RALF22 promotes plant immunity and amplifies the Pep3 immune signal
ABSTRACT Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positiv...
Saved in:
Published in | Journal of integrative plant biology Vol. 65; no. 11; pp. 2519 - 2534 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2023
Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China Hainan Institute,Zhejiang University,Sanya 572025,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)‐dependent manner. LORELEI (LRE)‐like glycosylphosphatidylinositol (GPI)‐anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22‐elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22‐elicited ROS production and resistance against S. sclerotiorum, demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3‐induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3‐induced immune signal in a FER‐dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection.
The rapid alkalinization factor RALF22 elicits plant immunity and augments Pep3‐induced immune signals, providing a paradigm of synergistic promotion of plant immunity by two phytocytokines and suggesting RALF22 as an immune elicitor for potential use in crop protection. |
---|---|
AbstractList | Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)‐dependent manner. LORELEI (LRE)‐like glycosylphosphatidylinositol (GPI)‐anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22‐elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22‐elicited ROS production and resistance against S. sclerotiorum, demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3‐induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3‐induced immune signal in a FER‐dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection. ABSTRACT Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)‐dependent manner. LORELEI (LRE)‐like glycosylphosphatidylinositol (GPI)‐anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22‐elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22‐elicited ROS production and resistance against S. sclerotiorum, demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3‐induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3‐induced immune signal in a FER‐dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection. The rapid alkalinization factor RALF22 elicits plant immunity and augments Pep3‐induced immune signals, providing a paradigm of synergistic promotion of plant immunity by two phytocytokines and suggesting RALF22 as an immune elicitor for potential use in crop protection. Rapid alkalinization factors(RALFs)in plants have been reported to dampen pathogen-associated molecular pattern(PAMP)-triggered immunity via suppressing PAMP-induced com-plex formation between the pattern recognition receptor(PRR)and its co-receptor BAK1.How-ever,the direct and positive role of RALFs in plant immunity remains largely unknown.Herein,we report the direct and positive roles of a typical RALF,RALF22,in plant immunity.RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Scle-rotinia sclerotiorum in a FERONIA(FER)-dependent manner.LORELEI(LRE)-like glycosylphosphati-dylinositol(GPI)-anchored protein 1(LLG1)and NADPH oxidase RBOHD were required for RALF22-elicited reactive oxygen species(ROS)generation.The mutation of cysteines conserved in the C ter-minus of RALFs abolished,while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22-elicited ROS pro-duction and resistance against S.sclerotiorum,demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity.Fur-thermore,RALF22 amplified the Pep3-induced im-mune signal by dramatically increasing the abun-dance of PROPEP3 transcript and protein.Supply with RALF22 induced resistance against S.scle-rotiorum in Brassica crop plants.Collectively,our results reveal that RALF22 triggers immune re-sponses and augments the Pep3-induced immune signal in a FER-dependent manner,and exhibits the potential to be exploited as an immune elicitor in crop protection. ABSTRACT Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing PAMP‐induced complex formation between the pattern recognition receptor (PRR) and its co‐receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22 alone directly elicited a variety of typical immune responses and triggered resistance against the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum in a FERONIA (FER)‐dependent manner. LORELEI (LRE)‐like glycosylphosphatidylinositol (GPI)‐anchored protein 1 (LLG1) and NADPH oxidase RBOHD were required for RALF22‐elicited reactive oxygen species (ROS) generation. The mutation of cysteines conserved in the C terminus of RALFs abolished, while the constitutive formation of two disulfide bridges between these cysteines promoted the RALF22‐elicited ROS production and resistance against S. sclerotiorum , demonstrating the requirement of these cysteines in the functions of RALF22 in plant immunity. Furthermore, RALF22 amplified the Pep3‐induced immune signal by dramatically increasing the abundance of PROPEP3 transcript and protein. Supply with RALF22 induced resistance against S. sclerotiorum in Brassica crop plants. Collectively, our results reveal that RALF22 triggers immune responses and augments the Pep3‐induced immune signal in a FER‐dependent manner, and exhibits the potential to be exploited as an immune elicitor in crop protection. |
Author | Liang, Yan Cai, Xin‐Zhong Chen, Song‐Yu Xu, You‐Ping Chen, Xing‐Yan He, Yu‐Han |
AuthorAffiliation | Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China;Hainan Institute,Zhejiang University,Sanya 572025,China |
AuthorAffiliation_xml | – name: Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China;Hainan Institute,Zhejiang University,Sanya 572025,China |
Author_xml | – sequence: 1 givenname: Yu‐Han orcidid: 0009-0004-0974-1347 surname: He fullname: He, Yu‐Han organization: Zhejiang University – sequence: 2 givenname: Song‐Yu orcidid: 0000-0002-4084-2363 surname: Chen fullname: Chen, Song‐Yu organization: Zhejiang University – sequence: 3 givenname: Xing‐Yan orcidid: 0009-0007-5331-1135 surname: Chen fullname: Chen, Xing‐Yan organization: Zhejiang University – sequence: 4 givenname: You‐Ping orcidid: 0009-0003-5404-1836 surname: Xu fullname: Xu, You‐Ping organization: Zhejiang University – sequence: 5 givenname: Yan orcidid: 0000-0002-1248-8563 surname: Liang fullname: Liang, Yan organization: Zhejiang University – sequence: 6 givenname: Xin‐Zhong orcidid: 0000-0002-5625-526X surname: Cai fullname: Cai, Xin‐Zhong email: xzhcai@zju.edu.cn organization: Zhejiang University |
BookMark | eNp9kEtLAzEQx4NU0FYvfoIFEUTYmkmy2d2jFp8ULKLnkKSzmrIvN1tq_fRGVzx4cA4zA_Ob139MRnVTIyFHQKcQ7HzlWjMFnki5Q_YhFSJOc5qPQi5TFuc0ZXtk7P2KUp5RyfbJ7PFifs1Y1HZN1fToo7bUdR-5qlrXrt9Gul5GumpLV7hQ7F8xWmDLhzpG3r3Uujwgu4UuPR7-xAl5vr56mt3G84ebu9nFPLaCUhlnqTU8AymRLwuwHC1NktxoDSgEFSiXZpkn3BSSp7ww3IAFm4gMLObWoOQTcjLM3ei60PWLWjXrLuz36mPzbhhlHIACDdzpwIWn3tboe1U5b7EMn2Gz9oplUkCSyVwE9PgP-juTZbmgwUEWqLOBsl3jfYeFajtX6W6rgKov3dWX7upb9wDDz5WuxO0_pLq_W1wOPZ8XWYTy |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1320509 crossref_primary_10_1016_j_tplants_2024_02_005 crossref_primary_10_1007_s44154_024_00161_1 crossref_primary_10_1016_j_plantsci_2024_112085 crossref_primary_10_1016_j_xplc_2024_100931 crossref_primary_10_3390_ijms25115670 |
Cites_doi | 10.1016/j.molp.2020.08.014 10.1146/annurev-phyto-082718-100146 10.1016/j.molp.2019.08.003 10.1073/pnas.2000100117 10.1104/pp.18.00903 10.1104/pp.110.166710 10.3389/fpls.2018.00285 10.1186/s12870-016-0921-2 10.1073/pnas.1214668110 10.1111/mpp.12837 10.1016/j.peptides.2010.08.012 10.1016/j.peptides.2021.170611 10.1111/mpp.12123 10.1073/pnas.1216780110 10.1126/science.1244454 10.1104/pp.17.01637 10.1038/s41438-021-00570-7 10.1038/nplants.2015.74 10.1111/nph.12233 10.1016/j.pbi.2019.03.007 10.1111/pbi.12838 10.1016/j.pbi.2021.102030 10.1111/j.1364-3703.2005.00316.x 10.1093/jxb/erv250 10.1126/science.abc6107 10.1105/tpc.16.00891 10.1111/j.1600-065X.2012.01146.x 10.1016/j.it.2014.05.004 10.1104/pp.16.00667 10.1073/pnas.1609626113 10.1073/pnas.1816991115 10.1093/plphys/kiab308 10.1007/s11103-017-0603-y 10.1105/tpc.111.093039 10.1104/pp.113.216077 10.1371/journal.ppat.1004331 10.1016/j.tplants.2017.07.005 10.1016/j.cub.2018.07.078 10.1126/science.aar7486 10.3389/fpls.2017.00037 10.1146/annurev-phyto-082712-102314 10.1016/j.plaphy.2016.03.037 10.1016/j.molp.2021.06.010 10.1111/mpp.12444 10.1073/pnas.201416998 10.1038/s41586-019-1409-7 10.1105/tpc.15.00440 10.1126/science.aao5467 10.1093/jxb/erv180 10.1126/science.aal2541 |
ContentType | Journal Article |
Copyright | 2023 Institute of Botany, Chinese Academy of Sciences. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Institute of Botany, Chinese Academy of Sciences. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1111/jipb.13566 |
DatabaseName | CrossRef Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1744-7909 |
EndPage | 2534 |
ExternalDocumentID | zwxb202311010 10_1111_jipb_13566 JIPB13566 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LZ18C14002 – fundername: Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding funderid: 2021C02064 – fundername: National Natural Science Foundation of China funderid: 31871947 |
GroupedDBID | --- -SA -S~ .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2B. 2C. 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 5XA 5XB 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92Q 930 93N A03 A8Z AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXDM AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CAJEA CCEZO CCVFK CHBEP CHDYS COF CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESTFP ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q-- Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS U1G U5K UB1 W8V W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WT AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 RC3 7X8 4A8 PSX |
ID | FETCH-LOGICAL-c4006-87cb38166e3df1c3ec0559baa1e4404e6dbd953bf6373fb3b1c1c5481ce9cbe63 |
IEDL.DBID | DR2 |
ISSN | 1672-9072 |
IngestDate | Wed Nov 06 04:28:59 EST 2024 Fri Oct 25 06:04:31 EDT 2024 Mon Nov 04 11:03:02 EST 2024 Fri Aug 23 00:57:16 EDT 2024 Sat Aug 24 00:50:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Sclerotinia sclerotiorum FER RALF22 Pep3 plant immunity reactive oxygen species |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4006-87cb38166e3df1c3ec0559baa1e4404e6dbd953bf6373fb3b1c1c5481ce9cbe63 |
Notes | These authors contributed equally to this work. Dingzhong Tang, Fujian Agriculture and Forestry University in Fuzhou, China Edited by ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0003-5404-1836 0000-0002-1248-8563 0000-0002-5625-526X 0009-0004-0974-1347 0009-0007-5331-1135 0000-0002-4084-2363 |
OpenAccessLink | https://doi.org/10.1111/jipb.13566 |
PQID | 2894028918 |
PQPubID | 2045135 |
PageCount | 16 |
ParticipantIDs | wanfang_journals_zwxb202311010 proquest_miscellaneous_2864158694 proquest_journals_2894028918 crossref_primary_10_1111_jipb_13566 wiley_primary_10_1111_jipb_13566_JIPB13566 |
PublicationCentury | 2000 |
PublicationDate | November 2023 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of integrative plant biology |
PublicationTitle_FL | Journal of Integrative Plant Biology |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China Hainan Institute,Zhejiang University,Sanya 572025,China |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Centre of Analysis and Measurement,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China%Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province,Institute of Biotechnology,College of Agriculture and Biotechnology,Zhejiang University,866 Yu Hang Tang Road,Hangzhou 310058,China – name: Hainan Institute,Zhejiang University,Sanya 572025,China |
References | 2015; 1 2021; 8 2017; 8 2018; 28 2010; 31 2019; 51 2017; 22 2019; 12 2006; 7 2016; 106 2020; 13 2017; 29 2021; 144 2021; 187 2016; 16 2013; 161 2017; 355 2012; 249 2011; 155 2017; 358 2019; 363 2021; 14 2017; 94 2018; 9 2018; 176 2021; 59 2015; 27 2019; 20 2013; 51 2018; 178 2015; 66 2018; 115 2016; 113 2014; 15 2020; 117 2014; 35 2021; 372 2017; 18 2013; 110 2013; 198 2016; 171 2012; 24 2021; 62 2018; 16 2014; 343 2014; 10 2001; 98 2019; 572 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 198 start-page: 1165 year: 2013 end-page: 1177 article-title: Functional dissection of the PROPEP2 and PROPEP3 promoters reveals the importance of WRKY factors in mediating microbe‐associated molecular pattern‐induced expression publication-title: New Phytol – volume: 22 start-page: 779 year: 2017 end-page: 791 article-title: Sensing danger: Key to activating plant immunity publication-title: Trends Plant Sci – volume: 110 start-page: 5707 year: 2013 end-page: 5712 article-title: Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 358 start-page: 1600 year: 2017 end-page: 1603 article-title: RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis publication-title: Science – volume: 62 year: 2021 article-title: PTI‐ETI crosstalk: An integrative view of plant immunity publication-title: Curr. Opin. Plant Biol – volume: 10 year: 2014 article-title: The secreted peptide PIP1 amplifies immunity through Receptor‐Like Kinase 7 publication-title: PLoS Pathog – volume: 106 start-page: 82 year: 2016 end-page: 90 article-title: Comprehensive analysis of plant rapid alkalization factor (RALF) genes publication-title: Plant Physiol. Bioch – volume: 372 start-page: 171 year: 2021 end-page: 175 article-title: Pollen PCP‐B peptides unlock a stigma peptide‐receptor kinase gating mechanism for pollination publication-title: Science – volume: 155 start-page: 1325 year: 2011 end-page: 1338 article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance publication-title: Plant Physiol – volume: 16 start-page: 911 year: 2018 end-page: 925 article-title: Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to publication-title: Plant Biotechnol. J – volume: 171 start-page: 2379 year: 2016 end-page: 2392 article-title: FERONIA and her pals: Functions and mechanisms publication-title: Plant Physiol – volume: 249 start-page: 158 year: 2012 end-page: 175 article-title: PAMPs and DAMPs: Signal 0s that spur autophagy and immunity publication-title: Immunol. Rev – volume: 8 start-page: 130 year: 2021 article-title: Advances and perspectives in discovery and functional analysis of small secreted proteins in plants publication-title: Hortic. Res – volume: 1 year: 2015 article-title: Chloroplasts play a central role in plant defence and are targeted by pathogen effectors publication-title: Nat. Plants – volume: 16 start-page: 2332 year: 2016 article-title: DAMPs, MAMPs, and NAMPs in plant innate immunity publication-title: BMC Plant Biol – volume: 363 year: 2019 article-title: Damage on plants activates Ca ‐dependent metacaspases for release of immunomodulatory peptides publication-title: Science – volume: 161 start-page: 2023 year: 2013 end-page: 2035 article-title: The anticipation of danger: Microbe‐associated molecular pattern perception enhances AtPep‐triggered oxidative burst publication-title: Plant Physiol – volume: 110 start-page: 6211 year: 2013 end-page: 6216 article-title: Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 24 start-page: 275 year: 2012 end-page: 287 article-title: The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern‐triggered immunity publication-title: Plant Cell – volume: 343 start-page: 408 year: 2014 end-page: 411 article-title: A peptide hormone and its receptor protein kinase regulate plant cell expansion publication-title: Science – volume: 9 start-page: 285 year: 2018 article-title: SlCNGC1 and SlCNGC14 suppress pv. ‐induced hypersensitive response and non‐host resistance in tomato publication-title: Front. Plant Sci – volume: 20 start-page: 1252 year: 2019 end-page: 1263 article-title: Induced expression of the Fragaria ×ananassa rapid alkalinization factor‐33‐like gene decreases anthracnose ontogenic resistance of unripe strawberry fruit stages publication-title: Mol. Plant Pathol – volume: 572 start-page: 270 year: 2019 end-page: 274 article-title: Mechanisms of RALF peptide perception by a heterotypic receptor complex publication-title: Nature – volume: 51 start-page: 245 year: 2013 end-page: 266 article-title: MAPK cascades in plant disease resistance signaling publication-title: Annu. Rev. Phytopathol – volume: 51 start-page: 22 year: 2019 end-page: 28 article-title: Modulation of plant innate immune signaling by small peptides publication-title: Curr. Opin. Plant Biol – volume: 12 start-page: 1524 year: 2019 end-page: 1533 article-title: Type‐II metacaspases mediate the processing of plant elicitor peptides in Arabidopsis publication-title: Mol. Plant – volume: 15 start-page: 677 year: 2014 end-page: 689 article-title: Overexpression of in oilseed rape enhances resistance to publication-title: Mol. Plant Pathol – volume: 59 start-page: 53 year: 2021 end-page: 75 article-title: Damage-associated molecular patterns (DAMPs) in plant innate immunity: Applying the danger model and evolutionary perspectives publication-title: Annu. Rev. Phytopathol – volume: 13 start-page: 1434 year: 2020 end-page: 1454 article-title: Nematode‐encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase publication-title: Mol. Plant – volume: 66 start-page: 5327 year: 2015 end-page: 5336 article-title: The Arabidopsis Pep‐PEPR system is induced by herbivore feeding and contributes to JA‐mediated plant defence against herbivory publication-title: J. Exp. Bot – volume: 18 start-page: 811 year: 2017 end-page: 824 article-title: Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides publication-title: Mol. Plant Pathol – volume: 66 start-page: 5183 year: 2015 end-page: 5193 article-title: Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development publication-title: J. Exp. Bot – volume: 35 start-page: 345 year: 2014 end-page: 351 article-title: Plant pattern‐recognition receptors publication-title: Trends Immunol – volume: 28 start-page: 3316 year: 2018 end-page: 3324 article-title: FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in publication-title: Curr. Biol – volume: 8 start-page: 37 year: 2017 article-title: A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups publication-title: Front. Plant Sci – volume: 187 start-page: 996 year: 2021 end-page: 1010 article-title: Family‐wide evaluation of RAPID ALKALINIZATION FACTOR peptides publication-title: Plant Physiol – volume: 14 start-page: 1 year: 2021 end-page: 16 article-title: The receptor‐like cytoplasmic kinase RIPK regulates broad‐spectrum ROS signaling in multiple layers of plant immune system publication-title: Mol. Plant – volume: 117 start-page: 7494 year: 2020 end-page: 7503 article-title: Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 98 start-page: 12843 year: 2001 end-page: 12847 article-title: RALF, a 5‐kDa ubiquitous polypeptide in plants, arrests root growth and development publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 94 start-page: 197 year: 2017 end-page: 213 article-title: Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination publication-title: Plant Mol. Biol – volume: 7 start-page: 1 year: 2006 end-page: 16 article-title: (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen publication-title: Mol. Plant Pathol – volume: 27 start-page: 2095 year: 2015 end-page: 2118 article-title: The plant peptidome: An expanding repertoire of structural features and biological functions publication-title: Plant Cell – volume: 176 start-page: 2543 year: 2018 end-page: 2556 article-title: Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations1 publication-title: Plant Physiol – volume: 31 start-page: 1973 year: 2010 end-page: 1977 article-title: Structure–activity studies of RALF, rapid alkalinization factor, reveal an essential—YISY—motif publication-title: Peptides – volume: 178 start-page: 907 year: 2018 end-page: 922 article-title: The MAPK kinase kinase GmMEKK1 regulates cell death and defense responses1 publication-title: Plant Physiol – volume: 113 start-page: E8326 year: 2016 end-page: E8334 article-title: Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 29 start-page: 618 year: 2017 end-page: 637 article-title: Receptor kinases in plant‐pathogen interactions: More than pattern recognition publication-title: Plant Cell – volume: 115 start-page: 13123 year: 2018 end-page: 13128 article-title: Leucine‐rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 144 year: 2021 article-title: Pathogen‐ and plant‐ derived peptides trigger plant immunity publication-title: Peptides – volume: 355 start-page: 287 year: 2017 end-page: 289 article-title: The receptor kinase FER is a RALF‐regulated scaffold controlling plant immune signaling publication-title: Science – ident: e_1_2_8_49_1 doi: 10.1016/j.molp.2020.08.014 – ident: e_1_2_8_37_1 doi: 10.1146/annurev-phyto-082718-100146 – ident: e_1_2_8_35_1 doi: 10.1016/j.molp.2019.08.003 – ident: e_1_2_8_28_1 doi: 10.1073/pnas.2000100117 – ident: e_1_2_8_45_1 doi: 10.1104/pp.18.00903 – ident: e_1_2_8_16_1 doi: 10.1104/pp.110.166710 – ident: e_1_2_8_48_1 doi: 10.3389/fpls.2018.00285 – ident: e_1_2_8_6_1 doi: 10.1186/s12870-016-0921-2 – ident: e_1_2_8_17_1 doi: 10.1073/pnas.1214668110 – ident: e_1_2_8_27_1 doi: 10.1111/mpp.12837 – ident: e_1_2_8_30_1 doi: 10.1016/j.peptides.2010.08.012 – ident: e_1_2_8_46_1 doi: 10.1016/j.peptides.2021.170611 – ident: e_1_2_8_43_1 doi: 10.1111/mpp.12123 – ident: e_1_2_8_42_1 doi: 10.1073/pnas.1216780110 – ident: e_1_2_8_14_1 doi: 10.1126/science.1244454 – ident: e_1_2_8_33_1 doi: 10.1104/pp.17.01637 – ident: e_1_2_8_18_1 doi: 10.1038/s41438-021-00570-7 – ident: e_1_2_8_8_1 doi: 10.1038/nplants.2015.74 – ident: e_1_2_8_24_1 doi: 10.1111/nph.12233 – ident: e_1_2_8_31_1 doi: 10.1016/j.pbi.2019.03.007 – ident: e_1_2_8_23_1 doi: 10.1111/pbi.12838 – ident: e_1_2_8_47_1 doi: 10.1016/j.pbi.2021.102030 – ident: e_1_2_8_4_1 doi: 10.1111/j.1364-3703.2005.00316.x – ident: e_1_2_8_19_1 doi: 10.1093/jxb/erv250 – ident: e_1_2_8_22_1 doi: 10.1126/science.abc6107 – ident: e_1_2_8_39_1 doi: 10.1105/tpc.16.00891 – ident: e_1_2_8_38_1 doi: 10.1111/j.1600-065X.2012.01146.x – ident: e_1_2_8_51_1 doi: 10.1016/j.it.2014.05.004 – ident: e_1_2_8_20_1 doi: 10.1104/pp.16.00667 – ident: e_1_2_8_9_1 doi: 10.1073/pnas.1609626113 – ident: e_1_2_8_50_1 doi: 10.1073/pnas.1816991115 – ident: e_1_2_8_2_1 doi: 10.1093/plphys/kiab308 – ident: e_1_2_8_3_1 doi: 10.1007/s11103-017-0603-y – ident: e_1_2_8_7_1 doi: 10.1105/tpc.111.093039 – ident: e_1_2_8_10_1 doi: 10.1104/pp.113.216077 – ident: e_1_2_8_15_1 doi: 10.1371/journal.ppat.1004331 – ident: e_1_2_8_12_1 doi: 10.1016/j.tplants.2017.07.005 – ident: e_1_2_8_11_1 doi: 10.1016/j.cub.2018.07.078 – ident: e_1_2_8_13_1 doi: 10.1126/science.aar7486 – ident: e_1_2_8_5_1 doi: 10.3389/fpls.2017.00037 – ident: e_1_2_8_26_1 doi: 10.1146/annurev-phyto-082712-102314 – ident: e_1_2_8_34_1 doi: 10.1016/j.plaphy.2016.03.037 – ident: e_1_2_8_21_1 doi: 10.1016/j.molp.2021.06.010 – ident: e_1_2_8_41_1 doi: 10.1111/mpp.12444 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.201416998 – ident: e_1_2_8_44_1 doi: 10.1038/s41586-019-1409-7 – ident: e_1_2_8_40_1 doi: 10.1105/tpc.15.00440 – ident: e_1_2_8_25_1 doi: 10.1126/science.aao5467 – ident: e_1_2_8_32_1 doi: 10.1093/jxb/erv180 – ident: e_1_2_8_36_1 doi: 10.1126/science.aal2541 |
SSID | ssj0038062 |
Score | 2.4454947 |
Snippet | ABSTRACT
Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via... Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen‐associated molecular pattern (PAMP)‐triggered immunity via suppressing... Rapid alkalinization factors (RALFs) in plants have been reported to dampen pathogen-associated molecular pattern (PAMP)-triggered immunity via suppressing... Rapid alkalinization factors(RALFs)in plants have been reported to dampen pathogen-associated molecular pattern(PAMP)-triggered immunity via suppressing... |
SourceID | wanfang proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2519 |
SubjectTerms | Amplification C-Terminus Complex formation FER Glycosylphosphatidylinositol Immune response NAD(P)H oxidase Pathogens Pattern recognition Pattern recognition receptors Pep3 Plant immunity Plant protection Proteins RALF22 Reactive oxygen species Receptors Sclerotinia sclerotiorum |
Title | RALF22 promotes plant immunity and amplifies the Pep3 immune signal |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.13566 https://www.proquest.com/docview/2894028918 https://search.proquest.com/docview/2864158694 https://d.wanfangdata.com.cn/periodical/zwxb202311010 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EFLz4FutjiehJqGyaJm3Bi64uKiIiCnuRkqRTEaVb3F18_HqTtNtVD4LeCknTNJNJvslMvgHYk0iRy5z6OtShH0ac-kpE2lfIeZBxy6DuAmSvxNldeNHjvSk4HN-FqfghmgM3qxluvbYKLtXgq5I_lspmbRCWb5uyyMZzndw03FEsbrtsolREgW8swKDmJnVhPM2r33ejCcScfZVFLouH75DV7TndBbgf97YKNXk6GA3Vgf74QeT4399ZhPkajJKjavYswRQWyzBz3DeA8X0FOjdHl90gIKWL2MMBKZ-NGMiju1EyfCeyyIi0Aem5sbaJAZLkGktWlSOxgSHyeRXuuqe3nTO_zrlghGUPF-JIK-dLRJblVDPUbWNzKCkpWiZBFJnKEs5ULljEcsUU1VQbq4dqTLRCwdZguugXuA5ExjEmZrkIOCYhcsuchwFiTjNh2haRB7vjsU_LilojbUwSMxqpGw0PtsZiSWv1GqTGSgyti5TGHuw0xUYxrLdDFtgf2TrCgJNYJKEHrVqckxY-Xt-UzRxv0A9te7DvRPNLN9KL8-tj97Txl8qbMGe_Ul1e3ILp4csItw2KGaqWm62fA2bsCg |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BAcGlvEWgFCM4IaVax7GTHPtgtS1LVVWt1FtkOxNUUWUjdld9_PrOOGlKOSDBLZITJ_F47G_sz98AfLYoUdtaxj71aZxmWsbOZD52qHVSaVZQDwTZfTM5TvdO9EnPzeGzMJ0-xLDgxp4Rxmt2cF6Q_t3LT1vHaRuMuQ8PyN8VZ27YORzUo1Q-CvlEpcmSmGLApFcnDUSe4dm789EtyHx0bpvaNj_ugtYw64yfdqlV50GskMkmPzeWC7fhr_6QcvzvH3oGqz0eFZtdB3oO97B5AQ-3ZoQZL1_C9uHmdJwkog2kPZyL9owsIU7DoZLFpbBNJSxz0msKuAVhSXGArerKUTA3xJ69guPx16PtSdynXSB78fpCnnkXthNRVbX0Cv2Iwg5nrUQWE0RTuarQytVGZap2ykkvPQU-0mPhHRr1GlaaWYNvQNg8x4JGjERjkaJm8TxMEGtZGarbZBF8umn8su3UNcohKqHWKENrRLB2Y5ey97B5SYFiyrukMo_g41BMvsEbHrbB2ZLvMYRPclOkEaz39ryt4er8wnHyeAJAchTBl2Cbv3xGubd7sBWu3v7LzR_g8eTo-7Sc7u5_ewdP-I3dWcY1WFn8WuJ7AjULtx667jW_CfAi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xKFUvFChVUygYtadKWa3j2EkkLkBZ8RJaoSJxQZHtTBACZaOyKwq_vmMnG6CHSuUWyY7jeDz2N57xNwDfNHKUuuShjW0cxonkoVGJDQ1KGRXSMaj7ANlTdXAeH13IixnYnt6FafghugM3pxl-vXYKXhflcyW_ro3L2qDULMzHiqCvg0RnHXmUSPs-nShXSRSSCRi15KQ-jqd79-V29IQxF-51Verq6iVm9ZvO4D1cTrvbxJrc9CZj07OPfzE5vvZ_lmCxRaNsp5k-yzCD1Qq82R0RYnz4AHtnOyeDKGK1D9nDO1bfkhzYtb9SMn5guiqYdhHpJZnbjJAkG2ItmnJkLjJE367C-WD_595B2CZdIGm504U0scY7E1EUJbcCbZ-MDqM1R0cliKowRSaFKZVIRGmE4ZZbMnu4xcwaVOIjzFWjCj8B02mKGa0XkcQsRumo8zBCLHmhqG2VBPB1OvZ53XBr5J1NQqOR-9EIYH0qlrzVr7uczMTY-Uh5GsBWV0ya4dwdusLRxNVRhE5SlcUBbLTifGrh8f63canjCf7wfgDfvWj-0Y386HC4658-_0_lTXg7_DHITw5Pj9fgnftgc5FxHebGvyb4hRDN2Gz4ifsH_g_u0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RALF22+promotes+plant+immunity+and+amplifies+the+Pep3+immune+signal&rft.jtitle=Journal+of+integrative+plant+biology&rft.au=He%2C+Yu%E2%80%90Han&rft.au=Chen%2C+Song%E2%80%90Yu&rft.au=Chen%2C+Xing%E2%80%90Yan&rft.au=Xu%2C+You%E2%80%90Ping&rft.date=2023-11-01&rft.issn=1672-9072&rft.eissn=1744-7909&rft.volume=65&rft.issue=11&rft.spage=2519&rft.epage=2534&rft_id=info:doi/10.1111%2Fjipb.13566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jipb_13566 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg |