Kinetics of homogeneous 5‐hydroxymethylfurfural oxidation to 2,5‐furandicarboxylic acid with Co/Mn/Br catalyst

2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an investigation of the oxidation rate of 5‐hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentratio...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 63; no. 1; pp. 162 - 171
Main Authors Zuo, Xiaobin, Chaudhari, Amit S., Snavely, Kirk, Niu, Fenghui, Zhu, Hongda, Martin, Kevin J., Subramaniam, Bala
Format Journal Article
LanguageEnglish
Published New York American Institute of Chemical Engineers 01.01.2017
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.15497

Cover

Loading…
Abstract 2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an investigation of the oxidation rate of 5‐hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5‐diformylfuran (DFF), 5‐formyl‐2‐furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi‐batch reactor using rapid in‐line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas–liquid mass transfer coefficients reveals that except for the FFCA → FDCA step, the first two oxidation steps are subject to gas–liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. © 2016 American Institute of Chemical Engineers AIChE J, 63: 162–171, 2017
AbstractList 2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an investigation of the oxidation rate of 5‐hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5‐diformylfuran (DFF), 5‐formyl‐2‐furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi‐batch reactor using rapid in‐line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas–liquid mass transfer coefficients reveals that except for the FFCA → FDCA step, the first two oxidation steps are subject to gas–liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. © 2016 American Institute of Chemical Engineers AIChE J , 63: 162–171, 2017
2,5-furandicarboxylic acid (FDCA) is a potential non-phthalate based bio-renewable substitute for terephthalic acid-based plastics. Herein, we present an investigation of the oxidation rate of 5-hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5-diformylfuran (DFF), 5-formyl-2-furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi-batch reactor using rapid in-line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas-liquid mass transfer coefficients reveals that except for the FFCA [arrow right] FDCA step, the first two oxidation steps are subject to gas-liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. © 2016 American Institute of Chemical Engineers AIChE J, 63: 162-171, 2017
2,5-furandicarboxylic acid (FDCA) is a potential non-phthalate based bio-renewable substitute for terephthalic acid-based plastics. Herein, we present an investigation of the oxidation rate of 5-hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5-diformylfuran (DFF), 5-formyl-2-furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi-batch reactor using rapid in-line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas-liquid mass transfer coefficients reveals that except for the FFCA arrow right FDCA step, the first two oxidation steps are subject to gas-liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. copyright 2016 American Institute of Chemical Engineers AIChE J, 63: 162-171, 2017
2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an investigation of the oxidation rate of 5‐hydroxymethylfurfural (HMF) to FDCA in acetic acid medium using Co/Mn/Br catalyst. Transient concentration profiles of the reactant (HMF), intermediates [2,5‐diformylfuran (DFF), 5‐formyl‐2‐furancarboxylic acid (FFCA)], and the desired product (FDCA) were obtained for this relatively fast reaction in a stirred semi‐batch reactor using rapid in‐line sampling. Comparison of the effective rate constants for the series oxidation steps with predicted gas–liquid mass transfer coefficients reveals that except for the FFCA → FDCA step, the first two oxidation steps are subject to gas–liquid mass transfer limitations even at high stirrer speeds. Novel reactor configurations, such as a reactor in which the reaction mixture is dispersed as fine droplets into a gas phase containing oxygen, are required to overcome oxygen starvation in the liquid phase and further intensify FDCA production. © 2016 American Institute of Chemical Engineers AIChE J, 63: 162–171, 2017
Author Snavely, Kirk
Zhu, Hongda
Subramaniam, Bala
Niu, Fenghui
Zuo, Xiaobin
Martin, Kevin J.
Chaudhari, Amit S.
Author_xml – sequence: 1
  givenname: Xiaobin
  surname: Zuo
  fullname: Zuo, Xiaobin
  organization: Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence
– sequence: 2
  givenname: Amit S.
  surname: Chaudhari
  fullname: Chaudhari, Amit S.
  organization: Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence
– sequence: 3
  givenname: Kirk
  surname: Snavely
  fullname: Snavely, Kirk
  organization: Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence
– sequence: 4
  givenname: Fenghui
  surname: Niu
  fullname: Niu, Fenghui
  organization: Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence
– sequence: 5
  givenname: Hongda
  surname: Zhu
  fullname: Zhu, Hongda
  organization: University of Kansas, Lawrence
– sequence: 6
  givenname: Kevin J.
  surname: Martin
  fullname: Martin, Kevin J.
  organization: Archer Daniels Midland (ADM) Company
– sequence: 7
  givenname: Bala
  surname: Subramaniam
  fullname: Subramaniam, Bala
  email: bsubramaniam@ku.edu
  organization: University of Kansas, Lawrence
BookMark eNqNkctKxDAUhoMoOF4WvkHAjYKdSdKkmSx18DKouNF1yaSpjWQaTVLG7nwEn9EnMXNZiYIQOOQ_3_nhnH8PbLeu1QAcYTTECJGRNGqIGRV8CwxS5RkTiG2DAUIIZ0nAu2AvhJf0I3xMBsDfmlZHowJ0NWzc3D3rVrsuQPb18dn0lXfv_VzHprd159OTFrp3U8loXAujg-RsCS4bbWWU9LPEW6OgVKaCCxMbOHGj-3Z04aGSUdo-xAOwU0sb9OGm7oOnq8vHyU1293A9nZzfZYoixDNeE8aJ4AwJhgtBcZVXXOpZJZUSIjW0TDpOUM6KJBRUEskJG6sCibRevg9O1r6v3r11OsRyboLS1srVhiUeF5QVTIj8HyhjaEw4Xboe_0BfXOfbtEiiKKeY5gQnarSmlHcheF2XysTV0aKXxpYYlcu4yhRXuYorTZz-mHj1Zi59_yu7cV8Yq_u_wfJ8OllPfAPSxqaf
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_rser_2023_114003
crossref_primary_10_1134_S004057951706015X
crossref_primary_10_1021_acssuschemeng_0c02574
crossref_primary_10_1002_aic_17890
crossref_primary_10_1007_s41981_023_00264_2
crossref_primary_10_1021_acs_iecr_2c03316
crossref_primary_10_1021_acs_iecr_2c03815
crossref_primary_10_1016_j_cclet_2019_10_031
crossref_primary_10_1039_D2SC01684B
crossref_primary_10_1002_cssc_202102041
crossref_primary_10_1002_tcr_202300019
crossref_primary_10_1016_j_jechem_2023_11_023
crossref_primary_10_1016_j_jechem_2020_03_003
crossref_primary_10_1016_j_mcat_2020_111133
crossref_primary_10_1002_cssc_202100564
crossref_primary_10_1002_aic_17005
crossref_primary_10_1016_j_cej_2020_127552
crossref_primary_10_1039_C9GC02445J
crossref_primary_10_1021_acs_iecr_0c01309
crossref_primary_10_1039_D3SU00038A
crossref_primary_10_1021_acsomega_3c06333
crossref_primary_10_1002_cssc_201800440
crossref_primary_10_1021_acs_iecr_3c01154
crossref_primary_10_1021_acscatal_9b01665
crossref_primary_10_3390_catal12080814
crossref_primary_10_1002_asia_201901001
crossref_primary_10_1016_S1872_5813_21_60020_8
crossref_primary_10_1021_acs_jced_7b01112
crossref_primary_10_1002_cssc_202300886
crossref_primary_10_1021_acs_iecr_9b03573
crossref_primary_10_1002_cssc_202102050
crossref_primary_10_1021_acscatal_0c05419
crossref_primary_10_1021_acsengineeringau_3c00064
crossref_primary_10_1021_acs_oprd_4c00474
crossref_primary_10_1002_cssc_202200228
crossref_primary_10_1016_j_cej_2021_132325
crossref_primary_10_1515_ntrev_2022_0518
crossref_primary_10_1002_cssc_202401487
crossref_primary_10_1021_acs_iecr_1c02730
Cites_doi 10.1021/acscatal.5b02094
10.1039/C4RA16968A
10.1016/0920-5861(94)00138-R
10.1039/C4GC02019G
10.1002/cssc.201501106
10.1021/sc4004778
10.1039/b922014c
10.1016/j.jcat.2014.04.011
10.1039/C5GC02114F
10.1039/C1CY00321F
10.1039/C6RA06792A
10.1016/j.ces.2013.09.004
10.1002/cssc.200900137
10.1021/acssuschemeng.6b00174
10.1021/cr300298j
10.1021/ie00002a001
10.1002/cctc.201500352
10.1021/ie403446b
10.1002/cssc.200700033
10.1021/sc500702q
10.1039/C4GC01833H
10.1039/c2ee02480b
10.1021/cr050989d
10.1039/b920262e
10.1039/c3gc40727f
10.1021/i160073a004
10.1002/cssc.200900059
10.1039/C5SC00854A
10.1017/CBO9780511805134
10.1002/cssc.201403390
10.1021/cr300182k
10.1039/C5GC01584G
10.1021/acscatal.5b01491
10.1007/s10562-013-1186-0
10.1039/c0gc00911c
10.1007/s11244-010-9579-4
10.1016/j.jcat.2009.04.019
10.3998/ark.5550190.0002.102
10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q
10.1039/C3GC41935E
ContentType Journal Article
Copyright 2016 American Institute of Chemical Engineers
2017 American Institute of Chemical Engineers
Copyright_xml – notice: 2016 American Institute of Chemical Engineers
– notice: 2017 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.15497
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 171
ExternalDocumentID 4273452531
10_1002_aic_15497
AIC15497
Genre article
GrantInformation_xml – fundername: Archer Daniels Midland Company
– fundername: National Institute of Food and Agriculture
  funderid: 2011‐10006‐30362
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4007-7f257297509516941d3d7aebdacc99297ea516125735699264a2a7258c6090123
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 11 04:55:42 EDT 2025
Fri Jul 11 06:01:18 EDT 2025
Fri Jul 25 10:59:43 EDT 2025
Tue Jul 01 01:40:38 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Wed Aug 20 07:26:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4007-7f257297509516941d3d7aebdacc99297ea516125735699264a2a7258c6090123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1847414321
PQPubID 7879
PageCount 10
ParticipantIDs proquest_miscellaneous_1864565993
proquest_miscellaneous_1855082742
proquest_journals_1847414321
crossref_citationtrail_10_1002_aic_15497
crossref_primary_10_1002_aic_15497
wiley_primary_10_1002_aic_15497_AIC15497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationYear 2017
Publisher American Institute of Chemical Engineers
Publisher_xml – name: American Institute of Chemical Engineers
References 2010; 12
2010; 53
2014; 315
2001; 343
2007; 107
2015; 6
2015; 17
2015; 5
2015; 3
2013; 2
2010
2013; 104
2012; 14.2
2009
1973
2011; 13
2005
2004
1992; 31
2016; 18
2008; 1
2015; 8
2015; 7
2016; 4
2016; 6
2013; 15
2012; 2
1980; 19
2014; 2
2001
1995; 23
2014; 16
1987
2009; 265
2013; 113
2014
2013
1980
2009; 2
2014; 144
2012; 5
2001; 2001
2014; 53
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
Reid RC (e_1_2_8_48_1) 1987
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
WE Stewart (e_1_2_8_46_1) 2012
e_1_2_8_16_1
e_1_2_8_37_1
Perry RH (e_1_2_8_51_1) 1973
Treybal RE. (e_1_2_8_49_1) 1980
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2009
– volume: 2
  start-page: 79
  year: 2012
  end-page: 81
  article-title: Aerobic oxidation of 5‐hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts
  publication-title: Catal Sci Technol.
– year: 2005
– year: 2001
– volume: 4
  start-page: 3659
  year: 2016
  end-page: 3668
  article-title: Optimization of Co/Mn/Br‐catalyzed oxidation of 5‐hydroxymethylfurfural to enhance 2,5‐furandicarboxylic acid yield and minimize substrate burning
  publication-title: ACS Sustain Chem Eng.
– volume: 17
  start-page: 1308
  year: 2015
  end-page: 1317
  article-title: Selective aerobic oxidation of the biomass‐derived precursor 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst
  publication-title: Green Chem.
– volume: 19
  start-page: 21
  year: 1980
  end-page: 26
  article-title: Gas holdup and bubble diameters in pressurized gas‐liquid stirred vessels
  publication-title: Ind Eng Chem Fundam.
– volume: 315
  start-page: 67
  year: 2014
  end-page: 74
  article-title: A novel platinum nanocatalyst for the oxidation of 5‐hydroxymethylfurfural into 2,5‐furandicarboxylic acid under mild conditions
  publication-title: J Catal.
– volume: 6
  start-page: 326
  year: 2016
  end-page: 338
  article-title: Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts
  publication-title: ACS Catal.
– volume: 17
  start-page: 1610
  year: 2015
  end-page: 1617
  article-title: Aerobic oxidation of 5‐hydroxymethylfurfural into 2,5‐furandicarboxylic acid in water under mild conditions
  publication-title: Green Chem.
– year: 2014
– volume: 6
  start-page: 4940
  year: 2015
  end-page: 4945
  article-title: Solid base catalysed 5‐HMF oxidation to 2,5‐FDCA over Au/hydrotalcites: fact or fiction?
  publication-title: Chem Sci.
– volume: 3
  start-page: 406
  year: 2015
  end-page: 412
  article-title: Catalytic conversion of fructose and 5‐hydroxymethylfurfural into 2,5‐furandicarboxylic acid over a recyclable Fe O −CoO magnetite nanocatalyst
  publication-title: ACS Sustain Chem Eng.
– volume: 7
  start-page: 2853
  year: 2015
  end-page: 2863
  article-title: Functionalized carbon nanotubes for biomass conversion: the base‐free aerobic oxidation of 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid over platinum supported on a carbon nanotube catalyst
  publication-title: ChemCatChem.
– volume: 6
  start-page: 51229
  year: 2016
  end-page: 51237
  article-title: Controlled deposition of Pt nanoparticles on Fe3O4@carbon microspheres for efficient oxidation of 5‐hydroxymethylfurfural
  publication-title: RSC Adv.
– volume: 16
  start-page: 950
  year: 2014
  end-page: 963
  article-title: Green and sustainable manufacture of chemicals from biomass: state of the art
  publication-title: Green Chem.
– volume: 113
  start-page: 7421
  year: 2013
  end-page: 7469
  article-title: ‐Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development
  publication-title: Chem Rev.
– volume: 12
  start-page: 539
  year: 2010
  end-page: 554
  article-title: Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “Top 10” revisited
  publication-title: Green Chem.
– volume: 53
  start-page: 1264
  year: 2010
  end-page: 1269
  article-title: Production of oxidized derivatives of 5‐hydroxymethylfurfural (HMF)
  publication-title: Top Catal.
– volume: 18
  start-page: 979
  year: 2016
  end-page: 983
  article-title: Base‐free conversion of 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid over a Ru/C catalyst
  publication-title: Green Chem.
– volume: 53
  start-page: 9017
  year: 2014
  end-page: 9026
  article-title: Kinetic investigations of ‐xylene oxidation to terephthalic acid with a Co/Mn/Br catalyst in a homogeneous liquid phase
  publication-title: Ind Eng Chem Res.
– volume: 265
  start-page: 109
  year: 2009
  end-page: 116
  article-title: Biomass into chemicals: one pot‐base free oxidative esterification of 5‐hydroxymethyl‐2‐furfural into 2,5‐dimethylfuroate with gold on nanoparticulated ceria
  publication-title: J Catal.
– volume: 31
  start-page: 453
  year: 1992
  end-page: 462
  article-title: Liquid‐phase catalytic oxidation of ‐xylene
  publication-title: Ind Eng Chem Res.
– volume: 8
  start-page: 3832
  year: 2015
  end-page: 3838
  article-title: Base‐free aqueous‐phase oxidation of 5‐hydroxymethylfurfural over ruthenium catalysts supported on covalent triazine frameworks
  publication-title: ChemSusChem.
– volume: 5
  start-page: 6407
  year: 2012
  end-page: 6422
  article-title: Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance
  publication-title: Energy Environ Sci.
– volume: 113
  start-page: 1499
  year: 2013
  end-page: 1597
  article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources
  publication-title: Chem Rev.
– volume: 2
  start-page: 672
  year: 2009
  end-page: 675
  article-title: Gold‐catalyzed aerobic oxidation of 5‐hydroxymethylfurfural in water at ambient temperature
  publication-title: ChemSusChem.
– volume: 15
  start-page: 2240
  year: 2013
  end-page: 2251
  article-title: Selective aqueous phase oxidation of 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion
  publication-title: Green Chem.
– start-page: 76
  year: 2004
  article-title: Top Value Added Chemicals from Biomass. Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas
– volume: 5
  start-page: 6529
  year: 2015
  end-page: 6544
  article-title: Recent advances in the catalytic synthesis of 2,5‐furandicarboxylic acid and its derivatives
  publication-title: ACS Catal.
– volume: 2
  start-page: 1138
  year: 2009
  end-page: 1144
  article-title: Biomass into chemicals: aerobic oxidation of 5‐hydroxymethyl‐2‐furfural into 2,5‐furandicarboxylic acid with gold nanoparticle catalysts
  publication-title: ChemSusChem.
– volume: 2001
  start-page: 17
  issue: 1
  year: 2001
  end-page: 54
  article-title: Synthesis, chemistry and applications of 5‐hydroxymethyl‐furfural and its derivatives
  publication-title: Arkivoc.
– volume: 104
  start-page: 93
  year: 2013
  end-page: 102
  article-title: A spray reactor concept for catalytic oxidation of ‐xylene to produce high‐purity terephthalic acid
  publication-title: Chem Eng Sci.
– volume: 8
  start-page: 1206
  year: 2015
  end-page: 1217
  article-title: Selective aerobic oxidation of 5‐HMF into 2,5‐furandicarboxylic acid with Pt catalysts supported on TiO‐ and ZrO‐based supports
  publication-title: ChemSusChem.
– volume: 14.2
  year: 2012
– volume: 2
  start-page: 823
  year: 2014
  end-page: 835
  article-title: Terephthalic acid production via greener spray process: comparative economic and environmental impact assessments with mid‐century process
  publication-title: ACS Sustain Chem Eng.
– year: 1987
– year: 1973
– volume: 13
  start-page: 824
  year: 2011
  end-page: 827
  article-title: Hydrotalcite‐supported gold‐nanoparticle‐catalyzed highly efficient base‐free aqueous oxidation of 5‐hydroxymethylfurfural into 2,5‐furandicarboxylic acid under atmospheric oxygen pressure
  publication-title: Green Chem.
– volume: 144
  start-page: 498
  year: 2014
  end-page: 506
  article-title: Synthesis, characterization, and application of PVP‐Pd NP in the aerobic oxidation of 5‐hydroxymethylfurfural (HMF)
  publication-title: Catal Lett.
– year: 2010
– volume: 1
  start-page: 75
  year: 2008
  end-page: 78
  article-title: Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts
  publication-title: ChemSusChem.
– volume: 107
  start-page: 2411
  year: 2007
  end-page: 2502
  article-title: Chemical routes for the transformation of biomass into chemicals
  publication-title: Chem Rev.
– year: 1980
– volume: 12
  start-page: 260
  year: 2010
  end-page: 267
  article-title: Liquid phase oxidation of ‐xylene to terephthalic acid at medium‐high temperatures: multiple benefits of CO expanded liquids
  publication-title: Green Chem.
– volume: 343
  start-page: 102
  year: 2001
  end-page: 111
  article-title: Synthesis of 2,5‐diformylfuran and furan‐2,5‐dicarboxylic acid by catalytic air‐oxidation of 5‐hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal‐bromide catalysts
  publication-title: Adv Synth Catal.
– volume: 18
  start-page: 1597
  year: 2016
  end-page: 1604
  article-title: Base‐free aerobic oxidation of 5‐hydroxymethylfurfural to 2,5‐furandicarboxylic acid over a Pt/C–O–Mg catalyst
  publication-title: Green Chem.
– volume: 5
  start-page: 19823
  year: 2015
  end-page: 19829
  article-title: Aerobic oxidation of 5‐hydroxymethylfurfural (HMF) effectively catalyzed by a Ce Bi O supported Pt catalyst at room temperature
  publication-title: RSC Adv.
– volume: 23
  start-page: 69
  year: 1995
  end-page: 158
  article-title: Methodology and scope of metal/bromide autoxidation of hydrocarbons
  publication-title: Catal Today.
– volume: 2
  start-page: 5
  year: 2013
– year: 2013
– ident: e_1_2_8_37_1
– volume-title: Mass‐Transfer Operations
  year: 1980
  ident: e_1_2_8_49_1
– ident: e_1_2_8_28_1
  doi: 10.1021/acscatal.5b02094
– ident: e_1_2_8_17_1
  doi: 10.1039/C4RA16968A
– ident: e_1_2_8_10_1
  doi: 10.1016/0920-5861(94)00138-R
– ident: e_1_2_8_30_1
  doi: 10.1039/C4GC02019G
– ident: e_1_2_8_40_1
– ident: e_1_2_8_33_1
  doi: 10.1002/cssc.201501106
– ident: e_1_2_8_45_1
  doi: 10.1021/sc4004778
– ident: e_1_2_8_3_1
  doi: 10.1039/b922014c
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jcat.2014.04.011
– ident: e_1_2_8_20_1
  doi: 10.1039/C5GC02114F
– ident: e_1_2_8_38_1
  doi: 10.1039/C1CY00321F
– ident: e_1_2_8_13_1
  doi: 10.1039/C6RA06792A
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ces.2013.09.004
– ident: e_1_2_8_24_1
  doi: 10.1002/cssc.200900137
– ident: e_1_2_8_39_1
  doi: 10.1021/acssuschemeng.6b00174
– ident: e_1_2_8_11_1
  doi: 10.1021/cr300298j
– ident: e_1_2_8_12_1
  doi: 10.1021/ie00002a001
– ident: e_1_2_8_9_1
– volume-title: Chemical Engineers’ Handbook
  year: 1973
  ident: e_1_2_8_51_1
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ces.2013.09.004
– ident: e_1_2_8_42_1
– ident: e_1_2_8_18_1
  doi: 10.1002/cctc.201500352
– ident: e_1_2_8_54_1
  doi: 10.1021/ie403446b
– ident: e_1_2_8_21_1
  doi: 10.1002/cssc.200700033
– ident: e_1_2_8_31_1
  doi: 10.1021/sc500702q
– ident: e_1_2_8_29_1
  doi: 10.1039/C4GC01833H
– ident: e_1_2_8_8_1
  doi: 10.1039/c2ee02480b
– ident: e_1_2_8_5_1
  doi: 10.1021/cr050989d
– ident: e_1_2_8_53_1
  doi: 10.1039/b920262e
– ident: e_1_2_8_16_1
  doi: 10.1039/c3gc40727f
– ident: e_1_2_8_50_1
  doi: 10.1021/i160073a004
– ident: e_1_2_8_23_1
  doi: 10.1002/cssc.200900059
– ident: e_1_2_8_7_1
– volume-title: Athena Visual Studio
  year: 2012
  ident: e_1_2_8_46_1
– ident: e_1_2_8_2_1
– ident: e_1_2_8_26_1
  doi: 10.1039/C5SC00854A
– ident: e_1_2_8_47_1
  doi: 10.1017/CBO9780511805134
– ident: e_1_2_8_19_1
  doi: 10.1002/cssc.201403390
– ident: e_1_2_8_52_1
– ident: e_1_2_8_4_1
  doi: 10.1021/cr300182k
– ident: e_1_2_8_34_1
  doi: 10.1039/C5GC01584G
– ident: e_1_2_8_41_1
– ident: e_1_2_8_27_1
  doi: 10.1021/acscatal.5b01491
– ident: e_1_2_8_32_1
  doi: 10.1007/s10562-013-1186-0
– ident: e_1_2_8_25_1
  doi: 10.1039/c0gc00911c
– volume-title: The Properties of Gases and Liquids
  year: 1987
  ident: e_1_2_8_48_1
– ident: e_1_2_8_14_1
  doi: 10.1007/s11244-010-9579-4
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jcat.2009.04.019
– ident: e_1_2_8_35_1
  doi: 10.3998/ark.5550190.0002.102
– ident: e_1_2_8_36_1
  doi: 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q
– ident: e_1_2_8_6_1
  doi: 10.1039/C3GC41935E
SSID ssj0012782
Score 2.3794467
Snippet 2,5‐furandicarboxylic acid (FDCA) is a potential non‐phthalate based bio‐renewable substitute for terephthalic acid‐based plastics. Herein, we present an...
2,5-furandicarboxylic acid (FDCA) is a potential non-phthalate based bio-renewable substitute for terephthalic acid-based plastics. Herein, we present an...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 162
SubjectTerms 2,5‐furandicarboxylic acid
5‐hydroxymethylfurfural
Acetic acid
Batch reactors
Catalysts
Chemical engineering
Chemical engineers
Co/Mn/Br catalyst
Droplets
Kinetics
Mass transfer
Oxidation
Oxygen
Reactors
Sampling
semi‐batch reactor model
Title Kinetics of homogeneous 5‐hydroxymethylfurfural oxidation to 2,5‐furandicarboxylic acid with Co/Mn/Br catalyst
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.15497
https://www.proquest.com/docview/1847414321
https://www.proquest.com/docview/1855082742
https://www.proquest.com/docview/1864565993
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhh4IwoFGcTAQPpw3mIqFVUBwYCo1AEpchxHrSgJSlOJMvET-I38Eu6cJi0IEGKL7Et0se_sz2f7O0KOXLAaG-YNzZZ6oBlWEGrckqammGJgPNQ5V6ctbqxO17jsmb0SOc3vwmT8EEXADT1Djdfo4Nwf1WakoXwgMCzi4k1yPKuFgOi2oI5qMNvJmMJhuQxijZxVqM5qxZuf56IZwJyHqWqeaa-Q-1zD7HjJQ3Wc-lXx8oW88Z-_sEqWp_iTNjODWSMlGa2TpTlWwg2SXMEzsjfTOKT9-DEGG5PxeETN99e3_iRAzTDx9GQYjpMQaTto_DzIcjPRNKbsBAWxIsJNoMQH-eFAUC4GAcW4L23FteuodpZQFTyajNJN0m2f37U62jQ1gyYwkbpmh-DqeCkXERrehQ30wObSD7gQLiAuW3IoB_Bk66YFBZbBGbeZ6Qir7iKM2yILURzJbUL1BowCDnMN03UN3xEOr-sCFpECvmmajiyT47yTPDHlLcf0GUMvY1xmHjSjp5qxTA4L0aeMrOM7oUre097UX0cerHMBWhk6a5TJQVENnobbJ1w1MsjAas7Bre3fZCyEyAD6QG3V9T8r4jUvWuph5--iu2SRIa5QMaAKWUiTsdwDVJT6-8r8PwBySQfJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROFAOPNoillfdikMPDbvrPJxIXGApWp6HCiQuVeQ4jlixJCiblVhO_AR-I7-EGWcTKKIV4hbZk2hie-xvxvY3ABsBjhqB64YltB1bjhcnlvS0axmmGJwPbSnNaYsTr3vmHJy75xOwVd2FKfkh6oAbWYaZr8nAKSDdfGINlT1FcZFAfIApyuhNZrn7uyaPanPhl1zh6DCjXLviFWrxZv3q36vRE8R8DlTNSrM3B38qHcsDJpebwyLaVLcv6Bvf-xPzMDuGoGy7HDMLMKHTTzDzjJjwM-SH-EwEzixL2EV2leEw09lwwNyHu_uLUUyqUe7pUT8Z5gkxd7DsplemZ2JFxvhPEqSKlPaB8gjl-z3FpOrFjEK_rJM1j9PmTs5M_Gg0KL7A2d6v007XGmdnsBTlUrdEgtZO93IJpNF12NiOhdRRLJUKEHQJLbEc8ZOwXQ8LPEdyKbjrK68VEJJbhMk0S_USMLuNE4HPA8cNAifylS9btkI_UuE3XdfXDfhR9VKoxtTllEGjH5akyzzEZgxNMzbgey16XfJ1vCa0WnV1ODbZQYiuLqIrx-btBnyrq9HYaAdFmkZGGXTofNrd_p-MRygZcR-qbfr-34qE2_sd87D8dtGvMN09PT4Kj_ZPDlfgIyeYYUJCqzBZ5EO9hiCpiNaNLTwC2uIL4g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9swED-xTpq2B9jY0Aod89AeeCC0df440Z6grKKwoQmtEg9IkeM4oqIkKE0lyhMfgc_IJ-HOaQKbtmniLbIv0cX22b87278D-BzgqBG4blhC27HleHFiSU-7lmGKwfnQltKctjjy9ofOwYl7sgBfqrswJT9EHXAjyzDzNRn4ZZy0H0hD5UhRWCQQz-C543V88rz2jmvuqC4XfkkVjv4yynUrWqEOb9ev_roYPSDMxzjVLDT9JTitVCzPl5xvT4toW13_xt74xH94DYtzAMp2yhHzBhZ0ugyvHtESvoX8EJ-JvpllCTvLLjIcZDqbTph7d3N7NotJM8o8PRsn0zwh3g6WXY3K5EysyBjfIkGqSGkXKI9QfjxSTKpRzCjwy3pZ-3va3s2ZiR7NJsU7GPa__uztW_PcDJaiTOqWSNDW6VYuQTS6DBvbsZA6iqVSAUIuoSWWI3oStuthgedILgV3feV1AsJxK9BIs1S_B2Z3cRrweeC4QeBEvvJlx1boRSr8puv6ugmbVSeFak5cTvkzxmFJucxDbMbQNGMTNmrRy5Kt409Craqnw7nBTkJ0dBFbOTbvNuFTXY2mRvsn0jQyyqA759Pe9r9kPMLIiPpQbdP1f1ck3Bn0zMPq_4t-hBc_9vrht8HR4Rq85IQxTDyoBY0in-oPiJCKaN1Ywj3NJQqa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+homogeneous+5-hydroxymethylfurfural+oxidation+to+2%2C5-furandicarboxylic+acid+with+Co%2FMn%2FBr+catalyst&rft.jtitle=AIChE+journal&rft.au=Zuo%2C+Xiaobin&rft.au=Chaudhari%2C+Amit+S&rft.au=Snavely%2C+Kirk&rft.au=Niu%2C+Fenghui&rft.date=2017-01-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=63&rft.issue=1&rft.spage=162&rft_id=info:doi/10.1002%2Faic.15497&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4273452531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon