Facile, Versatile and Stepwise Synthesis of High‐Performance Oligomer Acceptors for Stable Organic Solar Cells
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered th...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 40; pp. e202308595 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.10.2023
Wiley |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.
The stepwise method proposed to synthesize non‐fullerene oligomer acceptors via consecutive Stille coupling reactions offers significant advantages compared to the traditional approach, resulting in fewer unwanted by‐products and easier purification processes. By utilizing this method, the obtained Tri‐Y6‐OD‐based organic solar cells achieved a high power conversion efficiency of 18.03 %, along with excellent stability. |
---|---|
AbstractList | Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs.Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs. Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs. Abstract Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs. Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The result reveals that this approach has significant advantages compared to the conventional method, such as reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6:Tri-Y6-OD achieves an impressive PCE of 18.03% and maintains 80% of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomeric acceptors, thereby facilitating the development of stable and efficient OSCs. Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE ( T 80 ) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs. Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri‐Y6‐OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by‐products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri‐Y6‐OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6‐OD‐based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs. The stepwise method proposed to synthesize non‐fullerene oligomer acceptors via consecutive Stille coupling reactions offers significant advantages compared to the traditional approach, resulting in fewer unwanted by‐products and easier purification processes. By utilizing this method, the obtained Tri‐Y6‐OD‐based organic solar cells achieved a high power conversion efficiency of 18.03 %, along with excellent stability. |
Author | Man, Yuheng Ma, Wei Ge, Zhongwei Song, Jiali Xue, Jingwei Zhang, Chen Sun, Yanming Wang, Shijie |
Author_xml | – sequence: 1 givenname: Chen surname: Zhang fullname: Zhang, Chen organization: Beihang University – sequence: 2 givenname: Jiali surname: Song fullname: Song, Jiali organization: Beihang University – sequence: 3 givenname: Jingwei surname: Xue fullname: Xue, Jingwei organization: Xi'an Jiaotong University – sequence: 4 givenname: Shijie surname: Wang fullname: Wang, Shijie organization: Xi'an Jiaotong University – sequence: 5 givenname: Zhongwei surname: Ge fullname: Ge, Zhongwei organization: Beihang University – sequence: 6 givenname: Yuheng surname: Man fullname: Man, Yuheng organization: Beihang University – sequence: 7 givenname: Wei surname: Ma fullname: Ma, Wei organization: Xi'an Jiaotong University – sequence: 8 givenname: Yanming orcidid: 0000-0001-7839-3199 surname: Sun fullname: Sun, Yanming email: sunym@buaa.edu.cn organization: Beihang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37551967$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2580567$$D View this record in Osti.gov |
BookMark | eNqFkc1uEzEUhS1URH9gyxJZdMOCCf4Zj8fLKGpppYogBdhaHs914mrGDvZEVXY8As_Ik-AqLUiVECtfyd85OveeU3QUYgCEXlMyo4SwDyZ4mDHCOGmFEs_QCRWMVlxKflTmmvNKtoIeo9OcbwvftqR5gY65FIKqRp6g7aWxfoD3-BukbKYyYhN6vJpge-cz4NU-TBvIPuPo8JVfb379-PkZkotpNMECXg5-HUdIeG4tbKeYMi5_RW-6YrVM6xLQ4lUcTMILGIb8Ej13Zsjw6uE9Q18vL74srqqb5cfrxfymsjUhonLGMVeT3jSKUis71jtRS65MUzed40JwqpxSwkoqKFhnuGmAOdbxvlVt6_gZenvwjXnyOls_gd3YGALYSTPREtHIAr07QNsUv-8gT3r02ZaYJkDcZc3aWspa8YYX9PwJeht3KZQVCtVIJURJUqg3D9SuG6HX2-RHk_b68eAFqA-ATTHnBE6XZOXuMUzJ-EFTou971fe96j-9FtnsiezR-Z8CdRDclUr3_6H1_NP1xV_tb4WLtZA |
CitedBy_id | crossref_primary_10_1002_adfm_202404569 crossref_primary_10_1002_ange_202415141 crossref_primary_10_1002_marc_202400433 crossref_primary_10_1002_adfm_202406501 crossref_primary_10_1002_advs_202403334 crossref_primary_10_1039_D4TA00117F crossref_primary_10_1039_D4TA05543H crossref_primary_10_1002_advs_202410826 crossref_primary_10_1002_ange_202313016 crossref_primary_10_1002_anie_202316039 crossref_primary_10_1002_ange_202404297 crossref_primary_10_1002_ange_202423562 crossref_primary_10_1038_s41467_025_56225_x crossref_primary_10_1002_adfm_202409764 crossref_primary_10_1002_ange_202316295 crossref_primary_10_1002_anie_202319295 crossref_primary_10_1002_anie_202415141 crossref_primary_10_1021_acsaem_4c02184 crossref_primary_10_1002_anie_202313016 crossref_primary_10_1002_anie_202404297 crossref_primary_10_1002_anie_202423562 crossref_primary_10_1002_ange_202316039 crossref_primary_10_1002_adma_202310046 crossref_primary_10_1002_adma_202414080 crossref_primary_10_1039_D4EE04879B crossref_primary_10_1007_s40843_023_2831_y crossref_primary_10_1002_ange_202319295 crossref_primary_10_1002_anie_202316295 crossref_primary_10_1021_acsami_4c12252 crossref_primary_10_1002_aenm_202304242 crossref_primary_10_1360_SSC_2024_0040 crossref_primary_10_1002_adma_202407119 crossref_primary_10_1039_D4EE03754E |
Cites_doi | 10.1021/jacs.2c13247 10.1016/j.joule.2018.04.005 10.1039/D1EE03565G 10.1002/advs.202202513 10.1038/ncomms10085 10.1016/j.joule.2021.06.006 10.1039/D1EE03989J 10.1002/aenm.202003002 10.1002/anie.202201844 10.1021/nn401267s 10.1038/s41563-020-00872-6 10.1002/advs.202202022 10.1002/adma.201404317 10.1038/s41467-023-37526-5 10.1002/aenm.202000765 10.1039/C7TA00211D 10.1039/D2MH01229D 10.1002/adfm.202211385 10.1002/adfm.201702474 10.1016/j.joule.2022.12.007 10.1063/1.1889240 10.1007/s11426-022-1281-0 10.1038/s41467-023-36937-8 10.1002/anie.202303066 10.1038/s41467-020-20580-8 10.1039/D2EE03902H 10.1038/s41467-022-33754-3 10.1039/D1TA09392D 10.1002/adma.201908373 10.1002/adma.200601093 10.1021/acsenergylett.2c02679 10.1007/s11426-019-9478-2 10.1038/nmat1500 10.1039/C5EE02871J 10.1038/s41566-018-0104-9 10.1007/s40820-022-00884-8 10.1038/s41560-022-01140-4 10.1021/acs.chemmater.7b00242 10.1016/j.chempr.2020.08.003 10.1039/D2EE00639A 10.1016/j.matt.2023.03.001 10.1016/j.joule.2022.02.001 10.1038/s41467-021-25718-w 10.1039/D2EE00977C 10.1038/s41560-022-01155-x 10.1038/s41467-022-29803-6 10.1039/D1EE00687H 10.1038/s41563-018-0128-z 10.1016/j.joule.2023.01.009 10.1002/aenm.202204154 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 OTOTI |
DOI | 10.1002/anie.202308595 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 2580567 37551967 10_1002_anie_202308595 ANIE202308595 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 OTOTI |
ID | FETCH-LOGICAL-c4005-faf2f40da6911c7b2df54739a646bf355319f995c7151ecfa3a6e2f2b3d8988f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Mon Aug 25 02:21:00 EDT 2025 Fri Jul 11 10:16:07 EDT 2025 Fri Jul 25 10:47:47 EDT 2025 Mon Jul 21 05:55:39 EDT 2025 Tue Jul 01 01:47:18 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Sun Jul 06 04:45:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | solar cells, oligomer acceptor, synthetic method, stability |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4005-faf2f40da6911c7b2df54739a646bf355319f995c7151ecfa3a6e2f2b3d8988f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-05CH11231 None |
ORCID | 0000-0001-7839-3199 0000000178393199 |
PMID | 37551967 |
PQID | 2867955715 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_2580567 proquest_miscellaneous_2847749363 proquest_journals_2867955715 pubmed_primary_37551967 crossref_citationtrail_10_1002_anie_202308595 crossref_primary_10_1002_anie_202308595 wiley_primary_10_1002_anie_202308595_ANIE202308595 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2, 2023 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2, 2023 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 5 2023; 10 2007; 19 2023; 13 2021; 5 2015; 6 2023; 14 2021; 20 2023; 33 2023; 6 2023; 7 2023; 16 2017; 27 2023; 8 2023; 145 2005; 86 2017; 29 2022; 65 2020; 10 2020; 32 2013; 7 2021; 14 2020; 6 2023; 62 2018; 17 2015; 27 2018; 2 2021; 12 2019; 62 2021; 11 2022; 61 2022; 6 2022; 7 2022; 9 2005; 4 2022; 13 2022; 14 2022; 15 2022; 10 2018; 12 2016; 9 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_1 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_42_1 e_1_2_7_12_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_1 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1542 year: 2023 end-page: 1554 publication-title: Matter – volume: 13 start-page: 5946 year: 2022 publication-title: Nat. Commun. – volume: 6 start-page: 2147 year: 2020 end-page: 2161 publication-title: Chem – volume: 13 start-page: 2369 year: 2022 publication-title: Nat. Commun. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 1773 year: 2023 end-page: 1782 publication-title: Energy Environ. Sci. – volume: 8 start-page: 1344 year: 2023 end-page: 1353 publication-title: ACS Energy Lett. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 2646 year: 2017 end-page: 2654 publication-title: Chem. Mater. – volume: 14 start-page: 4555 year: 2021 end-page: 4563 publication-title: Energy Environ. Sci. – volume: 86 year: 2005 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 1563 year: 2022 end-page: 1572 publication-title: Energy Environ. Sci. – volume: 20 start-page: 525 year: 2021 end-page: 532 publication-title: Nat. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 7 start-page: 4569 year: 2013 end-page: 4577 publication-title: ACS Nano – volume: 62 start-page: 662 year: 2019 end-page: 668 publication-title: Sci. China Chem. – volume: 5 start-page: 3589 year: 2017 end-page: 3598 publication-title: J. Mater. Chem. A – volume: 12 start-page: 5419 year: 2021 publication-title: Nat. Commun. – volume: 65 start-page: 1374 year: 2022 end-page: 1382 publication-title: Sci. China Chem. – volume: 14 start-page: 1241 year: 2023 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 164 year: 2022 publication-title: Nano-Micro Lett. – volume: 17 start-page: 703 year: 2018 end-page: 709 publication-title: Nat. Mater. – volume: 6 start-page: 662 year: 2022 end-page: 675 publication-title: Joule – volume: 15 start-page: 2130 year: 2022 end-page: 2138 publication-title: Energy Environ. Sci. – volume: 12 start-page: 131 year: 2018 end-page: 142 publication-title: Nat. Photonics – volume: 5 start-page: 2129 year: 2021 end-page: 2147 publication-title: Joule – volume: 145 start-page: 5909 year: 2023 end-page: 5919 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 10085 year: 2015 publication-title: Nat. Commun. – volume: 7 start-page: 1087 year: 2022 end-page: 1099 publication-title: Nat. Energy – volume: 7 start-page: 221 year: 2023 end-page: 237 publication-title: Joule – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 27 start-page: 1170 year: 2015 end-page: 1174 publication-title: Adv. Mater. – volume: 15 start-page: 2629 year: 2022 end-page: 2637 publication-title: Energy Environ. Sci. – volume: 4 start-page: 864 year: 2005 end-page: 868 publication-title: Nat. Mater. – volume: 2 start-page: 1039 year: 2018 end-page: 1054 publication-title: Joule – volume: 19 start-page: 1551 year: 2007 end-page: 1566 publication-title: Adv. Mater. – volume: 12 start-page: 309 year: 2021 publication-title: Nat. Commun. – volume: 14 start-page: 1760 year: 2023 publication-title: Nat. Commun. – volume: 7 start-page: 416 year: 2023 end-page: 430 publication-title: Joule – volume: 10 start-page: 640 year: 2022 end-page: 650 publication-title: J. Mater. Chem. A – volume: 10 start-page: 566 year: 2023 end-page: 575 publication-title: Mater. Horiz. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 9 start-page: 391 year: 2016 end-page: 410 publication-title: Energy Environ. Sci. – volume: 15 start-page: 1545 year: 2022 end-page: 1555 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1180 year: 2022 end-page: 1190 publication-title: Nat. Energy – ident: e_1_2_7_15_2 doi: 10.1021/jacs.2c13247 – ident: e_1_2_7_4_2 doi: 10.1016/j.joule.2018.04.005 – ident: e_1_2_7_48_2 doi: 10.1039/D1EE03565G – ident: e_1_2_7_38_2 doi: 10.1002/advs.202202513 – ident: e_1_2_7_47_2 doi: 10.1038/ncomms10085 – ident: e_1_2_7_19_2 doi: 10.1016/j.joule.2021.06.006 – ident: e_1_2_7_51_2 doi: 10.1039/D1EE03989J – ident: e_1_2_7_22_2 doi: 10.1002/aenm.202003002 – ident: e_1_2_7_32_2 doi: 10.1002/anie.202201844 – ident: e_1_2_7_55_1 doi: 10.1021/nn401267s – ident: e_1_2_7_61_1 doi: 10.1038/s41563-020-00872-6 – ident: e_1_2_7_28_2 doi: 10.1002/advs.202202022 – ident: e_1_2_7_2_2 doi: 10.1002/adma.201404317 – ident: e_1_2_7_39_1 – ident: e_1_2_7_52_1 – ident: e_1_2_7_13_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_14_2 doi: 10.1038/s41467-023-37526-5 – ident: e_1_2_7_6_2 doi: 10.1002/aenm.202000765 – ident: e_1_2_7_56_1 doi: 10.1039/C7TA00211D – ident: e_1_2_7_49_1 – ident: e_1_2_7_12_2 doi: 10.1039/D2MH01229D – ident: e_1_2_7_17_2 doi: 10.1002/adfm.202211385 – ident: e_1_2_7_46_2 doi: 10.1002/adfm.201702474 – ident: e_1_2_7_26_2 doi: 10.1016/j.joule.2022.12.007 – ident: e_1_2_7_53_2 doi: 10.1063/1.1889240 – ident: e_1_2_7_33_2 doi: 10.1007/s11426-022-1281-0 – ident: e_1_2_7_23_2 doi: 10.1038/s41467-023-36937-8 – ident: e_1_2_7_35_2 doi: 10.1002/anie.202303066 – ident: e_1_2_7_5_2 doi: 10.1038/s41467-020-20580-8 – ident: e_1_2_7_41_2 doi: 10.1039/D2EE03902H – ident: e_1_2_7_20_2 doi: 10.1038/s41467-022-33754-3 – ident: e_1_2_7_60_2 doi: 10.1039/D1TA09392D – ident: e_1_2_7_29_1 doi: 10.1002/adma.201908373 – ident: e_1_2_7_50_2 doi: 10.1002/adma.200601093 – ident: e_1_2_7_37_2 doi: 10.1021/acsenergylett.2c02679 – ident: e_1_2_7_57_1 doi: 10.1007/s11426-019-9478-2 – ident: e_1_2_7_8_2 doi: 10.1038/nmat1500 – ident: e_1_2_7_43_2 doi: 10.1039/C5EE02871J – ident: e_1_2_7_11_2 doi: 10.1038/s41566-018-0104-9 – ident: e_1_2_7_27_2 doi: 10.1007/s40820-022-00884-8 – ident: e_1_2_7_1_1 – ident: e_1_2_7_9_2 doi: 10.1038/s41560-022-01140-4 – ident: e_1_2_7_36_1 – ident: e_1_2_7_59_2 doi: 10.1021/acs.chemmater.7b00242 – ident: e_1_2_7_30_1 doi: 10.1016/j.chempr.2020.08.003 – ident: e_1_2_7_58_1 – ident: e_1_2_7_10_2 doi: 10.1039/D2EE00639A – ident: e_1_2_7_25_2 doi: 10.1016/j.matt.2023.03.001 – ident: e_1_2_7_45_2 doi: 10.1016/j.joule.2022.02.001 – ident: e_1_2_7_21_2 doi: 10.1038/s41467-021-25718-w – ident: e_1_2_7_7_2 doi: 10.1039/D2EE00977C – ident: e_1_2_7_18_1 – ident: e_1_2_7_34_2 doi: 10.1038/s41560-022-01155-x – ident: e_1_2_7_54_2 doi: 10.1038/s41467-022-29803-6 – ident: e_1_2_7_3_2 doi: 10.1039/D1EE00687H – ident: e_1_2_7_44_2 doi: 10.1038/s41563-018-0128-z – ident: e_1_2_7_42_1 – ident: e_1_2_7_40_2 doi: 10.1016/j.joule.2023.01.009 – ident: e_1_2_7_16_2 doi: 10.1002/aenm.202204154 – ident: e_1_2_7_31_1 |
SSID | ssj0028806 |
Score | 2.5661237 |
Snippet | Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term stability in... Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in... Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in... Abstract Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long‐term... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202308595 |
SubjectTerms | Chemical reactions Chemical synthesis Chemistry Energy conversion efficiency Oligomer Acceptor Oligomerization Oligomers Photovoltaic cells Photovoltaics Solar Cells Stability Synthetic Method Trimers |
Title | Facile, Versatile and Stepwise Synthesis of High‐Performance Oligomer Acceptors for Stable Organic Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202308595 https://www.ncbi.nlm.nih.gov/pubmed/37551967 https://www.proquest.com/docview/2867955715 https://www.proquest.com/docview/2847749363 https://www.osti.gov/biblio/2580567 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQXuDC-xFakJGQuJBtajt2fFytuiocCqJU6s2yHRutGpJqsysEJ34Cv5FfwkyySVkEQoJbIj_kx8z4izPzDSHPy1zrkqkyleEwpMLHw9QpzVLhimjBKDvmOm-LE3l8Jl6f5-c_RfH3_BDjhRtqRmevUcGtaw-uSEMxAnuKyb87ii4wwuiwhajo3cgfxUA4-_AizlPMQj-wNmbsYLf5zqk0aUC7foc4dwFsdwItbhE7jL13PLmYbtZu6r_8Quv4P5O7TW5u4Smd9fJ0h1wL9V1yfT5khbtHLhfWQ48vKV60wa5Wgdq6pOgs9mnZBnr6uQZI2S5b2kSKTiTfv357exWcQN9Uyw_Nx7CiM48ONc2qpVAG7TGEi_aRoZ6e4gc3nYeqau-Ts8XR-_lxus3akHqBtKbRRhZFVloJdtQrx8qI-Y21lUK6CPAGlD5qnXsFYCP4aLmVgUXmeFnoooj8AZnUTR0eESq9c4VXmVVeCy-4Y0r7wHzMnIsukwlJh10zfktpjpk1KtOTMTOD62jGdUzIi7H-ZU_m8ceaeygEBmAIcul6dDrya8PyAgCjSsj-IBtmq_KtYUhdmOcwq4Q8G4thd_APjK1Ds8E6AuC25pIn5GEvU-NAuALwqrFz1knGX0ZoZievjsa3x__SaI_cwOfONZHtk8l6tQlPAGKt3dNOjX4AkDMe4A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BcigXKF8ltAUjIXEh29T59HG16moLZUG0lbhZtmOjFSGpNrtCcOIn8Bv7SzqTbFItAiHBMYltOfGM_ey8eQPwIo-FyHma-4k9tH5k3KGvU8H9SGdO4aSsuW7YFrNkeh69_hh3bEKKhWn1IfoDN_KMZr4mB6cD6YNr1VAKwR5S9u9Go-sm3KK03s2u6kOvIMXRPNsAozD0KQ99p9sY8IPN-hvr0qBC__od5tyEsM0aNLkLuut9Sz35PFwt9dB8_0XY8b9ebxvurBEqG7UmdQ9u2PI-bI27xHAP4GKiDDb5itFZGw5sYZkqc0Z8sa_z2rLTbyWiynpes8ox4pFc_vj5_jo-gb0r5p-qL3bBRoY4NdWiZvgM61MUF2uDQw07pT03G9uiqB_C-eTobDz114kbfBORsqlTjrsoyFWCU6lJNc8dpTgWKokS7RDhoN87IWKTIt6wxqlQJZY7rsM8E1nmwkcwKKvSPgaWGK0zkwYqNSIyUah5KozlxgVaOx0kHvjdsEmzVjWn5BqFbPWYuaTvKPvv6MHLvvxFq-fxx5K7ZAUSkQjJ6RriHZml5HGGmDH1YK8zDrn2-lpyUi-MY3wrD573j3F06CeMKm21ojIRIm4RJqEHO61R9R0JU8SvghrnjWn8pYdyNDs-6q-e_EulZ7A1PXt7Ik-OZ2924Tbdb5iKfA8Gy8XK7iPiWuqnjU9dAW76Ivs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgkYBL-S2EFjASEheyTR3HiY-rbVctoKWiVOrNsh0brQjJarOrCk48As_IkzCTbFIWgZDgmHhs-WfG_uLMfEPI8zyRMmdpHgq370Ju_X5oUslCbjKvYVM2zDTeFlNxdMZfnSfnP0Xxt_wQ_YUbWkazX6OBz3O_d0kaihHYQ0z-3VB0XSXXuIgy1OuDdz2BFAPtbOOL4jjENPQdbWPE9jbrbxxLgwrM63eQcxPBNkfQ5BbRXedbz5OPw9XSDO2XX3gd_2d0t8nWGp_SUatQd8gVV94lN8ZdWrh7ZD7RFlp8SfGmDZa1cFSXOUVvsYtZ7ejp5xIwZT2raeUpepF8__rt5DI6gb4tZh-qT25BRxY9aqpFTaEM6mMMF21DQy09xS9uOnZFUd8nZ5PD9-OjcJ22IbQceU299szzKNcCNlKbGpZ7THAsteDCeMA3YPVeysSmgDac9TrWwjHPTJxnMst8vE0GZVW6h4QKa0xm00inVnLLY8NSaR2zPjLGm0gEJOxWTdk1pzmm1ihUy8bMFM6j6ucxIC96-XnL5vFHyR1UAgU4BMl0LXod2aViSQaIMQ3Ibqcbam3ztWLIXZgkMKqAPOuLYXXwF4wuXbVCGQ54W8YiDsiDVqf6jsQpoFeJjbNGM_7SQzWaHh_2T4_-pdJTcv3kYKLeHE9f75Cb-LpxU2S7ZLBcrNxjgFtL86SxqB8FUiGz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile%2C+Versatile+and+Stepwise+Synthesis+of+High%E2%80%90Performance+Oligomer+Acceptors+for+Stable+Organic+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Chen&rft.au=Song%2C+Jiali&rft.au=Xue%2C+Jingwei&rft.au=Wang%2C+Shijie&rft.date=2023-10-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202308595&rft.externalDBID=10.1002%252Fanie.202308595&rft.externalDocID=ANIE202308595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |