymers: polysquaraines and related systems publication-title: Chem. Soc. Rev. doi: 10.1039/B204251G – volume: 4 start-page: 2736 year: 2013 ident: 10.1016/j.apcatb.2020.119174_bib0125 article-title: Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds publication-title: Nat. Commun. doi: 10.1038/ncomms3736 – year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0235 – volume: 138 start-page: 7681 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0340 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03472 – volume: 59 start-page: 2 year: 2020 ident: 10.1016/j.apcatb.2020.119174_bib0770 article-title: Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 6430 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0175 article-title: Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902543 – volume: 135 start-page: 9984 year: 2013 ident: 10.1016/j.apcatb.2020.119174_bib0670 article-title: Design and preparation of a core-shell metal-organic framework for selective CO2 capture publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403008j – volume: 137 start-page: 3265 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0335 article-title: Tunable organic photocatalysts for visible-light-driven hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511552k – volume: 10 start-page: 30698 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0305 article-title: Ultrastable and efficient visible-light-driven hydrogen production based on donor-acceptor copolymerized covalent organic polymer publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b10022 – volume: 118 start-page: 4314 year: 2014 ident: 10.1016/j.apcatb.2020.119174_bib0260 article-title: Shining a light on s-Triazine-Based polymers publication-title: J. Phys. Chem. C. doi: 10.1021/jp411854f – volume: 239 start-page: 147 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0595 article-title: Targeted synthesis of visible-light-driven covalent organic framework photocatalyst via molecular design and precise construction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.08.005 – volume: 19 start-page: 2525 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0715 article-title: Mechanochemical synthesis of a new triptycene-based imine-linked covalent organic polymer for degradation of organic dye publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00166 – volume: 29 start-page: 1601694 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0080 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201601694 – volume: 8 start-page: 8590 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0345 article-title: Dibenzothiophene dioxide based conjugated microporous polymers for visible-light-driven hydrogen production publication-title: ACS Catal. doi: 10.1021/acscatal.8b02607 – volume: 48 start-page: 5266 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0145 article-title: Recent advances in covalent organic frameworks (COFs) as a smart sensing material publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00299E – volume: 110 start-page: 6736 year: 2010 ident: 10.1016/j.apcatb.2020.119174_bib0325 article-title: Charge photogeneration in organic solar cells publication-title: Chem. Rev. doi: 10.1021/cr900271s – volume: 48 start-page: 488 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0150 article-title: Recent progress in covalent organic framework thin films: fabrications, applications and perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00376A – volume: 141 start-page: 7615 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0545 article-title: A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02997 – volume: 53 start-page: 5854 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0565 article-title: Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution publication-title: Chem. Commun. doi: 10.1039/C7CC01827D – volume: 39 start-page: 1167 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0225 article-title: Covalent organic frameworks as heterogeneous catalysts publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(18)63057-8 – volume: 65 start-page: 113 year: 2020 ident: 10.1016/j.apcatb.2020.119174_bib0760 article-title: Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.015 – volume: 3 start-page: 400 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0100 article-title: H2 evolution with covalent organic framework photocatalysts publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01123 – volume: 10 start-page: 537 year: 2010 ident: 10.1016/j.apcatb.2020.119174_bib0550 article-title: Covalent triazine framework as catalytic support for liquid phase reaction publication-title: Nano Lett. doi: 10.1021/nl904082k – volume: 138 start-page: 16703 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0605 article-title: Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09787 – volume: 138 start-page: 5785 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0005 article-title: Preparation of nanofibrous metal-organic framework filters for efficient air pollution control publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02553 – volume: 18 start-page: 883 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0655 article-title: Covalent triazine framework modified BiOBr nanoflake with enhanced photocatalytic activity for antibiotic removal publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b01367 – volume: 22 start-page: 2202 year: 2010 ident: 10.1016/j.apcatb.2020.119174_bib0525 article-title: Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity publication-title: Adv. Mater. doi: 10.1002/adma.200903436 – volume: 50 start-page: 12615 year: 2014 ident: 10.1016/j.apcatb.2020.119174_bib0485 article-title: Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding publication-title: Chem. Commun. doi: 10.1039/C4CC03389B – volume: 55 start-page: 5728 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0040 article-title: A composite of single-crystalline Bi2WO6 and polycrystalline BiOCl with a high percentage of exposed (00l) facets for highly efficient photocatalytic degradation of organic pollutants publication-title: Chem. Commun. doi: 10.1039/C9CC01732A – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0620 article-title: Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation publication-title: Adv. Energy Mater. – volume: 57 start-page: 12106 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0690 article-title: Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806862 – volume: 53 start-page: 9636 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0795 article-title: Construction of a superior visible-light-driven photocatalyst based on a C3N4 active centrephotoelectron shift platform-electron withdrawing unit triadic structure covalent organic framework publication-title: Chem. Commun. doi: 10.1039/C7CC04515H – volume: 3 start-page: 24422 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0530 article-title: Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA07408H – volume: 126 start-page: 283 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0170 article-title: Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water publication-title: Polymer doi: 10.1016/j.polymer.2017.04.017 – volume: 357 start-page: 673 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0750 article-title: Two dimensional sp2 carbon-conjugated covalent organic frameworks publication-title: Science doi: 10.1126/science.aan0202 – volume: 48 start-page: 8952 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0280 article-title: Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions publication-title: Chem. Commun. doi: 10.1039/c2cc33929c – volume: 8 start-page: 2404 year: 2020 ident: 10.1016/j.apcatb.2020.119174_bib0765 article-title: Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA13212K – volume: 8 start-page: 5438 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0135 article-title: Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework publication-title: ACS Catal. doi: 10.1021/acscatal.7b01719 – volume: 8 start-page: 5366 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0300 article-title: High conductive two-dimensional covalent organic framework for lithium storage with large capacity publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.5b12370 – volume: 140 start-page: 14614 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0245 article-title: 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09705 – volume: 137 start-page: 3241 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0290 article-title: Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509602c – volume: 54 start-page: 13563 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0660 article-title: Encapsulating [Mo3S13]2− clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst publication-title: Chem. Commun. doi: 10.1039/C8CC07784C – volume: 13 start-page: 1674 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0700 article-title: Embedding carbon nitride into a covalent organic framework with enhanced photocatalysis performance publication-title: Chem. Asian J. doi: 10.1002/asia.201800506 – volume: 11 start-page: 12830 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0415 article-title: Stable hydrazone-linked covalent organic frameworks containing O,N,O’-chelating sites for Fe(III) detection in water publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.9b02640 – volume: 139 start-page: 8705 year: 2017 ident: 10.1016/j.apcatb.2020.119174_bib0780 article-title: 3D porphyrin-based covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04141 – volume: 8 start-page: 3345 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0560 article-title: Phenyl-triazine oligomers for light-driven hydrogen evolution publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02574E – volume: 310 start-page: 1166 year: 2005 ident: 10.1016/j.apcatb.2020.119174_bib0370 article-title: Porous, Crystalline, covalent organic frameworks publication-title: Science doi: 10.1126/science.1120411 – volume: 5 start-page: 2681 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0105 article-title: Main-Chain organic frameworks with advanced catalytic functionalities publication-title: ACS Catal. doi: 10.1021/acscatal.5b00069 – volume: 48 start-page: 5439 year: 2009 ident: 10.1016/j.apcatb.2020.119174_bib0330 article-title: A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900881 – volume: 126 start-page: 13406 year: 2004 ident: 10.1016/j.apcatb.2020.119174_bib0075 article-title: Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures publication-title: J. Am. Chem. Soc. doi: 10.1021/ja048296m – volume: 57 start-page: 3222 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0735 article-title: Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712925 – volume: 4 start-page: 4875 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0475 article-title: Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01183 – volume: 30 start-page: 1705454 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0685 article-title: Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials publication-title: Adv. Mater. doi: 10.1002/adma.201705454 – volume: 47 start-page: 1979 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0440 article-title: Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters publication-title: Chem. Commun. doi: 10.1039/c0cc04386a – volume: 1 start-page: 7007 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0640 article-title: Pyrene-based covalent organic polymers for enhanced photovoltaic performance and solar-driven hydrogen production publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01432 – volume: 130 start-page: 7176 year: 2008 ident: 10.1016/j.apcatb.2020.119174_bib0055 article-title: Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8007825 – volume: 45 start-page: 607 year: 2012 ident: 10.1016/j.apcatb.2020.119174_bib0255 article-title: Rational design of high performance conjugated polymers for organic solar cells publication-title: Macromolecules doi: 10.1021/ma201648t – volume: 11 start-page: 1617 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0570 article-title: Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02981K – volume: 3 start-page: 7750 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0110 article-title: 2D covalent triazine framework: a new class of organic photocatalyst for water splitting publication-title: J.Mater.Chem. A doi: 10.1039/C4TA03438D – volume: 4 start-page: 9413 year: 2016 ident: 10.1016/j.apcatb.2020.119174_bib0200 article-title: A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO2 publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA01625A – volume: 5 start-page: 2789 year: 2014 ident: 10.1016/j.apcatb.2020.119174_bib0455 article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production publication-title: Chem. Sci. doi: 10.1039/C4SC00016A – volume: 11 start-page: 1108 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0650 article-title: MoS2 quantum dots-modified covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution publication-title: ChemSusChem. doi: 10.1002/cssc.201702220 – volume: 36 start-page: 2119 year: 2015 ident: 10.1016/j.apcatb.2020.119174_bib0030 article-title: Fabrication of a Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(15)60974-3 – volume: 243 start-page: 621 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0695 article-title: Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modifcation: an efcient strategy to boost the visible-light-driven photocatalytic performance publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.10.043 – volume: 260 start-page: 134 year: 2008 ident: 10.1016/j.apcatb.2020.119174_bib0050 article-title: Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation publication-title: J. Catal. doi: 10.1016/j.jcat.2008.09.017 – volume: 38 start-page: 253 year: 2009 ident: 10.1016/j.apcatb.2020.119174_bib0730 article-title: Heterogeneous photocatalyst materials for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 20 start-page: 15961 year: 2014 ident: 10.1016/j.apcatb.2020.119174_bib0645 article-title: A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production publication-title: Chem. Eur. J. doi: 10.1002/chem.201403800 – volume: 385 year: 2020 ident: 10.1016/j.apcatb.2020.119174_bib0430 article-title: Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121514 – volume: 140 start-page: 4623 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0615 article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00571 – volume: 135 start-page: 5328 year: 2013 ident: 10.1016/j.apcatb.2020.119174_bib0490 article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4017842 – volume: 46 start-page: 8932 year: 2010 ident: 10.1016/j.apcatb.2020.119174_bib0165 article-title: Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks publication-title: Chem. Commun. doi: 10.1039/c0cc04057f – volume: 47 start-page: 3450 year: 2008 ident: 10.1016/j.apcatb.2020.119174_bib0520 article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705710 – volume: 10 start-page: 1180 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0180 article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water publication-title: Nat. Chem. doi: 10.1038/s41557-018-0141-5 – volume: 43 start-page: 5535 year: 2009 ident: 10.1016/j.apcatb.2020.119174_bib0010 article-title: High resolution fossil fuel combustion CO2 emission fluxes, for the United States publication-title: Environ. Sci. Technol. doi: 10.1021/es900806c – volume: 42 start-page: 548 year: 2013 ident: 10.1016/j.apcatb.2020.119174_bib0220 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 141 start-page: 9063 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0540 article-title: Accelerated discovery of organic polymer photocatalysts for hydrogen evolution from water through the integration of experiment and theory publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03591 – volume: 12 start-page: 1404 year: 2020 ident: 10.1016/j.apcatb.2020.119174_bib0785 article-title: Water-soluble 3D covalent organic framework that displays an enhanced enrichment effect of photosensitizers and catalysts for the reduction of protons to H2 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19870 – volume: 6 start-page: 1621 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0120 article-title: Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA08366A – volume: 331 start-page: 746 year: 2011 ident: 10.1016/j.apcatb.2020.119174_bib0025 article-title: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals publication-title: Sci. doi: 10.1126/science.1200448 – volume: 57 start-page: 8316 year: 2018 ident: 10.1016/j.apcatb.2020.119174_bib0635 article-title: Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade publication-title: Angew. Chem. Int. Ed doi: 10.1002/anie.201801112 – volume: 245 start-page: 334 year: 2019 ident: 10.1016/j.apcatb.2020.119174_bib0185 article-title: Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.12.065 |
SSID | ssj0002328 |
Score | 2.703128 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The COFs photocatalysts were reviewed according to the classification of building blocks.•The principle for designing photocatalytic active... Semiconductor photocatalysts are the main platform and play an essential role in photocatalysis. In recent years, covalent organic frameworks (COFs) materials... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119174 |
SubjectTerms | Carbon dioxide Charge efficiency Classification Covalent organic frameworks Designing principles Electromagnetic absorption Photocatalysis Photocatalysts Photodegradation Porosity Surface stability Synthesis Water splitting |
Title | Covalent organic frameworks for photocatalytic applications |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.119174 https://www.proquest.com/docview/2452118769 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MeVAPotPhdI4evNY1bfqFp1E2psIuOtgtNGmKE1mLqwcv_u2-tImbggy8teGlLb-8vI_mfQBcSxmiHnJ9W_jStZXGt2M3R2clIDILgxRt2Lra5yyYzun9wl-0IDG5MCqsUsv-RqbX0lqPDDWaw3K5HD46sRt4Xui5imejWPntlIaKy28-N2EeaDHU0hiJbUVt0ufqGK-0FGnF0Ut0lexAz4X-pZ5-Cepa-0yO4Uibjdao-bITaMlVB_YT062tA4dbhQU70B1v8tdwmt7A61O4TQpkLRy1mnZOwspNdNbaQvvVKp-Lqqj_6Xzgq6zt8-0zmE_GT8nU1v0TbIE7s7IJyRxJstjnaUCinBPHyWPKVXmcSOSCxDJD8GhOJeIica1kRrzUCVOXiIi71OtCe1Ws5DlYFP0QL6ehINynKY_iQF1EaYb-obKheuAZ2JjQxcVVj4tXZqLIXlgDNlNgswbsHtjfs8qmuMYO-tCsCPvBJAzl_46ZfbOATG_SNVOHzqrbehBf_PvBl3Cg7ursRL8P7ertXV6hmVLxQc2HA9gb3T1MZ1_iMeU_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHtCDUZSIovagx0p3u33FeDCIQUUuQsJtbbfbiDFApMZw8U_5B51tt74SQ2LCrdl2H52dfjPTnQfAkZQeyiHqmMKR1FQS3wxogsaKS2TsuSHqsFm2z67b7rPrgTNYgvciFka5VWrszzE9Q2vd0tDUbEyGw8adFVDXtj2bKp71A0t7Vt7I2SvabdOzqwvc5GNKL1u9ZtvUpQVMgUybmoTEliRx4EShS_wkIpaVBCxSmWN8kQgSyBjHZQmTOIHE15AxsUPLCykRfkSZjeMuwwpDuFBlE07evvxKUEXJ4B9XZ6rlFfF6mVNZOBFhGqFZShVYoanE_pKHvyRDJu4uN2Bd66nGeU6KTViSowqUm0V5uAqsfctkWIFq6ytgDrtpxJhuwWlzjLyMrUZeP0oYSeEONjVQYTYmD-N0nP1EmuFUxvcD9W3oL4SqVSiNxiO5AwZDw8dOmCdI5LAw8gNXXfhhjAapUtpqYBdk40JnM1dFNZ544bb2yHNic0VsnhO7BuZnr0mezWPO816xI_wHV3IUOHN61osN5BoVplydcqvy7m6w---BD6Hc7t12eOeqe7MHq-pOFhrp1KGUPr_IfdSR0ugg40kD7hf9EXwAbHYgag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+organic+frameworks+for+photocatalytic+applications&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Yang%2C+Qing&rft.au=Luo%2C+Maolan&rft.au=Liu%2C+Kewei&rft.au=Cao%2C+Hongmei&rft.date=2020-11-05&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=276&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119174&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |