The Conformal, High‐Density SpineWrap Microelectrode Array for Focal Stimulation and Selective Muscle Recruitment
Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, nonconformal paddle arrays with low channel counts. This limits stimulation effectiveness by requir...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 16 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
18.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202420488 |
Cover
Loading…
Abstract | Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, nonconformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject‐specific designs to accommodate varied neuroanatomy across the patient population. Here, on a thin‐film, high‐channel count microelectrode array, termed SpineWrap is reported, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its thin substrate, high conformability, high channel count, on‐device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, the SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. The effect of channel count and density on muscle recruitment selectivity is also investigated and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation.
This study uses a thin‐film, high channel‐count microelectrode array to deliver focal spinal cord stimulation to selectively activate lower limb muscles in rats. Both computational modeling and in vivo experiments demonstrate that this array significantly improves stimulation focality and muscle recruitment selectivity compared to traditional low channel‐count arrays. |
---|---|
AbstractList | Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and has garnered considerable interest as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, non-conformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject-specific designs to accommodate varied neuroanatomy across the patient population. Here, we report on a thin-film, high-channel count microelectrode array, termed SpineWrap, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its unique design features, including its thin substrate, high conformability, high channel count, on-device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, we show that SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. We also investigate the effect of channel count and density on muscle recruitment selectivity and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation.Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and has garnered considerable interest as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, non-conformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject-specific designs to accommodate varied neuroanatomy across the patient population. Here, we report on a thin-film, high-channel count microelectrode array, termed SpineWrap, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its unique design features, including its thin substrate, high conformability, high channel count, on-device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, we show that SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. We also investigate the effect of channel count and density on muscle recruitment selectivity and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation. Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, nonconformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject‐specific designs to accommodate varied neuroanatomy across the patient population. Here, on a thin‐film, high‐channel count microelectrode array, termed SpineWrap is reported, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its thin substrate, high conformability, high channel count, on‐device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, the SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. The effect of channel count and density on muscle recruitment selectivity is also investigated and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation. This study uses a thin‐film, high channel‐count microelectrode array to deliver focal spinal cord stimulation to selectively activate lower limb muscles in rats. Both computational modeling and in vivo experiments demonstrate that this array significantly improves stimulation focality and muscle recruitment selectivity compared to traditional low channel‐count arrays. Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, nonconformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject‐specific designs to accommodate varied neuroanatomy across the patient population. Here, on a thin‐film, high‐channel count microelectrode array, termed SpineWrap is reported, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its thin substrate, high conformability, high channel count, on‐device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, the SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. The effect of channel count and density on muscle recruitment selectivity is also investigated and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation. Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and has garnered considerable interest as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, non-conformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject-specific designs to accommodate varied neuroanatomy across the patient population. Here, we report on a thin-film, high-channel count microelectrode array, termed SpineWrap, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its unique design features, including its thin substrate, high conformability, high channel count, on-device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, we show that SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. We also investigate the effect of channel count and density on muscle recruitment selectivity and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation. |
Author | Tang, Qingbo Lee, Keundong Russman, Samantha M. Dayeh, Shadi A. U, Hoi Sang Diaz‐Aguilar, Luis D. Yaksh, Tony L. Ciacci, Joseph Ben‐Haim, Sharona Montgomery‐Walsh, Rhea Chang, Eric Y. Vatsyayan, Ritwik |
Author_xml | – sequence: 1 givenname: Samantha M. surname: Russman fullname: Russman, Samantha M. organization: University of California San Diego – sequence: 2 givenname: Rhea surname: Montgomery‐Walsh fullname: Montgomery‐Walsh, Rhea organization: University of California San Diego – sequence: 3 givenname: Ritwik surname: Vatsyayan fullname: Vatsyayan, Ritwik organization: University of California San Diego – sequence: 4 givenname: Hoi Sang surname: U fullname: U, Hoi Sang organization: University of California San Diego – sequence: 5 givenname: Luis D. surname: Diaz‐Aguilar fullname: Diaz‐Aguilar, Luis D. organization: University of California San Diego – sequence: 6 givenname: Eric Y. surname: Chang fullname: Chang, Eric Y. organization: University of California San Diego – sequence: 7 givenname: Qingbo surname: Tang fullname: Tang, Qingbo organization: University of California San Diego – sequence: 8 givenname: Keundong surname: Lee fullname: Lee, Keundong organization: University of California San Diego – sequence: 9 givenname: Tony L. surname: Yaksh fullname: Yaksh, Tony L. organization: University of California San Diego – sequence: 10 givenname: Sharona surname: Ben‐Haim fullname: Ben‐Haim, Sharona organization: University of California San Diego – sequence: 11 givenname: Joseph surname: Ciacci fullname: Ciacci, Joseph organization: University of California San Diego – sequence: 12 givenname: Shadi A. orcidid: 0000-0002-1756-1774 surname: Dayeh fullname: Dayeh, Shadi A. email: sdayeh@ucsd.edu organization: University of California San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40787278$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOGzEUhq0KVG7dsqwsddNFE3zLjGcZBVKQiJAIiO4sx3OmGHns1J6hyo5H4Bn7JBgCQeqG1TmL7z-X_99DWz54QOiQkiElhB3pummHjDDBiJDyE9qlBS0GnDC5tenprx20l9IdIbQsufiMdgQpZclKuYvS1S3gSfBNiK12P_Cp_X377-HxGHyy3QrPl9bDTdRLPLMmBnBguhhqwOMY9QpnFZ4Gox2ed7btne5s8Fj7Gs9fUHsPeNYn4wBfgom97Vrw3QHabrRL8OW17qPr6cnV5HRwfvHzbDI-HxhBiByAAVM0bCR4bSopqxIWRUPrhheUM92MtORGLIqaSAY8_1OAFJWuSmJGXBpG-D76vp67jOFPD6lTrU0GnNMeQp8UZ1yKbBWrMvrtP_Qu9NHn6xSnVd5Y8opn6usr1S9aqNUy2lbHlXqzMwPDNZC9SilCs0EoUc95qee81CavLKjWgr_WweoDWo2Pp7N37RPzs5mp |
Cites_doi | 10.1111/ner.12172 10.3389/fncel.2019.00271 10.1088/1741-2552/ac038b 10.1038/s41598-021-81371-9 10.1149/1.3559477 10.1126/scitranslmed.abq4744 10.1002/advs.202105913 10.1089/neu.2007.0423 10.1038/s41598-018-31247-2 10.1126/science.1260318 10.1056/NEJMoa1803588 10.1111/j.1749-6632.1983.tb31628.x 10.1038/s41586-023-06094-5 10.1152/jn.2002.88.4.1592 10.1016/j.jneumeth.2004.10.020 10.1109/MEMSYS.2011.5734598 10.1016/j.brainresrev.2007.09.002 10.1126/sciadv.abq6354 10.1088/1741-2560/8/4/046030 10.1038/s41393-020-0505-8 10.1038/nm.4025 10.1089/neu.2015.4256 10.1038/s41586-018-0649-2 10.1088/1741-2552/aab90d 10.1523/JNEUROSCI.1688-13.2013 10.1016/S0140-6736(11)60547-3 10.1089/neu.2016.4577 10.1038/s41591-018-0175-7 10.1213/00000539-196707000-00025 10.1007/BF02525529 10.1021/acs.nanolett.9b02296 10.1038/nature20118 10.1007/s10544-007-9132-9 10.1016/j.jneumeth.2006.05.004 10.1016/j.neulet.2005.04.049 10.1126/scitranslmed.abj1441 10.1016/j.cobme.2018.10.005 10.1007/s10544-015-0011-5 10.1016/j.wneu.2013.06.012 10.1016/j.neulet.2015.10.005 10.1038/s41591-021-01663-5 10.1038/s41467-020-20703-1 10.1038/sj.sc.3101038 10.1016/j.spinee.2011.11.001 10.1038/sc.2015.106 10.1111/ner.12171 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/adfm.202420488 |
DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 40787278 10_1002_adfm_202420488 ADFM202420488 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Institute of Neurological Disorders and Stroke, NINDS funderid: R01NS123655 – fundername: NIH National Institute of Neurological Disorders and Stroke, NINDS funderid: 5UG3NS123723; 5UG3NS123723; R01NS123655 – fundername: National Institute of Biomedical Imaging and Bioengineering, NIBIB funderid: T32 EB009380 – fundername: National Institue of Biomedical Imaging and Bioengineering, NIBIB funderid: DP2‐EB029757 – fundername: Veterans Affairs Merit Award funderid: 1I01BX005952 – fundername: National Nanotechnology Coordinated Infrastructure funderid: ECCS1542148 – fundername: NIH National Institute of Neurological Disorders and Stroke, NINDS funderid: 5UG3NS123723; 5UG3NS123723 – fundername: NIBIB NIH HHS grantid: DP2 EB029757 – fundername: BLRD VA grantid: I01 BX005952 – fundername: NINDS NIH HHS grantid: UG3 NS123723 – fundername: NINDS NIH HHS grantid: R01 NS123655 – fundername: NIBIB NIH HHS grantid: T32 EB009380 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 1OB 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGQPQ AGXDD AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 NPM 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4008-ecec6f2543dc98897eb6f1df36132af5a83c4b6d082e37876e849a970c538c203 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Aug 11 17:31:21 EDT 2025 Wed Aug 13 04:10:39 EDT 2025 Fri Aug 15 02:01:21 EDT 2025 Tue Aug 05 12:04:29 EDT 2025 Wed Apr 23 09:40:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4008-ecec6f2543dc98897eb6f1df36132af5a83c4b6d082e37876e849a970c538c203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1756-1774 |
PMID | 40787278 |
PQID | 3193617393 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3238430229 proquest_journals_3193617393 pubmed_primary_40787278 crossref_primary_10_1002_adfm_202420488 wiley_primary_10_1002_adfm_202420488_ADFM202420488 |
PublicationCentury | 2000 |
PublicationDate | April 18, 2025 |
PublicationDateYYYYMMDD | 2025-04-18 |
PublicationDate_xml | – month: 04 year: 2025 text: April 18, 2025 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv Funct Mater |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 158 1987; 31 2015; 347 2019; 13 2018; 563 2019; 19 2011; 11 2020; 58 2020; 12 2022; 28 2016; 33 2018; 8 2005; 383 2005; 141 2013; 10 2018; 379 2002; 88 2017; 34 2008; 25 2014; 17 2023; 618 2011; 377 2015; 17 2011 2016; 54 2008; 57 1967; 46 2008; 10 2024; 15 2014; 111 2014; 82 2011; 8 2018; 24 2006; 157 2015; 609 2000; 38 2021; 11 2016; 539 2013; 33 2022 2021; 18 2022; 8 2022; 9 1997; 35 2022; 14 2014 2018; 15 1983; 405 2016; 22 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Donaldson P. E. K. (e_1_2_9_13_1) 1987; 31 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 Sayenko D. G. (e_1_2_9_47_1) 2014; 111 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 Lee K. (e_1_2_9_32_1) 2024; 15 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 Gad P. (e_1_2_9_22_1) 2013; 10 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 609 start-page: 229 year: 2015 publication-title: Neurosci. Lett. – volume: 563 start-page: 65 year: 2018 publication-title: Nature – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 15 year: 2018 publication-title: J. Neural Eng. – volume: 15 year: 2024 publication-title: Nat. Commun. – volume: 158 start-page: D269 year: 2011 publication-title: J. Electrochem. Soc. – start-page: 6834 year: 2014 end-page: 7 – volume: 10 year: 2013 publication-title: J. Neuroeng. Rehabil. – volume: 33 year: 2013 publication-title: J. Neurosci. – volume: 18 year: 2021 publication-title: J. Neural Eng. – volume: 17 start-page: 12 year: 2014 publication-title: Neuromodulation – volume: 11 start-page: 1121 year: 2011 publication-title: Spine J. – volume: 383 start-page: 339 year: 2005 publication-title: Neurosci. Lett. – volume: 82 start-page: 1359 year: 2014 publication-title: World Neurosurg. – volume: 88 start-page: 1592 year: 2002 publication-title: J. Neurophysiol. – volume: 17 start-page: 22 year: 2014 publication-title: Neuromodulation – volume: 22 start-page: 138 year: 2016 publication-title: Nat. Med. – volume: 19 start-page: 6244 year: 2019 publication-title: Nano Lett. – volume: 12 start-page: 435 year: 2020 publication-title: Nat. Commun. – volume: 31 start-page: 2 year: 1987 publication-title: Progress Biomed. Appl. – volume: 35 start-page: 493 year: 1997 publication-title: Med. Biol. Eng. Comput. – volume: 379 start-page: 1244 year: 2018 publication-title: N. Engl. J. Med. – start-page: 1007 year: 2011 end-page: 10 – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 618 start-page: 126 year: 2023 publication-title: Nature – volume: 58 start-page: 1049 year: 2020 publication-title: Spinal Cord – volume: 25 start-page: 795 year: 2008 publication-title: J. Neurotrauma – volume: 11 year: 2021 publication-title: Sci. Rep. – volume: 57 start-page: 241 year: 2008 publication-title: Brain Res. Rev. – volume: 34 start-page: 1841 year: 2017 publication-title: J. Neurotrauma – volume: 8 year: 2011 publication-title: J. Neural Eng. – volume: 13 year: 2019 publication-title: Front. Cell Neurosci. – start-page: 1441 year: 2022 publication-title: Sci. Transl. Med. – volume: 347 start-page: 159 year: 2015 publication-title: Science – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 33 start-page: 1709 year: 2016 publication-title: J. Neurotrauma – volume: 28 start-page: 260 year: 2022 publication-title: Nat. Med. – volume: 157 start-page: 253 year: 2006 publication-title: J. Neurosci. Methods – volume: 377 start-page: 1938 year: 2011 publication-title: Lancet – volume: 8 start-page: 51 year: 2018 publication-title: Curr. Opin. Biomed. Eng. – volume: 17 year: 2015 publication-title: Biomed. Microdevices – volume: 54 start-page: 93 year: 2016 publication-title: Spinal Cord – volume: 405 start-page: 159 year: 1983 publication-title: Ann. N. Y. Acad. Sci. – volume: 539 start-page: 284 year: 2016 publication-title: Nature – volume: 24 start-page: 1677 year: 2018 publication-title: Nat. Med. – volume: 111 start-page: 1088 year: 2014 publication-title: J. Neuro‐Physiol. – volume: 14 start-page: 4744 year: 2022 publication-title: Sci. Transl. Med. – volume: 38 start-page: 394 year: 2000 publication-title: Spinal Cord – volume: 10 start-page: 259 year: 2008 publication-title: Biomed. Microdevices – volume: 46 start-page: 489 year: 1967 publication-title: Anesth. Analg. – volume: 141 start-page: 171 year: 2005 publication-title: J. Neurosci. Methods – ident: e_1_2_9_11_1 doi: 10.1111/ner.12172 – ident: e_1_2_9_43_1 doi: 10.3389/fncel.2019.00271 – ident: e_1_2_9_29_1 doi: 10.1088/1741-2552/ac038b – ident: e_1_2_9_42_1 doi: 10.1038/s41598-021-81371-9 – ident: e_1_2_9_15_1 doi: 10.1149/1.3559477 – ident: e_1_2_9_31_1 doi: 10.1126/scitranslmed.abq4744 – ident: e_1_2_9_21_1 doi: 10.1002/advs.202105913 – ident: e_1_2_9_45_1 doi: 10.1089/neu.2007.0423 – ident: e_1_2_9_46_1 doi: 10.1038/s41598-018-31247-2 – ident: e_1_2_9_27_1 doi: 10.1126/science.1260318 – ident: e_1_2_9_9_1 doi: 10.1056/NEJMoa1803588 – ident: e_1_2_9_14_1 doi: 10.1111/j.1749-6632.1983.tb31628.x – ident: e_1_2_9_17_1 doi: 10.1038/s41586-023-06094-5 – ident: e_1_2_9_35_1 doi: 10.1152/jn.2002.88.4.1592 – ident: e_1_2_9_16_1 doi: 10.1016/j.jneumeth.2004.10.020 – volume: 10 year: 2013 ident: e_1_2_9_22_1 publication-title: J. Neuroeng. Rehabil. – ident: e_1_2_9_23_1 doi: 10.1109/MEMSYS.2011.5734598 – ident: e_1_2_9_40_1 doi: 10.1016/j.brainresrev.2007.09.002 – ident: e_1_2_9_36_1 doi: 10.1126/sciadv.abq6354 – ident: e_1_2_9_39_1 doi: 10.1088/1741-2560/8/4/046030 – ident: e_1_2_9_20_1 doi: 10.1038/s41393-020-0505-8 – ident: e_1_2_9_3_1 doi: 10.1038/nm.4025 – ident: e_1_2_9_38_1 – ident: e_1_2_9_48_1 doi: 10.1089/neu.2015.4256 – ident: e_1_2_9_4_1 doi: 10.1038/s41586-018-0649-2 – ident: e_1_2_9_26_1 doi: 10.1088/1741-2552/aab90d – ident: e_1_2_9_34_1 doi: 10.1523/JNEUROSCI.1688-13.2013 – volume: 111 start-page: 1088 year: 2014 ident: e_1_2_9_47_1 publication-title: J. Neuro‐Physiol. – ident: e_1_2_9_6_1 doi: 10.1016/S0140-6736(11)60547-3 – ident: e_1_2_9_51_1 doi: 10.1089/neu.2016.4577 – ident: e_1_2_9_8_1 doi: 10.1038/s41591-018-0175-7 – ident: e_1_2_9_1_1 doi: 10.1213/00000539-196707000-00025 – ident: e_1_2_9_33_1 doi: 10.1007/BF02525529 – ident: e_1_2_9_28_1 doi: 10.1021/acs.nanolett.9b02296 – ident: e_1_2_9_5_1 doi: 10.1038/nature20118 – ident: e_1_2_9_24_1 doi: 10.1007/s10544-007-9132-9 – ident: e_1_2_9_41_1 doi: 10.1016/j.jneumeth.2006.05.004 – volume: 31 start-page: 2 year: 1987 ident: e_1_2_9_13_1 publication-title: Progress Biomed. Appl. – ident: e_1_2_9_7_1 doi: 10.1016/j.neulet.2005.04.049 – ident: e_1_2_9_30_1 doi: 10.1126/scitranslmed.abj1441 – ident: e_1_2_9_12_1 doi: 10.1016/j.cobme.2018.10.005 – ident: e_1_2_9_25_1 doi: 10.1007/s10544-015-0011-5 – volume: 15 year: 2024 ident: e_1_2_9_32_1 publication-title: Nat. Commun. – ident: e_1_2_9_19_1 doi: 10.1016/j.wneu.2013.06.012 – ident: e_1_2_9_50_1 doi: 10.1016/j.neulet.2015.10.005 – ident: e_1_2_9_18_1 doi: 10.1038/s41591-021-01663-5 – ident: e_1_2_9_37_1 doi: 10.1038/s41467-020-20703-1 – ident: e_1_2_9_10_1 doi: 10.1038/sj.sc.3101038 – ident: e_1_2_9_44_1 doi: 10.1016/j.spinee.2011.11.001 – ident: e_1_2_9_49_1 doi: 10.1038/sc.2015.106 – ident: e_1_2_9_2_1 doi: 10.1111/ner.12171 |
SSID | ssj0017734 |
Score | 2.4744558 |
Snippet | Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal... Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and has garnered considerable interest as a possible route to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Arrays Density Electric contacts epidural electrical stimulation In vivo methods and tests Material properties microelectrode array Microelectrodes Muscles Nanorods platinum nanorod Recruitment Selectivity Spinal cord Spinal cord injuries spinal cord stimulation Stimulation thin film Thin films |
Title | The Conformal, High‐Density SpineWrap Microelectrode Array for Focal Stimulation and Selective Muscle Recruitment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202420488 https://www.ncbi.nlm.nih.gov/pubmed/40787278 https://www.proquest.com/docview/3193617393 https://www.proquest.com/docview/3238430229 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8H4WCjITEQtraSZ1krChVhVQGSkW3yLEdCQFp1SZDmfgJ_EZ-CXdJGloYkGCJFMWv2Ofzl9zdd4ScMy2F4ZGwjHKl5QilrNCHix2phm-0MSazmPZuRXfg3Aybw4Uo_pwfovzhhjsj09e4wWU4rX-RhkodYSQ5HDEohKCE0WELUdFdyR_FXDc3KwuGDl5sOGdtbPD6cvXlU-kH1FxGrtnR09kkcj7o3OPkqZYmYU29fuNz_M9bbZGNApfSVi5I22TFxDtkfYGtcJdMQaQoRggizH2-pOgi8vH23kYX-GRG-2Mo-jCRY9pDJ78iv4420OZEzijUoh08OGk_eXwpkoZRGWvaz4qC1qW9dAqdU4Sy6WPm_r5HBp3r-6uuVeRssJSDnhRGGSUijLDXyvc8H1OuRExHNsAGLqOm9GzlhEID8jA2KAthPMeXvttQoHkVb9j7ZDUexeaQUJ9J4aGZMHTRnMykairNechc1pTwoVYhF_M1C8Y5NUeQkzDzAKcxKKexQqrzJQ2KLToNQPfAoJAQsELOysewudBiImMzSqEMABrHBpgDnR3kolB2hQZQAH_QOM8W9JcxBK12p1feHf2l0jFZ45h9GJkmvSpZTSapOQFIlISnmdh_AkMIBG0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeigcoLQ8FmhxpUq9NLB2sk5yXAGrLRAOXVC5RY7tSKglrHaTw3LiJ_Ab-SXM5EW3PVQql0hR_IrtGX_2jL8B-MyNklak0rHaV44ntXaSEB9uqruhNdba0mIancvhpXdy1Wu8CekuTMUP0R64kWSU-poEnA6kD55ZQ5VJ6So5rjE0CxfgNYX1LndV31sGKe77lWFZcnLx4lcNb2NXHMznn1-X_gKb89i1XHwGq5A0za58Tn7uF3myr-_-YHR80X-9hZUamrJ-NZfW4JXN3sHyb4SF72GKs4rRJUFCur--MvISebx_OCIv-HzGRmNM-mOixiwiP786xI6xWOZEzRjmYgNaO9kov76p44YxlRk2KpOi4mVRMcXKGaHZ4rr0gF-Hy8HxxeHQqcM2ONojZwqrrZYpXbI3OgyCkKKupNykLiIHodKeClztJdIg-LAu6gtpAy9Uod_VqHy16LobsJjdZnYLWMiVDMhSmPhkUeZK97QRIuE-7yncq3XgSzNo8bhi54grHmYRUzfGbTd2YLcZ07iW0mmM6gcbRZyAHfjUfkb5IqOJyuxtgWkQ03guIh2sbLOaC21VZANF_IeFi3JE_9GGuH80iNq37f_JtAdvhhfRWXz27fx0B5YEBSMm4slgFxbzSWE_IELKk4-lDDwBh80IiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFA5lFeBpbQYqRKXBmIn6yRHxDaij0WILWJvkWM7EgLCajc50BM_ob-xv6QzSTawcKjUXiJF8Sv2zPhLZvwNwEdulLQik47VgXJ8qbWTRnjxMu1G1lhrK49p_1SeXPhfh93hk1P8NT9E-8ONNKOy16TgI5MdPpKGKpPRSXLcYkgIX8GCL92Q5Lp33hJI8SCo_cqSU4QXH05pG11xOFt_dlt6gTVnoWu198TLoKajrkNOrg_KIj3QP58ROv7Pa63AmwaYsqNaklZhzuZrsPSErnAdJihTjI4IEs69-cQoRuT3w68excAX92wwwqKXYzVifYryaxLsGIttjtU9w1ospp2TDYqr2yZrGFO5YYOqKJpd1i8n2DkjLFteVfHvb-Ei_vzj-MRpkjY42qdQCqutlhkdsTc6CsOIcq5k3GQe4gahsq4KPe2n0iD0sB5aC2lDP1JR4Go0vVq43gbM53e53QIWcSVD8hOmAfmTudJdbYRIecC7Cr_UOrA_XbNkVHNzJDULs0hoGpN2GjuwM13SpNHRSYLGBwdFjIAd2Gsfo3aRy0Tl9q7EMohofA9xDna2WYtC2xV5QBH9YeOiWtC_jCE56sX99m77XyrtwuJZL06-fzn99g5eC8pETKyT4Q7MF-PSvkd4VKQfKg34A3-sB0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+conformal%2C+high-density+SpineWrap+microelectrode+array+for+focal+stimulation+and+selective+muscle+recruitment&rft.jtitle=Advanced+functional+materials&rft.au=Russman%2C+Samantha+M&rft.au=Montgomery-Walsh%2C+Rhea&rft.au=Vatsyayan%2C+Ritwik&rft.au=Sang+U%2C+Hoi&rft.date=2025-04-18&rft.issn=1616-301X&rft.volume=35&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202420488&rft_id=info%3Apmid%2F40787278&rft.externalDocID=40787278 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |