Beyond von-Neumann Computing with Nanoscale Phase-Change Memory Devices

Historically, the application of phase‐change materials and devices has been limited to the provision of non‐volatile memories. Recently, however, the potential has been demonstrated for using phase‐change devices as the basis for new forms of brain‐like computing, by exploiting their multilevel res...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 23; no. 18; pp. 2248 - 2254
Main Authors Wright, C. David, Hosseini, Peiman, Diosdado, Jorge A. Vazquez
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 13.05.2013
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Historically, the application of phase‐change materials and devices has been limited to the provision of non‐volatile memories. Recently, however, the potential has been demonstrated for using phase‐change devices as the basis for new forms of brain‐like computing, by exploiting their multilevel resistance capability to provide electronic mimics of biological synapses. Here, a different and previously under‐explored property that is also intrinsic to phase‐change materials and devices, namely accumulation, is exploited to demonstrate that nanometer‐scale electronic phase‐change devices can also provide a powerful form of arithmetic computing. Complicated arithmetic operations are carried out, including parallel factorization and fractional division, using simple nanoscale phase‐change cells that process and store data simultaneously and at the same physical location, promising a most efficient and effective means for implementing beyond von‐Neumann computing. This same accumulation property can be used to provide a particularly simple form phase‐change integrate‐and‐fire “neuron”, which, by combining both phase‐change synapse and neuron electronic mimics, potentially opens up a route to the realization of all‐phase‐change neuromorphic processing. Nanometer‐scale GeSbTe phase‐change memory type devices are shown to provide an efficient and effective route to computing in which processing and storage are carried out simultaneously and at the same physical location, circumventing the “von Neumann bottleneck”. Advanced processing including factorization and fractional division are demonstrated, with single GeSbTe cells performing computations that require around 100 transistors in conventional Si processors.
AbstractList Abstract Historically, the application of phase‐change materials and devices has been limited to the provision of non‐volatile memories. Recently, however, the potential has been demonstrated for using phase‐change devices as the basis for new forms of brain‐like computing, by exploiting their multilevel resistance capability to provide electronic mimics of biological synapses. Here, a different and previously under‐explored property that is also intrinsic to phase‐change materials and devices, namely accumulation, is exploited to demonstrate that nanometer‐scale electronic phase‐change devices can also provide a powerful form of arithmetic computing. Complicated arithmetic operations are carried out, including parallel factorization and fractional division, using simple nanoscale phase‐change cells that process and store data simultaneously and at the same physical location, promising a most efficient and effective means for implementing beyond von‐Neumann computing. This same accumulation property can be used to provide a particularly simple form phase‐change integrate‐and‐fire “neuron”, which, by combining both phase‐change synapse and neuron electronic mimics, potentially opens up a route to the realization of all‐phase‐change neuromorphic processing.
Historically, the application of phase-change materials and devices has been limited to the provision of non-volatile memories. Recently, however, the potential has been demonstrated for using phase-change devices as the basis for new forms of brain-like computing, by exploiting their multilevel resistance capability to provide electronic mimics of biological synapses. Here, a different and previously under-explored property that is also intrinsic to phase-change materials and devices, namely accumulation, is exploited to demonstrate that nanometer-scale electronic phase-change devices can also provide a powerful form of arithmetic computing. Complicated arithmetic operations are carried out, including parallel factorization and fractional division, using simple nanoscale phase-change cells that process and store data simultaneously and at the same physical location, promising a most efficient and effective means for implementing beyond von-Neumann computing. This same accumulation property can be used to provide a particularly simple form phase-change integrate-and-fire "neuron", which, by combining both phase-change synapse and neuron electronic mimics, potentially opens up a route to the realization of all-phase-change neuromorphic processing. Nanometer-scale GeSbTe phase-change memory type devices are shown to provide an efficient and effective route to computing in which processing and storage are carried out simultaneously and at the same physical location, circumventing the "von Neumann bottleneck". Advanced processing including factorization and fractional division are demonstrated, with single GeSbTe cells performing computations that require around 100 transistors in conventional Si processors.
Historically, the application of phase‐change materials and devices has been limited to the provision of non‐volatile memories. Recently, however, the potential has been demonstrated for using phase‐change devices as the basis for new forms of brain‐like computing, by exploiting their multilevel resistance capability to provide electronic mimics of biological synapses. Here, a different and previously under‐explored property that is also intrinsic to phase‐change materials and devices, namely accumulation, is exploited to demonstrate that nanometer‐scale electronic phase‐change devices can also provide a powerful form of arithmetic computing. Complicated arithmetic operations are carried out, including parallel factorization and fractional division, using simple nanoscale phase‐change cells that process and store data simultaneously and at the same physical location, promising a most efficient and effective means for implementing beyond von‐Neumann computing. This same accumulation property can be used to provide a particularly simple form phase‐change integrate‐and‐fire “neuron”, which, by combining both phase‐change synapse and neuron electronic mimics, potentially opens up a route to the realization of all‐phase‐change neuromorphic processing. Nanometer‐scale GeSbTe phase‐change memory type devices are shown to provide an efficient and effective route to computing in which processing and storage are carried out simultaneously and at the same physical location, circumventing the “von Neumann bottleneck”. Advanced processing including factorization and fractional division are demonstrated, with single GeSbTe cells performing computations that require around 100 transistors in conventional Si processors.
Author Wright, C. David
Diosdado, Jorge A. Vazquez
Hosseini, Peiman
Author_xml – sequence: 1
  givenname: C. David
  surname: Wright
  fullname: Wright, C. David
  email: david.wright@exeter.ac.uk
  organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
– sequence: 2
  givenname: Peiman
  surname: Hosseini
  fullname: Hosseini, Peiman
  organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
– sequence: 3
  givenname: Jorge A. Vazquez
  surname: Diosdado
  fullname: Diosdado, Jorge A. Vazquez
  organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
BookMark eNqFkM1PwjAYhxuDiYBePe_oZdiP0a5HBAETQCUkemtK9w6mW4vrBvLfC8EQb57e3-F53sPTQg3rLCB0S3CHYEzvdZIWHYoJxZTF7AI1CSc8ZJjGjfMm71eo5f0HxkQIFjXR6AH2zibB1tlwBnWhrQ36rtjUVWZXwS6r1sFMW-eNziF4WWsPYX-t7QqCKRSu3AcD2GYG_DW6THXu4eb3ttFi-Ljoj8PJ8-ip35uEJsKYhWSZaJFiE4NMY2HiNKUkobGUXOPlYUV8mUia4m7MZJRgQw1nPOaCUG4I4ayN7k5vN6X7qsFXqsi8gTzXFlztFYmYFDwS3eiAdk6oKZ33JaRqU2aFLveKYHUMpo7B1DnYQZAnYZflsP-HVr3BcPrXDU9u5iv4Pru6_FRcMNFVb7ORmk8Gr3I8l2rBfgBCdn9B
CitedBy_id crossref_primary_10_1002_adma_201304476
crossref_primary_10_1002_adma_202003610
crossref_primary_10_1016_j_optmat_2022_112046
crossref_primary_10_1021_acsami_9b17026
crossref_primary_10_1038_srep02965
crossref_primary_10_1063_5_0047641
crossref_primary_10_1002_aelm_202100142
crossref_primary_10_35848_1347_4065_abf4a0
crossref_primary_10_1051_epjap_2023230054
crossref_primary_10_1002_inf2_12215
crossref_primary_10_1364_OE_24_013563
crossref_primary_10_1515_nanoph_2022_0133
crossref_primary_10_1039_D2TC01989B
crossref_primary_10_3390_nano8100772
crossref_primary_10_1038_nnano_2016_90
crossref_primary_10_35848_1347_4065_ab80a1
crossref_primary_10_1038_ncomms9181
crossref_primary_10_1016_j_physrep_2022_02_001
crossref_primary_10_1145_3325067
crossref_primary_10_1002_adfm_201501607
crossref_primary_10_1021_cm4009656
crossref_primary_10_1109_LED_2015_2457243
crossref_primary_10_1002_admt_201900037
crossref_primary_10_1016_j_jallcom_2022_164613
crossref_primary_10_34133_2019_1618798
crossref_primary_10_1002_admt_201800544
crossref_primary_10_1007_s00339_023_07060_8
crossref_primary_10_1002_aelm_202300839
crossref_primary_10_35848_1347_4065_abe205
crossref_primary_10_1002_pssb_201700552
crossref_primary_10_1002_aisy_202000099
crossref_primary_10_1360_nso_20220071
crossref_primary_10_1088_1674_4926_43_2_023101
crossref_primary_10_1021_acsami_0c05082
crossref_primary_10_1016_j_orgel_2022_106540
crossref_primary_10_1039_D0CP05236A
crossref_primary_10_1088_1361_6463_ab37b6
crossref_primary_10_1038_s41467_022_34774_9
crossref_primary_10_1016_j_apsusc_2019_145228
crossref_primary_10_1016_j_sse_2022_108542
crossref_primary_10_1021_acsanm_3c00005
crossref_primary_10_1103_PhysRevApplied_12_054062
crossref_primary_10_1002_appl_202200024
crossref_primary_10_1021_acsami_0c10796
crossref_primary_10_1002_admt_201800342
crossref_primary_10_1063_1_5025331
crossref_primary_10_1002_aelm_202200094
crossref_primary_10_1002_aelm_202200877
crossref_primary_10_1002_aelm_201901044
crossref_primary_10_1016_j_mtphys_2021_100392
crossref_primary_10_1063_5_0048883
crossref_primary_10_1002_adfm_202305261
crossref_primary_10_1002_adfm_201303365
crossref_primary_10_1038_s41565_020_0655_z
crossref_primary_10_1109_JPROC_2015_2441752
crossref_primary_10_1016_j_jnoncrysol_2022_121874
crossref_primary_10_1021_acsami_0c01279
crossref_primary_10_1063_1_5118217
crossref_primary_10_1038_s41467_018_04485_1
crossref_primary_10_1109_LED_2016_2591181
crossref_primary_10_3389_fnins_2021_717947
crossref_primary_10_1007_s40843_022_2283_9
crossref_primary_10_1002_smll_201701193
crossref_primary_10_2200_S01109ED1V01Y202106CAC057
crossref_primary_10_1021_acsphotonics_6b00032
crossref_primary_10_1109_LED_2022_3154440
crossref_primary_10_1021_acsami_0c19544
crossref_primary_10_1021_acsnano_6b08668
crossref_primary_10_1002_adma_202208683
crossref_primary_10_1109_TMAG_2014_2329774
crossref_primary_10_1063_1_5037657
crossref_primary_10_1002_pssr_201700275
crossref_primary_10_1109_TED_2021_3099769
crossref_primary_10_1002_inf2_12012
crossref_primary_10_1007_s00339_015_9338_2
crossref_primary_10_1063_1_5043521
crossref_primary_10_1109_TNANO_2019_2901779
crossref_primary_10_1002_pssa_201700875
crossref_primary_10_1088_1361_6463_ab6054
crossref_primary_10_1038_s41598_023_32860_6
crossref_primary_10_1002_pssb_201248584
crossref_primary_10_1039_C7NR09722K
crossref_primary_10_1109_ACCESS_2020_3005303
crossref_primary_10_1038_nphoton_2015_182
crossref_primary_10_1002_adma_202205047
crossref_primary_10_1039_C7CP02398G
crossref_primary_10_1039_D3TC00090G
crossref_primary_10_1109_JEDS_2023_3265875
crossref_primary_10_1109_LED_2023_3237230
crossref_primary_10_7567_1347_4065_ab0499
crossref_primary_10_1088_2399_1984_aa8434
crossref_primary_10_35848_1347_4065_abe7d5
crossref_primary_10_1088_1361_6463_ac2868
crossref_primary_10_1002_piuz_201690014
crossref_primary_10_1088_2634_4386_ac781a
crossref_primary_10_1016_j_ceramint_2019_06_109
crossref_primary_10_1038_s41598_024_56463_x
crossref_primary_10_1109_TCSII_2021_3049716
crossref_primary_10_1002_aelm_201700627
crossref_primary_10_1109_OJNANO_2020_3041198
crossref_primary_10_1063_1_4852995
crossref_primary_10_1002_aelm_201700079
crossref_primary_10_3390_molecules26010118
crossref_primary_10_3390_jlpea12040063
crossref_primary_10_1021_acsami_8b08967
crossref_primary_10_1109_TNANO_2017_2690400
crossref_primary_10_1063_1_4958708
crossref_primary_10_1063_1_5042413
crossref_primary_10_1038_s41563_019_0291_x
crossref_primary_10_31857_S0544126923700461
crossref_primary_10_1002_aelm_201800189
crossref_primary_10_1021_acsami_0c10184
crossref_primary_10_1016_j_matt_2022_06_009
crossref_primary_10_1002_adom_201400472
crossref_primary_10_1088_1361_6528_aad64c
crossref_primary_10_1088_2631_7990_acfcf1
crossref_primary_10_1002_adfm_202213894
crossref_primary_10_1016_j_jmat_2022_03_006
crossref_primary_10_1088_1367_2630_17_9_093035
crossref_primary_10_1016_j_mattod_2020_07_016
crossref_primary_10_3390_app8081238
crossref_primary_10_1002_adfm_202306428
crossref_primary_10_1002_inf2_12162
crossref_primary_10_1364_PRJ_480057
crossref_primary_10_3389_fnins_2021_709053
crossref_primary_10_1002_aelm_202200161
crossref_primary_10_1021_acsnano_8b05903
crossref_primary_10_1002_pssb_201900068
crossref_primary_10_1039_D3NH00180F
crossref_primary_10_7567_1882_0786_ab0ef7
crossref_primary_10_1002_aelm_201900020
crossref_primary_10_1021_acs_chemrev_2c00171
crossref_primary_10_1002_adom_202002030
crossref_primary_10_1002_admt_202202194
crossref_primary_10_1088_1361_6528_ac3f14
crossref_primary_10_1002_qute_201900104
crossref_primary_10_1016_j_jallcom_2024_174926
crossref_primary_10_35848_1347_4065_ab7f59
crossref_primary_10_1038_nmat4292
crossref_primary_10_1038_s41598_021_98418_6
crossref_primary_10_1088_1674_1056_ab90e7
crossref_primary_10_1021_acsami_5b01825
crossref_primary_10_1063_5_0126392
crossref_primary_10_7567_1882_0786_ab37aa
crossref_primary_10_1109_ACCESS_2023_3241146
crossref_primary_10_1145_3546071
crossref_primary_10_3390_nano13040671
crossref_primary_10_1002_aelm_202200810
crossref_primary_10_1063_5_0030016
crossref_primary_10_1002_adfm_201803380
crossref_primary_10_1021_acs_inorgchem_7b00188
crossref_primary_10_1016_j_jallcom_2019_05_114
crossref_primary_10_1109_TED_2023_3234881
crossref_primary_10_1038_ncomms5314
crossref_primary_10_1038_s41467_019_08642_y
crossref_primary_10_1039_D2NH00568A
crossref_primary_10_1016_j_jallcom_2024_174804
crossref_primary_10_1007_s11664_023_10863_3
crossref_primary_10_3390_nano11010020
crossref_primary_10_3390_ma16052066
crossref_primary_10_1002_adfm_202003419
crossref_primary_10_1021_acsnano_9b08986
crossref_primary_10_1021_acsami_0c01775
crossref_primary_10_1002_aelm_201800556
crossref_primary_10_1016_j_diamond_2018_05_005
crossref_primary_10_1080_14686996_2017_1332455
crossref_primary_10_1021_acsaelm_0c00341
crossref_primary_10_3390_app9030564
crossref_primary_10_1063_1_5018513
crossref_primary_10_1088_1361_6528_aa7af5
crossref_primary_10_1126_sciadv_abn3243
crossref_primary_10_1002_aisy_202000141
crossref_primary_10_1063_1_4906332
crossref_primary_10_1063_5_0023925
crossref_primary_10_1088_1361_6528_aab177
crossref_primary_10_3390_nano13081325
crossref_primary_10_1002_aelm_201800429
crossref_primary_10_1038_s41598_020_79452_2
crossref_primary_10_1039_D0RA06389D
crossref_primary_10_1002_adom_201800360
crossref_primary_10_1002_aelm_201600195
crossref_primary_10_1063_5_0136403
crossref_primary_10_35848_1347_4065_acbc2a
crossref_primary_10_1002_aisy_201900167
crossref_primary_10_1016_j_jmst_2022_02_021
crossref_primary_10_1021_acsaelm_2c00393
crossref_primary_10_1002_aelm_202001142
crossref_primary_10_1557_mrs_2019_201
crossref_primary_10_1126_science_aay0291
crossref_primary_10_1002_adom_201801782
crossref_primary_10_1002_pssr_202000394
crossref_primary_10_1080_02670836_2017_1341723
crossref_primary_10_1021_acsaelm_0c00002
crossref_primary_10_1038_s41524_021_00655_w
crossref_primary_10_35848_1347_4065_abdabc
crossref_primary_10_1002_adma_202202059
crossref_primary_10_1364_OE_517313
crossref_primary_10_1002_qute_202100027
crossref_primary_10_1038_s41928_018_0092_2
crossref_primary_10_1038_ncomms10482
crossref_primary_10_1002_aisy_202000161
crossref_primary_10_1039_C6NR00690F
crossref_primary_10_1063_1_4916726
crossref_primary_10_3390_mi12070791
crossref_primary_10_3389_fnins_2019_00593
crossref_primary_10_1088_1361_6528_aa9a18
crossref_primary_10_1080_14686996_2023_2188878
crossref_primary_10_1134_S1063739723700555
crossref_primary_10_1126_sciadv_aau5759
crossref_primary_10_1145_3097264
crossref_primary_10_1038_s41467_017_01481_9
crossref_primary_10_1016_j_aej_2022_09_040
crossref_primary_10_1088_1361_6528_28_3_035202
crossref_primary_10_1088_1361_6463_ab35b7
crossref_primary_10_1088_1361_6463_ab7794
crossref_primary_10_1147_JRD_2019_2947008
crossref_primary_10_1021_acs_chemmater_5b02011
crossref_primary_10_1007_s11664_021_09328_2
crossref_primary_10_1145_3462329
crossref_primary_10_1021_acsami_8b02100
crossref_primary_10_1088_2634_4386_ac24f5
crossref_primary_10_1109_TNANO_2016_2525039
crossref_primary_10_3390_polym14152995
crossref_primary_10_7567_JJAP_57_035202
crossref_primary_10_1002_aelm_201800229
crossref_primary_10_7567_1347_4065_ab41b7
crossref_primary_10_1016_j_surfin_2022_101891
crossref_primary_10_1002_adma_201705587
crossref_primary_10_1021_acsami_2c20905
crossref_primary_10_1080_23746149_2016_1259585
crossref_primary_10_1002_pssb_201800583
crossref_primary_10_1088_1361_6528_ac7241
crossref_primary_10_1038_s41467_022_34178_9
crossref_primary_10_1021_acs_nanolett_1c04286
crossref_primary_10_1002_aisy_202000196
crossref_primary_10_1142_S1793351X20500063
crossref_primary_10_1145_3451212
crossref_primary_10_1364_OE_505588
crossref_primary_10_35848_1347_4065_acb77c
crossref_primary_10_1109_JETCAS_2018_2835809
crossref_primary_10_1116_6_0002129
crossref_primary_10_1038_s41598_019_46226_4
crossref_primary_10_1109_ACCESS_2021_3072688
Cites_doi 10.1038/nmat3054
10.1038/354515a0
10.1007/978-1-4613-1639-8
10.1103/PhysRevLett.21.1450
10.1145/359576.359579
10.1109/TCT.1971.1083337
10.1063/1.1834718
10.1063/1.2931951
10.1002/adfm.201102940
10.1143/JJAP.43.4695
10.1038/nature08812
10.1007/s12559-008-9003-6
10.1038/nmat2009
10.1002/adma.200900375
10.1021/nl902777z
10.1126/science.1201938
10.1038/nature06932
10.1002/adma.201004255
10.1109/TED.2009.2016397
10.1002/adfm.201200244
10.3389/fnins.2011.00073
10.1002/adma.201101060
10.1109/TED.2009.2016398
10.1080/00018732.2010.544961
10.7551/mitpress/1250.001.0001
10.1109/JPROC.2010.2070050
10.1002/adma.201103053
10.1063/1.1875742
10.1021/nl201040y
10.1016/j.jnoncrysol.2007.09.111
10.1016/j.sse.2010.04.020
10.1021/nl104537c
10.1166/sam.2011.1177
10.1109/TNANO.2010.2089638
10.1063/1.3506584
10.1126/science.1221561
10.1109/TNANO.2005.861400
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
24P
WIN
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201202383
DatabaseName Istex
Wiley Online Library (Open Access Collection)
Wiley Online Library (Open Access Collection)
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library (Open Access Collection)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 2254
ExternalDocumentID 10_1002_adfm_201202383
ADFM201202383
ark_67375_WNG_RLDQ9HR9_T
Genre article
GrantInformation_xml – fundername: Funded Access
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
24P
AITYG
HGLYW
OIG
WIN
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4003-1bda7f0c8e9f87c8ff21d28996a0b1d246bd92f058394d0c2c636867126c1163
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Aug 16 01:44:14 EDT 2024
Fri Aug 23 00:33:22 EDT 2024
Sat Aug 24 00:53:56 EDT 2024
Wed Jan 17 05:01:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4003-1bda7f0c8e9f87c8ff21d28996a0b1d246bd92f058394d0c2c636867126c1163
Notes ArticleID:ADFM201202383
Funded Access
istex:395BA35EBA779D09AD13B8C70E4A602DBEE0BCFA
ark:/67375/WNG-RLDQ9HR9-T
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201202383
PQID 1439764754
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1439764754
crossref_primary_10_1002_adfm_201202383
wiley_primary_10_1002_adfm_201202383_ADFM201202383
istex_primary_ark_67375_WNG_RLDQ9HR9_T
PublicationCentury 2000
PublicationDate May 13, 2013
PublicationDateYYYYMMDD 2013-05-13
PublicationDate_xml – month: 05
  year: 2013
  text: May 13, 2013
  day: 13
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References M. Wuttig, N. Yamada, Nat. Mater. 2007, 6, 824.
R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, H. Tanida, Nano Lett. 2010, 10, 414.
S. J. Hudgens, J. Non-Cryst. Solids 2008, 354, 2748-2752.
M. Mahowald, R. Douglas, Nature 1991, 354, 515.
S.-C. Liu, J. Kramer, G. Indiveri, T. Delbrück, R. Douglas, Analog VLSI: Circuits and Principles, MIT Press, Cambridge, MA 2002.
D. Ielmini, D. Sharma, S. Lavizzari, A. L. Lacaita, IEEE Trans. Electron Devices 2009, 56, 1070.
A. Redaelli, A. Pirovano, A. Benvenuti, A. L. Lacaita, J. Appl. Phys. 2008, 103, 111101.
S. Gidon, O. Lemonnier, B. Rolland, O. Bichet, O. Dressler, Appl. Phys. Lett. 2004, 85, 6392.
T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, M. Aono, Nat. Mater. 2011, 10, 591.
S. Lavizzari, D. Ielmini, D. Sharma, A. L. Lacaita, IEEE Trans. Electron Devices 2009, 56, 1078.
D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, S. R. Elliott, Science 2012, 336, 1566.
D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80.
S. R. Ovshinsky, Phys. Rev. Lett. 1968, 21, 1450.
G. Indiveri, E. Chicca, R. J. Douglas, Cognit. Comp. 2009, 1, 119.
K. K. Likharev, Sci. Adv. Mater. 2011, 3, 322.
C. Mead, Analog VLSI and Neural Systems, Adison-Wesley, Chicago 1989.
G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Front. Neurosci. 2011, 5, 73.
F. Xiong, A. D. Liao, D. Estrada, E. Pop, Science 2011, 332, 568.
M. Ziegler, R. Soni, T. Patelczyk, M. Ignatove, T. Bartsch, P. Meuffles, H. Kohlstedt, Adv. Funct. Mater. 2012, 11, 2744.
C. D. Wright, M. Armand, M. M. Aziz, IEEE Trans. Nanotechnol. 2006, 1, 50.
C. D. Wright, L. Wang, P. Shah, M. M. Aziz, E. Varesi, R. Bez, M. Moroni, F. Cazzaniga, IEEE Trans. Nanotechnol. 2011, 10, 900.
C. D. Wright, P. Shah, L. Wang, M. M. Aziz, A. Sebastian, H. Pozidis, Appl. Phys. Lett. 2010, 97, 173104.
H.-S. P. Wong, S. Raoux, S. B. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, H. Asheghi, K. E. Goodson, Proc. IEEE 2010, 98, 2201.
J. von Neumann in The Collected Works for John von Neumann, (Ed: A. H. Taub), Pergamon Press, Oxford, UK 1963.
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O'Brien, Nature 2010, 464, 45.
Y. V. Pershin, M. Di Ventra, Adv. Phys. 2011, 60, 145.
D. Lencer, M. Salinga, M. Wuttig, Adv. Mater. 2011, 23, 2030.
K. Ohara, L. Temleitner, K. Sugimoto, S. Kohara, T. Matsunaga, L. Pusztai, M. Itou, H. Ohsumi, R. Kojima, N. Yamada, T. Usuki, A. Fujiwara, M. Takata, Adv. Funct. Mater. 2012, 22, 2251.
S. R. Ovshinsky, Jpn. J. Appl. Phys. 2004, 43, 4695.
N. Papandreou, A. Pantazi, A. Sebastian, E. Eleftheriou, M. Breitwisch, C. Lam, H. Pozidis, Solid-State Electron. 2010, 54, 991.
R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632.
Y. Jung, S.-W. Nam, R. Agarwal, Nano Lett. 2011, 11, 1364.
L. O. Chua, IEEE Trans. Circuit Theory 1971, 18, 507.
C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, R. J. Hicken, Adv. Mater. 2011, 23, 3408.
M. Suri, V. Sousa, L. Perniola, D. Vuillaume, B. DeSalvo, Int. Conf. Neural Networks (IJCNN) 2011, 619 DOI: 10.1109/IJCNN.2011.6033278.
N. Papandreou, A. Sebastian, A. Pantazi, M. Breitwisch, C. Lam, H. Pozidis, E. Eleftheriou, Proc. IEDM 2011, DOI: 10.1109/IMW.2011.5873231.
A. Z. Steig, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. Aono, J. K. Gimzewski, Adv. Mater. 2012, 24, 286.
D. Kuzum, R. G. D. Jeyasingh, H.-S. P. Wong, Proc. IEDM 2011, DOI: 10.1109/IEDM.2011.6131643.
S. R. Ovshinsky, B. Pashmakov, MRS Proc. 2004, 803.
J. Bachus, Commun. ACM 1978, 21, 613.
D. Kuzum, R. G. D. Jeyasingh, B. Lee, H.-S. P. Wong, Nano Lett. 2012, 12, 2179.
D.-H. Kim, F. Merget, M. Laurenzis, P. H. Bolivar, H. Kurz, J. Appl. Phys. 2005, 97, 083538.
2004; 43
2004; 85
2010; 10
2010; 98
2010; 54
2010; 97
2009; 21
1991; 354
2011; 619
2011
2011; 60
2010; 464
2011; 11
2011; 10
2008; 103
2006; 1
2002
2004; 803
2011; 3
2012; 12
2012; 11
2011; 5
1968; 21
2011; 332
2009; 56
1978; 21
1971; 18
1963
2007; 6
2005; 97
2011; 23
2008; 453
2008; 354
2012; 24
2012; 336
2009; 1
2012; 22
1989
e_1_2_7_5_2
e_1_2_7_4_2
Papandreou N. (e_1_2_7_32_2) 2011
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_10_2
e_1_2_7_44_2
von Neumann J. (e_1_2_7_2_2) 1963
e_1_2_7_26_2
e_1_2_7_28_2
e_1_2_7_29_2
Kuzum D. (e_1_2_7_20_2) 2011
Ovshinsky S. R. (e_1_2_7_27_2) 2004; 803
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_33_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
Suri M. (e_1_2_7_21_2) 2011; 619
References_xml – volume: 336
  start-page: 1566
  year: 2012
  publication-title: Science
– volume: 10
  start-page: 414
  year: 2010
  publication-title: Nano Lett.
– volume: 21
  start-page: 613
  year: 1978
  publication-title: Commun. ACM
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 97
  start-page: 173104
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 3408
  year: 2011
  publication-title: Adv. Mater.
– year: 1989
– volume: 98
  start-page: 2201
  year: 2010
  publication-title: Proc. IEEE
– volume: 43
  start-page: 4695
  year: 2004
  publication-title: Jpn. J. Appl. Phys.
– volume: 354
  start-page: 515
  year: 1991
  publication-title: Nature
– volume: 60
  start-page: 145
  year: 2011
  publication-title: Adv. Phys.
– volume: 85
  start-page: 6392
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 103
  start-page: 111101
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: 2632
  year: 2009
  publication-title: Adv. Mater.
– volume: 12
  start-page: 2179
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 73
  year: 2011
  publication-title: Front. Neurosci.
– volume: 354
  start-page: 2748
  year: 2008
  end-page: 2752
  publication-title: J. Non‐Cryst. Solids
– volume: 803
  year: 2004
  publication-title: MRS Proc.
– volume: 56
  start-page: 1078
  year: 2009
  publication-title: IEEE Trans. Electron Devices
– volume: 3
  start-page: 322
  year: 2011
  publication-title: Sci. Adv. Mater.
– volume: 10
  start-page: 591
  year: 2011
  publication-title: Nat. Mater.
– volume: 11
  start-page: 2744
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 1070
  year: 2009
  publication-title: IEEE Trans. Electron Devices
– volume: 18
  start-page: 507
  year: 1971
  publication-title: IEEE Trans. Circuit Theory
– volume: 619
  year: 2011
  publication-title: Int. Conf. Neural Networks (IJCNN)
– year: 1963
– volume: 23
  start-page: 2030
  year: 2011
  publication-title: Adv. Mater.
– volume: 332
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 21
  start-page: 1450
  year: 1968
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 900
  year: 2011
  publication-title: IEEE Trans. Nanotechnol.
– volume: 464
  start-page: 45
  year: 2010
  publication-title: Nature
– year: 2002
– volume: 6
  start-page: 824
  year: 2007
  publication-title: Nat. Mater.
– year: 2011
  publication-title: Proc. IEDM
– volume: 22
  start-page: 2251
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 97
  start-page: 083538
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: 50
  year: 2006
  publication-title: IEEE Trans. Nanotechnol.
– volume: 11
  start-page: 1364
  year: 2011
  publication-title: Nano Lett.
– volume: 54
  start-page: 991
  year: 2010
  publication-title: Solid‐State Electron.
– volume: 24
  start-page: 286
  year: 2012
  publication-title: Adv. Mater.
– volume: 1
  start-page: 119
  year: 2009
  publication-title: Cognit. Comp.
– ident: e_1_2_7_9_2
  doi: 10.1038/nmat3054
– ident: e_1_2_7_39_2
  doi: 10.1038/354515a0
– ident: e_1_2_7_40_2
  doi: 10.1007/978-1-4613-1639-8
– ident: e_1_2_7_13_2
  doi: 10.1103/PhysRevLett.21.1450
– year: 2011
  ident: e_1_2_7_32_2
  publication-title: Proc. IEDM
  contributor:
    fullname: Papandreou N.
– ident: e_1_2_7_3_2
  doi: 10.1145/359576.359579
– ident: e_1_2_7_4_2
  doi: 10.1109/TCT.1971.1083337
– ident: e_1_2_7_18_2
  doi: 10.1063/1.1834718
– ident: e_1_2_7_26_2
  doi: 10.1063/1.2931951
– ident: e_1_2_7_24_2
  doi: 10.1002/adfm.201102940
– ident: e_1_2_7_28_2
  doi: 10.1143/JJAP.43.4695
– ident: e_1_2_7_11_2
  doi: 10.1038/nature08812
– ident: e_1_2_7_41_2
  doi: 10.1007/s12559-008-9003-6
– ident: e_1_2_7_15_2
  doi: 10.1038/nmat2009
– ident: e_1_2_7_7_2
  doi: 10.1002/adma.200900375
– ident: e_1_2_7_22_2
  doi: 10.1021/nl902777z
– volume: 803
  year: 2004
  ident: e_1_2_7_27_2
  publication-title: MRS Proc.
  contributor:
    fullname: Ovshinsky S. R.
– ident: e_1_2_7_38_2
  doi: 10.1126/science.1201938
– ident: e_1_2_7_5_2
  doi: 10.1038/nature06932
– ident: e_1_2_7_14_2
  doi: 10.1002/adma.201004255
– year: 2011
  ident: e_1_2_7_20_2
  publication-title: Proc. IEDM
  contributor:
    fullname: Kuzum D.
– ident: e_1_2_7_33_2
  doi: 10.1109/TED.2009.2016397
– ident: e_1_2_7_8_2
  doi: 10.1002/adfm.201200244
– ident: e_1_2_7_42_2
  doi: 10.3389/fnins.2011.00073
– volume: 619
  year: 2011
  ident: e_1_2_7_21_2
  publication-title: Int. Conf. Neural Networks (IJCNN)
  contributor:
    fullname: Suri M.
– ident: e_1_2_7_29_2
  doi: 10.1002/adma.201101060
– ident: e_1_2_7_34_2
  doi: 10.1109/TED.2009.2016398
– ident: e_1_2_7_6_2
  doi: 10.1080/00018732.2010.544961
– ident: e_1_2_7_43_2
  doi: 10.7551/mitpress/1250.001.0001
– ident: e_1_2_7_23_2
  doi: 10.1109/JPROC.2010.2070050
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.201103053
– ident: e_1_2_7_30_2
  doi: 10.1063/1.1875742
– ident: e_1_2_7_19_2
  doi: 10.1021/nl201040y
– ident: e_1_2_7_25_2
  doi: 10.1016/j.jnoncrysol.2007.09.111
– ident: e_1_2_7_31_2
  doi: 10.1016/j.sse.2010.04.020
– ident: e_1_2_7_37_2
  doi: 10.1021/nl104537c
– ident: e_1_2_7_12_2
  doi: 10.1166/sam.2011.1177
– ident: e_1_2_7_17_2
  doi: 10.1109/TNANO.2010.2089638
– ident: e_1_2_7_1_2
– ident: e_1_2_7_16_2
  doi: 10.1063/1.3506584
– ident: e_1_2_7_35_2
  doi: 10.1126/science.1221561
– ident: e_1_2_7_36_2
  doi: 10.1109/TNANO.2005.861400
– volume-title: The Collected Works for John von Neumann
  year: 1963
  ident: e_1_2_7_2_2
  contributor:
    fullname: von Neumann J.
– ident: e_1_2_7_44_2
SSID ssj0017734
Score 2.5974066
Snippet Historically, the application of phase‐change materials and devices has been limited to the provision of non‐volatile memories. Recently, however, the...
Abstract Historically, the application of phase‐change materials and devices has been limited to the provision of non‐volatile memories. Recently, however, the...
Historically, the application of phase-change materials and devices has been limited to the provision of non-volatile memories. Recently, however, the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 2248
SubjectTerms Arithmetic
chalcogenides
Computation
Devices
Electronics
Nanomaterials
Nanostructure
neuromorphic
non-von Neumann
phase-change computing
phase-change materials
phase-change memories
Position (location)
Synapses
Title Beyond von-Neumann Computing with Nanoscale Phase-Change Memory Devices
URI https://api.istex.fr/ark:/67375/WNG-RLDQ9HR9-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201202383
https://search.proquest.com/docview/1439764754
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVYeWEPG59aYVRGQvCUNnEcJ36sKF0FtCpVEX2zbMfWpErp1A8EPO0n8Bv5JfO126zlBWl7SyRbTnzs62P73nMRepsVxMa5tpFhnEZUQpoXzlXEGJeU2UxLn0VhOGKDb_TTLJvtRfEHfYj6wA1mhrfXMMGlWnVuRUNlaSGSPIH83wXIfYKaHrCiSa0fleR5uFZmCTh4JbOdamNMOofVD1alh9DBPw8o5z5x9StP_xTJ3TcHh5N5e7NWbf37HznH-_zUY3SypaW4G8bRE_TAVE_R8Z5Y4TP0OQS74B-L6u_1n5GB0_8Kh6wQrgCGE13sjPVi5WA3eHzp1kdXMIQv4CF49P7CPeMt03M07X-cfhhE21QMkabee02VMrexLgy3Ra4La0lSwl6NyVi5J8pUyR3qmeNbtIw10SxlIJ1HmE4c5XuBGtWiMmcIU7dFks6oKisZlaks0rgsHFBZqnLDDW2i9zskxFUQ3BBBWpkI6B1R904TvfNA1cXkcg5uankmvo8uxORL7ysfTLiYNtGbHZLCTR64EZGVWWxWbt8DdIzmmWuWeFz-06bo9vrD-u3lXSq9Qo-IT6mRRUl6jhrr5ca8dsRmrVroiNBxyw_hG1e08NU
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA3aLtSF-MT6jCC6GjqPTGayLNZa7YNaKnYXMjMJgjAjfYju_AS_0S8xN9OO7UpwNwMJgZPk5uTm3nMRuvBDV9lBrCxJGbGIgDIvjEUWpUwQqvxYmCoKnS5tPpL7oT-PJoRcmFwfonC4wc4w9ho2ODikq7-qoSJRkEruQAHw0FtFZQJqcCDuTHrFQ0IQ5A_L1IEQL2c412203epy_6VzqQwQvy-RzkXqas6exhbanJFGXMtneRutyHQHbSxICe6iVp6Kgt-y9PvzqyvBN5_ivGaDboDB34q1Kc3GelIk7j3r00s3zJMLcAfibT9wXRq7sYcGjZvBddOaFUqwYmJiy6JEBMqOQ8lUGMShUq6TwE2KCjvSX4RGCdNz4ms2RBI7dmPqURC2c2nsaEK2j0pplsoDhIm-wAht8iIlKBGeCD07CTWIvhcFkklSQVdzlPhrLofBc-FjlwOevMCzgi4NiEUzMXqBILLA50_dW95v1x9Ys8_4oILO5yhzvbThvUKkMpuO9a0EyBIJfD2sa-D_Y0xeqzc6xd_hfzqdobXmoNPm7btu6witu6b4hW853jEqTUZTeaIpyCQ6NYvsBzGK0kg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5qQfQgPrE-I4ielu4jm90cxVrro6VKxd5CdjdBELbSh-jNn-Bv9Jc4k7VrexK87UJC4Esy8yWZ-YaQ4zD2jRulxtFcMIcpLPMiROJwLhTjJkyVraLQavPmA7vuhb2pLP5CH6K8cMOdYe01bvCXzNR-RUNVZjCT3MP633EwTyqMA31AbWfWKd8Roqh4V-YeRnh5vYlso-vXZvvPuKUKIvw2wzmnmat1PY1VsvLDGelZMclrZE7n62R5Sklwg9wUmSj0tZ9_fXy2NV7N57Qo2QANKF63UrCk_SHMiaadJ3Be0LDILaAtDLd9p3VtzcYm6TYuuudN56dOgpMyG1qWZCoybhprYeIojY3xvQwPUly5CXwxnmQCpiQEMsQyN_VTHnDUtfN56gEf2yILeT_X24QyOL8osHiJUZypQMWBm8UAYhgkkRaaVcnpBCX5UqhhyEL32JeIpyzxrJITC2LZTA2eMYYsCuVj-1Le39bvRPNeyG6VHE1QlrCy8blC5bo_HsKhBLkSi0IY1rfw_zGmPKs3WuXfzn86HZLFTr0hb6_aN7tkybelL0LHC_bIwmgw1vtAQEbJgV1j3wSz0XE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+von%E2%80%90Neumann+Computing+with+Nanoscale+Phase%E2%80%90Change+Memory+Devices&rft.jtitle=Advanced+functional+materials&rft.au=Wright%2C+C.+David&rft.au=Hosseini%2C+Peiman&rft.au=Diosdado%2C+Jorge+A.+Vazquez&rft.date=2013-05-13&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=23&rft.issue=18&rft.spage=2248&rft.epage=2254&rft_id=info:doi/10.1002%2Fadfm.201202383&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201202383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon