Kinetics of homogeneous 5‐hydroxymethylfurfural oxidation to 2,5‐furandicarboxylic acid with Co/Mn/Br catalyst
2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an investigation of the oxidation rate of 5‐hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentratio...
Saved in:
Published in | AIChE journal Vol. 63; no. 1; pp. 162 - 171 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
American Institute of Chemical Engineers
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-1541 1547-5905 |
DOI | 10.1002/aic.15497 |
Cover
Loading…
Abstract | 2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an investigation of the oxidation rate of 5‐hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5‐diformylfuran (DFF), 5‐formyl‐2‐furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi‐batch reactor using rapid in‐line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas–liquid mass transfer coefficients reveals that except for the FFCA → FDCA step, the first two oxidation steps are subject to gas–liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. © 2016 American Institute of Chemical Engineers AIChE J, 63: 162–171, 2017 |
---|---|
AbstractList | 2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an investigation of the oxidation rate of 5‐hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5‐diformylfuran (DFF), 5‐formyl‐2‐furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi‐batch reactor using rapid in‐line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas–liquid mass transfer coefficients reveals that except for the FFCA → FDCA step, the first two oxidation steps are subject to gas–liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. © 2016 American Institute of Chemical Engineers
AIChE J
, 63: 162–171, 2017 2,5-furandicarboxylic acid (FDCA) is a potential non-phthalate based bio-renewable substitute for terephthalic acid-based plastics. Herein, we present an investigation of the oxidation rate of 5-hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5-diformylfuran (DFF), 5-formyl-2-furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi-batch reactor using rapid in-line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas-liquid mass transfer coefficients reveals that except for the FFCA [arrow right] FDCA step, the first two oxidation steps are subject to gas-liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. © 2016 American Institute of Chemical Engineers AIChE J, 63: 162-171, 2017 2,5-furandicarboxylic acid (FDCA) is a potential non-phthalate based bio-renewable substitute for terephthalic acid-based plastics. Herein, we present an investigation of the oxidation rate of 5-hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5-diformylfuran (DFF), 5-formyl-2-furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi-batch reactor using rapid in-line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas-liquid mass transfer coefficients reveals that except for the FFCA arrow right FDCA step, the first two oxidation steps are subject to gas-liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. copyright 2016 American Institute of Chemical Engineers AIChE J, 63: 162-171, 2017 2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an investigation of the oxidation rate of 5‐hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5‐diformylfuran (DFF), 5‐formyl‐2‐furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi‐batch reactor using rapid in‐line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas–liquid mass transfer coefficients reveals that except for the FFCA → FDCA step, the first two oxidation steps are subject to gas–liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. © 2016 American Institute of Chemical Engineers AIChE J, 63: 162–171, 2017 |
Author | Snavely, Kirk Zhu, Hongda Subramaniam, Bala Niu, Fenghui Zuo, Xiaobin Martin, Kevin J. Chaudhari, Amit S. |
Author_xml | – sequence: 1 givenname: Xiaobin surname: Zuo fullname: Zuo, Xiaobin organization: Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence – sequence: 2 givenname: Amit S. surname: Chaudhari fullname: Chaudhari, Amit S. organization: Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence – sequence: 3 givenname: Kirk surname: Snavely fullname: Snavely, Kirk organization: Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence – sequence: 4 givenname: Fenghui surname: Niu fullname: Niu, Fenghui organization: Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence – sequence: 5 givenname: Hongda surname: Zhu fullname: Zhu, Hongda organization: University of Kansas, Lawrence – sequence: 6 givenname: Kevin J. surname: Martin fullname: Martin, Kevin J. organization: Archer Daniels Midland (ADM) Company – sequence: 7 givenname: Bala surname: Subramaniam fullname: Subramaniam, Bala email: bsubramaniam@ku.edu organization: University of Kansas, Lawrence |
BookMark | eNqNkctKxDAUhoMoOF4WvkHAjYKdSdKkmSx18DKouNF1yaSpjWQaTVLG7nwEn9EnMXNZiYIQOOQ_3_nhnH8PbLeu1QAcYTTECJGRNGqIGRV8CwxS5RkTiG2DAUIIZ0nAu2AvhJf0I3xMBsDfmlZHowJ0NWzc3D3rVrsuQPb18dn0lXfv_VzHprd159OTFrp3U8loXAujg-RsCS4bbWWU9LPEW6OgVKaCCxMbOHGj-3Z04aGSUdo-xAOwU0sb9OGm7oOnq8vHyU1293A9nZzfZYoixDNeE8aJ4AwJhgtBcZVXXOpZJZUSIjW0TDpOUM6KJBRUEskJG6sCibRevg9O1r6v3r11OsRyboLS1srVhiUeF5QVTIj8HyhjaEw4Xboe_0BfXOfbtEiiKKeY5gQnarSmlHcheF2XysTV0aKXxpYYlcu4yhRXuYorTZz-mHj1Zi59_yu7cV8Yq_u_wfJ8OllPfAPSxqaf |
CODEN | AICEAC |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_114003 crossref_primary_10_1134_S004057951706015X crossref_primary_10_1021_acssuschemeng_0c02574 crossref_primary_10_1002_aic_17890 crossref_primary_10_1007_s41981_023_00264_2 crossref_primary_10_1021_acs_iecr_2c03316 crossref_primary_10_1021_acs_iecr_2c03815 crossref_primary_10_1016_j_cclet_2019_10_031 crossref_primary_10_1039_D2SC01684B crossref_primary_10_1002_cssc_202102041 crossref_primary_10_1002_tcr_202300019 crossref_primary_10_1016_j_jechem_2023_11_023 crossref_primary_10_1016_j_jechem_2020_03_003 crossref_primary_10_1016_j_mcat_2020_111133 crossref_primary_10_1002_cssc_202100564 crossref_primary_10_1002_aic_17005 crossref_primary_10_1016_j_cej_2020_127552 crossref_primary_10_1039_C9GC02445J crossref_primary_10_1021_acs_iecr_0c01309 crossref_primary_10_1039_D3SU00038A crossref_primary_10_1021_acsomega_3c06333 crossref_primary_10_1002_cssc_201800440 crossref_primary_10_1021_acs_iecr_3c01154 crossref_primary_10_1021_acscatal_9b01665 crossref_primary_10_3390_catal12080814 crossref_primary_10_1002_asia_201901001 crossref_primary_10_1016_S1872_5813_21_60020_8 crossref_primary_10_1021_acs_jced_7b01112 crossref_primary_10_1002_cssc_202300886 crossref_primary_10_1021_acs_iecr_9b03573 crossref_primary_10_1002_cssc_202102050 crossref_primary_10_1021_acscatal_0c05419 crossref_primary_10_1021_acsengineeringau_3c00064 crossref_primary_10_1021_acs_oprd_4c00474 crossref_primary_10_1002_cssc_202200228 crossref_primary_10_1016_j_cej_2021_132325 crossref_primary_10_1515_ntrev_2022_0518 crossref_primary_10_1002_cssc_202401487 crossref_primary_10_1021_acs_iecr_1c02730 |
Cites_doi | 10.1021/acscatal.5b02094 10.1039/C4RA16968A 10.1016/0920-5861(94)00138-R 10.1039/C4GC02019G 10.1002/cssc.201501106 10.1021/sc4004778 10.1039/b922014c 10.1016/j.jcat.2014.04.011 10.1039/C5GC02114F 10.1039/C1CY00321F 10.1039/C6RA06792A 10.1016/j.ces.2013.09.004 10.1002/cssc.200900137 10.1021/acssuschemeng.6b00174 10.1021/cr300298j 10.1021/ie00002a001 10.1002/cctc.201500352 10.1021/ie403446b 10.1002/cssc.200700033 10.1021/sc500702q 10.1039/C4GC01833H 10.1039/c2ee02480b 10.1021/cr050989d 10.1039/b920262e 10.1039/c3gc40727f 10.1021/i160073a004 10.1002/cssc.200900059 10.1039/C5SC00854A 10.1017/CBO9780511805134 10.1002/cssc.201403390 10.1021/cr300182k 10.1039/C5GC01584G 10.1021/acscatal.5b01491 10.1007/s10562-013-1186-0 10.1039/c0gc00911c 10.1007/s11244-010-9579-4 10.1016/j.jcat.2009.04.019 10.3998/ark.5550190.0002.102 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q 10.1039/C3GC41935E |
ContentType | Journal Article |
Copyright | 2016 American Institute of Chemical Engineers 2017 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2016 American Institute of Chemical Engineers – notice: 2017 American Institute of Chemical Engineers |
DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
DOI | 10.1002/aic.15497 |
DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1547-5905 |
EndPage | 171 |
ExternalDocumentID | 4273452531 10_1002_aic_15497 AIC15497 |
Genre | article |
GrantInformation_xml | – fundername: Archer Daniels Midland Company – fundername: National Institute of Food and Agriculture funderid: 2011‐10006‐30362 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7ST 7U5 8FD C1K L7M SOI |
ID | FETCH-LOGICAL-c4007-7f257297509516941d3d7aebdacc99297ea516125735699264a2a7258c6090123 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Fri Jul 11 04:55:42 EDT 2025 Fri Jul 11 06:01:18 EDT 2025 Fri Jul 25 10:59:43 EDT 2025 Tue Jul 01 01:40:38 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Wed Aug 20 07:26:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4007-7f257297509516941d3d7aebdacc99297ea516125735699264a2a7258c6090123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1847414321 |
PQPubID | 7879 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1864565993 proquest_miscellaneous_1855082742 proquest_journals_1847414321 crossref_citationtrail_10_1002_aic_15497 crossref_primary_10_1002_aic_15497 wiley_primary_10_1002_aic_15497_AIC15497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | AIChE journal |
PublicationYear | 2017 |
Publisher | American Institute of Chemical Engineers |
Publisher_xml | – name: American Institute of Chemical Engineers |
References | 2010; 12 2010; 53 2014; 315 2001; 343 2007; 107 2015; 6 2015; 17 2015; 5 2015; 3 2013; 2 2010 2013; 104 2012; 14.2 2009 1973 2011; 13 2005 2004 1992; 31 2016; 18 2008; 1 2015; 8 2015; 7 2016; 4 2016; 6 2013; 15 2012; 2 1980; 19 2014; 2 2001 1995; 23 2014; 16 1987 2009; 265 2013; 113 2014 2013 1980 2009; 2 2014; 144 2012; 5 2001; 2001 2014; 53 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 Reid RC (e_1_2_8_48_1) 1987 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 WE Stewart (e_1_2_8_46_1) 2012 e_1_2_8_16_1 e_1_2_8_37_1 Perry RH (e_1_2_8_51_1) 1973 Treybal RE. (e_1_2_8_49_1) 1980 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – year: 2009 – volume: 2 start-page: 79 year: 2012 end-page: 81 article-title: Aerobic oxidation of 5‐hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts publication-title: Catal Sci Technol. – year: 2005 – year: 2001 – volume: 4 start-page: 3659 year: 2016 end-page: 3668 article-title: Optimization of Co/Mn/Br‐catalyzed oxidation of 5‐hydroxymethylfurfural to enhance 2,5‐furandicarboxylic acid yield and minimize substrate burning publication-title: ACS Sustain Chem Eng. – volume: 17 start-page: 1308 year: 2015 end-page: 1317 article-title: Selective aerobic oxidation of the biomass‐derived precursor 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst publication-title: Green Chem. – volume: 19 start-page: 21 year: 1980 end-page: 26 article-title: Gas holdup and bubble diameters in pressurized gas‐liquid stirred vessels publication-title: Ind Eng Chem Fundam. – volume: 315 start-page: 67 year: 2014 end-page: 74 article-title: A novel platinum nanocatalyst for the oxidation of 5‐hydroxymethylfurfural into 2,5‐furandicarboxylic acid under mild conditions publication-title: J Catal. – volume: 6 start-page: 326 year: 2016 end-page: 338 article-title: Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts publication-title: ACS Catal. – volume: 17 start-page: 1610 year: 2015 end-page: 1617 article-title: Aerobic oxidation of 5‐hydroxymethylfurfural into 2,5‐furandicarboxylic acid in water under mild conditions publication-title: Green Chem. – year: 2014 – volume: 6 start-page: 4940 year: 2015 end-page: 4945 article-title: Solid base catalysed 5‐HMF oxidation to 2,5‐FDCA over Au/hydrotalcites: fact or fiction? publication-title: Chem Sci. – volume: 3 start-page: 406 year: 2015 end-page: 412 article-title: Catalytic conversion of fructose and 5‐hydroxymethylfurfural into 2,5‐furandicarboxylic acid over a recyclable Fe O −CoO magnetite nanocatalyst publication-title: ACS Sustain Chem Eng. – volume: 7 start-page: 2853 year: 2015 end-page: 2863 article-title: Functionalized carbon nanotubes for biomass conversion: the base‐free aerobic oxidation of 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid over platinum supported on a carbon nanotube catalyst publication-title: ChemCatChem. – volume: 6 start-page: 51229 year: 2016 end-page: 51237 article-title: Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5‐hydroxymethylfurfural publication-title: RSC Adv. – volume: 16 start-page: 950 year: 2014 end-page: 963 article-title: Green and sustainable manufacture of chemicals from biomass: state of the art publication-title: Green Chem. – volume: 113 start-page: 7421 year: 2013 end-page: 7469 article-title: ‐Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development publication-title: Chem Rev. – volume: 12 start-page: 539 year: 2010 end-page: 554 article-title: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “Top 10” revisited publication-title: Green Chem. – volume: 53 start-page: 1264 year: 2010 end-page: 1269 article-title: Production of oxidized derivatives of 5‐hydroxymethylfurfural (HMF) publication-title: Top Catal. – volume: 18 start-page: 979 year: 2016 end-page: 983 article-title: Base‐free conversion of 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid over a Ru/C catalyst publication-title: Green Chem. – volume: 53 start-page: 9017 year: 2014 end-page: 9026 article-title: Kinetic investigations of ‐xylene oxidation to terephthalic acid with a Co/Mn/Br catalyst in a homogeneous liquid phase publication-title: Ind Eng Chem Res. – volume: 265 start-page: 109 year: 2009 end-page: 116 article-title: Biomass into chemicals: one pot‐base free oxidative esterification of 5‐hydroxymethyl‐2‐furfural into 2,5‐dimethylfuroate with gold on nanoparticulated ceria publication-title: J Catal. – volume: 31 start-page: 453 year: 1992 end-page: 462 article-title: Liquid‐phase catalytic oxidation of ‐xylene publication-title: Ind Eng Chem Res. – volume: 8 start-page: 3832 year: 2015 end-page: 3838 article-title: Base‐free aqueous‐phase oxidation of 5‐hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks publication-title: ChemSusChem. – volume: 5 start-page: 6407 year: 2012 end-page: 6422 article-title: Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance publication-title: Energy Environ Sci. – volume: 113 start-page: 1499 year: 2013 end-page: 1597 article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources publication-title: Chem Rev. – volume: 2 start-page: 672 year: 2009 end-page: 675 article-title: Gold‐catalyzed aerobic oxidation of 5‐hydroxymethylfurfural in water at ambient temperature publication-title: ChemSusChem. – volume: 15 start-page: 2240 year: 2013 end-page: 2251 article-title: Selective aqueous phase oxidation of 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion publication-title: Green Chem. – start-page: 76 year: 2004 article-title: Top Value Added Chemicals from Biomass. Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas – volume: 5 start-page: 6529 year: 2015 end-page: 6544 article-title: Recent advances in the catalytic synthesis of 2,5‐furandicarboxylic acid and its derivatives publication-title: ACS Catal. – volume: 2 start-page: 1138 year: 2009 end-page: 1144 article-title: Biomass into chemicals: aerobic oxidation of 5‐hydroxymethyl‐2‐furfural into 2,5‐furandicarboxylic acid with gold nanoparticle catalysts publication-title: ChemSusChem. – volume: 2001 start-page: 17 issue: 1 year: 2001 end-page: 54 article-title: Synthesis, chemistry and applications of 5‐hydroxymethyl‐furfural and its derivatives publication-title: Arkivoc. – volume: 104 start-page: 93 year: 2013 end-page: 102 article-title: A spray reactor concept for catalytic oxidation of ‐xylene to produce high‐purity terephthalic acid publication-title: Chem Eng Sci. – volume: 8 start-page: 1206 year: 2015 end-page: 1217 article-title: Selective aerobic oxidation of 5‐HMF into 2,5‐furandicarboxylic acid with Pt catalysts supported on TiO‐ and ZrO‐based supports publication-title: ChemSusChem. – volume: 14.2 year: 2012 – volume: 2 start-page: 823 year: 2014 end-page: 835 article-title: Terephthalic acid production via greener spray process: comparative economic and environmental impact assessments with mid‐century process publication-title: ACS Sustain Chem Eng. – year: 1987 – year: 1973 – volume: 13 start-page: 824 year: 2011 end-page: 827 article-title: Hydrotalcite‐supported gold‐nanoparticle‐catalyzed highly efficient base‐free aqueous oxidation of 5‐hydroxymethylfurfural into 2,5‐furandicarboxylic acid under atmospheric oxygen pressure publication-title: Green Chem. – volume: 144 start-page: 498 year: 2014 end-page: 506 article-title: Synthesis, characterization, and application of PVP‐Pd NP in the aerobic oxidation of 5‐hydroxymethylfurfural (HMF) publication-title: Catal Lett. – year: 2010 – volume: 1 start-page: 75 year: 2008 end-page: 78 article-title: Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts publication-title: ChemSusChem. – volume: 107 start-page: 2411 year: 2007 end-page: 2502 article-title: Chemical routes for the transformation of biomass into chemicals publication-title: Chem Rev. – year: 1980 – volume: 12 start-page: 260 year: 2010 end-page: 267 article-title: Liquid phase oxidation of ‐xylene to terephthalic acid at medium‐high temperatures: multiple benefits of CO expanded liquids publication-title: Green Chem. – volume: 343 start-page: 102 year: 2001 end-page: 111 article-title: Synthesis of 2,5‐diformylfuran and furan‐2,5‐dicarboxylic acid by catalytic air‐oxidation of 5‐hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal‐bromide catalysts publication-title: Adv Synth Catal. – volume: 18 start-page: 1597 year: 2016 end-page: 1604 article-title: Base‐free aerobic oxidation of 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid over a Pt/C–O–Mg catalyst publication-title: Green Chem. – volume: 5 start-page: 19823 year: 2015 end-page: 19829 article-title: Aerobic oxidation of 5‐hydroxymethylfurfural (HMF) effectively catalyzed by a Ce Bi O supported Pt catalyst at room temperature publication-title: RSC Adv. – volume: 23 start-page: 69 year: 1995 end-page: 158 article-title: Methodology and scope of metal/bromide autoxidation of hydrocarbons publication-title: Catal Today. – volume: 2 start-page: 5 year: 2013 – year: 2013 – ident: e_1_2_8_37_1 – volume-title: Mass‐Transfer Operations year: 1980 ident: e_1_2_8_49_1 – ident: e_1_2_8_28_1 doi: 10.1021/acscatal.5b02094 – ident: e_1_2_8_17_1 doi: 10.1039/C4RA16968A – ident: e_1_2_8_10_1 doi: 10.1016/0920-5861(94)00138-R – ident: e_1_2_8_30_1 doi: 10.1039/C4GC02019G – ident: e_1_2_8_40_1 – ident: e_1_2_8_33_1 doi: 10.1002/cssc.201501106 – ident: e_1_2_8_45_1 doi: 10.1021/sc4004778 – ident: e_1_2_8_3_1 doi: 10.1039/b922014c – ident: e_1_2_8_15_1 doi: 10.1016/j.jcat.2014.04.011 – ident: e_1_2_8_20_1 doi: 10.1039/C5GC02114F – ident: e_1_2_8_38_1 doi: 10.1039/C1CY00321F – ident: e_1_2_8_13_1 doi: 10.1039/C6RA06792A – ident: e_1_2_8_44_1 doi: 10.1016/j.ces.2013.09.004 – ident: e_1_2_8_24_1 doi: 10.1002/cssc.200900137 – ident: e_1_2_8_39_1 doi: 10.1021/acssuschemeng.6b00174 – ident: e_1_2_8_11_1 doi: 10.1021/cr300298j – ident: e_1_2_8_12_1 doi: 10.1021/ie00002a001 – ident: e_1_2_8_9_1 – volume-title: Chemical Engineers’ Handbook year: 1973 ident: e_1_2_8_51_1 – ident: e_1_2_8_43_1 doi: 10.1016/j.ces.2013.09.004 – ident: e_1_2_8_42_1 – ident: e_1_2_8_18_1 doi: 10.1002/cctc.201500352 – ident: e_1_2_8_54_1 doi: 10.1021/ie403446b – ident: e_1_2_8_21_1 doi: 10.1002/cssc.200700033 – ident: e_1_2_8_31_1 doi: 10.1021/sc500702q – ident: e_1_2_8_29_1 doi: 10.1039/C4GC01833H – ident: e_1_2_8_8_1 doi: 10.1039/c2ee02480b – ident: e_1_2_8_5_1 doi: 10.1021/cr050989d – ident: e_1_2_8_53_1 doi: 10.1039/b920262e – ident: e_1_2_8_16_1 doi: 10.1039/c3gc40727f – ident: e_1_2_8_50_1 doi: 10.1021/i160073a004 – ident: e_1_2_8_23_1 doi: 10.1002/cssc.200900059 – ident: e_1_2_8_7_1 – volume-title: Athena Visual Studio year: 2012 ident: e_1_2_8_46_1 – ident: e_1_2_8_2_1 – ident: e_1_2_8_26_1 doi: 10.1039/C5SC00854A – ident: e_1_2_8_47_1 doi: 10.1017/CBO9780511805134 – ident: e_1_2_8_19_1 doi: 10.1002/cssc.201403390 – ident: e_1_2_8_52_1 – ident: e_1_2_8_4_1 doi: 10.1021/cr300182k – ident: e_1_2_8_34_1 doi: 10.1039/C5GC01584G – ident: e_1_2_8_41_1 – ident: e_1_2_8_27_1 doi: 10.1021/acscatal.5b01491 – ident: e_1_2_8_32_1 doi: 10.1007/s10562-013-1186-0 – ident: e_1_2_8_25_1 doi: 10.1039/c0gc00911c – volume-title: The Properties of Gases and Liquids year: 1987 ident: e_1_2_8_48_1 – ident: e_1_2_8_14_1 doi: 10.1007/s11244-010-9579-4 – ident: e_1_2_8_22_1 doi: 10.1016/j.jcat.2009.04.019 – ident: e_1_2_8_35_1 doi: 10.3998/ark.5550190.0002.102 – ident: e_1_2_8_36_1 doi: 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q – ident: e_1_2_8_6_1 doi: 10.1039/C3GC41935E |
SSID | ssj0012782 |
Score | 2.3794467 |
Snippet | 2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an... 2,5-furandicarboxylic acid (FDCA) is a potential non-phthalate based bio-renewable substitute for terephthalic acid-based plastics. Herein, we present an... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 162 |
SubjectTerms | 2,5‐furandicarboxylic acid 5‐hydroxymethylfurfural Acetic acid Batch reactors Catalysts Chemical engineering Chemical engineers Co/Mn/Br catalyst Droplets Kinetics Mass transfer Oxidation Oxygen Reactors Sampling semi‐batch reactor model |
Title | Kinetics of homogeneous 5‐hydroxymethylfurfural oxidation to 2,5‐furandicarboxylic acid with Co/Mn/Br catalyst |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15497 https://www.proquest.com/docview/1847414321 https://www.proquest.com/docview/1855082742 https://www.proquest.com/docview/1864565993 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhh4IwoFGcTAQPpw3mIqFVUBwYCo1AEpchxHrSgJSlOJMvET-I38Eu6cJi0IEGKL7Et0se_sz2f7O0KOXLAaG-YNzZZ6oBlWEGrckqammGJgPNQ5V6ctbqxO17jsmb0SOc3vwmT8EEXADT1Djdfo4Nwf1WakoXwgMCzi4k1yPKuFgOi2oI5qMNvJmMJhuQxijZxVqM5qxZuf56IZwJyHqWqeaa-Q-1zD7HjJQ3Wc-lXx8oW88Z-_sEqWp_iTNjODWSMlGa2TpTlWwg2SXMEzsjfTOKT9-DEGG5PxeETN99e3_iRAzTDx9GQYjpMQaTto_DzIcjPRNKbsBAWxIsJNoMQH-eFAUC4GAcW4L23FteuodpZQFTyajNJN0m2f37U62jQ1gyYwkbpmh-DqeCkXERrehQ30wObSD7gQLiAuW3IoB_Bk66YFBZbBGbeZ6Qir7iKM2yILURzJbUL1BowCDnMN03UN3xEOr-sCFpECvmmajiyT47yTPDHlLcf0GUMvY1xmHjSjp5qxTA4L0aeMrOM7oUre097UX0cerHMBWhk6a5TJQVENnobbJ1w1MsjAas7Bre3fZCyEyAD6QG3V9T8r4jUvWuph5--iu2SRIa5QMaAKWUiTsdwDVJT6-8r8PwBySQfJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROFAOPNoillfdikMPDbvrPJxIXGApWp6HCiQuVeQ4jlixJCiblVhO_AR-I7-EGWcTKKIV4hbZk2hie-xvxvY3ABsBjhqB64YltB1bjhcnlvS0axmmGJwPbSnNaYsTr3vmHJy75xOwVd2FKfkh6oAbWYaZr8nAKSDdfGINlT1FcZFAfIApyuhNZrn7uyaPanPhl1zh6DCjXLviFWrxZv3q36vRE8R8DlTNSrM3B38qHcsDJpebwyLaVLcv6Bvf-xPzMDuGoGy7HDMLMKHTTzDzjJjwM-SH-EwEzixL2EV2leEw09lwwNyHu_uLUUyqUe7pUT8Z5gkxd7DsplemZ2JFxvhPEqSKlPaB8gjl-z3FpOrFjEK_rJM1j9PmTs5M_Gg0KL7A2d6v007XGmdnsBTlUrdEgtZO93IJpNF12NiOhdRRLJUKEHQJLbEc8ZOwXQ8LPEdyKbjrK68VEJJbhMk0S_USMLuNE4HPA8cNAifylS9btkI_UuE3XdfXDfhR9VKoxtTllEGjH5akyzzEZgxNMzbgey16XfJ1vCa0WnV1ODbZQYiuLqIrx-btBnyrq9HYaAdFmkZGGXTofNrd_p-MRygZcR-qbfr-34qE2_sd87D8dtGvMN09PT4Kj_ZPDlfgIyeYYUJCqzBZ5EO9hiCpiNaNLTwC2uIL4g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED-xTpq2B9jY0Aod89AeeCC0df440Z6grKKwoQmtEg9IkeM4oqIkKE0lyhMfgc_IJ-HOaQKbtmniLbIv0cX22b87278D-BzgqBG4blhC27HleHFiSU-7lmGKwfnQltKctjjy9ofOwYl7sgBfqrswJT9EHXAjyzDzNRn4ZZy0H0hD5UhRWCQQz-C543V88rz2jmvuqC4XfkkVjv4yynUrWqEOb9ev_roYPSDMxzjVLDT9JTitVCzPl5xvT4toW13_xt74xH94DYtzAMp2yhHzBhZ0ugyvHtESvoX8EJ-JvpllCTvLLjIcZDqbTph7d3N7NotJM8o8PRsn0zwh3g6WXY3K5EysyBjfIkGqSGkXKI9QfjxSTKpRzCjwy3pZ-3va3s2ZiR7NJsU7GPa__uztW_PcDJaiTOqWSNDW6VYuQTS6DBvbsZA6iqVSAUIuoSWWI3oStuthgedILgV3feV1AsJxK9BIs1S_B2Z3cRrweeC4QeBEvvJlx1boRSr8puv6ugmbVSeFak5cTvkzxmFJucxDbMbQNGMTNmrRy5Kt409Craqnw7nBTkJ0dBFbOTbvNuFTXY2mRvsn0jQyyqA759Pe9r9kPMLIiPpQbdP1f1ck3Bn0zMPq_4t-hBc_9vrht8HR4Rq85IQxTDyoBY0in-oPiJCKaN1Ywj3NJQqa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+homogeneous+5-hydroxymethylfurfural+oxidation+to+2%2C5-furandicarboxylic+acid+with+Co%2FMn%2FBr+catalyst&rft.jtitle=AIChE+journal&rft.au=Zuo%2C+Xiaobin&rft.au=Chaudhari%2C+Amit+S&rft.au=Snavely%2C+Kirk&rft.au=Niu%2C+Fenghui&rft.date=2017-01-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=63&rft.issue=1&rft.spage=162&rft_id=info:doi/10.1002%2Faic.15497&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4273452531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |