Climate change vulnerability and conservation strategies for tertiary relict tree species: Insights from landscape genomics of Taxus cuspidata

The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptat...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary applications Vol. 17; no. 9; pp. e13686 - n/a
Main Authors Luo, Yanjun, Qin, Wei, Yan, Yu, Yin, Kangquan, Zang, Runguo, Du, Fang K.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.09.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site‐associated DNA sequencing (RAD‐seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD‐seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in T. cuspidata. Outlier detection by FST outlier analysis and genotype‐environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non‐adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of T. cuspidata under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.
AbstractList Abstract The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site‐associated DNA sequencing (RAD‐seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD‐seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in T. cuspidata . Outlier detection by F ST outlier analysis and genotype‐environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non‐adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of T. cuspidata under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.
The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site-associated DNA sequencing (RAD-seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD-seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in . Outlier detection by outlier analysis and genotype-environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non-adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.
The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site‐associated DNA sequencing (RAD‐seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD‐seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in T. cuspidata. Outlier detection by FST outlier analysis and genotype‐environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non‐adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of T. cuspidata under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.
Abstract The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site‐associated DNA sequencing (RAD‐seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD‐seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in T. cuspidata. Outlier detection by FST outlier analysis and genotype‐environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non‐adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of T. cuspidata under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.
The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site‐associated DNA sequencing (RAD‐seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD‐seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in T. cuspidata . Outlier detection by F ST outlier analysis and genotype‐environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non‐adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of T. cuspidata under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.
The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site-associated DNA sequencing (RAD-seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD-seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in T. cuspidata. Outlier detection by F ST outlier analysis and genotype-environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non-adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of T. cuspidata under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these species can pace with the environmental changes. Recent advantages in landscape genomics enabled us to identify molecular signatures of adaptation and predict how populations will respond to changing environments, providing new insights into the conservation of species. Here, we investigated the pattern of neutral and putative adaptive genetic variation and its response to changing environments in a tertiary relict tree species, Taxus cuspidata Sieb. et Zucc, which is distributed in northeast China and adjacent regions. We investigated the pattern of genetic diversity and differentiation using restriction site-associated DNA sequencing (RAD-seq) and seven nuclear microsatellites (nSSRs) datasets. We further explored the endangered mechanism, predicted its vulnerability in the future, and provided guidelines for the conservation and management of this species. RAD-seq identified 16,087 single nucleotide polymorphisms (SNPs) in natural populations. Both the SNPs and nSSRs datasets showed high levels of genetic diversity and low genetic differentiation in T. cuspidata. Outlier detection by F ST outlier analysis and genotype-environment associations (GEAs) revealed 598 outlier SNPs as putative adaptive SNPs. Linear redundancy analysis (RDA) and nonlinear gradient forest (GF) showed that the contribution of climate to genetic variation was greater than that of geography, and precipitation played an important role in putative adaptive genetic variation. Furthermore, the genetic offset and risk of non-adaptedness (RONA) suggested that the species at the northeast edge may be more vulnerable in the future. These results suggest that although the species has maintained high current genetic diversity in the face of recent habitat loss and fragmentation, future climate change is likely to threaten the survival of the species. Temperature (Bio03) and precipitation (Prec05) variables can be potentially used as predictors of response of T. cuspidata under future climate. Together, this study provides a theoretical framework for conservation and management strategies for wildlife species in the context of future climate change.
Author Luo, Yanjun
Du, Fang K.
Yin, Kangquan
Yan, Yu
Zang, Runguo
Qin, Wei
AuthorAffiliation 2 School of Grassland Science Beijing Forestry University Beijing China
1 School of Ecology and Nature Conservation Beijing Forestry University Beijing China
3 Key Laboratory of Forest Ecology and Environment, the State Forestry Administration Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
AuthorAffiliation_xml – name: 3 Key Laboratory of Forest Ecology and Environment, the State Forestry Administration Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
– name: 1 School of Ecology and Nature Conservation Beijing Forestry University Beijing China
– name: 2 School of Grassland Science Beijing Forestry University Beijing China
Author_xml – sequence: 1
  givenname: Yanjun
  surname: Luo
  fullname: Luo, Yanjun
  organization: Beijing Forestry University
– sequence: 2
  givenname: Wei
  surname: Qin
  fullname: Qin, Wei
  organization: Beijing Forestry University
– sequence: 3
  givenname: Yu
  surname: Yan
  fullname: Yan, Yu
  organization: Beijing Forestry University
– sequence: 4
  givenname: Kangquan
  orcidid: 0000-0002-4627-6585
  surname: Yin
  fullname: Yin, Kangquan
  email: yinkq@bjfu.edu.cn
  organization: Beijing Forestry University
– sequence: 5
  givenname: Runguo
  surname: Zang
  fullname: Zang, Runguo
  organization: Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry
– sequence: 6
  givenname: Fang K.
  orcidid: 0000-0002-7377-5259
  surname: Du
  fullname: Du, Fang K.
  email: dufang325@bjfu.edu.cn
  organization: Beijing Forestry University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39247090$$D View this record in MEDLINE/PubMed
BookMark eNp1kt1uFCEYhiemxv7ogTdgSDzRg21hmIHBE9Nsqm7SpCfVU8LCxyybWViBWd2r8Ba8Fq9M2qlN20ROIPDkCe-b77g68MFDVb0m-JSUdQY7dUoo69iz6ojwtp41LScHD86H1XFKa4wZZrR-UR1SUTccC3xU_ZoPbqMyIL1Svge0GwcPUS3d4PIeKW-QDj5B3KnsgkcpxwL3DhKyIaIMMTsV9yjC4HRGOQKgtAVdgA9o4ZPrV7mgMWzQUGRJqy2gHnzYOJ1QsH9-X6ufY0J6TFtnVFYvq-dWDQle3e0n1ddPF9fzL7PLq8-L-fnlTDclxoxzKgjjjemAmiWlYoktqK5usBWspGQNh1pbq2pRt4wQwTpquVEGt1YZpelJtZi8Jqi13MZSQtzLoJy8vQixl6pk0wNIoZmpKW6FxbRhuhEdNky3S6sx4bwRxfVxcm3H5QaMBl9aGh5JH794t5J92ElCKG9x3RXDuztDDN9HSFluXNIwlM4gjElSgmvMSclX0LdP0HUYoy9dFYpg1nHa3gjfT5SOIaUI9v43BMubmZFlZuTtzBT2zcPv35P_hqQAZxPwww2w_79JXnw7n5R_Ackk0HI
Cites_doi 10.1111/mec.14549
10.1134/S1022795417070079
10.1371/journal.pone.0037135
10.1016/0169‐5347(96)10045‐8
10.1111/mec.12354
10.1093/genetics/155.2.945
10.3389/fpls.2018.00092
10.1016/j.foreco.2017.11.026
10.1016/j.pld.2016.09.002
10.1016/j.bse.2015.10.009
10.3832/ifor0496‐002
10.1111/1365‐2745.12690
10.3390/f10090766
10.1111/j.1600‐0587.2013.00205.x
10.1534/g3.111.000240
10.3389/fpls.2022.822217
10.1016/j.gecco.2019.e00610
10.1146/annurev‐ecolsys‐020720‐042553
10.1146/annurev‐ecolsys‐110512‐135747
10.1111/eva.12293
10.1111/njb.03241
10.1111/1365‐2435.13814
10.1111/j.1461‐0248.2012.01746.x
10.1126/science.1189138
10.1139/X09‐054
10.1046/j.1471‐8286.2003.00566.x
10.1111/eva.12891
10.1126/science.aan438
10.1093/bioinformatics/bts606
10.1080/00401706.1970.10488699
10.1111/jbi.12836
10.1111/ele.12376
10.1111/j.1523‐1739.2011.01778.x
10.1007/s10980‐005‐5245‐9
10.1093/molbev/mst063
10.1111/j.1438‐8677.2012.00601.x
10.1016/j.tree.2014.10.009
10.1111/gcb.14497
10.1093/bioinformatics/btr521
10.1111/j.1438‐8677.2012.00624.x
10.1007/s10709‐007‐9178‐x
10.1007/s10592‐008‐9515‐3
10.1111/j.1365‐294X.2006.03086.x
10.1038/sj.hdy.6800725
10.1111/j.1755‐0998.2010.02847.x
10.1146/annurev‐ecolsys‐110411‐160248
10.1016/j.biocon.2020.108535
10.14214/sf.10000
10.1002/joc.5086
10.1111/eva.12883
10.1038/sj.hdy.6800706
10.1093/aob/mcy081
10.1111/plb.12716
10.1111/eva.13030
10.3732/apps.1600020
10.1515/sg‐2016‐0008
10.1093/gbe/evz220
10.1007/s10592‐021‐01338‐1
10.1007/s11056‐009‐9139‐6
10.1093/aob/mcn074
10.1186/1471‐2105‐12‐246
10.1038/nrg2339
10.1016/j.foreco.2012.11.009
10.1007/s11295‐013‐0596‐x
10.1080/02827589950152827
10.1111/mec.13889
10.1111/cobi.13422
10.1111/j.1365‐294X.2004.02141.x
10.1111/mec.12926
10.1093/bioinformatics/btm233
10.1111/mec.14765
10.1111/eva.13377
10.3389/fevo.2023.1116814
10.1146/annurev.ecolsys.37.091305.1102
10.1093/bioinformatics/btu170
10.1093/bioinformatics/btr330
10.1007/s10592‐011‐0287‐9
10.1016/j.gecco.2021.e01495
10.1038/nrg2931
10.1086/519795
10.1360/SSV‐2020‐0265
10.1126/science.1155121
10.1007/s10592‐019‐01242‐9
10.1111/j.1523‐1739.2009.01425.x
10.1101/gr.094052.109
10.1111/nph.16619
10.1111/eva.13354
10.1111/j.1365‐294X.2005.02553.x
10.1534/genetics.108.092221
10.1534/genetics.113.152462
10.1007/s11295‐018‐1297‐2
10.1046/j.1469‐8137.1999.00545.x
10.1093/bioinformatics/bts460
10.1007/s12686‐011‐9548‐7
10.1111/2041‐210x.12382
10.1007/s11103‐012‐9961‐7
10.3389/fpls.2018.01571
10.1002/ece3.10072
10.1890/11‐0252.1
10.1111/j.1365‐294X.2004.02410.x
10.1111/ele.12977
10.1111/eva.12838
10.1016/j.tree.2022.09.006
10.1111/j.1365‐294X.2008.03971.x
10.1111/1365‐2664.14
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1111/eva.13686
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Open Access Backfiles
PubMed
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
Biotechnology and BioEngineering Abstracts
ProQuest Central
Genetics Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Engineering Research Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Luo et al
EISSN 1752-4571
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9c6d23059f0346c4980d6c5bfc017749
10_1111_eva_13686
39247090
EVA13686
Genre researchArticle
Journal Article
GeographicLocations Changbai Mountains
Beijing China
United States--US
China
GeographicLocations_xml – name: China
– name: Changbai Mountains
– name: Beijing China
– name: United States--US
GrantInformation_xml – fundername: The Special Program for the Institute of National Parks, Chinese Academy Sciences, P. R. China
  funderid: KFJ‐STS‐ZDTP‐2022‐001
– fundername: National Key Research and Development Program of China
  funderid: 2016YFC0503106
– fundername: Fundamental Research Funds for the Central Universities, P. R. China
  funderid: 2021ZY80
– fundername: The Special Program for the Institute of National Parks, Chinese Academy Sciences, P. R. China
  grantid: KFJ‐STS‐ZDTP‐2022‐001
GroupedDBID 0R~
1OC
24P
29G
31~
4.4
5DZ
5GY
5VS
8-0
8-1
8FE
8FH
AAHHS
AAKDD
AAZKR
ACCFJ
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CAG
CCPQU
COF
CS3
D-8
D-9
DU5
EBS
ECGQY
EJD
ESX
F5P
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
HZ~
IAO
IGS
IHR
ITC
KQ8
LK8
M48
M7P
M~E
O9-
OIG
OK1
OVD
PIMPY
PROAC
RNS
RPM
TEORI
WIN
NPM
AAYXX
CITATION
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c4006-77391674d8e3db339b0fea8240f96606647e2cffa29256119683f7dad05fadac3
IEDL.DBID RPM
ISSN 1752-4571
IngestDate Mon Sep 30 19:22:40 EDT 2024
Tue Sep 17 21:27:47 EDT 2024
Wed Sep 11 02:47:41 EDT 2024
Sat Sep 28 14:24:22 EDT 2024
Thu Sep 26 20:28:46 EDT 2024
Wed Oct 09 10:21:56 EDT 2024
Sun Sep 29 09:11:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords genetic diversity
local adaptation
conservation
genotype‐environment associations
climate change
habitat fragmentation
Language English
License Attribution
2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4006-77391674d8e3db339b0fea8240f96606647e2cffa29256119683f7dad05fadac3
Notes Yanjun Luo and Wei Qin contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4627-6585
0000-0002-7377-5259
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375028/
PMID 39247090
PQID 3110687358
PQPubID 986360
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_9c6d23059f0346c4980d6c5bfc017749
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11375028
proquest_miscellaneous_3102071824
proquest_journals_3110687358
crossref_primary_10_1111_eva_13686
pubmed_primary_39247090
wiley_primary_10_1111_eva_13686_EVA13686
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Evolutionary applications
PublicationTitleAlternate Evol Appl
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 10
2019; 11
2019; 10
2006; 37
2004; 4
2019; 18
2020; 13
2008; 102
2012; 15
2012; 13
2016; 38
2014; 23
2013; 9
2018; 9
2010; 24
2006; 21
2019; 25
2013; 195
2012; 28
2012; 26
2009; 19
2022; 38
2010; 329
2011; 1
1970; 12
2020; 34
2018; 21
2018; 20
2021; 51
2018; 27
1996; 11
2016; 4
2017; 53
2018; 359
2015; 63
2005; 95
2022; 13
2014; 37
2022; 15
2007; 81
2020; 21
2014; 30
2013; 291
2008; 133
2016; 25
2012; 43
2016; 9
2018; 14
2005; 14
2018; 122
2021; 26
2021; 22
2013; 22
2017; 44
2015; 30
2008; 9
2020; 244
2011; 12
2018; 409
2021; 35
2013; 15
2017; 37
2020; 51
2021; 39
1999; 14
2011; 27
2007; 23
1987; II
2012; 80
2015; 6
2023; 13
2023; 11
2015; 18
2013; 44
2010
2008; 17
2006; 15
2020; 228
2006; 6
1999; 144
2000; 155
2008; 320
2012; 93
2008; 180
2013; 30
2004; 13
2016; 65
2019
2022; 59
2018; 52
2014
2013
2012; 7
2009; 2
2012; 4
2009; 38
2017; 105
2009; 39
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Kitamura S. (e_1_2_8_53_1) 1987
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
Fox J. (e_1_2_8_37_1) 2019
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
IPCC (e_1_2_8_47_1) 2014
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
R Core Team (e_1_2_8_87_1) 2019
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 27
  start-page: 2156
  issue: 15
  year: 2011
  end-page: 2158
  article-title: The variant call format and VCFtools
  publication-title: Bioinformatics
– volume: 12
  start-page: 1
  year: 2011
  end-page: 6
  article-title: Enhancements to the ADMIXTURE algorithm for individual ancestry estimation
  publication-title: BMC Bioinformatics
– volume: 30
  start-page: 2114
  year: 2014
  end-page: 2120
  article-title: Trimmomatic: A flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
– volume: 359
  start-page: 83
  issue: 6371
  year: 2018
  end-page: 86
  article-title: Genomic signals of selection predict climate‐driven population declines in a migratory bird
  publication-title: Science
– volume: 35
  start-page: 1408
  issue: 7
  year: 2021
  end-page: 1423
  article-title: Respiratory temperature responses of tropical conifers differ with leaf morphology
  publication-title: Functional Ecology
– volume: 105
  start-page: 75
  issue: 1
  year: 2017
  end-page: 84
  article-title: What is long‐distance dispersal? And a taxonomy of dispersal events
  publication-title: Journal of Ecology
– volume: 14
  start-page: 103
  issue: 2
  year: 1999
  end-page: 110
  article-title: Allozyme variation in Korean populations of (Taxaceae)
  publication-title: Scandinavian Journal of Forest Research
– volume: 27
  start-page: 1342
  issue: 6
  year: 2018
  end-page: 1356
  article-title: The search for loci under selection: Trends, biases and progress
  publication-title: Molecular Ecology
– volume: 6
  start-page: 925
  issue: 8
  year: 2015
  end-page: 929
  article-title: LEA: An R package for landscape and ecological association studies
  publication-title: Methods in Ecology and Evolution
– volume: 30
  start-page: 42
  issue: 1
  year: 2015
  end-page: 49
  article-title: Genetic rescue to the rescue
  publication-title: Trends in Ecology & Evolution
– volume: 21
  start-page: 797
  year: 2006
  end-page: 807
  article-title: Adaptive vs. neutral genetic diversity: Implications for landscape genetics
  publication-title: Landscape Ecology
– volume: 39
  start-page: 1259
  issue: 7
  year: 2009
  end-page: 1269
  article-title: Altitudinal differentiation in growth and phenology among populations of temperate‐zone tree species growing in a common garden
  publication-title: Canadian Journal of Forest Research
– year: 2014
– volume: 2
  start-page: 75
  issue: 3
  year: 2009
  end-page: 76
  article-title: The genetic consequences of habitat fragmentation: The case of forests
  publication-title: iForest – Biogeosciences and Forestry
– volume: 291
  start-page: 119
  year: 2013
  end-page: 127
  article-title: Shifting limiting factors for population dynamics and conservation status of the endangered English yew ( L., Taxaceae)
  publication-title: Forest Ecology and Management
– volume: 23
  start-page: 5291
  issue: 21
  year: 2014
  end-page: 5303
  article-title: Genomic atolls of differentiation in coral reef fishes ( spp., )
  publication-title: Molecular Ecology
– volume: 59
  start-page: 2227
  issue: 9
  year: 2022
  end-page: 2233
  article-title: Bringing together approaches to reporting on within species genetic diversity
  publication-title: Journal of Applied Ecology
– volume: 7
  issue: 5
  year: 2012
  article-title: Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non‐model species
  publication-title: PLoS One
– volume: 12
  start-page: 591
  issue: 3
  year: 1970
  end-page: 612
  article-title: Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation
  publication-title: Technometrics
– volume: 15
  start-page: 70
  year: 2013
  end-page: 82
  article-title: Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy)
  publication-title: Plant Biology
– volume: 4
  start-page: 137
  issue: 1
  year: 2004
  end-page: 138
  article-title: DISTRUCT: A program for the graphical display of population structure
  publication-title: Molecular Ecology Notes
– volume: 53
  start-page: 865
  year: 2017
  end-page: 874
  article-title: Genetic diversity and population structure of Sieb. Et Zucc. Ex Endl. (Taxaceae) in Russia according to data of the nucleotide polymorphism of intergenic spacers of the chloroplast genome
  publication-title: Russian Journal of Genetics
– volume: 14
  start-page: 689
  year: 2005
  end-page: 701
  article-title: Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations
  publication-title: Molecular Ecology
– volume: 51
  start-page: 245
  year: 2020
  end-page: 269
  article-title: Genomic prediction of (mal) adaptation across current and future climatic landscapes
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 22
  start-page: 307
  year: 2021
  end-page: 321
  article-title: The palaeoendemic conifer (Podocarpaceae) exhibits high genetic diversity despite quaternary range contraction and post glacial bottlenecking
  publication-title: Conservation Genetics
– volume: 13
  start-page: 665
  issue: 4
  year: 2020
  end-page: 676
  article-title: Landscape genomics predicts climate change‐related genetic offset for the widespread (Cupressaceae)
  publication-title: Evolutionary Applications
– volume: 13
  start-page: 223
  year: 2012
  end-page: 234
  article-title: Microsatellite evidence for high clonality and limited genetic diversity in (Rhamnaceae), an endangered, self‐incompatible shrub endemic to the Lake Wales ridge, Florida, USA
  publication-title: Conservation Genetics
– volume: 9
  year: 2018
  article-title: Adaptive genetic divergence despite significant isolation‐by‐distance in populations of Taiwan cow‐tail fir ( var. )
  publication-title: Frontiers Plant Science
– volume: 1
  start-page: 171
  issue: 3
  year: 2011
  end-page: 182
  article-title: Stacks: Building and genotyping loci de novo from short‐read sequences
  publication-title: G3: Genes, Genomes, Genetics
– volume: 11
  start-page: 2976
  issue: 10
  year: 2019
  end-page: 2989
  article-title: Environmental genome‐wide association reveals climate adaptation is shaped by subtle to moderate allele frequency shifts in loblolly pine
  publication-title: Genome Biology and Evolution
– volume: 133
  start-page: 21
  year: 2008
  end-page: 30
  article-title: Genetic diversity of relictual and endangered plant (Pinaceae) revealed by AFLP and SSR markers
  publication-title: Genetica
– volume: 37
  start-page: 187
  year: 2006
  end-page: 214
  article-title: Some evolutionary consequences of being a tree
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 21
  start-page: 1085
  issue: 7
  year: 2018
  end-page: 1096
  article-title: Ecological genomics predicts climate vulnerability in an endangered southwestern songbird
  publication-title: Ecology Letters
– volume: 23
  start-page: 1801
  issue: 14
  year: 2007
  end-page: 1806
  article-title: CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure
  publication-title: Bioinformatics
– year: 2019
– volume: 19
  start-page: 1655
  issue: 9
  year: 2009
  end-page: 1664
  article-title: Fast model‐based estimation of ancestry in unrelated individuals
  publication-title: Genome Research
– volume: 228
  start-page: 330
  issue: 1
  year: 2020
  end-page: 343
  article-title: Effects of landscapes and range expansion on population structure and local adaptation
  publication-title: New Phytologist
– volume: 28
  start-page: 3326
  issue: 24
  year: 2012
  end-page: 3328
  article-title: A high‐performance computing toolset for relatedness and principal component analysis of SNP data
  publication-title: Bioinformatics
– volume: 30
  start-page: 1687
  year: 2013
  end-page: 1699
  article-title: Testing for associations between loci and environmental gradients using latent factor mixed models
  publication-title: Molecular Biology and Evolution
– volume: 21
  start-page: 217
  issue: 2
  year: 2020
  end-page: 229
  article-title: Genetic diversity and biogeographic determinants of population structure in (Bert.) O. Ktze
  publication-title: Conservation Genetics
– volume: 10
  start-page: 564
  issue: 3
  year: 2010
  end-page: 567
  article-title: Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows
  publication-title: Molecular Ecology Resources
– volume: 144
  start-page: 479
  issue: 3
  year: 1999
  end-page: 488
  article-title: The dendrochronological potential of modern yew ( ) with special reference to yew from Hampton court palace
  publication-title: UK. The New Phytologist
– volume: 9
  start-page: 421
  issue: 6
  year: 2008
  end-page: 432
  article-title: Detecting genetic responses to environmental change
  publication-title: Nature Reviews Genetics
– volume: 39
  issue: 3
  year: 2021
  article-title: Influence of physiography, soil and climate on
  publication-title: Nordic Journal of Botany
– volume: 13
  start-page: 143
  issue: 1
  year: 2020
  end-page: 160
  article-title: A multiscale approach to detect selection in nonmodel tree species: Widespread adaptation despite population decline in L
  publication-title: Evolutionary Applications
– volume: 180
  start-page: 977
  issue: 2
  year: 2008
  end-page: 993
  article-title: A genome‐scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective
  publication-title: Genetics
– volume: 38
  start-page: 143
  year: 2022
  end-page: 155
  article-title: Molecular ecology meets systematic conservation planning
  publication-title: Trends in Ecology & Evolution
– volume: 43
  start-page: 23
  year: 2012
  end-page: 43
  article-title: Adaptive genetic variation on the landscape: Methods and cases
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 27
  start-page: 3070
  issue: 21
  year: 2011
  end-page: 3071
  article-title: Adegenet 1.3–1: New tools for the analysis of genome‐wide SNP data
  publication-title: Bioinformatics
– volume: 80
  start-page: 555
  year: 2012
  end-page: 569
  article-title: Towards decoding the conifer giga‐genome
  publication-title: Plant Molecular Biology
– year: 2010
– volume: 15
  start-page: 4109
  issue: 13
  year: 2006
  end-page: 4122
  article-title: Phylogeography of the endangered (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA
  publication-title: Molecular Ecology
– volume: 38
  start-page: 209
  issue: 5
  year: 2016
  end-page: 220
  article-title: Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective
  publication-title: Plant Diversity
– volume: 4
  start-page: 359
  year: 2012
  end-page: 361
  article-title: STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method
  publication-title: Conservation Genetics Resources
– volume: 95
  start-page: 255
  issue: 4
  year: 2005
  end-page: 273
  article-title: Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees
  publication-title: Heredity
– volume: 93
  start-page: 156
  issue: 1
  year: 2012
  end-page: 168
  article-title: Gradient forests: Calculating importance gradients on physical predictors
  publication-title: Ecology
– volume: 4
  issue: 7
  year: 2016
  article-title: Development of polymorphic microsatellite markers for Japanese yew, , and var. (Taxaceae)
  publication-title: Applications in Plant Sciences
– volume: 11
  start-page: 413
  issue: 10
  year: 1996
  end-page: 418
  article-title: The population genetic consequences of habitat fragmentation for plants
  publication-title: Trends in Ecology & Evolution
– volume: 13
  start-page: 1143
  issue: 5
  year: 2004
  end-page: 1155
  article-title: Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants
  publication-title: Molecular Ecology
– volume: 26
  year: 2021
  article-title: The population status and threats of , a plant species with extremely small populations in China
  publication-title: Global Ecology and Conservation
– year: 2013
– volume: 63
  start-page: 157
  year: 2015
  end-page: 164
  article-title: Genetic diversity and population structure of in the Changbai Mountains assessed by chloroplast DNA sequences and microsatellite markers
  publication-title: Biochemical Systematics and Ecology
– volume: 6
  start-page: 288
  issue: 1
  year: 2006
  end-page: 295
  article-title: GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research
  publication-title: Molecular Ecology Notes
– volume: 244
  issue: 108
  year: 2020
  article-title: China's conservation program on plant species with extremely small populations (PSESP): Progress and perspectives
  publication-title: Biological Conservation
– volume: 10
  issue: 9
  year: 2019
  article-title: Differential responses to climate and land‐use changes in threatened Chinese species
  publication-title: Forests
– volume: 9
  start-page: 1665
  year: 2008
  end-page: 1668
  article-title: Isolation and characterization of polymorphic nuclear microsatellite loci in L
  publication-title: Conservation Genetics
– volume: 95
  start-page: 183
  issue: 3
  year: 2005
  article-title: Conservation biology: Ecosystem recovery enhanced by genotypic diversity
  publication-title: Heredity
– volume: 65
  start-page: 59
  year: 2016
  end-page: 66
  article-title: Low genetic diversity in the endangered following a population bottleneck, a low effective population size and increased inbreeding
  publication-title: Silvae Genetica
– volume: 155
  start-page: 945
  issue: 2
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 26
  start-page: 228
  issue: 2
  year: 2012
  end-page: 237
  article-title: Meta‐analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation
  publication-title: Conservation Biology
– volume: 122
  start-page: 409
  issue: 3
  year: 2018
  end-page: 421
  article-title: Seed and pollen gene dispersal in , a dioecious conifer in the face of strong population fragmentation
  publication-title: Annals of Botany
– volume: 37
  start-page: 191
  issue: 2
  year: 2014
  end-page: 203
  article-title: Where is positional uncertainty a problem for species distribution modelling?
  publication-title: Ecography
– volume: 25
  start-page: 5907
  issue: 23
  year: 2016
  end-page: 5924
  article-title: Signatures of local adaptation in candidate genes of oaks ( spp.) with respect to present and future climatic conditions
  publication-title: Molecular Ecology
– volume: 9
  start-page: 901
  year: 2013
  end-page: 911
  article-title: Putting the landscape into the genomics of trees: Approaches for understanding local adaptation and population responses to changing climate
  publication-title: Tree Genetics & Genomes
– volume: 51
  start-page: 167
  year: 2021
  end-page: 178
  article-title: New approaches for ecological adaptation study: From population genetics to landscape genomics
  publication-title: Scientia Sinica Vitae
– volume: 15
  start-page: 403
  issue: 3
  year: 2022
  end-page: 416
  article-title: Seeing the forest for the trees: Assessing genetic offset predictions from gradient forest
  publication-title: Evolutionary Applications
– volume: 9
  start-page: 271
  issue: 1
  year: 2016
  end-page: 290
  article-title: Time to get moving: Assisted gene flow of forest trees
  publication-title: Evolutionary Applications
– volume: 37
  start-page: 4302
  issue: 12
  year: 2017
  end-page: 4315
  article-title: WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 329
  start-page: 1298
  issue: 5997
  year: 2010
  end-page: 1303
  article-title: Biodiversity conservation: Challenges beyond 2010
  publication-title: Science
– volume: 15
  start-page: 378
  issue: 4
  year: 2012
  end-page: 392
  article-title: Long‐distance gene flow and adaptation of forest trees to rapid climate change
  publication-title: Ecology Letters
– volume: 13
  start-page: 2377
  issue: 9
  year: 2020
  end-page: 2391
  article-title: Contrasted patterns of local adaptation to climate change across the range of an evergreen oak,
  publication-title: Evolutionary Applications
– volume: 320
  start-page: 1444
  issue: 5882
  year: 2008
  end-page: 1449
  article-title: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 12
  start-page: 111
  issue: 2
  year: 2011
  end-page: 122
  article-title: Forest tree genomics: Growing resources and applications
  publication-title: Nature Reviews Genetics
– volume: 27
  start-page: 3055
  issue: 15
  year: 2018
  end-page: 3069
  article-title: Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm
  publication-title: Molecular Ecology
– volume: 195
  start-page: 205
  issue: 1
  year: 2013
  end-page: 220
  article-title: Robust identification of local adaptation from allele frequencies
  publication-title: Genetics
– volume: 11
  year: 2023
  article-title: Neutral and adaptive genetic diversity in plants: An overview
  publication-title: Frontiers in Ecology and Evolution
– volume: 14
  start-page: 1
  year: 2018
  end-page: 21
  article-title: Genetic variation and signatures of natural selection in populations of European beech ( L.) along precipitation gradients
  publication-title: Tree Genetics & Genomes
– volume: 9
  year: 2018
  article-title: Recent fragmentation may not alter genetic patterns in endangered long‐lived species: Evidence from
  publication-title: Frontiers in Plant Science
– volume: 13
  issue: 822
  year: 2022
  article-title: Landscape genomics in tree conservation under a changing environment
  publication-title: Frontiers in Plant Science
– volume: 18
  year: 2019
  article-title: Habitat loss and deterioration explain the disappearance of populations of threatened vascular plants, bryophytes and lichens in a hemiboreal landscape
  publication-title: Global Ecology and Conservation
– volume: 24
  start-page: 86
  issue: 1
  year: 2010
  end-page: 88
  article-title: Neglect of genetic diversity in implementation of the convention of biological diversity
  publication-title: Conservation Biology
– volume: 102
  start-page: 195
  issue: 2
  year: 2008
  end-page: 205
  article-title: Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, , across north‐east China
  publication-title: Annals of Botany
– volume: 15
  start-page: 195
  issue: 1
  year: 2013
  end-page: 202
  article-title: Historical habitat connectivity affects current genetic structure in a grassland species
  publication-title: Plant Biology
– volume: 34
  start-page: 711
  issue: 3
  year: 2020
  end-page: 720
  article-title: Meta‐analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity
  publication-title: Conservation Biology
– volume: 38
  start-page: 187
  year: 2009
  end-page: 196
  article-title: Effect of cutting age and substrate temperature on rooting of
  publication-title: New Forests
– volume: 13
  issue: 5
  year: 2023
  article-title: Growth, drought response, and climate‐associated genomic structure in whitebark pine in the Sierra Nevada of California
  publication-title: Ecology and Evolution
– volume: 18
  start-page: 1
  issue: 1
  year: 2015
  end-page: 16
  article-title: Ecological genomics meets community‐level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation
  publication-title: Ecology Letters
– volume: 17
  start-page: 5177
  issue: 24
  year: 2008
  end-page: 5188
  article-title: Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches
  publication-title: Molecular Ecology
– volume: 44
  start-page: 294
  issue: 2
  year: 2017
  end-page: 307
  article-title: Phylogeography of provides novel insights into the Neogene history of a major global hotspot of plant diversity in south‐west China
  publication-title: Journal of Biogeography
– volume: 15
  start-page: 919
  issue: 6
  year: 2022
  end-page: 933
  article-title: Genomic insights into the genotype–environment mismatch and conservation units of a Qinghai–Tibet plateau endemic cypress under climate change
  publication-title: Evolutionary Applications
– volume: 20
  start-page: 789
  issue: 4
  year: 2018
  end-page: 796
  article-title: Sex ratio rather than population size affects genetic diversity in
  publication-title: Plant Biology
– volume: 44
  start-page: 367
  year: 2013
  end-page: 388
  article-title: Assisted gene flow to facilitate local adaptation to climate change
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 25
  start-page: 337
  issue: 1
  year: 2019
  end-page: 350
  article-title: New insights into adaptation and population structure of cork oak using genotyping by sequencing
  publication-title: Global Change Biology
– volume: 13
  start-page: 161
  issue: 1
  year: 2020
  end-page: 175
  article-title: Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow
  publication-title: Evolutionary Applications
– volume: 81
  start-page: 559
  issue: 3
  year: 2007
  end-page: 575
  article-title: PLINK: A tool set for whole‐genome association and population‐based linkage analyses
  publication-title: The American Journal of Human Genetics
– volume: 14
  start-page: 2611
  issue: 8
  year: 2005
  end-page: 2620
  article-title: Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study
  publication-title: Molecular Ecology
– volume: 409
  start-page: 148
  year: 2018
  end-page: 160
  article-title: Genetic variation in L.: A case study supporting Poland's protection and restoration program
  publication-title: Forest Ecology and Management
– volume: II
  start-page: 545
  year: 1987
– volume: 22
  start-page: 3124
  issue: 11
  year: 2013
  end-page: 3140
  article-title: Stacks: An analysis tool set for population genomics
  publication-title: Molecular Ecology
– volume: 52
  issue: 5
  year: 2018
  article-title: Genetic diversity and differentiation of the riparian relict tree (Juglandaceae) along altitudinal gradients in the Hyrcanian forest (Iran)
  publication-title: Silva Fennica
– ident: e_1_2_8_3_1
  doi: 10.1111/mec.14549
– ident: e_1_2_8_55_1
  doi: 10.1134/S1022795417070079
– ident: e_1_2_8_78_1
  doi: 10.1371/journal.pone.0037135
– ident: e_1_2_8_110_1
  doi: 10.1016/0169‐5347(96)10045‐8
– ident: e_1_2_8_16_1
  doi: 10.1111/mec.12354
– ident: e_1_2_8_83_1
  doi: 10.1093/genetics/155.2.945
– ident: e_1_2_8_95_1
  doi: 10.3389/fpls.2018.00092
– ident: e_1_2_8_60_1
  doi: 10.1016/j.foreco.2017.11.026
– ident: e_1_2_8_102_1
  doi: 10.1016/j.pld.2016.09.002
– ident: e_1_2_8_18_1
  doi: 10.1016/j.bse.2015.10.009
– ident: e_1_2_8_82_1
  doi: 10.3832/ifor0496‐002
– ident: e_1_2_8_51_1
  doi: 10.1111/1365‐2745.12690
– ident: e_1_2_8_104_1
  doi: 10.3390/f10090766
– ident: e_1_2_8_71_1
  doi: 10.1111/j.1600‐0587.2013.00205.x
– ident: e_1_2_8_17_1
  doi: 10.1534/g3.111.000240
– ident: e_1_2_8_33_1
  doi: 10.3389/fpls.2022.822217
– ident: e_1_2_8_86_1
  doi: 10.1016/j.gecco.2019.e00610
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev‐ecolsys‐020720‐042553
– ident: e_1_2_8_5_1
  doi: 10.1146/annurev‐ecolsys‐110512‐135747
– ident: e_1_2_8_4_1
  doi: 10.1111/eva.12293
– ident: e_1_2_8_9_1
  doi: 10.1111/njb.03241
– ident: e_1_2_8_93_1
  doi: 10.1111/1365‐2435.13814
– ident: e_1_2_8_56_1
  doi: 10.1111/j.1461‐0248.2012.01746.x
– ident: e_1_2_8_88_1
  doi: 10.1126/science.1189138
– ident: e_1_2_8_100_1
  doi: 10.1139/X09‐054
– ident: e_1_2_8_91_1
  doi: 10.1046/j.1471‐8286.2003.00566.x
– ident: e_1_2_8_49_1
  doi: 10.1111/eva.12891
– ident: e_1_2_8_10_1
  doi: 10.1126/science.aan438
– ident: e_1_2_8_113_1
  doi: 10.1093/bioinformatics/bts606
– ident: e_1_2_8_64_1
  doi: 10.1080/00401706.1970.10488699
– ident: e_1_2_8_26_1
  doi: 10.1111/jbi.12836
– ident: e_1_2_8_35_1
  doi: 10.1111/ele.12376
– ident: e_1_2_8_101_1
  doi: 10.1111/j.1523‐1739.2011.01778.x
– ident: e_1_2_8_45_1
  doi: 10.1007/s10980‐005‐5245‐9
– ident: e_1_2_8_40_1
  doi: 10.1093/molbev/mst063
– ident: e_1_2_8_70_1
  doi: 10.1111/j.1438‐8677.2012.00601.x
– ident: e_1_2_8_106_1
  doi: 10.1016/j.tree.2014.10.009
– ident: e_1_2_8_81_1
  doi: 10.1111/gcb.14497
– ident: e_1_2_8_50_1
  doi: 10.1093/bioinformatics/btr521
– ident: e_1_2_8_66_1
  doi: 10.1111/j.1438‐8677.2012.00624.x
– ident: e_1_2_8_98_1
  doi: 10.1007/s10709‐007‐9178‐x
– ident: e_1_2_8_28_1
  doi: 10.1007/s10592‐008‐9515‐3
– ident: e_1_2_8_103_1
  doi: 10.1111/j.1365‐294X.2006.03086.x
– ident: e_1_2_8_62_1
  doi: 10.1038/sj.hdy.6800725
– volume-title: An R companion to applied regression
  year: 2019
  ident: e_1_2_8_37_1
  contributor:
    fullname: Fox J.
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1755‐0998.2010.02847.x
– ident: e_1_2_8_94_1
  doi: 10.1146/annurev‐ecolsys‐110411‐160248
– start-page: 545
  volume-title: Colored illustrations of woody plants of Japan
  year: 1987
  ident: e_1_2_8_53_1
  contributor:
    fullname: Kitamura S.
– ident: e_1_2_8_109_1
  doi: 10.1016/j.biocon.2020.108535
– ident: e_1_2_8_111_1
  doi: 10.14214/sf.10000
– ident: e_1_2_8_34_1
  doi: 10.1002/joc.5086
– ident: e_1_2_8_13_1
  doi: 10.1111/eva.12883
– ident: e_1_2_8_38_1
  doi: 10.1038/sj.hdy.6800706
– ident: e_1_2_8_21_1
  doi: 10.1093/aob/mcy081
– ident: e_1_2_8_90_1
  doi: 10.1111/plb.12716
– ident: e_1_2_8_27_1
  doi: 10.1111/eva.13030
– ident: e_1_2_8_54_1
  doi: 10.3732/apps.1600020
– ident: e_1_2_8_67_1
  doi: 10.1515/sg‐2016‐0008
– ident: e_1_2_8_76_1
– ident: e_1_2_8_24_1
  doi: 10.1093/gbe/evz220
– ident: e_1_2_8_107_1
  doi: 10.1007/s10592‐021‐01338‐1
– ident: e_1_2_8_69_1
  doi: 10.1007/s11056‐009‐9139‐6
– ident: e_1_2_8_46_1
  doi: 10.1093/aob/mcn074
– ident: e_1_2_8_6_1
  doi: 10.1186/1471‐2105‐12‐246
– ident: e_1_2_8_44_1
  doi: 10.1038/nrg2339
– ident: e_1_2_8_59_1
  doi: 10.1016/j.foreco.2012.11.009
– ident: e_1_2_8_96_1
  doi: 10.1007/s11295‐013‐0596‐x
– ident: e_1_2_8_19_1
  doi: 10.1080/02827589950152827
– ident: e_1_2_8_89_1
  doi: 10.1111/mec.13889
– ident: e_1_2_8_42_1
  doi: 10.1111/cobi.13422
– ident: e_1_2_8_74_1
  doi: 10.1111/j.1365‐294X.2004.02141.x
– ident: e_1_2_8_84_1
  doi: 10.1111/mec.12926
– volume-title: Climate change 2014: Synthesis report. Contribution of working groups I. II and III to the fifth assessment report of the intergovernmental panel on climate change 151(10.1017)
  year: 2014
  ident: e_1_2_8_47_1
  contributor:
    fullname: IPCC
– ident: e_1_2_8_48_1
  doi: 10.1093/bioinformatics/btm233
– ident: e_1_2_8_14_1
  doi: 10.1111/mec.14765
– ident: e_1_2_8_108_1
  doi: 10.1111/eva.13377
– ident: e_1_2_8_20_1
  doi: 10.3389/fevo.2023.1116814
– ident: e_1_2_8_80_1
  doi: 10.1146/annurev.ecolsys.37.091305.1102
– ident: e_1_2_8_11_1
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_2_8_23_1
  doi: 10.1093/bioinformatics/btr330
– ident: e_1_2_8_41_1
  doi: 10.1007/s10592‐011‐0287‐9
– ident: e_1_2_8_61_1
  doi: 10.1016/j.gecco.2021.e01495
– ident: e_1_2_8_72_1
  doi: 10.1038/nrg2931
– ident: e_1_2_8_85_1
  doi: 10.1086/519795
– ident: e_1_2_8_105_1
  doi: 10.1360/SSV‐2020‐0265
– ident: e_1_2_8_12_1
  doi: 10.1126/science.1155121
– ident: e_1_2_8_25_1
  doi: 10.1007/s10592‐019‐01242‐9
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1523‐1739.2009.01425.x
– ident: e_1_2_8_7_1
  doi: 10.1101/gr.094052.109
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_8_87_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_8_112_1
  doi: 10.1111/nph.16619
– ident: e_1_2_8_58_1
  doi: 10.1111/eva.13354
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1365‐294X.2005.02553.x
– ident: e_1_2_8_36_1
  doi: 10.1534/genetics.108.092221
– ident: e_1_2_8_43_1
  doi: 10.1534/genetics.113.152462
– ident: e_1_2_8_52_1
– ident: e_1_2_8_22_1
  doi: 10.1007/s11295‐018‐1297‐2
– ident: e_1_2_8_68_1
  doi: 10.1046/j.1469‐8137.1999.00545.x
– ident: e_1_2_8_77_1
  doi: 10.1093/bioinformatics/bts460
– ident: e_1_2_8_29_1
  doi: 10.1007/s12686‐011‐9548‐7
– ident: e_1_2_8_39_1
  doi: 10.1111/2041‐210x.12382
– ident: e_1_2_8_8_1
– ident: e_1_2_8_63_1
  doi: 10.1007/s11103‐012‐9961‐7
– ident: e_1_2_8_97_1
  doi: 10.3389/fpls.2018.01571
– ident: e_1_2_8_99_1
  doi: 10.1002/ece3.10072
– ident: e_1_2_8_30_1
  doi: 10.1890/11‐0252.1
– ident: e_1_2_8_79_1
  doi: 10.1111/j.1365‐294X.2004.02410.x
– ident: e_1_2_8_92_1
  doi: 10.1111/ele.12977
– ident: e_1_2_8_65_1
  doi: 10.1111/eva.12838
– ident: e_1_2_8_73_1
  doi: 10.1016/j.tree.2022.09.006
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1365‐294X.2008.03971.x
– ident: e_1_2_8_75_1
  doi: 10.1111/1365‐2664.14
SSID ssj0060632
Score 2.4092531
Snippet The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how these...
Abstract The unprecedented habitat fragmentation or loss has threatened the existence of many species. Therefore, it is essential to understand whether and how...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e13686
SubjectTerms Adaptation
Bats
Biodiversity
Climate change
Climate prediction
conservation
Conserved sequence
Datasets
DNA sequencing
Endangered species
Environmental changes
Evolution & development
Genetic analysis
Genetic diversity
Genomics
genotype‐environment associations
Habitat fragmentation
local adaptation
Microsatellites
Mitochondrial DNA
Original
Population genetics
Precipitation
Single-nucleotide polymorphism
Taxus cuspidata
Threatened species
Trees
Wildlife conservation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQJSQ2iDcpBRnEgk1EEj_DrlStChKsWtRd5PghIrWZajKpmK_gF_gWvox77WQ0I0Bs2I0SK-P4XuceJ-ccE_JaqwBlrjK5NtzkvLQibyvX5la0PphWSCNR7_zpszw95x8vxMXWVl_ICUv2wGng3tZWOoDJog4F49LyWhdOwpWChVxSPEn3SjEvptIzGFA5qyYfIeTt-BuDfC4UTG9Vn2jS_ydk-TtBchu4xspzco_cnSAjPUxdvU9u-f4BuZ02kVw_JN-PLjuAnZ4mDS-9GS_RSTqSXtfU9I5aZExP717psJrNISjgVYqUgM4s13TpUR1C8SM1RfklNHhHP_QDLt6h6XJxRaMsGAlTFJ1drzo70EX4-ePMfBsHasfhukO-6SNyfnJ8dnSaT9ss5Jbj-wSlUHyruNOeuZaxui2CNxpKfUDrTim58pUNwVQ14KMSpqxmQTnjChGMM5Y9Jnv9ovdPCXUlBKtgCq4DyADAhhcofS2N0tyEts7Iq3n4m-vkptHMqxCIURNjlJH3GJhNAzTAjgcgLZopLZp_pUVGDuawNtOsHBoGWEdqxYTOyMvNaZhP-JHE9H4xYhsA0FCwK56RJykLNj2BpOaqqIuM6J382Onq7pm--xo9u8uSATar4I_fxFT6--03x18O44_9_zEOz8idCmBYYsUdkL3VcvTPAUat2hdxxvwC1hUd6Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLbGJiReEHcCAxnEAy9RE9uJHV7QNnUqSEwIbWhvkePLiLQlJWkm-if4zZyTS1nF5a1qrDrpuX2xv_OZkDdKeihzTIdKCx2K2CRhwWwRmqRwXhdJqlPsd_50ki7OxMfz5HyHLKZeGKRVTjmxT9S2NrhGPuNQp1IleaJmusBVALOavV9-D_H8KNxnHQ_TuEX2WCxww3bvcH7y-cuUlQGnczYqCyGTx11rZHhhC_WNetTL9v8Na_5JmbwJZftadHyP3B1BJD0YrH6f7LjqAbk9HCu5fkh-Hl2WAEQdHbp66XV3idrSPQ12TXVlqUEO9bgaS9vVJBdBAcFSJAmUulnTxmG_CMVta4oNmTDgHf1Qtfg6D0Ob-or2jcJIoaKo9XpVmpbWnp7qH11LTdcuSySgPiJnx_PTo0U4nrsQGoELDFJiN64UVjluC86zIvJOK6j9HrU801RIx4z3mmUAmGKIYcW9tNpGiddWG_6Y7FZ15Z4SauPUsohL-B2ACoA-XIK9sLGWSmhfZAF5Pf37-XKQ18in1xIwUd6bKCCHaJfNAFTE7r-om4t8DLA8MzATJK_MR1ykRmQqsil4nDeQc6SAmfYnq-ZjmLb5b6cKyKvNZQgw3DXRlas7HAOIGio4EwF5MjjB5k7Ay4WMsiggass9tm51-0pVfutFvOOYA1hjMPHb3pP-_fj5_OtB_-HZ_x_hObnDAHENBLh9srtqOvcCENOqeDkGwy-1hho2
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb5UwFG_mjIkvxv-yTVOND75goC20mBgzly3TZD7tmr2RUtpJcgcTLsvut_Aj-Fn8ZJ5T4EbiTHwjUGjpOYfzK_2dcwh5raQDN8d0qLTQoYhNEhasLEKTFNbpIkl1ivHOJ1_S44X4fJacbZGpxuY4gd2NSzusJ7Vol2-vv68_gMG_n1g59kojW0ult8htJrhART8Rm80EgOi-Thk4ShaKRMZjgqHZrTO35LP33wQ5_2ZO_olovUs6uk_ujViS7g_Cf0C2bP2Q3BmqS64fkR8HywrwqKVDcC-96peYYtqzYddU1yU1SKUef8rSbjVljaAAZClyBSrdrmlrMWyE4u41xbhMaPCOfqo7XNVD07a5oD5eGJlUFFO-XlSmo4379ZOe6uu-o6bvLitkoj4mi6PD04PjcCzAEBqBfxqkxLBcKUpleVlwnhWRs1oBCHCY1DNNhbTMOKdZBsgpBmNW3MlSl1HidKkNf0K266a2zwgt47RkEZfwHMAMAENsgkGxsZZKaFdkAXk1zX9-OeTZyKf1CQgp90IKyEeUzKYBpsb2J5r2PB8tLc8M9ARfscxFoApGZCoqU1A9Z-DjIwX0tDfJNZ_ULeeAglIleaIC8nJzGSwNt090bZse2wC0BlfORECeDmqwGQmou5BRFgVEzRRkNtT5lbr65rN5xzEH1Mag4zdel_79-vnh131_sPM_k7VL7jIAYAMfbo9sr9rePgcAtSpeePP4DQCnHBs
  priority: 102
  providerName: Scholars Portal
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKERIXxD-BggziwCVSYju2A6dStSpIIA4t6i1y_EMjtUm12VT0KXgFnoUnY8b5UVeAxG21mV0nmRnPF-ebz4S81ipAmWMm1UaYVOS2SGvm6tQWtQ-mLqSR2O_86bM8PBYfT4qTLfJu7oUZ9SGWBTfMjDhfY4Kbur-W5P7SIEdLyxvkJsAajSHNxJd5GgZgHncng_LIUlGofJIVQhrP8tONYhQ1-_8GNP_kS17HsbEQHdwldyYESXdHl98jW769T26Ne0pePSA_9s4aQKGeji299HI4Q2HpyIG9oqZ11CKBelqKpf161oqgAF8pMgQauCd05bFZhOI7a4rdmGDwln5oe3yWB9NVd05jlzDypygKvZ43tqdd-PXzyHwfemqH_qJB-ulDcnywf7R3mE67LqRW4PKCUtiLq4TTnrua87LOgjcaKn9AJU8phfLMhmBYCXAphwzWPChnXFYE44zlj8h227X-CaEul45lXMH_AFAA7OEL7ITNjdLChLpMyKv59lcXo7hGNT-UgI-q6KOEvEfHLAaohx2_6Fbfqim9qtLCSDB1lSHjQlpR6sxJiLdgYcZRAkbamd1aTUnaVxygj9SKFzohL5fDkF74zsS0vhvQBvA01G8mEvJ4jILlTCDGhcrKLCF6Iz42TnXzSNucRgnvPOcA1RgM_CaG0r8vv9r_uhs_PP1_02fkNgPsNVLhdsj2ejX454Cd1vWLmCO_AVpiGFc
  priority: 102
  providerName: Wiley-Blackwell
Title Climate change vulnerability and conservation strategies for tertiary relict tree species: Insights from landscape genomics of Taxus cuspidata
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Feva.13686
https://www.ncbi.nlm.nih.gov/pubmed/39247090
https://www.proquest.com/docview/3110687358/abstract/
https://www.proquest.com/docview/3102071824/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC11375028
https://doaj.org/article/9c6d23059f0346c4980d6c5bfc017749
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwGLXWISRuEP8ERmUQF9xkTWIndrjbqk4DqVOFNrS7yHHsEalNqqad6FPwCjwLT8b3OUm1CrjhJqoSq3brz_6O7XNOCHkvhYU0FylfKq58HurYz6Mi93WcG6vyOFEJ6p2nF8n5Ff98HV8fkKTXwjjSvs7L42q-OK7Kb45buVzoUc8TG82m4zBkkOgiORqQgWCsX6O38y8gchZ1HkLI2TG3CrlcKJa-k3mcQf_fUOWf5Mi7oNVlnbNH5GEHF-lJ26zH5MBUT8j99gWS26fkx3heAuQ0tNXv0tvNHF2kHeF1S1VVUI1s6W7flTbr3hiCAlalSAco1WpLVwaVIRQPqClKL6HAR_qpanDhDkVX9YI6STCSpSi6ui5K3dDa_vp5qb5vGqo3zbJErukzcnU2uRyf-90rFnzNcS9BCBTeCl5Iw4qcsTQPrFES0rxF284k4cJE2loVpYCNQhiukllRqCKIrSqUZs_JYVVX5iWhRZgUUcAEfA-gAgAaJkbZa6iE5MrmqUfe9X9_tmydNLJ-BQJ9lLk-8sgpdsyuAJpfuxv16ibrQiBLNdQE81RqA8YTzVMZFAkEl9UwvQgONR313Zp1I7LJGOCcRAoWS4-83T2GsYQHJKoy9QbLAHiGZB1xj7xoo2DXEghoLoI08Ijci4-9pu4_gfB1ft19uHrkgwulf__8bPL1xH149f-1vCYPIgBeLQ_uiByuVxvzBoDTOh-SQcRnQ3LvdHIx-zJ02w9wnXI5dCPoNyXpIjg
link.rule.ids 230,315,733,786,790,870,891,2115,2236,11589,21416,24346,27957,27958,33779,33780,43840,46087,46511,50849,50958,53827,53829,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLZgKgQXxE6ggEEcuEQksRM7XFBbTTWFdoTQFPUWOV4gUpsMyaRi_gS_mfeyDB2x3KLEiuO87bP9vWdCXkvhIMxFypeKK5-HOvbzyOS-jnPrVB4nKsF855N5MjvlH87is2HBrRlolaNP7By1qTSukb9lEKcSKVgs3y-_-3hqFO6uDkdoXCc7nMFUZUJ29qfzT59HXwzonEVDPSHk79hLhbwuTJy-EoW6Yv1_Q5h_EiWvAtguAh3eIbcH6Ej3elnfJddseY_c6A-TXN8nPw_OC4Cflva5vPSyPceK0h35dU1VaahG5vSwBkub1VgkggJupUgNKFS9prXFLBGKm9UU0zChwTt6VDY4iYemdXVBu_RgJE5RrPB6UeiGVo4u1I-2obptlgXSTh-Q08Pp4mDmD6ct-JrjsoIQmIMruJGWmZyxNA-cVRIivsMKnknChY20cypKASaFYLmSOWGUCWKnjNLsIZmUVWkfE2rCxEQBE_AeAAiAOWyMGbChEpIrl6ceeTX-_WzZF9XIxskIiCjrROSRfZTLpgHWwe5uVPXXbDCrLNXQE7is1AWMJ5qnMjAJ6JnT4GkEh552R6lmg3E22W9V8sjLzWMwK9wrUaWtWmwDOBridsQ98qhXgs2XgG5zEaSBR-SWemx96vaTsvjWle4OQwYQLYKO33Sa9O_hZ9Mve93Fk_8P4QW5OVucHGfHR_OPT8mtCDBXT4HbJZNV3dpngJlW-fPBMH4B2xMZaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgE4iXiesIG2AQD7xES2InTnhB22i1cakmtKG9RY4vEGlLStJM9E_wmzknccoqLm9VY9VJz-2L_Z3PhLxKhYUyF0k_lVz6PFSxX0S68FVcGCuLOJEJ9jt_miVHZ_z9eXzu-E-to1WOObFP1LpWuEa-x6BOJalgcbpnHS3i5N307fy7jydI4U6rO07jJtkUPInBwzcPJrOTz2NeBqTOIqcthFwecyWR44VN1NcqUi_c_ze0-Sdp8jqY7avR9C7ZcjCS7g92v0dumOo-uTUcLLl8QH4eXpQARQ0d-nrpVXeB6tI9EXZJZaWpQha1W4-l7WIUjKCAYSnSBErZLGljsGOE4sY1xZZMGPCGHlctvtDD0Ka-pH2rMJKoKKq9XpaqpbWlp_JH11LVtfMSKagPydl0cnp45LuTF3zFcYlBCOzHFVynhumCsawIrJEpVH-Lap5JwoWJlLUyygAyhRDFKbNCSx3EVmqp2COyUdWVeUyoDhMdBUzA7wBYAPxhYuyGDaVIubRF5pGX47-fzweBjXx8MQET5b2JPHKAdlkNQE3s_ou6-Zq7EMszBTNB-spswHiieJYGOgGfswqyjuAw0-5o1dwFapv_diuPvFhdhhDDfRNZmbrDMYCpoYZH3CPbgxOs7gT8nIsgCzySrrnH2q2uX6nKb72MdxgygGsRTPy696R_P34--bLff3jy_0d4Tm5DTOQfj2cfdsidCODXwIbbJRuLpjNPAT4timcuLn4BB6Qdpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+change+vulnerability+and+conservation+strategies+for+tertiary+relict+tree+species%3A+Insights+from+landscape+genomics+of%C2%A0+Taxus+cuspidata&rft.jtitle=Evolutionary+applications&rft.au=Luo%2C+Yanjun&rft.au=Qin%2C+Wei&rft.au=Yan%2C+Yu&rft.au=Yin%2C+Kangquan&rft.date=2024-09-01&rft.issn=1752-4571&rft.eissn=1752-4571&rft.volume=17&rft.issue=9&rft_id=info:doi/10.1111%2Feva.13686&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_eva_13686
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-4571&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-4571&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-4571&client=summon