The Conformal, High‐Density SpineWrap Microelectrode Array for Focal Stimulation and Selective Muscle Recruitment

Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, nonconformal paddle arrays with low channel counts. This limits stimulation effectiveness by requir...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 16
Main Authors Russman, Samantha M., Montgomery‐Walsh, Rhea, Vatsyayan, Ritwik, U, Hoi Sang, Diaz‐Aguilar, Luis D., Chang, Eric Y., Tang, Qingbo, Lee, Keundong, Yaksh, Tony L., Ben‐Haim, Sharona, Ciacci, Joseph, Dayeh, Shadi A.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 18.04.2025
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202420488

Cover

Loading…
Abstract Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, nonconformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject‐specific designs to accommodate varied neuroanatomy across the patient population. Here, on a thin‐film, high‐channel count microelectrode array, termed SpineWrap is reported, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its thin substrate, high conformability, high channel count, on‐device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, the SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. The effect of channel count and density on muscle recruitment selectivity is also investigated and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation. This study uses a thin‐film, high channel‐count microelectrode array to deliver focal spinal cord stimulation to selectively activate lower limb muscles in rats. Both computational modeling and in vivo experiments demonstrate that this array significantly improves stimulation focality and muscle recruitment selectivity compared to traditional low channel‐count arrays.
AbstractList Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and has garnered considerable interest as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, non-conformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject-specific designs to accommodate varied neuroanatomy across the patient population. Here, we report on a thin-film, high-channel count microelectrode array, termed SpineWrap, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its unique design features, including its thin substrate, high conformability, high channel count, on-device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, we show that SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. We also investigate the effect of channel count and density on muscle recruitment selectivity and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation.Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and has garnered considerable interest as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, non-conformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject-specific designs to accommodate varied neuroanatomy across the patient population. Here, we report on a thin-film, high-channel count microelectrode array, termed SpineWrap, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its unique design features, including its thin substrate, high conformability, high channel count, on-device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, we show that SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. We also investigate the effect of channel count and density on muscle recruitment selectivity and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation.
Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, nonconformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject‐specific designs to accommodate varied neuroanatomy across the patient population. Here, on a thin‐film, high‐channel count microelectrode array, termed SpineWrap is reported, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its thin substrate, high conformability, high channel count, on‐device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, the SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. The effect of channel count and density on muscle recruitment selectivity is also investigated and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation. This study uses a thin‐film, high channel‐count microelectrode array to deliver focal spinal cord stimulation to selectively activate lower limb muscles in rats. Both computational modeling and in vivo experiments demonstrate that this array significantly improves stimulation focality and muscle recruitment selectivity compared to traditional low channel‐count arrays.
Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, nonconformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject‐specific designs to accommodate varied neuroanatomy across the patient population. Here, on a thin‐film, high‐channel count microelectrode array, termed SpineWrap is reported, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its thin substrate, high conformability, high channel count, on‐device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, the SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. The effect of channel count and density on muscle recruitment selectivity is also investigated and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation.
Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and has garnered considerable interest as a possible route to functional restoration after spinal cord injury. Currently, EES employs bulky, non-conformal paddle arrays with low channel counts. This limits stimulation effectiveness by requiring high stimulation currents, reduces selectivity of muscle recruitment, and requires subject-specific designs to accommodate varied neuroanatomy across the patient population. Here, we report on a thin-film, high-channel count microelectrode array, termed SpineWrap, which wraps around the dorsolateral aspect of the rat spinal cord. SpineWrap delivers focal stimulation to selectively activate muscles due to its unique design features, including its thin substrate, high conformability, high channel count, on-device ground, and the material properties of its platinum nanorod contacts. Through computational and in vivo studies, we show that SpineWrap can selectively recruit muscles in the rat lower limb and identify stimulation hotspots at a submillimeter resolution, maximizing muscle recruitment selectivity. We also investigate the effect of channel count and density on muscle recruitment selectivity and show that rat spinal cord arrays require submillimeter pitches to achieve maximal selectivity. SpineWrap represents an advancement in EES technology and, when adapted to be used chronically, has the potential to improve SCI treatment by providing more refined stimulation.
Author Tang, Qingbo
Lee, Keundong
Russman, Samantha M.
Dayeh, Shadi A.
U, Hoi Sang
Diaz‐Aguilar, Luis D.
Yaksh, Tony L.
Ciacci, Joseph
Ben‐Haim, Sharona
Montgomery‐Walsh, Rhea
Chang, Eric Y.
Vatsyayan, Ritwik
Author_xml – sequence: 1
  givenname: Samantha M.
  surname: Russman
  fullname: Russman, Samantha M.
  organization: University of California San Diego
– sequence: 2
  givenname: Rhea
  surname: Montgomery‐Walsh
  fullname: Montgomery‐Walsh, Rhea
  organization: University of California San Diego
– sequence: 3
  givenname: Ritwik
  surname: Vatsyayan
  fullname: Vatsyayan, Ritwik
  organization: University of California San Diego
– sequence: 4
  givenname: Hoi Sang
  surname: U
  fullname: U, Hoi Sang
  organization: University of California San Diego
– sequence: 5
  givenname: Luis D.
  surname: Diaz‐Aguilar
  fullname: Diaz‐Aguilar, Luis D.
  organization: University of California San Diego
– sequence: 6
  givenname: Eric Y.
  surname: Chang
  fullname: Chang, Eric Y.
  organization: University of California San Diego
– sequence: 7
  givenname: Qingbo
  surname: Tang
  fullname: Tang, Qingbo
  organization: University of California San Diego
– sequence: 8
  givenname: Keundong
  surname: Lee
  fullname: Lee, Keundong
  organization: University of California San Diego
– sequence: 9
  givenname: Tony L.
  surname: Yaksh
  fullname: Yaksh, Tony L.
  organization: University of California San Diego
– sequence: 10
  givenname: Sharona
  surname: Ben‐Haim
  fullname: Ben‐Haim, Sharona
  organization: University of California San Diego
– sequence: 11
  givenname: Joseph
  surname: Ciacci
  fullname: Ciacci, Joseph
  organization: University of California San Diego
– sequence: 12
  givenname: Shadi A.
  orcidid: 0000-0002-1756-1774
  surname: Dayeh
  fullname: Dayeh, Shadi A.
  email: sdayeh@ucsd.edu
  organization: University of California San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40787278$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOGzEUhq0KVG7dsqwsddNFE3zLjGcZBVKQiJAIiO4sx3OmGHns1J6hyo5H4Bn7JBgCQeqG1TmL7z-X_99DWz54QOiQkiElhB3pummHjDDBiJDyE9qlBS0GnDC5tenprx20l9IdIbQsufiMdgQpZclKuYvS1S3gSfBNiK12P_Cp_X377-HxGHyy3QrPl9bDTdRLPLMmBnBguhhqwOMY9QpnFZ4Gox2ed7btne5s8Fj7Gs9fUHsPeNYn4wBfgom97Vrw3QHabrRL8OW17qPr6cnV5HRwfvHzbDI-HxhBiByAAVM0bCR4bSopqxIWRUPrhheUM92MtORGLIqaSAY8_1OAFJWuSmJGXBpG-D76vp67jOFPD6lTrU0GnNMeQp8UZ1yKbBWrMvrtP_Qu9NHn6xSnVd5Y8opn6usr1S9aqNUy2lbHlXqzMwPDNZC9SilCs0EoUc95qee81CavLKjWgr_WweoDWo2Pp7N37RPzs5mp
Cites_doi 10.1111/ner.12172
10.3389/fncel.2019.00271
10.1088/1741-2552/ac038b
10.1038/s41598-021-81371-9
10.1149/1.3559477
10.1126/scitranslmed.abq4744
10.1002/advs.202105913
10.1089/neu.2007.0423
10.1038/s41598-018-31247-2
10.1126/science.1260318
10.1056/NEJMoa1803588
10.1111/j.1749-6632.1983.tb31628.x
10.1038/s41586-023-06094-5
10.1152/jn.2002.88.4.1592
10.1016/j.jneumeth.2004.10.020
10.1109/MEMSYS.2011.5734598
10.1016/j.brainresrev.2007.09.002
10.1126/sciadv.abq6354
10.1088/1741-2560/8/4/046030
10.1038/s41393-020-0505-8
10.1038/nm.4025
10.1089/neu.2015.4256
10.1038/s41586-018-0649-2
10.1088/1741-2552/aab90d
10.1523/JNEUROSCI.1688-13.2013
10.1016/S0140-6736(11)60547-3
10.1089/neu.2016.4577
10.1038/s41591-018-0175-7
10.1213/00000539-196707000-00025
10.1007/BF02525529
10.1021/acs.nanolett.9b02296
10.1038/nature20118
10.1007/s10544-007-9132-9
10.1016/j.jneumeth.2006.05.004
10.1016/j.neulet.2005.04.049
10.1126/scitranslmed.abj1441
10.1016/j.cobme.2018.10.005
10.1007/s10544-015-0011-5
10.1016/j.wneu.2013.06.012
10.1016/j.neulet.2015.10.005
10.1038/s41591-021-01663-5
10.1038/s41467-020-20703-1
10.1038/sj.sc.3101038
10.1016/j.spinee.2011.11.001
10.1038/sc.2015.106
10.1111/ner.12171
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/adfm.202420488
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 40787278
10_1002_adfm_202420488
ADFM202420488
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Institute of Neurological Disorders and Stroke, NINDS
  funderid: R01NS123655
– fundername: NIH National Institute of Neurological Disorders and Stroke, NINDS
  funderid: 5UG3NS123723; 5UG3NS123723; R01NS123655
– fundername: National Institute of Biomedical Imaging and Bioengineering, NIBIB
  funderid: T32 EB009380
– fundername: National Institue of Biomedical Imaging and Bioengineering, NIBIB
  funderid: DP2‐EB029757
– fundername: Veterans Affairs Merit Award
  funderid: 1I01BX005952
– fundername: National Nanotechnology Coordinated Infrastructure
  funderid: ECCS1542148
– fundername: NIH National Institute of Neurological Disorders and Stroke, NINDS
  funderid: 5UG3NS123723; 5UG3NS123723
– fundername: NIBIB NIH HHS
  grantid: DP2 EB029757
– fundername: BLRD VA
  grantid: I01 BX005952
– fundername: NINDS NIH HHS
  grantid: UG3 NS123723
– fundername: NINDS NIH HHS
  grantid: R01 NS123655
– fundername: NIBIB NIH HHS
  grantid: T32 EB009380
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
1OB
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGQPQ
AGXDD
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
NPM
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4008-ecec6f2543dc98897eb6f1df36132af5a83c4b6d082e37876e849a970c538c203
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Aug 11 17:31:21 EDT 2025
Wed Aug 13 04:10:39 EDT 2025
Fri Aug 15 02:01:21 EDT 2025
Tue Aug 05 12:04:29 EDT 2025
Wed Apr 23 09:40:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4008-ecec6f2543dc98897eb6f1df36132af5a83c4b6d082e37876e849a970c538c203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1756-1774
PMID 40787278
PQID 3193617393
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_miscellaneous_3238430229
proquest_journals_3193617393
pubmed_primary_40787278
crossref_primary_10_1002_adfm_202420488
wiley_primary_10_1002_adfm_202420488_ADFM202420488
PublicationCentury 2000
PublicationDate April 18, 2025
PublicationDateYYYYMMDD 2025-04-18
PublicationDate_xml – month: 04
  year: 2025
  text: April 18, 2025
  day: 18
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv Funct Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 158
1987; 31
2015; 347
2019; 13
2018; 563
2019; 19
2011; 11
2020; 58
2020; 12
2022; 28
2016; 33
2018; 8
2005; 383
2005; 141
2013; 10
2018; 379
2002; 88
2017; 34
2008; 25
2014; 17
2023; 618
2011; 377
2015; 17
2011
2016; 54
2008; 57
1967; 46
2008; 10
2024; 15
2014; 111
2014; 82
2011; 8
2018; 24
2006; 157
2015; 609
2000; 38
2021; 11
2016; 539
2013; 33
2022
2021; 18
2022; 8
2022; 9
1997; 35
2022; 14
2014
2018; 15
1983; 405
2016; 22
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Donaldson P. E. K. (e_1_2_9_13_1) 1987; 31
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
Sayenko D. G. (e_1_2_9_47_1) 2014; 111
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
Lee K. (e_1_2_9_32_1) 2024; 15
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
Gad P. (e_1_2_9_22_1) 2013; 10
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 609
  start-page: 229
  year: 2015
  publication-title: Neurosci. Lett.
– volume: 563
  start-page: 65
  year: 2018
  publication-title: Nature
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 15
  year: 2018
  publication-title: J. Neural Eng.
– volume: 15
  year: 2024
  publication-title: Nat. Commun.
– volume: 158
  start-page: D269
  year: 2011
  publication-title: J. Electrochem. Soc.
– start-page: 6834
  year: 2014
  end-page: 7
– volume: 10
  year: 2013
  publication-title: J. Neuroeng. Rehabil.
– volume: 33
  year: 2013
  publication-title: J. Neurosci.
– volume: 18
  year: 2021
  publication-title: J. Neural Eng.
– volume: 17
  start-page: 12
  year: 2014
  publication-title: Neuromodulation
– volume: 11
  start-page: 1121
  year: 2011
  publication-title: Spine J.
– volume: 383
  start-page: 339
  year: 2005
  publication-title: Neurosci. Lett.
– volume: 82
  start-page: 1359
  year: 2014
  publication-title: World Neurosurg.
– volume: 88
  start-page: 1592
  year: 2002
  publication-title: J. Neurophysiol.
– volume: 17
  start-page: 22
  year: 2014
  publication-title: Neuromodulation
– volume: 22
  start-page: 138
  year: 2016
  publication-title: Nat. Med.
– volume: 19
  start-page: 6244
  year: 2019
  publication-title: Nano Lett.
– volume: 12
  start-page: 435
  year: 2020
  publication-title: Nat. Commun.
– volume: 31
  start-page: 2
  year: 1987
  publication-title: Progress Biomed. Appl.
– volume: 35
  start-page: 493
  year: 1997
  publication-title: Med. Biol. Eng. Comput.
– volume: 379
  start-page: 1244
  year: 2018
  publication-title: N. Engl. J. Med.
– start-page: 1007
  year: 2011
  end-page: 10
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 618
  start-page: 126
  year: 2023
  publication-title: Nature
– volume: 58
  start-page: 1049
  year: 2020
  publication-title: Spinal Cord
– volume: 25
  start-page: 795
  year: 2008
  publication-title: J. Neurotrauma
– volume: 11
  year: 2021
  publication-title: Sci. Rep.
– volume: 57
  start-page: 241
  year: 2008
  publication-title: Brain Res. Rev.
– volume: 34
  start-page: 1841
  year: 2017
  publication-title: J. Neurotrauma
– volume: 8
  year: 2011
  publication-title: J. Neural Eng.
– volume: 13
  year: 2019
  publication-title: Front. Cell Neurosci.
– start-page: 1441
  year: 2022
  publication-title: Sci. Transl. Med.
– volume: 347
  start-page: 159
  year: 2015
  publication-title: Science
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 33
  start-page: 1709
  year: 2016
  publication-title: J. Neurotrauma
– volume: 28
  start-page: 260
  year: 2022
  publication-title: Nat. Med.
– volume: 157
  start-page: 253
  year: 2006
  publication-title: J. Neurosci. Methods
– volume: 377
  start-page: 1938
  year: 2011
  publication-title: Lancet
– volume: 8
  start-page: 51
  year: 2018
  publication-title: Curr. Opin. Biomed. Eng.
– volume: 17
  year: 2015
  publication-title: Biomed. Microdevices
– volume: 54
  start-page: 93
  year: 2016
  publication-title: Spinal Cord
– volume: 405
  start-page: 159
  year: 1983
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 539
  start-page: 284
  year: 2016
  publication-title: Nature
– volume: 24
  start-page: 1677
  year: 2018
  publication-title: Nat. Med.
– volume: 111
  start-page: 1088
  year: 2014
  publication-title: J. Neuro‐Physiol.
– volume: 14
  start-page: 4744
  year: 2022
  publication-title: Sci. Transl. Med.
– volume: 38
  start-page: 394
  year: 2000
  publication-title: Spinal Cord
– volume: 10
  start-page: 259
  year: 2008
  publication-title: Biomed. Microdevices
– volume: 46
  start-page: 489
  year: 1967
  publication-title: Anesth. Analg.
– volume: 141
  start-page: 171
  year: 2005
  publication-title: J. Neurosci. Methods
– ident: e_1_2_9_11_1
  doi: 10.1111/ner.12172
– ident: e_1_2_9_43_1
  doi: 10.3389/fncel.2019.00271
– ident: e_1_2_9_29_1
  doi: 10.1088/1741-2552/ac038b
– ident: e_1_2_9_42_1
  doi: 10.1038/s41598-021-81371-9
– ident: e_1_2_9_15_1
  doi: 10.1149/1.3559477
– ident: e_1_2_9_31_1
  doi: 10.1126/scitranslmed.abq4744
– ident: e_1_2_9_21_1
  doi: 10.1002/advs.202105913
– ident: e_1_2_9_45_1
  doi: 10.1089/neu.2007.0423
– ident: e_1_2_9_46_1
  doi: 10.1038/s41598-018-31247-2
– ident: e_1_2_9_27_1
  doi: 10.1126/science.1260318
– ident: e_1_2_9_9_1
  doi: 10.1056/NEJMoa1803588
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1749-6632.1983.tb31628.x
– ident: e_1_2_9_17_1
  doi: 10.1038/s41586-023-06094-5
– ident: e_1_2_9_35_1
  doi: 10.1152/jn.2002.88.4.1592
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jneumeth.2004.10.020
– volume: 10
  year: 2013
  ident: e_1_2_9_22_1
  publication-title: J. Neuroeng. Rehabil.
– ident: e_1_2_9_23_1
  doi: 10.1109/MEMSYS.2011.5734598
– ident: e_1_2_9_40_1
  doi: 10.1016/j.brainresrev.2007.09.002
– ident: e_1_2_9_36_1
  doi: 10.1126/sciadv.abq6354
– ident: e_1_2_9_39_1
  doi: 10.1088/1741-2560/8/4/046030
– ident: e_1_2_9_20_1
  doi: 10.1038/s41393-020-0505-8
– ident: e_1_2_9_3_1
  doi: 10.1038/nm.4025
– ident: e_1_2_9_38_1
– ident: e_1_2_9_48_1
  doi: 10.1089/neu.2015.4256
– ident: e_1_2_9_4_1
  doi: 10.1038/s41586-018-0649-2
– ident: e_1_2_9_26_1
  doi: 10.1088/1741-2552/aab90d
– ident: e_1_2_9_34_1
  doi: 10.1523/JNEUROSCI.1688-13.2013
– volume: 111
  start-page: 1088
  year: 2014
  ident: e_1_2_9_47_1
  publication-title: J. Neuro‐Physiol.
– ident: e_1_2_9_6_1
  doi: 10.1016/S0140-6736(11)60547-3
– ident: e_1_2_9_51_1
  doi: 10.1089/neu.2016.4577
– ident: e_1_2_9_8_1
  doi: 10.1038/s41591-018-0175-7
– ident: e_1_2_9_1_1
  doi: 10.1213/00000539-196707000-00025
– ident: e_1_2_9_33_1
  doi: 10.1007/BF02525529
– ident: e_1_2_9_28_1
  doi: 10.1021/acs.nanolett.9b02296
– ident: e_1_2_9_5_1
  doi: 10.1038/nature20118
– ident: e_1_2_9_24_1
  doi: 10.1007/s10544-007-9132-9
– ident: e_1_2_9_41_1
  doi: 10.1016/j.jneumeth.2006.05.004
– volume: 31
  start-page: 2
  year: 1987
  ident: e_1_2_9_13_1
  publication-title: Progress Biomed. Appl.
– ident: e_1_2_9_7_1
  doi: 10.1016/j.neulet.2005.04.049
– ident: e_1_2_9_30_1
  doi: 10.1126/scitranslmed.abj1441
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cobme.2018.10.005
– ident: e_1_2_9_25_1
  doi: 10.1007/s10544-015-0011-5
– volume: 15
  year: 2024
  ident: e_1_2_9_32_1
  publication-title: Nat. Commun.
– ident: e_1_2_9_19_1
  doi: 10.1016/j.wneu.2013.06.012
– ident: e_1_2_9_50_1
  doi: 10.1016/j.neulet.2015.10.005
– ident: e_1_2_9_18_1
  doi: 10.1038/s41591-021-01663-5
– ident: e_1_2_9_37_1
  doi: 10.1038/s41467-020-20703-1
– ident: e_1_2_9_10_1
  doi: 10.1038/sj.sc.3101038
– ident: e_1_2_9_44_1
  doi: 10.1016/j.spinee.2011.11.001
– ident: e_1_2_9_49_1
  doi: 10.1038/sc.2015.106
– ident: e_1_2_9_2_1
  doi: 10.1111/ner.12171
SSID ssj0017734
Score 2.4744558
Snippet Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and as a possible route to functional restoration after spinal...
Epidural electrical stimulation (EES) of the spinal cord is widely applied for pain management and has garnered considerable interest as a possible route to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Arrays
Density
Electric contacts
epidural electrical stimulation
In vivo methods and tests
Material properties
microelectrode array
Microelectrodes
Muscles
Nanorods
platinum nanorod
Recruitment
Selectivity
Spinal cord
Spinal cord injuries
spinal cord stimulation
Stimulation
thin film
Thin films
Title The Conformal, High‐Density SpineWrap Microelectrode Array for Focal Stimulation and Selective Muscle Recruitment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202420488
https://www.ncbi.nlm.nih.gov/pubmed/40787278
https://www.proquest.com/docview/3193617393
https://www.proquest.com/docview/3238430229
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8H4WCjITEQtraSZ1krChVhVQGSkW3yLEdCQFp1SZDmfgJ_EZ-CXdJGloYkGCJFMWv2Ofzl9zdd4ScMy2F4ZGwjHKl5QilrNCHix2phm-0MSazmPZuRXfg3Aybw4Uo_pwfovzhhjsj09e4wWU4rX-RhkodYSQ5HDEohKCE0WELUdFdyR_FXDc3KwuGDl5sOGdtbPD6cvXlU-kH1FxGrtnR09kkcj7o3OPkqZYmYU29fuNz_M9bbZGNApfSVi5I22TFxDtkfYGtcJdMQaQoRggizH2-pOgi8vH23kYX-GRG-2Mo-jCRY9pDJ78iv4420OZEzijUoh08OGk_eXwpkoZRGWvaz4qC1qW9dAqdU4Sy6WPm_r5HBp3r-6uuVeRssJSDnhRGGSUijLDXyvc8H1OuRExHNsAGLqOm9GzlhEID8jA2KAthPMeXvttQoHkVb9j7ZDUexeaQUJ9J4aGZMHTRnMykairNechc1pTwoVYhF_M1C8Y5NUeQkzDzAKcxKKexQqrzJQ2KLToNQPfAoJAQsELOysewudBiImMzSqEMABrHBpgDnR3kolB2hQZQAH_QOM8W9JcxBK12p1feHf2l0jFZ45h9GJkmvSpZTSapOQFIlISnmdh_AkMIBG0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeigcoLQ8FmhxpUq9NLB2sk5yXAGrLRAOXVC5RY7tSKglrHaTw3LiJ_Ab-SXM5EW3PVQql0hR_IrtGX_2jL8B-MyNklak0rHaV44ntXaSEB9uqruhNdba0mIancvhpXdy1Wu8CekuTMUP0R64kWSU-poEnA6kD55ZQ5VJ6So5rjE0CxfgNYX1LndV31sGKe77lWFZcnLx4lcNb2NXHMznn1-X_gKb89i1XHwGq5A0za58Tn7uF3myr-_-YHR80X-9hZUamrJ-NZfW4JXN3sHyb4SF72GKs4rRJUFCur--MvISebx_OCIv-HzGRmNM-mOixiwiP786xI6xWOZEzRjmYgNaO9kov76p44YxlRk2KpOi4mVRMcXKGaHZ4rr0gF-Hy8HxxeHQqcM2ONojZwqrrZYpXbI3OgyCkKKupNykLiIHodKeClztJdIg-LAu6gtpAy9Uod_VqHy16LobsJjdZnYLWMiVDMhSmPhkUeZK97QRIuE-7yncq3XgSzNo8bhi54grHmYRUzfGbTd2YLcZ07iW0mmM6gcbRZyAHfjUfkb5IqOJyuxtgWkQ03guIh2sbLOaC21VZANF_IeFi3JE_9GGuH80iNq37f_JtAdvhhfRWXz27fx0B5YEBSMm4slgFxbzSWE_IELKk4-lDDwBh80IiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFA5lFeBpbQYqRKXBmIn6yRHxDaij0WILWJvkWM7EgLCajc50BM_ob-xv6QzSTawcKjUXiJF8Sv2zPhLZvwNwEdulLQik47VgXJ8qbWTRnjxMu1G1lhrK49p_1SeXPhfh93hk1P8NT9E-8ONNKOy16TgI5MdPpKGKpPRSXLcYkgIX8GCL92Q5Lp33hJI8SCo_cqSU4QXH05pG11xOFt_dlt6gTVnoWu198TLoKajrkNOrg_KIj3QP58ROv7Pa63AmwaYsqNaklZhzuZrsPSErnAdJihTjI4IEs69-cQoRuT3w68excAX92wwwqKXYzVifYryaxLsGIttjtU9w1ospp2TDYqr2yZrGFO5YYOqKJpd1i8n2DkjLFteVfHvb-Ei_vzj-MRpkjY42qdQCqutlhkdsTc6CsOIcq5k3GQe4gahsq4KPe2n0iD0sB5aC2lDP1JR4Go0vVq43gbM53e53QIWcSVD8hOmAfmTudJdbYRIecC7Cr_UOrA_XbNkVHNzJDULs0hoGpN2GjuwM13SpNHRSYLGBwdFjIAd2Gsfo3aRy0Tl9q7EMohofA9xDna2WYtC2xV5QBH9YeOiWtC_jCE56sX99m77XyrtwuJZL06-fzn99g5eC8pETKyT4Q7MF-PSvkd4VKQfKg34A3-sB0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+conformal%2C+high-density+SpineWrap+microelectrode+array+for+focal+stimulation+and+selective+muscle+recruitment&rft.jtitle=Advanced+functional+materials&rft.au=Russman%2C+Samantha+M&rft.au=Montgomery-Walsh%2C+Rhea&rft.au=Vatsyayan%2C+Ritwik&rft.au=Sang+U%2C+Hoi&rft.date=2025-04-18&rft.issn=1616-301X&rft.volume=35&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202420488&rft_id=info%3Apmid%2F40787278&rft.externalDocID=40787278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon