Feedback inhibition in the inner plexiform layer underlies the surround-mediated responses of AII amacrine cells in the mammalian retina
Intracellular recordings were made from narrow-field, bistratified AII amacrine cells in the isolated, superfused retina-eyecup of the rabbit. Pharmacological agents were applied to neurons to dissect the synaptic pathways subserving AII cells so as to determine the circuitry generating their off-su...
Saved in:
Published in | The Journal of physiology Vol. 539; no. 2; pp. 603 - 614 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
The Physiological Society
01.03.2002
Blackwell Publishing Ltd Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intracellular recordings were made from narrow-field, bistratified AII amacrine cells in the isolated, superfused retina-eyecup
of the rabbit. Pharmacological agents were applied to neurons to dissect the synaptic pathways subserving AII cells so as
to determine the circuitry generating their off-surround responses. Application of the GABA antagonists, picrotoxin, bicuculline
and 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid (TPMPA) all increased the on-centre responses of AII amacrine cells,
but attenuated the off-surround activity. At equal concentrations, picrotoxin was approximately twice as effective as bicuculline
or TPMPA in modifying the response activity of AII amacrine cells. These results indicate that the mechanism underlying surround
inhibition of AII amacrine cells includes activation of both GABA A and GABA C receptors in an approximately equal ratio. Application of the GABA antagonists also increased the size of on-centre receptive
fields of AII amacrine cells. Again, picrotoxin was most effective, producing, on average, a 54 % increase in the size of
the receptive field, whereas bicuculline and TPMPA produced comparable 34 and 33 % increases, respectfully. Application of
the voltage-gated sodium channel blocker TTX produced effects on AII amacrine cells qualitatively similar to those of the
GABA blockers. Intracellular application of the chloride channel blocker 4,4â²-dinitro-stilbene-2,2â²-disulphonic acid (DNDS)
abolished the direct effects of GABA on AII amacrine cells. Moreover, DNDS increased the amplitude of both the on-centre and
off-surround responses. The failure of DNDS to block the off-surround activity indicates that it is not mediated by direct
GABAergic inhibition. Taken together, our results suggest that surround receptive fields of AII amacrine cells are generated
indirectly by the GABAergic, reciprocal feedback synapses from S1/S2 amacrine cells to the axon terminals of rod bipolar cells. |
---|---|
AbstractList | Intracellular recordings were made from narrow‐field, bistratified AII amacrine cells in the isolated, superfused retina‐eyecup of the rabbit. Pharmacological agents were applied to neurons to dissect the synaptic pathways subserving AII cells so as to determine the circuitry generating their off‐surround responses. Application of the GABA antagonists, picrotoxin, bicuculline and 1,2,5,6‐tetrahydropyridine‐4‐yl methylphosphinic acid (TPMPA) all increased the on‐centre responses of AII amacrine cells, but attenuated the off‐surround activity. At equal concentrations, picrotoxin was approximately twice as effective as bicuculline or TPMPA in modifying the response activity of AII amacrine cells. These results indicate that the mechanism underlying surround inhibition of AII amacrine cells includes activation of both GABAA and GABAC receptors in an approximately equal ratio. Application of the GABA antagonists also increased the size of on‐centre receptive fields of AII amacrine cells. Again, picrotoxin was most effective, producing, on average, a 54 % increase in the size of the receptive field, whereas bicuculline and TPMPA produced comparable 34 and 33 % increases, respectfully. Application of the voltage‐gated sodium channel blocker TTX produced effects on AII amacrine cells qualitatively similar to those of the GABA blockers. Intracellular application of the chloride channel blocker 4,4′‐dinitro‐stilbene‐2,2′‐disulphonic acid (DNDS) abolished the direct effects of GABA on AII amacrine cells. Moreover, DNDS increased the amplitude of both the on‐centre and off‐surround responses. The failure of DNDS to block the off‐surround activity indicates that it is not mediated by direct GABAergic inhibition. Taken together, our results suggest that surround receptive fields of AII amacrine cells are generated indirectly by the GABAergic, reciprocal feedback synapses from S1/S2 amacrine cells to the axon terminals of rod bipolar cells. Intracellular recordings were made from narrow-field, bistratified AII amacrine cells in the isolated, superfused retina-eyecup of the rabbit. Pharmacological agents were applied to neurons to dissect the synaptic pathways subserving AII cells so as to determine the circuitry generating their off-surround responses. Application of the GABA antagonists, picrotoxin, bicuculline and 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid (TPMPA) all increased the on-centre responses of AII amacrine cells, but attenuated the off-surround activity. At equal concentrations, picrotoxin was approximately twice as effective as bicuculline or TPMPA in modifying the response activity of AII amacrine cells. These results indicate that the mechanism underlying surround inhibition of AII amacrine cells includes activation of both GABA A and GABA C receptors in an approximately equal ratio. Application of the GABA antagonists also increased the size of on-centre receptive fields of AII amacrine cells. Again, picrotoxin was most effective, producing, on average, a 54 % increase in the size of the receptive field, whereas bicuculline and TPMPA produced comparable 34 and 33 % increases, respectfully. Application of the voltage-gated sodium channel blocker TTX produced effects on AII amacrine cells qualitatively similar to those of the GABA blockers. Intracellular application of the chloride channel blocker 4,4′-dinitro-stilbene-2,2′-disulphonic acid (DNDS) abolished the direct effects of GABA on AII amacrine cells. Moreover, DNDS increased the amplitude of both the on-centre and off-surround responses. The failure of DNDS to block the off-surround activity indicates that it is not mediated by direct GABAergic inhibition. Taken together, our results suggest that surround receptive fields of AII amacrine cells are generated indirectly by the GABAergic, reciprocal feedback synapses from S1/S2 amacrine cells to the axon terminals of rod bipolar cells. Intracellular recordings were made from narrow-field, bistratified AII amacrine cells in the isolated, superfused retina-eyecup of the rabbit. Pharmacological agents were applied to neurons to dissect the synaptic pathways subserving AII cells so as to determine the circuitry generating their off-surround responses. Application of the GABA antagonists, picrotoxin, bicuculline and 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid (TPMPA) all increased the on-centre responses of AII amacrine cells, but attenuated the off-surround activity. At equal concentrations, picrotoxin was approximately twice as effective as bicuculline or TPMPA in modifying the response activity of AII amacrine cells. These results indicate that the mechanism underlying surround inhibition of AII amacrine cells includes activation of both GABA(A) and GABA(C) receptors in an approximately equal ratio. Application of the GABA antagonists also increased the size of on-centre receptive fields of AII amacrine cells. Again, picrotoxin was most effective, producing, on average, a 54 % increase in the size of the receptive field, whereas bicuculline and TPMPA produced comparable 34 and 33 % increases, respectfully. Application of the voltage-gated sodium channel blocker TTX produced effects on AII amacrine cells qualitatively similar to those of the GABA blockers. Intracellular application of the chloride channel blocker 4,4'-dinitro-stilbene-2,2'-disulphonic acid (DNDS) abolished the direct effects of GABA on AII amacrine cells. Moreover, DNDS increased the amplitude of both the on-centre and off-surround responses. The failure of DNDS to block the off-surround activity indicates that it is not mediated by direct GABAergic inhibition. Taken together, our results suggest that surround receptive fields of AII amacrine cells are generated indirectly by the GABAergic, reciprocal feedback synapses from S1/S2 amacrine cells to the axon terminals of rod bipolar cells. Intracellular recordings were made from narrow-field, bistratified AII amacrine cells in the isolated, superfused retina-eyecup of the rabbit. Pharmacological agents were applied to neurons to dissect the synaptic pathways subserving AII cells so as to determine the circuitry generating their off-surround responses. Application of the GABA antagonists, picrotoxin, bicuculline and 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid (TPMPA) all increased the on-centre responses of AII amacrine cells, but attenuated the off-surround activity. At equal concentrations, picrotoxin was approximately twice as effective as bicuculline or TPMPA in modifying the response activity of AII amacrine cells. These results indicate that the mechanism underlying surround inhibition of AII amacrine cells includes activation of both GABA A and GABA C receptors in an approximately equal ratio. Application of the GABA antagonists also increased the size of on-centre receptive fields of AII amacrine cells. Again, picrotoxin was most effective, producing, on average, a 54 % increase in the size of the receptive field, whereas bicuculline and TPMPA produced comparable 34 and 33 % increases, respectfully. Application of the voltage-gated sodium channel blocker TTX produced effects on AII amacrine cells qualitatively similar to those of the GABA blockers. Intracellular application of the chloride channel blocker 4,4â²-dinitro-stilbene-2,2â²-disulphonic acid (DNDS) abolished the direct effects of GABA on AII amacrine cells. Moreover, DNDS increased the amplitude of both the on-centre and off-surround responses. The failure of DNDS to block the off-surround activity indicates that it is not mediated by direct GABAergic inhibition. Taken together, our results suggest that surround receptive fields of AII amacrine cells are generated indirectly by the GABAergic, reciprocal feedback synapses from S1/S2 amacrine cells to the axon terminals of rod bipolar cells. |
Author | Daiyan Xin Stewart A Bloomfield Béla Völgyi |
Author_xml | – sequence: 1 givenname: Béla surname: Völgyi fullname: Völgyi, Béla – sequence: 2 givenname: Daiyan surname: Xin fullname: Xin, Daiyan – sequence: 3 givenname: Stewart A. surname: Bloomfield fullname: Bloomfield, Stewart A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11882691$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1TAQhi1URE8Lb4BQVrDKwbdcvEGqKgoHVYJFWVuOM2lcHDvYCSVvwGPjkFMuO1Zje77_n7H-M3TivAOEnhO8J4Sw13djv0Tj7Z5iTPaYMMLYI7QjvBR5VQl2gnYYU5qzqiCn6CzGu8QxLMQTdEpIXdNSkB36cQXQNkp_yYzrTWMm4106ZlMPqTgI2Wjhu-l8GDKrlnSfXQvBGoi_mDiH4NNTPkBr1ARtFiCO3sXU9112cThkalA6GAeZBmvjg_mghkFZo1wSTMapp-hxp2yEZ8d6jj5fvb25fJ9ff3x3uLy4zjXHmOV13eKOK0E7qHCpigJEQduKsJIXDSYNFY1qRCc0Bt5qWgJmteBlU6pKC6GAnaM3m-84N2lnDW4KysoxmEGFRXpl5L8dZ3p5679JSgUmnCWDl0eD4L_OECc5mLh-TTnwc5QV4YJysoJ8A3XwMQbofg8hWK4RyocI5Rqh3CJMshd_L_hHdMwsAfUG3BsLy3-ZypsPn0q8er_apL257e9NALnB0WsD0yILJiSVK_kT-_y_Yg |
CitedBy_id | crossref_primary_10_1017_S0952523804042099 crossref_primary_10_1038_s41598_018_21119_0 crossref_primary_10_1017_S095252381900004X crossref_primary_10_1016_j_preteyeres_2020_100844 crossref_primary_10_1523_JNEUROSCI_1712_15_2015 crossref_primary_10_1016_j_isci_2024_109920 crossref_primary_10_1113_jphysiol_2003_052092 crossref_primary_10_1152_jn_00384_2013 crossref_primary_10_1152_jn_00838_2007 crossref_primary_10_3390_cells11050810 crossref_primary_10_1017_S095252380707040X crossref_primary_10_1111_ejn_15634 crossref_primary_10_1371_journal_pone_0160900 crossref_primary_10_1523_JNEUROSCI_5574_09_2010 crossref_primary_10_1016_j_nbd_2003_12_004 crossref_primary_10_3389_fopht_2023_1134765 crossref_primary_10_1523_JNEUROSCI_2249_05_2005 crossref_primary_10_1152_jn_00279_2005 crossref_primary_10_1152_jn_00913_2012 crossref_primary_10_1152_jn_01109_2009 crossref_primary_10_1016_j_nlm_2013_01_004 crossref_primary_10_1017_S0952523812000028 crossref_primary_10_1016_j_preteyeres_2019_05_001 crossref_primary_10_1016_j_exer_2013_09_006 crossref_primary_10_1017_S0952523811000137 crossref_primary_10_1113_jphysiol_2011_213371 crossref_primary_10_1152_jn_01097_2012 crossref_primary_10_7554_eLife_60994 crossref_primary_10_1523_JNEUROSCI_0410_07_2007 crossref_primary_10_1158_0008_5472_CAN_05_1470 crossref_primary_10_3389_fphys_2014_00135 crossref_primary_10_1113_jphysiol_2008_165241 crossref_primary_10_1152_jn_01008_2002 crossref_primary_10_1038_nn_2389 crossref_primary_10_1113_jphysiol_2005_103648 crossref_primary_10_1523_JNEUROSCI_5252_03_2004 crossref_primary_10_1523_JNEUROSCI_2655_11_2011 crossref_primary_10_1016_j_exer_2017_07_010 crossref_primary_10_1016_j_neuron_2010_02_028 crossref_primary_10_1113_jphysiol_2006_112839 crossref_primary_10_1152_jn_00458_2009 crossref_primary_10_1016_j_pneurobio_2004_04_002 crossref_primary_10_1016_j_cub_2010_04_034 |
Cites_doi | 10.1017/S0952523899162096 10.1113/jphysiol.1985.sp015740 10.1002/cne.902950309 10.1152/jn.1982.47.5.928 10.1002/cne.902830210 10.1152/ajpcell.1991.261.1.C51 10.1002/(SICI)1096-9861(19970714)383:4<512::AID-CNE8>3.0.CO;2-5 10.1002/cne.903610310 10.1016/S0079-6123(01)31025-7 10.1016/S1350-9462(00)00031-8 10.1002/cne.902680211 10.1017/S0952523800011019 10.1111/j.1469-7793.2000.t01-1-00771.x 10.1038/321695a0 10.1098/rstb.1969.0004 10.1152/jn.1992.68.3.711 10.1002/(SICI)1096-9861(19991011)413:1<155::AID-CNE11>3.0.CO;2-6 10.1002/cne.901480106 10.1002/(SICI)1096-9861(19980706)396:3<351::AID-CNE6>3.0.CO;2-1 10.1002/cne.903220213 10.1038/3714 10.1007/BF01870427 10.1113/jphysiol.1992.sp019047 10.1152/jn.1996.75.5.2167 10.1016/S0896-6273(00)80226-3 10.1017/S0952523899164058 10.1523/JNEUROSCI.16-22-07353.1996 10.1152/jn.1996.75.5.1878 10.1113/jphysiol.1957.sp005817 10.1002/cne.902080306 10.1152/jn.1977.40.1.53 10.1152/jn.1965.28.5.833 10.1152/jn.1998.79.3.1384 10.1113/jphysiol.1971.sp009432 10.1523/JNEUROSCI.12-12-04911.1992 10.1523/JNEUROSCI.18-21-08614.1998 10.1038/377734a0 10.1017/S0952523800011512 10.1038/276399a0 10.1111/j.1460-9568.1991.tb00043.x 10.1523/JNEUROSCI.06-02-00331.1986 10.1017/S0952523800012220 10.1016/0006-8993(75)90983-X |
ContentType | Journal Article |
Copyright | 2002 The Journal of Physiology © 2002 The Physiological Society The Physiological Society 2002 2002 |
Copyright_xml | – notice: 2002 The Journal of Physiology © 2002 The Physiological Society – notice: The Physiological Society 2002 2002 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1113/jphysiol.2001.013133 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 614 |
ExternalDocumentID | 10_1113_jphysiol_2001_013133 11882691 TJP603 539_2_603 |
Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: EY07360 – fundername: NEI NIH HHS grantid: F32 EY006689 – fundername: NEI NIH HHS grantid: EY06689 – fundername: NEI NIH HHS grantid: R01 EY007360 |
GroupedDBID | - 05W 08R 0R 0YM 10A 123 1OB 1OC 24P 29L 2WC 31 33P 3N 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 55 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAONW AAVGM AAZKR ABCUV ABFLS ABHUG ABITZ ABIVO ABOCM ABPPZ ABPTK ABPVW ABUFD ABWRO ACAHQ ACFBH ACGFS ACIWK ACMXC ACNCT ACPOU ACPRK ACXME ACXQS ADACO ADAWD ADBBV ADDAD ADEOM ADIZJ ADXAS ADZMN AEIMD AEUQT AFBPY AFFNX AFPWT AFZJQ AGJLS ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DZ E3Z EBS EJD F00 F01 F04 F20 F5P FIJ FUBAC G-S G.N GA GJ GODZA GX1 H.X H13 HZ HZI IA IX1 J0M K48 LATKE LC2 LC3 LEEKS LI0 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF O0- O66 O9- OHT OK1 P2P P2W P2X P2Z P4A P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TLM TN5 UB1 UNR UPT UQL V8K VH1 W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WQJ WRC WT WXI WYISQ X X7M XG1 Y3 YZZ ZA5 ZGI ZZTAW --- -DZ -~X .3N .55 .GA .GJ .Y3 0R~ 18M 31~ 36B 3EH AAFWJ AAHHS AANLZ AASGY AAXRX AAYJJ ABCQN ABEML ABJNI ABQWH ABXGK ACCFJ ACCZN ACGFO ACGOF ACSCC ACXBN ADBTR ADKYN ADMGS ADOZA AEEZP AEGXH AEIGN AEQDE AEUYR AFEBI AFFPM AFGKR AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AMYDB AOIJS C45 CHEAL EMOBN EX3 FA8 HF~ HGLYW HZ~ H~9 IHE IPNFZ KBYEO LH4 NF~ OIG OVD SAMSI TEORI TR2 UKR W8F WHG WOW WXSBR XOL YBU YHG YKV YQT YSK YXB YYP ZXP ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4003-88d0f4a92fe706a55e952d713645b01b29bab9f9c0e4dc26e038946b6a7c99ae3 |
IEDL.DBID | RPM |
ISSN | 0022-3751 |
IngestDate | Tue Sep 17 21:18:12 EDT 2024 Fri Oct 25 06:24:53 EDT 2024 Fri Aug 23 00:32:26 EDT 2024 Sat Sep 28 08:34:55 EDT 2024 Sat Aug 24 01:04:18 EDT 2024 Fri Jan 15 02:11:19 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4003-88d0f4a92fe706a55e952d713645b01b29bab9f9c0e4dc26e038946b6a7c99ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290143 |
PMID | 11882691 |
PQID | 71492413 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2290143 proquest_miscellaneous_71492413 crossref_primary_10_1113_jphysiol_2001_013133 pubmed_primary_11882691 wiley_primary_10_1113_jphysiol_2001_013133_TJP603 highwire_physiosociety_539_2_603 |
PublicationCentury | 2000 |
PublicationDate | 20020301 March 2002 2002-Mar-01 2002-03-00 |
PublicationDateYYYYMMDD | 2002-03-01 |
PublicationDate_xml | – month: 03 year: 2002 text: 20020301 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2002 |
Publisher | The Physiological Society Blackwell Publishing Ltd Blackwell Science Inc |
Publisher_xml | – name: The Physiological Society – name: Blackwell Publishing Ltd – name: Blackwell Science Inc |
References | 1991; 3 1973; 148 1996; 17 1982; 208 1992; 322 1977; 40 1988; 268 1992; 448 1978; 276 1989; 283 1995; 377 1998; 396 1996; 16 1992; 12 1996; 75 1991; 7 2001; 20 1985; 364 1982; 47 1998; 18 1991; 261 2001; 131 1989; 108 1957; 137 1986; 321 2000; 523 1997; 383 1997; 14 1999; 16 1986; 6 1971; 214 1992; 68 1998; 1 1995; 361 1975; 84 1965; 28 1999; 413 1990; 295 1969; 255 1998; 79 1992; 5 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 Dudek S. M. (e_1_2_5_16_1) 1996; 75 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 Shao Z. (e_1_2_5_36_1) 1996; 16 e_1_2_5_3_1 e_1_2_5_2_1 Strettoi E. (e_1_2_5_39_1) 1992; 5 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 Burkhardt D. A. (e_1_2_5_13_1) 1977; 40 Rodieck R. W. (e_1_2_5_32_1) 1965; 28 |
References_xml | – volume: 28 start-page: 833 year: 1965 end-page: 849 article-title: Analysis of receptive fields of cat retinal ganglion cells publication-title: Journal of Neurophysiology – volume: 523 start-page: 771 year: 2000 end-page: 783 article-title: Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina publication-title: Journal of Physiology – volume: 255 start-page: 109 year: 1969 end-page: 184 article-title: Organization of the primate retina: light microscopy publication-title: Philosophical Transactions of the Royal Society B – volume: 16 start-page: 7353 year: 1996 end-page: 7365 article-title: Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex publication-title: Journal of Neuroscience – volume: 5 start-page: 449 year: 1992 end-page: 466 article-title: Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina publication-title: Journal of Comparative Neurology – volume: 68 start-page: 711 year: 1992 end-page: 725 article-title: Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina publication-title: Journal of Neurophysiology – volume: 148 start-page: 91 year: 1973 end-page: 114 article-title: The connections between bipolar cells and photoreceptors in the retina of the domestic cat publication-title: Journal of Comparative Neurology – volume: 448 start-page: 383 year: 1992 end-page: 395 article-title: Stilbene disulphonates inhibit apparently separate chloride transporters in skeletal muscle of publication-title: Journal of Physiology – volume: 396 start-page: 351 year: 1998 end-page: 365 article-title: GABA and GABA receptors on mammalian rod bipolar cells publication-title: Journal of Comparative Neurology – volume: 276 start-page: 399 year: 1978 end-page: 400 article-title: Effect of polarization of horizontal cells on the on‐centre bipolar cell of carp retina publication-title: Nature – volume: 16 start-page: 285 year: 1999 end-page: 290 article-title: TTX attenuates surround inhibition in rabbit retinal ganglion cells publication-title: Visual Neuroscience – volume: 14 start-page: 395 year: 1997 end-page: 401 article-title: Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation publication-title: Visual Neuroscience – volume: 12 start-page: 4911 year: 1992 end-page: 4922 article-title: Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina publication-title: Journal of Neuroscience – volume: 268 start-page: 281 year: 1988 end-page: 297 article-title: Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina publication-title: Journal of Comparative Neurology – volume: 283 start-page: 303 year: 1989 end-page: 313 article-title: Connections of indoleamine‐accumulating cells in the rabbit retina publication-title: Journal of Comparative Neurology – volume: 322 start-page: 275 year: 1992 end-page: 291 article-title: All indoleamine‐accumulating cells in the rabbit retina contain GABA publication-title: Journal of Comparative Neurology – volume: 47 start-page: 928 year: 1982 end-page: 947 article-title: AII amacrine cells quicken time course of rod signals in cat retina publication-title: Journal of Neurophysiology – volume: 18 start-page: 8614 year: 1998 end-page: 8624 article-title: Continuous and transient vesicle cycling at a ribbon synapse publication-title: Journal of Neuroscience – volume: 383 start-page: 512 year: 1997 end-page: 528 article-title: Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina publication-title: Journal of Comparative Neurology – volume: 413 start-page: 155 year: 1999 end-page: 167 article-title: Indoleamine‐accumulating amacrine cells are presynaptic to rod bipolar cells through GABA(C) receptors publication-title: Journal of Comparative Neurology – volume: 208 start-page: 288 year: 1982 end-page: 303 article-title: A physiological and morphological study of the horizontal cell types in the rabbit retina publication-title: Journal of Comparative Neurology – volume: 361 start-page: 461 year: 1995 end-page: 478 article-title: Immunocytochemical identification of cone bipolar cells in the rat retina publication-title: Journal of Comparative Neurology – volume: 16 start-page: 653 year: 1999 end-page: 665 article-title: Comparison of the responses of AII amacrine cells in the dark‐ and light‐adapted rabbit retina publication-title: Visual Neuroscience – volume: 84 start-page: 293 year: 1975 end-page: 300 article-title: A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina publication-title: Brain Research – volume: 214 start-page: 265 year: 1971 end-page: 294 article-title: Receptive field of cones in the retina of turtle publication-title: Journal of Physiology – volume: 14 start-page: 565 year: 1997 end-page: 576 article-title: Light‐induced modulation of coupling between AII amacrine cells in the rabbit retina publication-title: Visual Neuroscience – volume: 137 start-page: 338 year: 1957 end-page: 354 article-title: Change of organization of receptive fields of the cat's retina during dark adaptation publication-title: Journal of Physiology – volume: 75 start-page: 2167 year: 1996 end-page: 2173 article-title: Intracellular blockade of inhibitory synaptic responses in visual cortical layer IV neurons publication-title: Journal of Neurophysiology – volume: 261 start-page: 51 year: 1991 end-page: 63 article-title: Colonic Cl channel blockade by three classes of compounds publication-title: American Journal of Physiology – volume: 75 start-page: 1878 year: 1996 end-page: 1893 article-title: Effect of spike blockade on the receptive‐field size of amacrine and ganglion cells in the rabbit retina publication-title: Journal of Neurophysiology – volume: 40 start-page: 53 year: 1977 end-page: 62 article-title: Responses and receptive field organization of cones in perch retina publication-title: Journal of Neurophysiology – volume: 108 start-page: 73 year: 1989 end-page: 90 article-title: Voltage‐gated chloride currents in cultured canine tracheal epithelial cells publication-title: Journal of Membrane Biology – volume: 131 start-page: 309 year: 2001 end-page: 318 article-title: Retinoic acid, a neuromodulator in the retina publication-title: Progress in Brain Research – volume: 1 start-page: 714 year: 1998 end-page: 719 article-title: Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells publication-title: Nature Neuroscience – volume: 321 start-page: 695 year: 1986 end-page: 697 article-title: Phorbol esters block voltage‐sensitive chloride current in hippocampal pyramidal cells publication-title: Nature – volume: 377 start-page: 734 year: 1995 end-page: 737 article-title: Differential properties of two gap junctional pathways made by AII amacrine cells publication-title: Nature – volume: 7 start-page: 141 year: 1991 end-page: 154 article-title: The rod circuit in the rabbit retina publication-title: Visual Neuroscience – volume: 3 start-page: 1069 year: 1991 end-page: 1088 article-title: Morphological classification of bipolar cells in macaque monkey retina publication-title: European Journal of Neuroscience – volume: 6 start-page: 331 year: 1986 end-page: 345 article-title: The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell publication-title: Journal of Neuroscience – volume: 79 start-page: 1384 year: 1998 end-page: 1395 article-title: Different contributions of GABA and GABA receptors to rod and cone bipolar cells in a rat retinal slice preparation publication-title: Journal of Neurophysiology – volume: 17 start-page: 957 year: 1996 end-page: 967 article-title: Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells publication-title: Neuron – volume: 295 start-page: 449 year: 1990 end-page: 466 article-title: Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit publication-title: Journal of Comparative Neurology – volume: 364 start-page: 217 year: 1985 end-page: 239 article-title: A calcium‐activated chloride current generates the after‐depolarization in rat sensory neurones in culture publication-title: Journal of Physiology – volume: 20 start-page: 351 year: 2001 end-page: 384 article-title: Rod vision: pathways and processing in the mammalian retina publication-title: Progress in Retina and Eye Research – ident: e_1_2_5_40_1 doi: 10.1017/S0952523899162096 – ident: e_1_2_5_28_1 doi: 10.1113/jphysiol.1985.sp015740 – ident: e_1_2_5_38_1 doi: 10.1002/cne.902950309 – ident: e_1_2_5_31_1 doi: 10.1152/jn.1982.47.5.928 – volume: 5 start-page: 449 year: 1992 ident: e_1_2_5_39_1 article-title: Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina publication-title: Journal of Comparative Neurology contributor: fullname: Strettoi E. – ident: e_1_2_5_34_1 doi: 10.1002/cne.902830210 – ident: e_1_2_5_37_1 doi: 10.1152/ajpcell.1991.261.1.C51 – ident: e_1_2_5_44_1 doi: 10.1002/(SICI)1096-9861(19970714)383:4<512::AID-CNE8>3.0.CO;2-5 – ident: e_1_2_5_17_1 doi: 10.1002/cne.903610310 – ident: e_1_2_5_43_1 doi: 10.1016/S0079-6123(01)31025-7 – ident: e_1_2_5_6_1 doi: 10.1016/S1350-9462(00)00031-8 – ident: e_1_2_5_25_1 doi: 10.1002/cne.902680211 – ident: e_1_2_5_42_1 doi: 10.1017/S0952523800011019 – ident: e_1_2_5_8_1 doi: 10.1111/j.1469-7793.2000.t01-1-00771.x – ident: e_1_2_5_26_1 doi: 10.1038/321695a0 – ident: e_1_2_5_10_1 doi: 10.1098/rstb.1969.0004 – ident: e_1_2_5_4_1 doi: 10.1152/jn.1992.68.3.711 – ident: e_1_2_5_21_1 doi: 10.1002/(SICI)1096-9861(19991011)413:1<155::AID-CNE11>3.0.CO;2-6 – ident: e_1_2_5_11_1 doi: 10.1002/cne.901480106 – ident: e_1_2_5_20_1 doi: 10.1002/(SICI)1096-9861(19980706)396:3<351::AID-CNE6>3.0.CO;2-1 – ident: e_1_2_5_27_1 doi: 10.1002/cne.903220213 – ident: e_1_2_5_14_1 doi: 10.1038/3714 – ident: e_1_2_5_35_1 doi: 10.1007/BF01870427 – ident: e_1_2_5_23_1 doi: 10.1113/jphysiol.1992.sp019047 – volume: 75 start-page: 2167 year: 1996 ident: e_1_2_5_16_1 article-title: Intracellular blockade of inhibitory synaptic responses in visual cortical layer IV neurons publication-title: Journal of Neurophysiology doi: 10.1152/jn.1996.75.5.2167 contributor: fullname: Dudek S. M. – ident: e_1_2_5_24_1 doi: 10.1016/S0896-6273(00)80226-3 – ident: e_1_2_5_45_1 doi: 10.1017/S0952523899164058 – volume: 16 start-page: 7353 year: 1996 ident: e_1_2_5_36_1 article-title: Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.16-22-07353.1996 contributor: fullname: Shao Z. – ident: e_1_2_5_5_1 doi: 10.1152/jn.1996.75.5.1878 – ident: e_1_2_5_2_1 doi: 10.1113/jphysiol.1957.sp005817 – ident: e_1_2_5_7_1 doi: 10.1002/cne.902080306 – volume: 40 start-page: 53 year: 1977 ident: e_1_2_5_13_1 article-title: Responses and receptive field organization of cones in perch retina publication-title: Journal of Neurophysiology doi: 10.1152/jn.1977.40.1.53 contributor: fullname: Burkhardt D. A. – volume: 28 start-page: 833 year: 1965 ident: e_1_2_5_32_1 article-title: Analysis of receptive fields of cat retinal ganglion cells publication-title: Journal of Neurophysiology doi: 10.1152/jn.1965.28.5.833 contributor: fullname: Rodieck R. W. – ident: e_1_2_5_18_1 doi: 10.1152/jn.1998.79.3.1384 – ident: e_1_2_5_3_1 doi: 10.1113/jphysiol.1971.sp009432 – ident: e_1_2_5_22_1 doi: 10.1523/JNEUROSCI.12-12-04911.1992 – ident: e_1_2_5_33_1 doi: 10.1523/JNEUROSCI.18-21-08614.1998 – ident: e_1_2_5_29_1 doi: 10.1038/377734a0 – ident: e_1_2_5_30_1 doi: 10.1017/S0952523800011512 – ident: e_1_2_5_41_1 doi: 10.1038/276399a0 – ident: e_1_2_5_12_1 doi: 10.1111/j.1460-9568.1991.tb00043.x – ident: e_1_2_5_15_1 doi: 10.1523/JNEUROSCI.06-02-00331.1986 – ident: e_1_2_5_9_1 doi: 10.1017/S0952523800012220 – ident: e_1_2_5_19_1 doi: 10.1016/0006-8993(75)90983-X |
SSID | ssj0013099 |
Score | 1.9315667 |
Snippet | Intracellular recordings were made from narrow-field, bistratified AII amacrine cells in the isolated, superfused retina-eyecup
of the rabbit. Pharmacological... Intracellular recordings were made from narrow‐field, bistratified AII amacrine cells in the isolated, superfused retina‐eyecup of the rabbit. Pharmacological... Intracellular recordings were made from narrow-field, bistratified AII amacrine cells in the isolated, superfused retina-eyecup of the rabbit. Pharmacological... |
SourceID | pubmedcentral proquest crossref pubmed wiley highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 603 |
SubjectTerms | Animals Electrophysiology Feedback - physiology GABA Antagonists - pharmacology GABA-A Receptor Antagonists In Vitro Techniques Nerve Net - cytology Nerve Net - physiology Original Photic Stimulation Presynaptic Terminals - drug effects Presynaptic Terminals - physiology Rabbits Retina - cytology Retina - physiology Stilbenes - pharmacology Visual Fields - physiology |
SummonAdditionalLinks | – databaseName: Wiley Online Library dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnrjwKo-FAj4gblniJLbj4wpYtZVAFWql3izb67RLm6RKdg_l1DMnfiO_hBl7s2WhBwS3SH4kdsb2N56Zbwh5nStrlE_TxMPunxSCy8Q4jinDfMlNwUtRYqDwx09i77g4OOEnW2Q6xMJEfoj1hRuujLBf4wI3dpWFhCHZwJeg-rfBfMDGSBuTI-knyyV6dr3_nN0YE1Kl1qThkrNVBB108_a2TjZPqIE1-DYE-qcj5a8AN5xQ03vkdBhbdEw5Hy8Xduy-_kb7-P-Dv0_urkAsnUSpe0C2fPOQ7EwaUODrK_qGHsZm7enVDvk2hfPRGndO583Z3AYPMXikADxpyPtFL5GTE7EzvTCgAFAMa-sAGvehTr_sOkz99OP6e4hyAYRMu-jYCzXaik7296mpjcMwRop2iH7ovjZ1Ha5xKIZqNuYROZ5-OHq3l6wSQCSuQJ-5spylVWFUVnmZCsO5VzybgVotCm5TZjMQNKsq5VJfzFwmPLIFFsIKI51SxuePyXbTNv4poaW1spLQ3jtAXA5EtGTC2tRnPs-tMSOSDD9dX0aeDx31o1wPk40pO5mOkz0idJAMHYv76GWrea50pkUKVV4NEqNhzeIEmMa3y15LUEvRnjkiT6L83LySgcYjFBsRuSFZ6wrIBr5Z0szPAit4Fizi0CcLgvNXo9BHB4fwpc_-oc1zcickxgnueLtke9Et_QvAZwv7Mqy-n9tBOus priority: 102 providerName: Wiley-Blackwell |
Title | Feedback inhibition in the inner plexiform layer underlies the surround-mediated responses of AII amacrine cells in the mammalian retina |
URI | http://jp.physoc.org/content/539/2/603.abstract https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2001.013133 https://www.ncbi.nlm.nih.gov/pubmed/11882691 https://search.proquest.com/docview/71492413 https://pubmed.ncbi.nlm.nih.gov/PMC2290143 |
Volume | 539 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXanrggoHwESvEBccuuncROfFxVrLpFRSvUSr1ZttehSxtnlXQP_Qf87I6duLCCA-ISRbKTOJlx_MbzZgahj7nQSlhCUgt__7TgrEyVYb5kmK2YKljFKx8ofP6Vn14WZ1fsag-xGAsTSPtGryfutpm49XXgVm4aM408seny_CQLzr98uo_2QUGjiR5dB0SIxxThJaNjvByl-fRH2C1og8eBTnymmTzU0aEAM7mgu0tTTBf8N-j5J4Pyd2Qblqb5M_R0xJR4Noz9Odqz7gU6nDmwp5t7_Akvh_G03-8P0c85LFdamRu8dtdrHQhbcIoBB-JQhgtvfIpMD2XxrQI8jn2UWQdItQ99-m3X-UpMaQg5AbiKu4FlC-1tjWeLBVaNMj6mEHunQB9v3qimCXsq2MdNOvUSXc4_X5ycpmM1htQUnsBWVStSF0pktS0JV4xZwbIV2Li8YJpQnYHUtaiFIbZYmYxbn7qv4Jqr0gihbP4KHbjW2TcIV1qXdQnXWwPwx4C-VJRrTWxm81wrlaA0CkJuhqQbcjBWchll6OtnUjnIMEE4SksOzf1AeZUsFzKTnECXD1GKEiaQ_wDK2XbbyxJsRO9cTNDrQaa_HjnqRYLKHWk_dvCpuXdbQGNDiu5RQxNEg17801vIi7MljPTtfz_tHXoSatUEhtwROrjrtvY9QKY7fQzGwuKLP37LjsN0eQBirhnr |
link.rule.ids | 230,315,730,783,787,888,1378,27936,27937,46306,46730,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lc9MwENaUcoBLeRRoeFUHhpuDX5KtYwYISWk7HSad6U0jKTIJxXbHTg7lxJkTv5Ffwq4UpwR6YBhunrEkW_Ku9a1291tCXiRCK2HDMLDw9w9SzrJAGYYlw2zOVMpynmOi8NExH52mB2fsbIu863JhPD_E-sANNcP9r1HB8UB6peXINvDJ2f618x9EfeSNSZIb5CZofoI1HN58iK_cCaEQa9rwjEWrHDoY59V1o2zuUR1v8HUY9M9Qyl8hrtujhnfIrJudD0057y8Xum--_Eb8-B-mf5fsrHAsHXjBu0e2bHWf7A4qsOHLS_qSnvhu9cfLXfJtCFukVuaczqvZXLsgMbikgD2pK_1FL5CWE-Ez_azABqCY2dYAOm5dm3bZNFj96cfX7y7RBUAybXxsL7SoCzoYj6kqlcFMRoquiLYbvlRl6U5yKGZrVuoBOR2-nbweBasaEIFJMWwuz6dhkSoRFzYLuWLMChZPwbLmKdNhpGOQNS0KYUKbTk3MLRIGplxzlRkhlE0eku2qruweobnWWZFBf2sAdBmQ0jziWoc2tkmileqRoPvq8sJTfUhvIiWyW2ys2hlJv9g9QjvRkP526wNtJUuEjCUPocl-JzIS1BYXQFW2XrYyA8sUXZo98sgL0NUjIzB6uIh6JNsQrXUDJATfvFPNZ44YPHZOcRgzcpLzV7OQk4MTeNPH_9Bnn9waTY4O5eH4-P0TctvVyXHReU_J9qJZ2mcA1xb6uVPFn0GLPwM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkRCX8iiPLY_6gLhlyctOfFwBUbdAtUKt1Jtle512KUlWye6hnDhz4jfyS5ixN1sWekBwixTbiZ2Z-BvPzDeEvEiEVsKGYWDh7x-knGWBMgxLhtmcqZTlPMdE4Q9H_OAkPTxlp1uk6HNhPD_E-sANNcP9r1HB59NypeRINvDJmf6Ncx9EQ6SNSZIb5GbKAQQjOPoYX3kTQiHWrOEZi1YpdDDOq-tG2dyietrg6yDon5GUvyJct0UVd8hZPzkfmXIxXC700Hz5jffx_2d_l-ysUCwdebG7R7ZsfZ_sjmqw4KtL-pJOfLfm7HKXfCtgg9TKXNBZfT7TLkQMLikgT-oKf9E5knIieKafFVgAFPPaWsDGnWvTLdsWaz_9-PrdpbkARKatj-yFFk1JR-MxVZUymMdI0RHR9cNXqqrcOQ7FXM1aPSAnxdvj1wfBqgJEYFIMmsvzaVimSsSlzUKuGLOCxVOwq3nKdBjpGCRNi1KY0KZTE3OLdIEp11xlRghlk4dku25q-5jQXOuszKC_NQC5DMhoHnGtQxvbJNFKDUjQf3Q590Qf0htIiewXG2t2RtIv9oDQXjKkv935MFvJEiFjyUNost9LjASlxQVQtW2WnczALkWH5oA88vJz9cgITB4uogHJNiRr3QDpwDfv1LNzRwseO5c4jBk5wfmrWcjjwwm86d4_9NkntyZvCvl-fPTuCbntiuS40LynZHvRLu0zwGoL_dwp4k9poz2y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feedback+inhibition+in+the+inner+plexiform+layer+underlies+the+surround-mediated+responses+of+AII+amacrine+cells+in+the+mammalian+retina&rft.jtitle=The+Journal+of+physiology&rft.au=V%C3%B6lgyi%2C+B%C3%A9la&rft.au=Xin%2C+Daiyan&rft.au=Bloomfield%2C+Stewart+A&rft.date=2002-03-01&rft.issn=0022-3751&rft.volume=539&rft.issue=Pt+2&rft.spage=603&rft_id=info:doi/10.1113%2Fjphysiol.2001.013133&rft_id=info%3Apmid%2F11882691&rft.externalDocID=11882691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |