Facile, Versatile and Stepwise Synthesis of High‐Performance Oligomer Acceptors for Stable Organic Solar Cells

Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered th...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 40; pp. e202308595 - n/a
Main Authors Zhang, Chen, Song, Jiali, Xue, Jingwei, Wang, Shijie, Ge, Zhongwei, Man, Yuheng, Ma, Wei, Sun, Yanming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.10.2023
Wiley
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs. The stepwise method proposed to synthesize non‐fullerene oligomer acceptors via consecutive Stille coupling reactions offers significant advantages compared to the traditional approach, resulting in fewer unwanted by‐products and easier purification processes. By utilizing this method, the obtained Tri‐Y6‐OD‐based organic solar cells achieved a high power conversion efficiency of 18.03 %, along with excellent stability.
AbstractList Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.
Abstract Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The result reveals that this approach has significant advantages compared to the conventional method, such as reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6:Tri-Y6-OD achieves an impressive PCE of 18.03% and maintains 80% of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomeric acceptors, thereby facilitating the development of stable and efficient OSCs.
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE ( T 80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs. The stepwise method proposed to synthesize non‐fullerene oligomer acceptors via consecutive Stille coupling reactions offers significant advantages compared to the traditional approach, resulting in fewer unwanted by‐products and easier purification processes. By utilizing this method, the obtained Tri‐Y6‐OD‐based organic solar cells achieved a high power conversion efficiency of 18.03 %, along with excellent stability.
Author Man, Yuheng
Ma, Wei
Ge, Zhongwei
Song, Jiali
Xue, Jingwei
Zhang, Chen
Sun, Yanming
Wang, Shijie
Author_xml – sequence: 1
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
  organization: Beihang University
– sequence: 2
  givenname: Jiali
  surname: Song
  fullname: Song, Jiali
  organization: Beihang University
– sequence: 3
  givenname: Jingwei
  surname: Xue
  fullname: Xue, Jingwei
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Shijie
  surname: Wang
  fullname: Wang, Shijie
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Zhongwei
  surname: Ge
  fullname: Ge, Zhongwei
  organization: Beihang University
– sequence: 6
  givenname: Yuheng
  surname: Man
  fullname: Man, Yuheng
  organization: Beihang University
– sequence: 7
  givenname: Wei
  surname: Ma
  fullname: Ma, Wei
  organization: Xi'an Jiaotong University
– sequence: 8
  givenname: Yanming
  orcidid: 0000-0001-7839-3199
  surname: Sun
  fullname: Sun, Yanming
  email: sunym@buaa.edu.cn
  organization: Beihang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37551967$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2580567$$D View this record in Osti.gov
BookMark eNqFkc1uEzEUhS1URH9gyxJZdMOCCf4Zj8fLKGpppYogBdhaHs914mrGDvZEVXY8As_Ik-AqLUiVECtfyd85OveeU3QUYgCEXlMyo4SwDyZ4mDHCOGmFEs_QCRWMVlxKflTmmvNKtoIeo9OcbwvftqR5gY65FIKqRp6g7aWxfoD3-BukbKYyYhN6vJpge-cz4NU-TBvIPuPo8JVfb379-PkZkotpNMECXg5-HUdIeG4tbKeYMi5_RW-6YrVM6xLQ4lUcTMILGIb8Ej13Zsjw6uE9Q18vL74srqqb5cfrxfymsjUhonLGMVeT3jSKUis71jtRS65MUzed40JwqpxSwkoqKFhnuGmAOdbxvlVt6_gZenvwjXnyOls_gd3YGALYSTPREtHIAr07QNsUv-8gT3r02ZaYJkDcZc3aWspa8YYX9PwJeht3KZQVCtVIJURJUqg3D9SuG6HX2-RHk_b68eAFqA-ATTHnBE6XZOXuMUzJ-EFTou971fe96j-9FtnsiezR-Z8CdRDclUr3_6H1_NP1xV_tb4WLtZA
CitedBy_id crossref_primary_10_1002_adfm_202404569
crossref_primary_10_1002_ange_202415141
crossref_primary_10_1002_marc_202400433
crossref_primary_10_1002_adfm_202406501
crossref_primary_10_1002_advs_202403334
crossref_primary_10_1039_D4TA00117F
crossref_primary_10_1039_D4TA05543H
crossref_primary_10_1002_advs_202410826
crossref_primary_10_1002_ange_202313016
crossref_primary_10_1002_anie_202316039
crossref_primary_10_1002_ange_202404297
crossref_primary_10_1002_ange_202423562
crossref_primary_10_1038_s41467_025_56225_x
crossref_primary_10_1002_adfm_202409764
crossref_primary_10_1002_ange_202316295
crossref_primary_10_1002_anie_202319295
crossref_primary_10_1002_anie_202415141
crossref_primary_10_1021_acsaem_4c02184
crossref_primary_10_1002_anie_202313016
crossref_primary_10_1002_anie_202404297
crossref_primary_10_1002_anie_202423562
crossref_primary_10_1002_ange_202316039
crossref_primary_10_1002_adma_202310046
crossref_primary_10_1002_adma_202414080
crossref_primary_10_1039_D4EE04879B
crossref_primary_10_1007_s40843_023_2831_y
crossref_primary_10_1002_ange_202319295
crossref_primary_10_1002_anie_202316295
crossref_primary_10_1021_acsami_4c12252
crossref_primary_10_1002_aenm_202304242
crossref_primary_10_1360_SSC_2024_0040
crossref_primary_10_1002_adma_202407119
crossref_primary_10_1039_D4EE03754E
Cites_doi 10.1021/jacs.2c13247
10.1016/j.joule.2018.04.005
10.1039/D1EE03565G
10.1002/advs.202202513
10.1038/ncomms10085
10.1016/j.joule.2021.06.006
10.1039/D1EE03989J
10.1002/aenm.202003002
10.1002/anie.202201844
10.1021/nn401267s
10.1038/s41563-020-00872-6
10.1002/advs.202202022
10.1002/adma.201404317
10.1038/s41467-023-37526-5
10.1002/aenm.202000765
10.1039/C7TA00211D
10.1039/D2MH01229D
10.1002/adfm.202211385
10.1002/adfm.201702474
10.1016/j.joule.2022.12.007
10.1063/1.1889240
10.1007/s11426-022-1281-0
10.1038/s41467-023-36937-8
10.1002/anie.202303066
10.1038/s41467-020-20580-8
10.1039/D2EE03902H
10.1038/s41467-022-33754-3
10.1039/D1TA09392D
10.1002/adma.201908373
10.1002/adma.200601093
10.1021/acsenergylett.2c02679
10.1007/s11426-019-9478-2
10.1038/nmat1500
10.1039/C5EE02871J
10.1038/s41566-018-0104-9
10.1007/s40820-022-00884-8
10.1038/s41560-022-01140-4
10.1021/acs.chemmater.7b00242
10.1016/j.chempr.2020.08.003
10.1039/D2EE00639A
10.1016/j.matt.2023.03.001
10.1016/j.joule.2022.02.001
10.1038/s41467-021-25718-w
10.1039/D2EE00977C
10.1038/s41560-022-01155-x
10.1038/s41467-022-29803-6
10.1039/D1EE00687H
10.1038/s41563-018-0128-z
10.1016/j.joule.2023.01.009
10.1002/aenm.202204154
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
OTOTI
DOI 10.1002/anie.202308595
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 2580567
37551967
10_1002_anie_202308595
ANIE202308595
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
OTOTI
ID FETCH-LOGICAL-c4005-faf2f40da6911c7b2df54739a646bf355319f995c7151ecfa3a6e2f2b3d8988f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Mon Aug 25 02:21:00 EDT 2025
Fri Jul 11 10:16:07 EDT 2025
Fri Jul 25 10:47:47 EDT 2025
Mon Jul 21 05:55:39 EDT 2025
Tue Jul 01 01:47:18 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Sun Jul 06 04:45:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords solar cells, oligomer acceptor, synthetic method, stability
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4005-faf2f40da6911c7b2df54739a646bf355319f995c7151ecfa3a6e2f2b3d8988f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC02-05CH11231
None
ORCID 0000-0001-7839-3199
0000000178393199
PMID 37551967
PQID 2867955715
PQPubID 946352
PageCount 9
ParticipantIDs osti_scitechconnect_2580567
proquest_miscellaneous_2847749363
proquest_journals_2867955715
pubmed_primary_37551967
crossref_citationtrail_10_1002_anie_202308595
crossref_primary_10_1002_anie_202308595
wiley_primary_10_1002_anie_202308595_ANIE202308595
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2, 2023
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: October 2, 2023
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 5
2023; 10
2007; 19
2023; 13
2021; 5
2015; 6
2023; 14
2021; 20
2023; 33
2023; 6
2023; 7
2023; 16
2017; 27
2023; 8
2023; 145
2005; 86
2017; 29
2022; 65
2020; 10
2020; 32
2013; 7
2021; 14
2020; 6
2023; 62
2018; 17
2015; 27
2018; 2
2021; 12
2019; 62
2021; 11
2022; 61
2022; 6
2022; 7
2022; 9
2005; 4
2022; 13
2022; 14
2022; 15
2022; 10
2018; 12
2016; 9
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_41_2
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_1
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_1
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1542
  year: 2023
  end-page: 1554
  publication-title: Matter
– volume: 13
  start-page: 5946
  year: 2022
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2147
  year: 2020
  end-page: 2161
  publication-title: Chem
– volume: 13
  start-page: 2369
  year: 2022
  publication-title: Nat. Commun.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 1773
  year: 2023
  end-page: 1782
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1344
  year: 2023
  end-page: 1353
  publication-title: ACS Energy Lett.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 2646
  year: 2017
  end-page: 2654
  publication-title: Chem. Mater.
– volume: 14
  start-page: 4555
  year: 2021
  end-page: 4563
  publication-title: Energy Environ. Sci.
– volume: 86
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 1563
  year: 2022
  end-page: 1572
  publication-title: Energy Environ. Sci.
– volume: 20
  start-page: 525
  year: 2021
  end-page: 532
  publication-title: Nat. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 4569
  year: 2013
  end-page: 4577
  publication-title: ACS Nano
– volume: 62
  start-page: 662
  year: 2019
  end-page: 668
  publication-title: Sci. China Chem.
– volume: 5
  start-page: 3589
  year: 2017
  end-page: 3598
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 5419
  year: 2021
  publication-title: Nat. Commun.
– volume: 65
  start-page: 1374
  year: 2022
  end-page: 1382
  publication-title: Sci. China Chem.
– volume: 14
  start-page: 1241
  year: 2023
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 164
  year: 2022
  publication-title: Nano-Micro Lett.
– volume: 17
  start-page: 703
  year: 2018
  end-page: 709
  publication-title: Nat. Mater.
– volume: 6
  start-page: 662
  year: 2022
  end-page: 675
  publication-title: Joule
– volume: 15
  start-page: 2130
  year: 2022
  end-page: 2138
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 131
  year: 2018
  end-page: 142
  publication-title: Nat. Photonics
– volume: 5
  start-page: 2129
  year: 2021
  end-page: 2147
  publication-title: Joule
– volume: 145
  start-page: 5909
  year: 2023
  end-page: 5919
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 10085
  year: 2015
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1087
  year: 2022
  end-page: 1099
  publication-title: Nat. Energy
– volume: 7
  start-page: 221
  year: 2023
  end-page: 237
  publication-title: Joule
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 27
  start-page: 1170
  year: 2015
  end-page: 1174
  publication-title: Adv. Mater.
– volume: 15
  start-page: 2629
  year: 2022
  end-page: 2637
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 864
  year: 2005
  end-page: 868
  publication-title: Nat. Mater.
– volume: 2
  start-page: 1039
  year: 2018
  end-page: 1054
  publication-title: Joule
– volume: 19
  start-page: 1551
  year: 2007
  end-page: 1566
  publication-title: Adv. Mater.
– volume: 12
  start-page: 309
  year: 2021
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1760
  year: 2023
  publication-title: Nat. Commun.
– volume: 7
  start-page: 416
  year: 2023
  end-page: 430
  publication-title: Joule
– volume: 10
  start-page: 640
  year: 2022
  end-page: 650
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 566
  year: 2023
  end-page: 575
  publication-title: Mater. Horiz.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 9
  start-page: 391
  year: 2016
  end-page: 410
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 1545
  year: 2022
  end-page: 1555
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1180
  year: 2022
  end-page: 1190
  publication-title: Nat. Energy
– ident: e_1_2_7_15_2
  doi: 10.1021/jacs.2c13247
– ident: e_1_2_7_4_2
  doi: 10.1016/j.joule.2018.04.005
– ident: e_1_2_7_48_2
  doi: 10.1039/D1EE03565G
– ident: e_1_2_7_38_2
  doi: 10.1002/advs.202202513
– ident: e_1_2_7_47_2
  doi: 10.1038/ncomms10085
– ident: e_1_2_7_19_2
  doi: 10.1016/j.joule.2021.06.006
– ident: e_1_2_7_51_2
  doi: 10.1039/D1EE03989J
– ident: e_1_2_7_22_2
  doi: 10.1002/aenm.202003002
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.202201844
– ident: e_1_2_7_55_1
  doi: 10.1021/nn401267s
– ident: e_1_2_7_61_1
  doi: 10.1038/s41563-020-00872-6
– ident: e_1_2_7_28_2
  doi: 10.1002/advs.202202022
– ident: e_1_2_7_2_2
  doi: 10.1002/adma.201404317
– ident: e_1_2_7_39_1
– ident: e_1_2_7_52_1
– ident: e_1_2_7_13_1
– ident: e_1_2_7_24_1
– ident: e_1_2_7_14_2
  doi: 10.1038/s41467-023-37526-5
– ident: e_1_2_7_6_2
  doi: 10.1002/aenm.202000765
– ident: e_1_2_7_56_1
  doi: 10.1039/C7TA00211D
– ident: e_1_2_7_49_1
– ident: e_1_2_7_12_2
  doi: 10.1039/D2MH01229D
– ident: e_1_2_7_17_2
  doi: 10.1002/adfm.202211385
– ident: e_1_2_7_46_2
  doi: 10.1002/adfm.201702474
– ident: e_1_2_7_26_2
  doi: 10.1016/j.joule.2022.12.007
– ident: e_1_2_7_53_2
  doi: 10.1063/1.1889240
– ident: e_1_2_7_33_2
  doi: 10.1007/s11426-022-1281-0
– ident: e_1_2_7_23_2
  doi: 10.1038/s41467-023-36937-8
– ident: e_1_2_7_35_2
  doi: 10.1002/anie.202303066
– ident: e_1_2_7_5_2
  doi: 10.1038/s41467-020-20580-8
– ident: e_1_2_7_41_2
  doi: 10.1039/D2EE03902H
– ident: e_1_2_7_20_2
  doi: 10.1038/s41467-022-33754-3
– ident: e_1_2_7_60_2
  doi: 10.1039/D1TA09392D
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201908373
– ident: e_1_2_7_50_2
  doi: 10.1002/adma.200601093
– ident: e_1_2_7_37_2
  doi: 10.1021/acsenergylett.2c02679
– ident: e_1_2_7_57_1
  doi: 10.1007/s11426-019-9478-2
– ident: e_1_2_7_8_2
  doi: 10.1038/nmat1500
– ident: e_1_2_7_43_2
  doi: 10.1039/C5EE02871J
– ident: e_1_2_7_11_2
  doi: 10.1038/s41566-018-0104-9
– ident: e_1_2_7_27_2
  doi: 10.1007/s40820-022-00884-8
– ident: e_1_2_7_1_1
– ident: e_1_2_7_9_2
  doi: 10.1038/s41560-022-01140-4
– ident: e_1_2_7_36_1
– ident: e_1_2_7_59_2
  doi: 10.1021/acs.chemmater.7b00242
– ident: e_1_2_7_30_1
  doi: 10.1016/j.chempr.2020.08.003
– ident: e_1_2_7_58_1
– ident: e_1_2_7_10_2
  doi: 10.1039/D2EE00639A
– ident: e_1_2_7_25_2
  doi: 10.1016/j.matt.2023.03.001
– ident: e_1_2_7_45_2
  doi: 10.1016/j.joule.2022.02.001
– ident: e_1_2_7_21_2
  doi: 10.1038/s41467-021-25718-w
– ident: e_1_2_7_7_2
  doi: 10.1039/D2EE00977C
– ident: e_1_2_7_18_1
– ident: e_1_2_7_34_2
  doi: 10.1038/s41560-022-01155-x
– ident: e_1_2_7_54_2
  doi: 10.1038/s41467-022-29803-6
– ident: e_1_2_7_3_2
  doi: 10.1039/D1EE00687H
– ident: e_1_2_7_44_2
  doi: 10.1038/s41563-018-0128-z
– ident: e_1_2_7_42_1
– ident: e_1_2_7_40_2
  doi: 10.1016/j.joule.2023.01.009
– ident: e_1_2_7_16_2
  doi: 10.1002/aenm.202204154
– ident: e_1_2_7_31_1
SSID ssj0028806
Score 2.5661237
Snippet Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in...
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in...
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in...
Abstract Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202308595
SubjectTerms Chemical reactions
Chemical synthesis
Chemistry
Energy conversion efficiency
Oligomer Acceptor
Oligomerization
Oligomers
Photovoltaic cells
Photovoltaics
Solar Cells
Stability
Synthetic Method
Trimers
Title Facile, Versatile and Stepwise Synthesis of High‐Performance Oligomer Acceptors for Stable Organic Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202308595
https://www.ncbi.nlm.nih.gov/pubmed/37551967
https://www.proquest.com/docview/2867955715
https://www.proquest.com/docview/2847749363
https://www.osti.gov/biblio/2580567
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQXuDC-xFakJGQuJBtajt2fFytuiocCqJU6s2yHRutGpJqsysEJ34Cv5FfwkyySVkEQoJbIj_kx8z4izPzDSHPy1zrkqkyleEwpMLHw9QpzVLhimjBKDvmOm-LE3l8Jl6f5-c_RfH3_BDjhRtqRmevUcGtaw-uSEMxAnuKyb87ii4wwuiwhajo3cgfxUA4-_AizlPMQj-wNmbsYLf5zqk0aUC7foc4dwFsdwItbhE7jL13PLmYbtZu6r_8Quv4P5O7TW5u4Smd9fJ0h1wL9V1yfT5khbtHLhfWQ48vKV60wa5Wgdq6pOgs9mnZBnr6uQZI2S5b2kSKTiTfv357exWcQN9Uyw_Nx7CiM48ONc2qpVAG7TGEi_aRoZ6e4gc3nYeqau-Ts8XR-_lxus3akHqBtKbRRhZFVloJdtQrx8qI-Y21lUK6CPAGlD5qnXsFYCP4aLmVgUXmeFnoooj8AZnUTR0eESq9c4VXmVVeCy-4Y0r7wHzMnIsukwlJh10zfktpjpk1KtOTMTOD62jGdUzIi7H-ZU_m8ceaeygEBmAIcul6dDrya8PyAgCjSsj-IBtmq_KtYUhdmOcwq4Q8G4thd_APjK1Ds8E6AuC25pIn5GEvU-NAuALwqrFz1knGX0ZoZievjsa3x__SaI_cwOfONZHtk8l6tQlPAGKt3dNOjX4AkDMe4A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BcigXKF8ltAUjIXEh29T59HG16moLZUG0lbhZtmOjFSGpNrtCcOIn8Bv7SzqTbFItAiHBMYltOfGM_ey8eQPwIo-FyHma-4k9tH5k3KGvU8H9SGdO4aSsuW7YFrNkeh69_hh3bEKKhWn1IfoDN_KMZr4mB6cD6YNr1VAKwR5S9u9Go-sm3KK03s2u6kOvIMXRPNsAozD0KQ99p9sY8IPN-hvr0qBC__od5tyEsM0aNLkLuut9Sz35PFwt9dB8_0XY8b9ebxvurBEqG7UmdQ9u2PI-bI27xHAP4GKiDDb5itFZGw5sYZkqc0Z8sa_z2rLTbyWiynpes8ox4pFc_vj5_jo-gb0r5p-qL3bBRoY4NdWiZvgM61MUF2uDQw07pT03G9uiqB_C-eTobDz114kbfBORsqlTjrsoyFWCU6lJNc8dpTgWKokS7RDhoN87IWKTIt6wxqlQJZY7rsM8E1nmwkcwKKvSPgaWGK0zkwYqNSIyUah5KozlxgVaOx0kHvjdsEmzVjWn5BqFbPWYuaTvKPvv6MHLvvxFq-fxx5K7ZAUSkQjJ6RriHZml5HGGmDH1YK8zDrn2-lpyUi-MY3wrD573j3F06CeMKm21ojIRIm4RJqEHO61R9R0JU8SvghrnjWn8pYdyNDs-6q-e_EulZ7A1PXt7Ik-OZ2924Tbdb5iKfA8Gy8XK7iPiWuqnjU9dAW76Ivs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgkYBL-S2EFjASEheyTR3HiY-rbVctoKWiVOrNsh0brQjJarOrCk48As_IkzCTbFIWgZDgmHhs-WfG_uLMfEPI8zyRMmdpHgq370Ju_X5oUslCbjKvYVM2zDTeFlNxdMZfnSfnP0Xxt_wQ_YUbWkazX6OBz3O_d0kaihHYQ0z-3VB0XSXXuIgy1OuDdz2BFAPtbOOL4jjENPQdbWPE9jbrbxxLgwrM63eQcxPBNkfQ5BbRXedbz5OPw9XSDO2XX3gd_2d0t8nWGp_SUatQd8gVV94lN8ZdWrh7ZD7RFlp8SfGmDZa1cFSXOUVvsYtZ7ejp5xIwZT2raeUpepF8__rt5DI6gb4tZh-qT25BRxY9aqpFTaEM6mMMF21DQy09xS9uOnZFUd8nZ5PD9-OjcJ22IbQceU299szzKNcCNlKbGpZ7THAsteDCeMA3YPVeysSmgDac9TrWwjHPTJxnMst8vE0GZVW6h4QKa0xm00inVnLLY8NSaR2zPjLGm0gEJOxWTdk1pzmm1ihUy8bMFM6j6ucxIC96-XnL5vFHyR1UAgU4BMl0LXod2aViSQaIMQ3Ibqcbam3ztWLIXZgkMKqAPOuLYXXwF4wuXbVCGQ54W8YiDsiDVqf6jsQpoFeJjbNGM_7SQzWaHh_2T4_-pdJTcv3kYKLeHE9f75Cb-LpxU2S7ZLBcrNxjgFtL86SxqB8FUiGz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile%2C+Versatile+and+Stepwise+Synthesis+of+High%E2%80%90Performance+Oligomer+Acceptors+for+Stable+Organic+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Chen&rft.au=Song%2C+Jiali&rft.au=Xue%2C+Jingwei&rft.au=Wang%2C+Shijie&rft.date=2023-10-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202308595&rft.externalDBID=10.1002%252Fanie.202308595&rft.externalDocID=ANIE202308595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon