Friction deposition of titanium particle reinforced aluminum matrix composites

Friction deposition is one of the promising new techniques for additive manufacturing. In this work, an aluminum matrix composite reinforced with titanium particles was successfully friction deposited. The multi-layer composite friction deposits showed well-bonded layers, very fine grain size, and u...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 653; pp. 71 - 83
Main Authors Karthik, G.M., Ram, G.D. Janaki, Kottada, Ravi Sankar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Friction deposition is one of the promising new techniques for additive manufacturing. In this work, an aluminum matrix composite reinforced with titanium particles was successfully friction deposited. The multi-layer composite friction deposits showed well-bonded layers, very fine grain size, and uniformly distributed titanium particles. While the reinforcement/matrix interfaces showed no reaction products, the layer interfaces showed thin intermetallic bands. These brittle intermetallic bands were found to strongly affect the ductility of the multi-layer composite friction deposits in the build direction. However, the composite friction deposits performed satisfactorily in compression tests as well as in single-layer tensile tests.
AbstractList Friction deposition is one of the promising new techniques for additive manufacturing. In this work, an aluminum matrix composite reinforced with titanium particles was successfully friction deposited. The multi-layer composite friction deposits showed well-bonded layers, very fine grain size, and uniformly distributed titanium particles. While the reinforcement/matrix interfaces showed no reaction products, the layer interfaces showed thin intermetallic bands. These brittle intermetallic bands were found to strongly affect the ductility of the multi-layer composite friction deposits in the build direction. However, the composite friction deposits performed satisfactorily in compression tests as well as in single-layer tensile tests.
Author Kottada, Ravi Sankar
Ram, G.D. Janaki
Karthik, G.M.
Author_xml – sequence: 1
  givenname: G.M.
  surname: Karthik
  fullname: Karthik, G.M.
– sequence: 2
  givenname: G.D. Janaki
  surname: Ram
  fullname: Ram, G.D. Janaki
  email: jram@iitm.ac.in
– sequence: 3
  givenname: Ravi Sankar
  surname: Kottada
  fullname: Kottada, Ravi Sankar
BookMark eNp9kLFOwzAQhi1UJNrCCzBlZEmw4zhOJBZUUUCqYIHZcpyz5Cqxg-0ieHscysTQ5XyS7zvd_63QwjoLCF0TXBBM6tt9MQaQRYkJK0hZYMzO0JI0nOZVS-sFWuK2JDnDLb1AqxD2GGNSYbZEL1tvVDTOZj1MLpjf1uksmiitOYzZJH00aoDMg7HaeQV9JofDaGz6HGX05itTbvxlIVyicy2HAFd_7xq9bx_eNk_57vXxeXO_yxVt25hr1VFdcQ51ui5V2qUQkmhcSdlrIK1UrNGK06rjgDvW4ZIBoxxa2rWMdHSNbo57J-8-DhCiGE1QMAzSgjsEQXhTkybt5mm0OY4q70LwoIVK2eac0UszCILFrFDsxaxQzAoFKUVSmNDyHzp5M0r_fRq6O0KQ8n8a8CIoAzZ5Mx5UFL0zp_AfsDSOmA
CitedBy_id crossref_primary_10_1007_s12540_020_00931_2
crossref_primary_10_1515_mt_2022_0235
crossref_primary_10_1016_j_matpr_2018_10_127
crossref_primary_10_1016_j_matpr_2018_10_203
crossref_primary_10_1557_s43578_022_00701_3
crossref_primary_10_3390_inventions9060116
crossref_primary_10_1177_16878140211034431
crossref_primary_10_3390_aerospace9100565
crossref_primary_10_1088_2053_1591_ab9663
crossref_primary_10_1016_j_jmrt_2022_07_158
crossref_primary_10_1016_j_jallcom_2020_155411
crossref_primary_10_1016_j_cirpj_2020_12_004
crossref_primary_10_1016_j_coco_2018_12_011
crossref_primary_10_1380_ejssnt_2019_83
crossref_primary_10_1088_2053_1591_abd13b
crossref_primary_10_1016_j_jmatprotec_2017_02_016
crossref_primary_10_3390_app131810255
crossref_primary_10_1007_s12008_024_01961_5
crossref_primary_10_1016_j_jmrt_2023_04_149
crossref_primary_10_1590_1980_5373_mr_2017_0039
crossref_primary_10_1080_02670844_2019_1665279
crossref_primary_10_1080_01694243_2023_2287362
crossref_primary_10_1016_j_mfglet_2023_08_093
crossref_primary_10_1016_j_jmrt_2024_05_158
crossref_primary_10_3390_ma14206018
crossref_primary_10_1080_10408436_2018_1490250
crossref_primary_10_1007_s11665_021_06488_4
crossref_primary_10_1080_01694243_2022_2152405
crossref_primary_10_1016_j_mseb_2020_114832
crossref_primary_10_1016_j_msea_2017_01_022
crossref_primary_10_1016_j_matdes_2016_09_049
crossref_primary_10_1016_j_jmatprotec_2025_118730
crossref_primary_10_1115_1_4050924
crossref_primary_10_1016_j_matpr_2020_04_091
crossref_primary_10_1088_2053_1591_aadb2a
crossref_primary_10_1016_j_matchar_2017_01_016
crossref_primary_10_1016_j_scriptamat_2021_113722
crossref_primary_10_1177_09544062221101754
crossref_primary_10_1007_s40194_024_01839_w
crossref_primary_10_1016_j_jmrt_2024_03_237
crossref_primary_10_1016_j_msea_2016_10_038
crossref_primary_10_1016_S1003_6326_22_66086_2
crossref_primary_10_1016_j_jmrt_2025_01_181
crossref_primary_10_1115_1_4066040
crossref_primary_10_1007_s40962_018_0253_0
crossref_primary_10_1016_j_matpr_2017_11_671
crossref_primary_10_1016_j_matpr_2020_01_318
crossref_primary_10_1088_2051_672X_aca5a3
crossref_primary_10_1016_j_jallcom_2025_178553
crossref_primary_10_1016_j_matpr_2022_04_020
crossref_primary_10_1016_j_msea_2022_144234
crossref_primary_10_1016_j_msea_2018_04_080
crossref_primary_10_1115_1_4055050
crossref_primary_10_1016_j_surfcoat_2017_09_050
crossref_primary_10_2139_ssrn_4855382
crossref_primary_10_3390_ma15082926
crossref_primary_10_1016_j_mtla_2020_100861
crossref_primary_10_1080_10426914_2020_1772480
crossref_primary_10_1016_j_jmatprotec_2019_116483
crossref_primary_10_1016_j_matlet_2021_130510
crossref_primary_10_1177_09544089221107755
crossref_primary_10_3390_ma14216396
crossref_primary_10_1016_j_jallcom_2018_04_282
Cites_doi 10.1016/S0022-5096(97)00038-0
10.1016/j.matchar.2013.10.009
10.1016/S1359-6462(00)00480-2
10.1179/1743284714Y.0000000644
10.1016/S0266-3538(03)00215-X
10.1016/j.msea.2010.10.035
10.1016/j.scriptamat.2005.09.020
10.1016/j.msea.2014.09.108
10.1016/S0025-5408(01)00772-3
10.2464/jilm.49.499
10.1007/s11665-013-0605-0
10.1007/s11663-013-0003-x
10.1016/j.msea.2006.10.156
10.1016/j.msea.2011.09.066
10.1016/j.matdes.2014.09.082
10.1016/j.msea.2015.05.015
10.1504/IJRAPIDM.2012.046574
10.1016/j.matdes.2013.05.059
10.1016/j.msea.2015.08.026
10.1016/j.msea.2003.11.011
10.1016/j.actamat.2007.07.039
10.1016/S0925-8388(01)01841-2
10.1016/j.surfcoat.2012.07.001
10.1016/S0925-8388(02)00413-9
10.1016/j.mser.2005.07.001
10.1016/j.corsci.2012.04.050
10.1016/j.jmatprotec.2013.12.008
10.1016/j.compositesa.2006.06.014
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7QF
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2015.12.005
DatabaseName CrossRef
Aluminium Industry Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
EndPage 83
ExternalDocumentID 10_1016_j_msea_2015_12_005
S0921509315306973
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SSH
WUQ
7QF
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c399t-fcb3f477e69367e63b016a1f04aadfe19ac58fc734b7e0b5b025e537e93b951b3
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Tue Aug 05 10:51:49 EDT 2025
Tue Jul 01 03:29:21 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Fri Feb 23 02:27:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metal–metal composites
Friction deposition
Additive manufacturing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-fcb3f477e69367e63b016a1f04aadfe19ac58fc734b7e0b5b025e537e93b951b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1786183677
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1786183677
crossref_citationtrail_10_1016_j_msea_2015_12_005
crossref_primary_10_1016_j_msea_2015_12_005
elsevier_sciencedirect_doi_10_1016_j_msea_2015_12_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-20
PublicationDateYYYYMMDD 2016-01-20
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-20
  day: 20
PublicationDecade 2010
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Puli, Janaki Ram (bib10) 2012; 207
Ho, Gupta, Srivatsan (bib22) 2004; 369
Gandra, Vigarinho, Pereira, Miranda, Velhinho, Vilaça (bib13) 2013; 52
Pérez, Garcés, Adeva (bib25) 2004; 64
Jata, Semiatin (bib35) 2000; 43
Thakur, Kong, Gupta (bib28) 2007; 452–453
Dilip, Janaki Ram (bib2) 2014; 45
Palanivel, Nelaturu, Glass, Mishra (bib3) 2015; 65
P.L. Threadgill, M.J. Russell, Friction welding of near net shape preforms in Ti–6Al–4V, in: Proceedings of the 11th World Conference on Titanium (Ti-2007) (JIMIC-5), Japan, June, 2007.
Everette, Arsenault (bib16) 1991
Bauri, Yadav, Shyam Kumar, Balaji (bib33) 2015; 620
Zhong, Wong, Gupta (bib27) 2007; 55
Dilip, Janaki Ram, Stucker (bib1) 2012; 3
Fridlyander (bib15) 1995
Gandra, Krohn, Miranda, Vilaça, Quintino, dos Santos (bib11) 2014; 214
Dilip, Janaki Ram (bib8) 2013; 22
Hassan, Gupta (bib21) 2002; 345
Dilip, Babu, Varadha Rajan, Rafi, Janaki Ram, Stucker (bib6) 2012; 28
Sankaranarayanan, Jayalakshmi, Gupta (bib24) 2011; 530
Llorca, González (bib18) 1998; 46
Mostaghaci (bib17) 1989
Madhusudhan, Satya, Rao, Mohandas (bib14) 2009; 27
Hassan, Gupta (bib20) 2002; 37
Thakur, Gupta (bib23) 2007; 38
Dilip, Janaki Ram (bib7) 2013; 86
Humphreys, Hatherly (bib36) 2004
Yadav, Bauri (bib30) 2011; 528
Mishra, Ma (bib34) 2005; 50
Guo, Ni, Shen, Song (bib29) 2015; 639
Puli, Janaki Ram (bib9) 2012; 62
Shyam Kumar, Yadav, Bauri, Janaki Ram (bib32) 2015; 645
Shinoda, Li (bib12) 1999; 49
Xi, Chai, Zhang, Zhou (bib26) 2006; 54
Yadav, Bauri (bib31) 2015; 31
Hassan, Gupta (bib19) 2002; 335
K.T. Slattery, Structural assemblies and preforms therefor formed by linear friction welding. U.S. Patent# 7398911.
Shyam Kumar (10.1016/j.msea.2015.12.005_bib32) 2015; 645
Mostaghaci (10.1016/j.msea.2015.12.005_bib17) 1989
Puli (10.1016/j.msea.2015.12.005_bib10) 2012; 207
Everette (10.1016/j.msea.2015.12.005_bib16) 1991
Mishra (10.1016/j.msea.2015.12.005_bib34) 2005; 50
Shinoda (10.1016/j.msea.2015.12.005_bib12) 1999; 49
Llorca (10.1016/j.msea.2015.12.005_bib18) 1998; 46
10.1016/j.msea.2015.12.005_bib5
10.1016/j.msea.2015.12.005_bib4
Dilip (10.1016/j.msea.2015.12.005_bib8) 2013; 22
Zhong (10.1016/j.msea.2015.12.005_bib27) 2007; 55
Palanivel (10.1016/j.msea.2015.12.005_bib3) 2015; 65
Bauri (10.1016/j.msea.2015.12.005_bib33) 2015; 620
Sankaranarayanan (10.1016/j.msea.2015.12.005_bib24) 2011; 530
Hassan (10.1016/j.msea.2015.12.005_bib19) 2002; 335
Yadav (10.1016/j.msea.2015.12.005_bib31) 2015; 31
Fridlyander (10.1016/j.msea.2015.12.005_bib15) 1995
Ho (10.1016/j.msea.2015.12.005_bib22) 2004; 369
Yadav (10.1016/j.msea.2015.12.005_bib30) 2011; 528
Guo (10.1016/j.msea.2015.12.005_bib29) 2015; 639
Dilip (10.1016/j.msea.2015.12.005_bib6) 2012; 28
Thakur (10.1016/j.msea.2015.12.005_bib28) 2007; 452–453
Dilip (10.1016/j.msea.2015.12.005_bib2) 2014; 45
Madhusudhan (10.1016/j.msea.2015.12.005_bib14) 2009; 27
Hassan (10.1016/j.msea.2015.12.005_bib20) 2002; 37
Jata (10.1016/j.msea.2015.12.005_bib35) 2000; 43
Dilip (10.1016/j.msea.2015.12.005_bib7) 2013; 86
Pérez (10.1016/j.msea.2015.12.005_bib25) 2004; 64
Gandra (10.1016/j.msea.2015.12.005_bib11) 2014; 214
Gandra (10.1016/j.msea.2015.12.005_bib13) 2013; 52
Xi (10.1016/j.msea.2015.12.005_bib26) 2006; 54
Puli (10.1016/j.msea.2015.12.005_bib9) 2012; 62
Hassan (10.1016/j.msea.2015.12.005_bib21) 2002; 345
Thakur (10.1016/j.msea.2015.12.005_bib23) 2007; 38
Dilip (10.1016/j.msea.2015.12.005_bib1) 2012; 3
Humphreys (10.1016/j.msea.2015.12.005_bib36) 2004
References_xml – year: 1991
  ident: bib16
  article-title: Metal Matrix Composites: Processing and Interfaces
– volume: 345
  start-page: 246
  year: 2002
  end-page: 251
  ident: bib21
  article-title: Development of ductile magnesium composite materials using titanium as reinforcement
  publication-title: J. Alloy. Compd.
– volume: 369
  start-page: 302
  year: 2004
  end-page: 308
  ident: bib22
  article-title: The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates
  publication-title: Mater. Sci. Eng. A
– volume: 55
  start-page: 6338
  year: 2007
  end-page: 6344
  ident: bib27
  article-title: Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles
  publication-title: Acta Mater.
– reference: K.T. Slattery, Structural assemblies and preforms therefor formed by linear friction welding. U.S. Patent# 7398911.
– volume: 27
  start-page: 92
  year: 2009
  end-page: 99
  ident: bib14
  article-title: Friction surfacing of titanium alloy with aluminium metal matrix composite
  publication-title: Surf. Eng.
– volume: 65
  start-page: 934
  year: 2015
  end-page: 952
  ident: bib3
  article-title: Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy
  publication-title: Mater. Des.
– volume: 49
  start-page: 499
  year: 1999
  end-page: 503
  ident: bib12
  article-title: Surface modification of 5083 aluminum alloys using friction surfacing
  publication-title: J. Jpn. Inst. Light Met.
– volume: 639
  start-page: 269
  year: 2015
  end-page: 273
  ident: bib29
  article-title: Fabrication of Ti–Al
  publication-title: Mater. Sci. Eng. A
– volume: 28
  start-page: 1
  year: 2012
  end-page: 6
  ident: bib6
  article-title: Use of friction surfacing for additive manufacturing
  publication-title: Mater. Manuf. Process.
– volume: 335
  start-page: 10
  year: 2002
  end-page: 15
  ident: bib19
  article-title: Development of a novel magnesium/nickel composite with improved mechanical properties
  publication-title: J. Alloy. Compd.
– volume: 64
  start-page: 145
  year: 2004
  end-page: 151
  ident: bib25
  article-title: Mechanical properties of a Mg–10 (vol%) Ti composite
  publication-title: Compos. Sci. Technol.
– volume: 645
  start-page: 205
  year: 2015
  end-page: 212
  ident: bib32
  article-title: Effects of ball milling and particle size on microstructure and properties 5083 Al–Ni composites fabricated by friction stir processing
  publication-title: Mater. Sci. Eng. A
– volume: 3
  start-page: 56
  year: 2012
  end-page: 69
  ident: bib1
  article-title: Additive manufacturing with friction welding and friction deposition processes
  publication-title: Int. J. Rapid Manuf.
– volume: 46
  start-page: 1
  year: 1998
  end-page: 28
  ident: bib18
  article-title: Microstructural factors controlling the strength and ductility of particle-reinforced metal–matrix composites
  publication-title: J. Mech. Phys. Solids
– volume: 214
  start-page: 1062
  year: 2014
  end-page: 1093
  ident: bib11
  article-title: Friction surfacing – a review
  publication-title: J. Mater. Process. Technol.
– reference: P.L. Threadgill, M.J. Russell, Friction welding of near net shape preforms in Ti–6Al–4V, in: Proceedings of the 11th World Conference on Titanium (Ti-2007) (JIMIC-5), Japan, June, 2007.
– volume: 528
  start-page: 1326
  year: 2011
  end-page: 1333
  ident: bib30
  article-title: Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite
  publication-title: Mater. Sci. Eng. A
– volume: 37
  start-page: 377
  year: 2002
  end-page: 389
  ident: bib20
  article-title: Development of a novel magnesium-copper based composite with improved mechanical properties
  publication-title: Mater. Res. Bull.
– volume: 620
  start-page: 67
  year: 2015
  end-page: 75
  ident: bib33
  article-title: Tungsten particle reinforced Al 5083 composite with high strength and ductility
  publication-title: Mater. Sci. Eng. A
– volume: 207
  start-page: 310
  year: 2012
  end-page: 318
  ident: bib10
  article-title: Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel
  publication-title: Surf. Coat. Technol.
– volume: 54
  start-page: 19
  year: 2006
  end-page: 23
  ident: bib26
  article-title: Titanium alloy reinforced magnesium matrix composite with improved mechanical properties
  publication-title: Scr. Mater.
– volume: 45
  start-page: 182
  year: 2014
  end-page: 192
  ident: bib2
  article-title: Friction freeform fabrication of superalloy inconel 718: Prospects and problems
  publication-title: Met. Mater. Trans. B
– volume: 62
  start-page: 95
  year: 2012
  end-page: 103
  ident: bib9
  article-title: Corrosion performance of AISI 316L friction surfaced coatings
  publication-title: Corros. Sci.
– volume: 452–453
  start-page: 61
  year: 2007
  end-page: 69
  ident: bib28
  article-title: Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti+SiC) composites
  publication-title: Mater. Sci. Eng. A
– volume: 86
  start-page: 146
  year: 2013
  end-page: 151
  ident: bib7
  article-title: Microstructure evolution in aluminum alloy AA 2014 during multi-layer friction deposition
  publication-title: Mater. Charact.
– volume: 38
  start-page: 1010
  year: 2007
  end-page: 1018
  ident: bib23
  article-title: Improving mechanical performance of Al by using Ti as reinforcement
  publication-title: Compos. Part A
– year: 2004
  ident: bib36
  article-title: Recrystallization and Related Annealing Phenomena
– start-page: 258
  year: 1989
  end-page: 270
  ident: bib17
  article-title: Processing of Ceramics and Metal Matrix Composites
– volume: 530
  start-page: 149
  year: 2011
  end-page: 160
  ident: bib24
  article-title: Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium
  publication-title: Mater. Sci. Eng. A
– volume: 22
  start-page: 3034
  year: 2013
  end-page: 3042
  ident: bib8
  article-title: Microstructures and properties of friction freeform fabricated borated stainless steel
  publication-title: J. Mater. Eng. Perform.
– volume: 50
  start-page: 1
  year: 2005
  end-page: 78
  ident: bib34
  article-title: Friction stir welding and processing
  publication-title: Mater. Sci. Eng. R.
– volume: 52
  start-page: 373
  year: 2013
  end-page: 383
  ident: bib13
  article-title: Wear characterization of functionally graded Al–SiC composite coatings produced by Friction Surfacing
  publication-title: Mater. Des.
– volume: 31
  start-page: 494
  year: 2015
  end-page: 500
  ident: bib31
  article-title: Development of Cu particles and Cu core-shell particles reinforced Al composite
  publication-title: Mater. Sci. Technol.
– start-page: 51
  year: 1995
  end-page: 60
  ident: bib15
  article-title: Metal Matrix Composites
– volume: 43
  start-page: 743
  year: 2000
  end-page: 749
  ident: bib35
  article-title: Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys
  publication-title: Scr. Mater.
– volume: 28
  start-page: 1
  year: 2012
  ident: 10.1016/j.msea.2015.12.005_bib6
  article-title: Use of friction surfacing for additive manufacturing
  publication-title: Mater. Manuf. Process.
– volume: 46
  start-page: 1
  year: 1998
  ident: 10.1016/j.msea.2015.12.005_bib18
  article-title: Microstructural factors controlling the strength and ductility of particle-reinforced metal–matrix composites
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(97)00038-0
– volume: 86
  start-page: 146
  year: 2013
  ident: 10.1016/j.msea.2015.12.005_bib7
  article-title: Microstructure evolution in aluminum alloy AA 2014 during multi-layer friction deposition
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2013.10.009
– volume: 43
  start-page: 743
  year: 2000
  ident: 10.1016/j.msea.2015.12.005_bib35
  article-title: Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(00)00480-2
– ident: 10.1016/j.msea.2015.12.005_bib5
– volume: 31
  start-page: 494
  year: 2015
  ident: 10.1016/j.msea.2015.12.005_bib31
  article-title: Development of Cu particles and Cu core-shell particles reinforced Al composite
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000644
– volume: 64
  start-page: 145
  year: 2004
  ident: 10.1016/j.msea.2015.12.005_bib25
  article-title: Mechanical properties of a Mg–10 (vol%) Ti composite
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(03)00215-X
– volume: 528
  start-page: 1326
  year: 2011
  ident: 10.1016/j.msea.2015.12.005_bib30
  article-title: Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.10.035
– volume: 54
  start-page: 19
  year: 2006
  ident: 10.1016/j.msea.2015.12.005_bib26
  article-title: Titanium alloy reinforced magnesium matrix composite with improved mechanical properties
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2005.09.020
– volume: 620
  start-page: 67
  year: 2015
  ident: 10.1016/j.msea.2015.12.005_bib33
  article-title: Tungsten particle reinforced Al 5083 composite with high strength and ductility
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.09.108
– volume: 37
  start-page: 377
  year: 2002
  ident: 10.1016/j.msea.2015.12.005_bib20
  article-title: Development of a novel magnesium-copper based composite with improved mechanical properties
  publication-title: Mater. Res. Bull.
  doi: 10.1016/S0025-5408(01)00772-3
– volume: 49
  start-page: 499
  year: 1999
  ident: 10.1016/j.msea.2015.12.005_bib12
  article-title: Surface modification of 5083 aluminum alloys using friction surfacing
  publication-title: J. Jpn. Inst. Light Met.
  doi: 10.2464/jilm.49.499
– start-page: 258
  year: 1989
  ident: 10.1016/j.msea.2015.12.005_bib17
– volume: 22
  start-page: 3034
  year: 2013
  ident: 10.1016/j.msea.2015.12.005_bib8
  article-title: Microstructures and properties of friction freeform fabricated borated stainless steel
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-013-0605-0
– volume: 45
  start-page: 182
  year: 2014
  ident: 10.1016/j.msea.2015.12.005_bib2
  article-title: Friction freeform fabrication of superalloy inconel 718: Prospects and problems
  publication-title: Met. Mater. Trans. B
  doi: 10.1007/s11663-013-0003-x
– volume: 452–453
  start-page: 61
  year: 2007
  ident: 10.1016/j.msea.2015.12.005_bib28
  article-title: Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti+SiC) composites
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.10.156
– volume: 530
  start-page: 149
  year: 2011
  ident: 10.1016/j.msea.2015.12.005_bib24
  article-title: Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.09.066
– volume: 65
  start-page: 934
  year: 2015
  ident: 10.1016/j.msea.2015.12.005_bib3
  article-title: Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.09.082
– volume: 27
  start-page: 92
  year: 2009
  ident: 10.1016/j.msea.2015.12.005_bib14
  article-title: Friction surfacing of titanium alloy with aluminium metal matrix composite
  publication-title: Surf. Eng.
– volume: 639
  start-page: 269
  year: 2015
  ident: 10.1016/j.msea.2015.12.005_bib29
  article-title: Fabrication of Ti–Al3Ti core-shell structured particle reinforced Al based composite with promising mechanical properties
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.05.015
– volume: 3
  start-page: 56
  year: 2012
  ident: 10.1016/j.msea.2015.12.005_bib1
  article-title: Additive manufacturing with friction welding and friction deposition processes
  publication-title: Int. J. Rapid Manuf.
  doi: 10.1504/IJRAPIDM.2012.046574
– volume: 52
  start-page: 373
  year: 2013
  ident: 10.1016/j.msea.2015.12.005_bib13
  article-title: Wear characterization of functionally graded Al–SiC composite coatings produced by Friction Surfacing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.05.059
– volume: 645
  start-page: 205
  year: 2015
  ident: 10.1016/j.msea.2015.12.005_bib32
  article-title: Effects of ball milling and particle size on microstructure and properties 5083 Al–Ni composites fabricated by friction stir processing
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.08.026
– start-page: 51
  year: 1995
  ident: 10.1016/j.msea.2015.12.005_bib15
– volume: 369
  start-page: 302
  year: 2004
  ident: 10.1016/j.msea.2015.12.005_bib22
  article-title: The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.11.011
– year: 2004
  ident: 10.1016/j.msea.2015.12.005_bib36
– ident: 10.1016/j.msea.2015.12.005_bib4
– volume: 55
  start-page: 6338
  year: 2007
  ident: 10.1016/j.msea.2015.12.005_bib27
  article-title: Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.07.039
– volume: 335
  start-page: 10
  year: 2002
  ident: 10.1016/j.msea.2015.12.005_bib19
  article-title: Development of a novel magnesium/nickel composite with improved mechanical properties
  publication-title: J. Alloy. Compd.
  doi: 10.1016/S0925-8388(01)01841-2
– year: 1991
  ident: 10.1016/j.msea.2015.12.005_bib16
– volume: 207
  start-page: 310
  year: 2012
  ident: 10.1016/j.msea.2015.12.005_bib10
  article-title: Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.07.001
– volume: 345
  start-page: 246
  year: 2002
  ident: 10.1016/j.msea.2015.12.005_bib21
  article-title: Development of ductile magnesium composite materials using titanium as reinforcement
  publication-title: J. Alloy. Compd.
  doi: 10.1016/S0925-8388(02)00413-9
– volume: 50
  start-page: 1
  year: 2005
  ident: 10.1016/j.msea.2015.12.005_bib34
  article-title: Friction stir welding and processing
  publication-title: Mater. Sci. Eng. R.
  doi: 10.1016/j.mser.2005.07.001
– volume: 62
  start-page: 95
  year: 2012
  ident: 10.1016/j.msea.2015.12.005_bib9
  article-title: Corrosion performance of AISI 316L friction surfaced coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2012.04.050
– volume: 214
  start-page: 1062
  year: 2014
  ident: 10.1016/j.msea.2015.12.005_bib11
  article-title: Friction surfacing – a review
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2013.12.008
– volume: 38
  start-page: 1010
  year: 2007
  ident: 10.1016/j.msea.2015.12.005_bib23
  article-title: Improving mechanical performance of Al by using Ti as reinforcement
  publication-title: Compos. Part A
  doi: 10.1016/j.compositesa.2006.06.014
SSID ssj0001405
Score 2.4423127
Snippet Friction deposition is one of the promising new techniques for additive manufacturing. In this work, an aluminum matrix composite reinforced with titanium...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Additive manufacturing
Aluminum base alloys
Aluminum matrix composites
Deposition
Friction
Friction deposition
Intermetallics
Metal matrix composites
Metal–metal composites
Particulate composites
Titanium
Title Friction deposition of titanium particle reinforced aluminum matrix composites
URI https://dx.doi.org/10.1016/j.msea.2015.12.005
https://www.proquest.com/docview/1786183677
Volume 653
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-SgRvsnbTJJvdYymWqtiLFnoLSTaBFbstfYAnf7uTffhCevCy7CMJm9nJl5nsNxOErggRKTfgloTKRAFjcOZTjATaOZHExHJi_dLA4ygajtn9hE8aqF_HwnhaZYX9JaYXaF3d6VTS7MyzrPMUJjBdgUMOYzaMEuEzfjImvJbfvH_RPMCBKGiMUDjwpavAmZLjNQV18vQuXiwJ-i3s_p6cfsF0MfcM9tBuZTTiXvle-6hh8wO08y2V4CEaDRZZEaKAU1sTsfDMYR9DlmfrKZ5XvcILWyRLhZ5jBciU5fBw6hP1v2HPL_d17fIIjQe3z_1hUO2VEBgwMVaBM5o6JoSNEhrBkWrooSIuZEqlzpJEGR47IyjTwoaaa7B1LKfCJlSDkaXpMWrms9yeIGxSESvVBcdJcJbGNnaxsCqkNOFgrBnXQqQWkjRVInG_n8WrrBljL9ILVnrBStKVINgWuv6sMy_TaGwszWvZyx_KIAHnN9a7rD-UhFHif32o3M7WS0lEHAF4RUKc_rPtM7QNV8XqSzc8R83VYm0vwB5Z6XahcG201bt7GI4-AF_z3-c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oPKgH8RO_jeBNypqladrjEMfmxy4qeAtJmkDFdWNu4J_vS5eKinjwUkqTV5LX5Jf30vd-AbigVBTcoFsSK5NGSYJ3nmIk0s6JPKOWU-u3Bu6Haf8puXnmz0tw1eTC-LDKgP0LTK_ROjxpB222J2XZfohzXK7QIcc5G6e5YMuw4tmpeAtWuoPb_vATkNGHqCMZsX7kBULuzCLMa4Qjykd48XpX0J9i9_v69AOp6-WntwkbwW4k3UXTtmDJVtuw_oVNcAeGvWlZZymQwjaxWGTsiE8jq8r5iExCx8jU1nyp2HmiEJzKCgtHnqv_nfgQcy9r33bhqXf9eNWPwnEJkUErYxY5o5lLhLBpzlK8Mo09VNTFiVKFszRXhmfOCJZoYWPNNZo7ljNhc6bRztJsD1rVuLL7QEwhMqU66DsJnhSZzVwmrIoZyznaa8YdAG2UJE3gEvdHWrzKJmjsRXrFSq9YSTsSFXsAl58ykwWTxp-1eaN7-W08SIT6P-XOmw8lcaL4vx-qsuP5m6QiSxG_UiEO__nuM1jtP97fybvB8PYI1rCk3ozpxMfQmk3n9gTNk5k-DcPvAxNd4pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friction+deposition+of+titanium+particle+reinforced+aluminum+matrix+composites&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Karthik%2C+G.M.&rft.au=Ram%2C+G.D.+Janaki&rft.au=Kottada%2C+Ravi%C2%A0Sankar&rft.date=2016-01-20&rft.pub=Elsevier+B.V&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=653&rft.spage=71&rft.epage=83&rft_id=info:doi/10.1016%2Fj.msea.2015.12.005&rft.externalDocID=S0921509315306973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon