RALF22 promotes plant immunity and amplifies the Pep3 immune signal

ABSTRACT Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positiv...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 65; no. 11; pp. 2519 - 2534
Main Authors He, Yu‐Han, Chen, Song‐Yu, Chen, Xing‐Yan, Xu, You‐Ping, Liang, Yan, Cai, Xin‐Zhong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2023
Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China
Hainan Institute,Zhejiang University,Sanya 572025,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)‐dependent manner. LORELEI (LRE)‐like glycosylphosphatidylinositol (GPI)‐anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22‐elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22‐elicited ROS production and resistance against S. sclerotiorum, demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3‐induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3‐induced immune signal in a FER‐dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection. The rapid alkalinization factor RALF22 elicits plant immunity and augments Pep3‐induced immune signals, providing a paradigm of synergistic promotion of plant immunity by two phytocytokines and suggesting RALF22 as an immune elicitor for potential use in crop protection.
AbstractList Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)‐dependent manner. LORELEI (LRE)‐like glycosylphosphatidylinositol (GPI)‐anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22‐elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22‐elicited ROS production and resistance against S. sclerotiorum, demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3‐induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3‐induced immune signal in a FER‐dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection.
ABSTRACT Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)‐dependent manner. LORELEI (LRE)‐like glycosylphosphatidylinositol (GPI)‐anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22‐elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22‐elicited ROS production and resistance against S. sclerotiorum, demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3‐induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3‐induced immune signal in a FER‐dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection. The rapid alkalinization factor RALF22 elicits plant immunity and augments Pep3‐induced immune signals, providing a paradigm of synergistic promotion of plant immunity by two phytocytokines and suggesting RALF22 as an immune elicitor for potential use in crop protection.
Rapid alkalinization factors(RALFs)in plants have been reported to dampen pathogen-associated molecular pattern(PAMP)-triggered immunity via suppressing PAMP-induced com-plex formation between the pattern recognition receptor(PRR)and its co-receptor BAK1.How-ever,the direct and positive role of RALFs in plant immunity remains largely unknown.Herein,we report the direct and positive roles of a typical RALF,RALF22,in plant immunity.RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Scle-rotinia sclerotiorum in a FERONIA(FER)-dependent manner.LORELEI(LRE)-like glycosylphosphati-dylinositol(GPI)-anchored protein 1(LLG1)and NADPH oxidase RBOHD were required for RALF22-elicited reactive oxygen species(ROS)generation.The mutation of cysteines conserved in the C ter-minus of RALFs abolished,while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22-elicited ROS pro-duction and resistance against S.sclerotiorum,demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity.Fur-thermore,RALF22 amplified the Pep3-induced im-mune signal by dramatically increasing the abun-dance of PROPEP3 transcript and protein.Supply with RALF22 induced resistance against S.scle-rotiorum in Brassica crop plants.Collectively,our results reveal that RALF22 triggers immune re-sponses and augments the Pep3-induced immune signal in a FER-dependent manner,and exhibits the potential to be exploited as an immune elicitor in crop protection.
ABSTRACT Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)‐dependent manner. LORELEI (LRE)‐like glycosylphosphatidylinositol (GPI)‐anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22‐elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22‐elicited ROS production and resistance against S. sclerotiorum , demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3‐induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3‐induced immune signal in a FER‐dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection.
Author Liang, Yan
Cai, Xin‐Zhong
Chen, Song‐Yu
Xu, You‐Ping
Chen, Xing‐Yan
He, Yu‐Han
AuthorAffiliation Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China;Hainan Institute,Zhejiang University,Sanya 572025,China
AuthorAffiliation_xml – name: Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China;Hainan Institute,Zhejiang University,Sanya 572025,China
Author_xml – sequence: 1
  givenname: Yu‐Han
  orcidid: 0009-0004-0974-1347
  surname: He
  fullname: He, Yu‐Han
  organization: Zhejiang University
– sequence: 2
  givenname: Song‐Yu
  orcidid: 0000-0002-4084-2363
  surname: Chen
  fullname: Chen, Song‐Yu
  organization: Zhejiang University
– sequence: 3
  givenname: Xing‐Yan
  orcidid: 0009-0007-5331-1135
  surname: Chen
  fullname: Chen, Xing‐Yan
  organization: Zhejiang University
– sequence: 4
  givenname: You‐Ping
  orcidid: 0009-0003-5404-1836
  surname: Xu
  fullname: Xu, You‐Ping
  organization: Zhejiang University
– sequence: 5
  givenname: Yan
  orcidid: 0000-0002-1248-8563
  surname: Liang
  fullname: Liang, Yan
  organization: Zhejiang University
– sequence: 6
  givenname: Xin‐Zhong
  orcidid: 0000-0002-5625-526X
  surname: Cai
  fullname: Cai, Xin‐Zhong
  email: xzhcai@zju.edu.cn
  organization: Zhejiang University
BookMark eNp9kEtLAzEQx4NU0FYvfoIFEUTYmkmy2d2jFp8ULKLnkKSzmrIvN1tq_fRGVzx4cA4zA_Ob139MRnVTIyFHQKcQ7HzlWjMFnki5Q_YhFSJOc5qPQi5TFuc0ZXtk7P2KUp5RyfbJ7PFifs1Y1HZN1fToo7bUdR-5qlrXrt9Gul5GumpLV7hQ7F8xWmDLhzpG3r3Uujwgu4UuPR7-xAl5vr56mt3G84ebu9nFPLaCUhlnqTU8AymRLwuwHC1NktxoDSgEFSiXZpkn3BSSp7ww3IAFm4gMLObWoOQTcjLM3ei60PWLWjXrLuz36mPzbhhlHIACDdzpwIWn3tboe1U5b7EMn2Gz9oplUkCSyVwE9PgP-juTZbmgwUEWqLOBsl3jfYeFajtX6W6rgKov3dWX7upb9wDDz5WuxO0_pLq_W1wOPZ8XWYTy
CitedBy_id crossref_primary_10_3389_fpls_2023_1320509
crossref_primary_10_1016_j_tplants_2024_02_005
crossref_primary_10_1007_s44154_024_00161_1
crossref_primary_10_1016_j_plantsci_2024_112085
crossref_primary_10_1016_j_xplc_2024_100931
crossref_primary_10_3390_ijms25115670
Cites_doi 10.1016/j.molp.2020.08.014
10.1146/annurev-phyto-082718-100146
10.1016/j.molp.2019.08.003
10.1073/pnas.2000100117
10.1104/pp.18.00903
10.1104/pp.110.166710
10.3389/fpls.2018.00285
10.1186/s12870-016-0921-2
10.1073/pnas.1214668110
10.1111/mpp.12837
10.1016/j.peptides.2010.08.012
10.1016/j.peptides.2021.170611
10.1111/mpp.12123
10.1073/pnas.1216780110
10.1126/science.1244454
10.1104/pp.17.01637
10.1038/s41438-021-00570-7
10.1038/nplants.2015.74
10.1111/nph.12233
10.1016/j.pbi.2019.03.007
10.1111/pbi.12838
10.1016/j.pbi.2021.102030
10.1111/j.1364-3703.2005.00316.x
10.1093/jxb/erv250
10.1126/science.abc6107
10.1105/tpc.16.00891
10.1111/j.1600-065X.2012.01146.x
10.1016/j.it.2014.05.004
10.1104/pp.16.00667
10.1073/pnas.1609626113
10.1073/pnas.1816991115
10.1093/plphys/kiab308
10.1007/s11103-017-0603-y
10.1105/tpc.111.093039
10.1104/pp.113.216077
10.1371/journal.ppat.1004331
10.1016/j.tplants.2017.07.005
10.1016/j.cub.2018.07.078
10.1126/science.aar7486
10.3389/fpls.2017.00037
10.1146/annurev-phyto-082712-102314
10.1016/j.plaphy.2016.03.037
10.1016/j.molp.2021.06.010
10.1111/mpp.12444
10.1073/pnas.201416998
10.1038/s41586-019-1409-7
10.1105/tpc.15.00440
10.1126/science.aao5467
10.1093/jxb/erv180
10.1126/science.aal2541
ContentType Journal Article
Copyright 2023 Institute of Botany, Chinese Academy of Sciences.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Institute of Botany, Chinese Academy of Sciences.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1111/jipb.13566
DatabaseName CrossRef
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1744-7909
EndPage 2534
ExternalDocumentID zwxb202311010
10_1111_jipb_13566
JIPB13566
Genre researchArticle
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LZ18C14002
– fundername: Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding
  funderid: 2021C02064
– fundername: National Natural Science Foundation of China
  funderid: 31871947
GroupedDBID ---
-SA
-S~
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
5XA
5XB
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXDM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CHDYS
COF
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESTFP
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q--
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
U1G
U5K
UB1
W8V
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
RC3
7X8
4A8
PSX
ID FETCH-LOGICAL-c4006-87cb38166e3df1c3ec0559baa1e4404e6dbd953bf6373fb3b1c1c5481ce9cbe63
IEDL.DBID DR2
ISSN 1672-9072
IngestDate Wed Nov 06 04:28:59 EST 2024
Fri Oct 25 06:04:31 EDT 2024
Mon Nov 04 11:03:02 EST 2024
Fri Aug 23 00:57:16 EDT 2024
Sat Aug 24 00:50:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Sclerotinia sclerotiorum
FER
RALF22
Pep3
plant immunity
reactive oxygen species
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4006-87cb38166e3df1c3ec0559baa1e4404e6dbd953bf6373fb3b1c1c5481ce9cbe63
Notes These authors contributed equally to this work.
Dingzhong Tang, Fujian Agriculture and Forestry University in Fuzhou, China
Edited by
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-5404-1836
0000-0002-1248-8563
0000-0002-5625-526X
0009-0004-0974-1347
0009-0007-5331-1135
0000-0002-4084-2363
OpenAccessLink https://doi.org/10.1111/jipb.13566
PQID 2894028918
PQPubID 2045135
PageCount 16
ParticipantIDs wanfang_journals_zwxb202311010
proquest_miscellaneous_2864158694
proquest_journals_2894028918
crossref_primary_10_1111_jipb_13566
wiley_primary_10_1111_jipb_13566_JIPB13566
PublicationCentury 2000
PublicationDate November 2023
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitle_FL Journal of Integrative Plant Biology
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China
Hainan Institute,Zhejiang University,Sanya 572025,China
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China
– name: Hainan Institute,Zhejiang University,Sanya 572025,China
References 2015; 1
2021; 8
2017; 8
2018; 28
2010; 31
2019; 51
2017; 22
2019; 12
2006; 7
2016; 106
2020; 13
2017; 29
2021; 144
2021; 187
2016; 16
2013; 161
2017; 355
2012; 249
2011; 155
2017; 358
2019; 363
2021; 14
2017; 94
2018; 9
2018; 176
2021; 59
2015; 27
2019; 20
2013; 51
2018; 178
2015; 66
2018; 115
2016; 113
2014; 15
2020; 117
2014; 35
2021; 372
2017; 18
2013; 110
2013; 198
2016; 171
2012; 24
2021; 62
2018; 16
2014; 343
2014; 10
2001; 98
2019; 572
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 198
  start-page: 1165
  year: 2013
  end-page: 1177
  article-title: Functional dissection of the PROPEP2 and PROPEP3 promoters reveals the importance of WRKY factors in mediating microbe‐associated molecular pattern‐induced expression
  publication-title: New Phytol
– volume: 22
  start-page: 779
  year: 2017
  end-page: 791
  article-title: Sensing danger: Key to activating plant immunity
  publication-title: Trends Plant Sci
– volume: 110
  start-page: 5707
  year: 2013
  end-page: 5712
  article-title: Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 358
  start-page: 1600
  year: 2017
  end-page: 1603
  article-title: RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis
  publication-title: Science
– volume: 62
  year: 2021
  article-title: PTI‐ETI crosstalk: An integrative view of plant immunity
  publication-title: Curr. Opin. Plant Biol
– volume: 10
  year: 2014
  article-title: The secreted peptide PIP1 amplifies immunity through Receptor‐Like Kinase 7
  publication-title: PLoS Pathog
– volume: 106
  start-page: 82
  year: 2016
  end-page: 90
  article-title: Comprehensive analysis of plant rapid alkalization factor (RALF) genes
  publication-title: Plant Physiol. Bioch
– volume: 372
  start-page: 171
  year: 2021
  end-page: 175
  article-title: Pollen PCP‐B peptides unlock a stigma peptide‐receptor kinase gating mechanism for pollination
  publication-title: Science
– volume: 155
  start-page: 1325
  year: 2011
  end-page: 1338
  article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance
  publication-title: Plant Physiol
– volume: 16
  start-page: 911
  year: 2018
  end-page: 925
  article-title: Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to
  publication-title: Plant Biotechnol. J
– volume: 171
  start-page: 2379
  year: 2016
  end-page: 2392
  article-title: FERONIA and her pals: Functions and mechanisms
  publication-title: Plant Physiol
– volume: 249
  start-page: 158
  year: 2012
  end-page: 175
  article-title: PAMPs and DAMPs: Signal 0s that spur autophagy and immunity
  publication-title: Immunol. Rev
– volume: 8
  start-page: 130
  year: 2021
  article-title: Advances and perspectives in discovery and functional analysis of small secreted proteins in plants
  publication-title: Hortic. Res
– volume: 1
  year: 2015
  article-title: Chloroplasts play a central role in plant defence and are targeted by pathogen effectors
  publication-title: Nat. Plants
– volume: 16
  start-page: 2332
  year: 2016
  article-title: DAMPs, MAMPs, and NAMPs in plant innate immunity
  publication-title: BMC Plant Biol
– volume: 363
  year: 2019
  article-title: Damage on plants activates Ca ‐dependent metacaspases for release of immunomodulatory peptides
  publication-title: Science
– volume: 161
  start-page: 2023
  year: 2013
  end-page: 2035
  article-title: The anticipation of danger: Microbe‐associated molecular pattern perception enhances AtPep‐triggered oxidative burst
  publication-title: Plant Physiol
– volume: 110
  start-page: 6211
  year: 2013
  end-page: 6216
  article-title: Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 24
  start-page: 275
  year: 2012
  end-page: 287
  article-title: The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern‐triggered immunity
  publication-title: Plant Cell
– volume: 343
  start-page: 408
  year: 2014
  end-page: 411
  article-title: A peptide hormone and its receptor protein kinase regulate plant cell expansion
  publication-title: Science
– volume: 9
  start-page: 285
  year: 2018
  article-title: SlCNGC1 and SlCNGC14 suppress pv. ‐induced hypersensitive response and non‐host resistance in tomato
  publication-title: Front. Plant Sci
– volume: 20
  start-page: 1252
  year: 2019
  end-page: 1263
  article-title: Induced expression of the Fragaria ×ananassa rapid alkalinization factor‐33‐like gene decreases anthracnose ontogenic resistance of unripe strawberry fruit stages
  publication-title: Mol. Plant Pathol
– volume: 572
  start-page: 270
  year: 2019
  end-page: 274
  article-title: Mechanisms of RALF peptide perception by a heterotypic receptor complex
  publication-title: Nature
– volume: 51
  start-page: 245
  year: 2013
  end-page: 266
  article-title: MAPK cascades in plant disease resistance signaling
  publication-title: Annu. Rev. Phytopathol
– volume: 51
  start-page: 22
  year: 2019
  end-page: 28
  article-title: Modulation of plant innate immune signaling by small peptides
  publication-title: Curr. Opin. Plant Biol
– volume: 12
  start-page: 1524
  year: 2019
  end-page: 1533
  article-title: Type‐II metacaspases mediate the processing of plant elicitor peptides in Arabidopsis
  publication-title: Mol. Plant
– volume: 15
  start-page: 677
  year: 2014
  end-page: 689
  article-title: Overexpression of in oilseed rape enhances resistance to
  publication-title: Mol. Plant Pathol
– volume: 59
  start-page: 53
  year: 2021
  end-page: 75
  article-title: Damage-associated molecular patterns (DAMPs) in plant innate immunity: Applying the danger model and evolutionary perspectives
  publication-title: Annu. Rev. Phytopathol
– volume: 13
  start-page: 1434
  year: 2020
  end-page: 1454
  article-title: Nematode‐encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase
  publication-title: Mol. Plant
– volume: 66
  start-page: 5327
  year: 2015
  end-page: 5336
  article-title: The Arabidopsis Pep‐PEPR system is induced by herbivore feeding and contributes to JA‐mediated plant defence against herbivory
  publication-title: J. Exp. Bot
– volume: 18
  start-page: 811
  year: 2017
  end-page: 824
  article-title: Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides
  publication-title: Mol. Plant Pathol
– volume: 66
  start-page: 5183
  year: 2015
  end-page: 5193
  article-title: Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development
  publication-title: J. Exp. Bot
– volume: 35
  start-page: 345
  year: 2014
  end-page: 351
  article-title: Plant pattern‐recognition receptors
  publication-title: Trends Immunol
– volume: 28
  start-page: 3316
  year: 2018
  end-page: 3324
  article-title: FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in
  publication-title: Curr. Biol
– volume: 8
  start-page: 37
  year: 2017
  article-title: A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups
  publication-title: Front. Plant Sci
– volume: 187
  start-page: 996
  year: 2021
  end-page: 1010
  article-title: Family‐wide evaluation of RAPID ALKALINIZATION FACTOR peptides
  publication-title: Plant Physiol
– volume: 14
  start-page: 1
  year: 2021
  end-page: 16
  article-title: The receptor‐like cytoplasmic kinase RIPK regulates broad‐spectrum ROS signaling in multiple layers of plant immune system
  publication-title: Mol. Plant
– volume: 117
  start-page: 7494
  year: 2020
  end-page: 7503
  article-title: Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 98
  start-page: 12843
  year: 2001
  end-page: 12847
  article-title: RALF, a 5‐kDa ubiquitous polypeptide in plants, arrests root growth and development
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 94
  start-page: 197
  year: 2017
  end-page: 213
  article-title: Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination
  publication-title: Plant Mol. Biol
– volume: 7
  start-page: 1
  year: 2006
  end-page: 16
  article-title: (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen
  publication-title: Mol. Plant Pathol
– volume: 27
  start-page: 2095
  year: 2015
  end-page: 2118
  article-title: The plant peptidome: An expanding repertoire of structural features and biological functions
  publication-title: Plant Cell
– volume: 176
  start-page: 2543
  year: 2018
  end-page: 2556
  article-title: Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations1
  publication-title: Plant Physiol
– volume: 31
  start-page: 1973
  year: 2010
  end-page: 1977
  article-title: Structure–activity studies of RALF, rapid alkalinization factor, reveal an essential—YISY—motif
  publication-title: Peptides
– volume: 178
  start-page: 907
  year: 2018
  end-page: 922
  article-title: The MAPK kinase kinase GmMEKK1 regulates cell death and defense responses1
  publication-title: Plant Physiol
– volume: 113
  start-page: E8326
  year: 2016
  end-page: E8334
  article-title: Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 29
  start-page: 618
  year: 2017
  end-page: 637
  article-title: Receptor kinases in plant‐pathogen interactions: More than pattern recognition
  publication-title: Plant Cell
– volume: 115
  start-page: 13123
  year: 2018
  end-page: 13128
  article-title: Leucine‐rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 144
  year: 2021
  article-title: Pathogen‐ and plant‐ derived peptides trigger plant immunity
  publication-title: Peptides
– volume: 355
  start-page: 287
  year: 2017
  end-page: 289
  article-title: The receptor kinase FER is a RALF‐regulated scaffold controlling plant immune signaling
  publication-title: Science
– ident: e_1_2_8_49_1
  doi: 10.1016/j.molp.2020.08.014
– ident: e_1_2_8_37_1
  doi: 10.1146/annurev-phyto-082718-100146
– ident: e_1_2_8_35_1
  doi: 10.1016/j.molp.2019.08.003
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.2000100117
– ident: e_1_2_8_45_1
  doi: 10.1104/pp.18.00903
– ident: e_1_2_8_16_1
  doi: 10.1104/pp.110.166710
– ident: e_1_2_8_48_1
  doi: 10.3389/fpls.2018.00285
– ident: e_1_2_8_6_1
  doi: 10.1186/s12870-016-0921-2
– ident: e_1_2_8_17_1
  doi: 10.1073/pnas.1214668110
– ident: e_1_2_8_27_1
  doi: 10.1111/mpp.12837
– ident: e_1_2_8_30_1
  doi: 10.1016/j.peptides.2010.08.012
– ident: e_1_2_8_46_1
  doi: 10.1016/j.peptides.2021.170611
– ident: e_1_2_8_43_1
  doi: 10.1111/mpp.12123
– ident: e_1_2_8_42_1
  doi: 10.1073/pnas.1216780110
– ident: e_1_2_8_14_1
  doi: 10.1126/science.1244454
– ident: e_1_2_8_33_1
  doi: 10.1104/pp.17.01637
– ident: e_1_2_8_18_1
  doi: 10.1038/s41438-021-00570-7
– ident: e_1_2_8_8_1
  doi: 10.1038/nplants.2015.74
– ident: e_1_2_8_24_1
  doi: 10.1111/nph.12233
– ident: e_1_2_8_31_1
  doi: 10.1016/j.pbi.2019.03.007
– ident: e_1_2_8_23_1
  doi: 10.1111/pbi.12838
– ident: e_1_2_8_47_1
  doi: 10.1016/j.pbi.2021.102030
– ident: e_1_2_8_4_1
  doi: 10.1111/j.1364-3703.2005.00316.x
– ident: e_1_2_8_19_1
  doi: 10.1093/jxb/erv250
– ident: e_1_2_8_22_1
  doi: 10.1126/science.abc6107
– ident: e_1_2_8_39_1
  doi: 10.1105/tpc.16.00891
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1600-065X.2012.01146.x
– ident: e_1_2_8_51_1
  doi: 10.1016/j.it.2014.05.004
– ident: e_1_2_8_20_1
  doi: 10.1104/pp.16.00667
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1609626113
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.1816991115
– ident: e_1_2_8_2_1
  doi: 10.1093/plphys/kiab308
– ident: e_1_2_8_3_1
  doi: 10.1007/s11103-017-0603-y
– ident: e_1_2_8_7_1
  doi: 10.1105/tpc.111.093039
– ident: e_1_2_8_10_1
  doi: 10.1104/pp.113.216077
– ident: e_1_2_8_15_1
  doi: 10.1371/journal.ppat.1004331
– ident: e_1_2_8_12_1
  doi: 10.1016/j.tplants.2017.07.005
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cub.2018.07.078
– ident: e_1_2_8_13_1
  doi: 10.1126/science.aar7486
– ident: e_1_2_8_5_1
  doi: 10.3389/fpls.2017.00037
– ident: e_1_2_8_26_1
  doi: 10.1146/annurev-phyto-082712-102314
– ident: e_1_2_8_34_1
  doi: 10.1016/j.plaphy.2016.03.037
– ident: e_1_2_8_21_1
  doi: 10.1016/j.molp.2021.06.010
– ident: e_1_2_8_41_1
  doi: 10.1111/mpp.12444
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.201416998
– ident: e_1_2_8_44_1
  doi: 10.1038/s41586-019-1409-7
– ident: e_1_2_8_40_1
  doi: 10.1105/tpc.15.00440
– ident: e_1_2_8_25_1
  doi: 10.1126/science.aao5467
– ident: e_1_2_8_32_1
  doi: 10.1093/jxb/erv180
– ident: e_1_2_8_36_1
  doi: 10.1126/science.aal2541
SSID ssj0038062
Score 2.4454947
Snippet ABSTRACT Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via...
Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing...
Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen-associated molecular pattern (PAMP)-triggered immunity via suppressing...
Rapid alkalinization factors(RALFs)in plants have been reported to dampen pathogen-associated molecular pattern(PAMP)-triggered immunity via suppressing...
SourceID wanfang
proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2519
SubjectTerms Amplification
C-Terminus
Complex formation
FER
Glycosylphosphatidylinositol
Immune response
NAD(P)H oxidase
Pathogens
Pattern recognition
Pattern recognition receptors
Pep3
Plant immunity
Plant protection
Proteins
RALF22
Reactive oxygen species
Receptors
Sclerotinia sclerotiorum
Title RALF22 promotes plant immunity and amplifies the Pep3 immune signal
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.13566
https://www.proquest.com/docview/2894028918
https://search.proquest.com/docview/2864158694
https://d.wanfangdata.com.cn/periodical/zwxb202311010
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EFLz4FutjiehJqGyaJm3Bi64uKiIiCnuRkqRTEaVb3F18_HqTtNtVD4LeCknTNJNJvslMvgHYk0iRy5z6OtShH0ac-kpE2lfIeZBxy6DuAmSvxNldeNHjvSk4HN-FqfghmgM3qxluvbYKLtXgq5I_lspmbRCWb5uyyMZzndw03FEsbrtsolREgW8swKDmJnVhPM2r33ejCcScfZVFLouH75DV7TndBbgf97YKNXk6GA3Vgf74QeT4399ZhPkajJKjavYswRQWyzBz3DeA8X0FOjdHl90gIKWL2MMBKZ-NGMiju1EyfCeyyIi0Aem5sbaJAZLkGktWlSOxgSHyeRXuuqe3nTO_zrlghGUPF-JIK-dLRJblVDPUbWNzKCkpWiZBFJnKEs5ULljEcsUU1VQbq4dqTLRCwdZguugXuA5ExjEmZrkIOCYhcsuchwFiTjNh2haRB7vjsU_LilojbUwSMxqpGw0PtsZiSWv1GqTGSgyti5TGHuw0xUYxrLdDFtgf2TrCgJNYJKEHrVqckxY-Xt-UzRxv0A9te7DvRPNLN9KL8-tj97Txl8qbMGe_Ul1e3ILp4csItw2KGaqWm62fA2bsCg
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BAcGlvEWgFCM4IaVax7GTHPtgtS1LVVWt1FtkOxNUUWUjdld9_PrOOGlKOSDBLZITJ_F47G_sz98AfLYoUdtaxj71aZxmWsbOZD52qHVSaVZQDwTZfTM5TvdO9EnPzeGzMJ0-xLDgxp4Rxmt2cF6Q_t3LT1vHaRuMuQ8PyN8VZ27YORzUo1Q-CvlEpcmSmGLApFcnDUSe4dm789EtyHx0bpvaNj_ugtYw64yfdqlV50GskMkmPzeWC7fhr_6QcvzvH3oGqz0eFZtdB3oO97B5AQ-3ZoQZL1_C9uHmdJwkog2kPZyL9owsIU7DoZLFpbBNJSxz0msKuAVhSXGArerKUTA3xJ69guPx16PtSdynXSB78fpCnnkXthNRVbX0Cv2Iwg5nrUQWE0RTuarQytVGZap2ykkvPQU-0mPhHRr1GlaaWYNvQNg8x4JGjERjkaJm8TxMEGtZGarbZBF8umn8su3UNcohKqHWKENrRLB2Y5ey97B5SYFiyrukMo_g41BMvsEbHrbB2ZLvMYRPclOkEaz39ryt4er8wnHyeAJAchTBl2Cbv3xGubd7sBWu3v7LzR_g8eTo-7Sc7u5_ewdP-I3dWcY1WFn8WuJ7AjULtx667jW_CfAi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xKFUvFChVUygYtadKWa3j2EkkLkBZ8RJaoSJxQZHtTBACZaOyKwq_vmMnG6CHSuUWyY7jeDz2N57xNwDfNHKUuuShjW0cxonkoVGJDQ1KGRXSMaj7ANlTdXAeH13IixnYnt6FafghugM3pxl-vXYKXhflcyW_ro3L2qDULMzHiqCvg0RnHXmUSPs-nShXSRSSCRi15KQ-jqd79-V29IQxF-51Verq6iVm9ZvO4D1cTrvbxJrc9CZj07OPfzE5vvZ_lmCxRaNsp5k-yzCD1Qq82R0RYnz4AHtnOyeDKGK1D9nDO1bfkhzYtb9SMn5guiqYdhHpJZnbjJAkG2ItmnJkLjJE367C-WD_595B2CZdIGm504U0scY7E1EUJbcCbZ-MDqM1R0cliKowRSaFKZVIRGmE4ZZbMnu4xcwaVOIjzFWjCj8B02mKGa0XkcQsRumo8zBCLHmhqG2VBPB1OvZ53XBr5J1NQqOR-9EIYH0qlrzVr7uczMTY-Uh5GsBWV0ya4dwdusLRxNVRhE5SlcUBbLTifGrh8f63canjCf7wfgDfvWj-0Y386HC4658-_0_lTXg7_DHITw5Pj9fgnftgc5FxHebGvyb4hRDN2Gz4ifsH_g_u0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RALF22+promotes+plant+immunity+and+amplifies+the+Pep3+immune+signal&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=He%2C+Yu%E2%80%90Han&rft.au=Chen%2C+Song%E2%80%90Yu&rft.au=Chen%2C+Xing%E2%80%90Yan&rft.au=Xu%2C+You%E2%80%90Ping&rft.date=2023-11-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=65&rft.issue=11&rft.spage=2519&rft.epage=2534&rft_id=info:doi/10.1111%2Fjipb.13566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jipb_13566
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg