Mathematical models of α-synuclein transport in axons
To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering Vol. 19; no. 5; pp. 515 - 526 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
03.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons). |
---|---|
AbstractList | To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons).To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons). To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons). To investigate possible effects of diffusion on alpha -synuclein ( alpha -syn) transport in axons, we developed two models of alpha -syn transport, one that assumes that alpha -syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven alpha -syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of alpha -syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of alpha -syn. We also attempted to simulate possible defects in alpha -syn transport early in Parkinson's disease (PD). We assumed that in healthy axons alpha -syn localizes in the axon terminal while in diseased axons alpha -syn does not localize in the terminal (this was simulated by postulating a zero alpha -syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of alpha -syn close to the axon terminal. This build-up could cause alpha -syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons). |
Author | Kuznetsov, I.A. Kuznetsov, A.V. |
Author_xml | – sequence: 1 givenname: I.A. surname: Kuznetsov fullname: Kuznetsov, I.A. organization: Department of Biomedical Engineering, Johns Hopkins University – sequence: 2 givenname: A.V. surname: Kuznetsov fullname: Kuznetsov, A.V. email: avkuznet@ncsu.edu organization: Department of Mechanical and Aerospace Engineering, North Carolina State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26207359$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkbtOHDEUhi0ECrc8AtGUaQZsj8_YozSJVtwkEA3Ulq9ikMfe2LNK9rF4kTwTXu2SIkWS6lz0_af4zjHajyk6hM4IPidY4AuCKYBg9JxiAnXFup6KPXREGO9bQWHYr31l2g10iI5LecEYCyLYB3RIe4p5B8MR6u_V_OwmNY9GhWZK1oXSJN_8em3LOq5McGNs5qxiWaY8N3VQP1Msp-jAq1Dcx109QU9Xl4-Lm_bu4fp28e2uNd0wzK3XWFOrYPCeeILBCjdwpxV0XHfcAhgqDLMdMK4t89qTXmPw1CjNPQHbnaDP27vLnL6vXJnlNBbjQlDRpVWRhPcCOGFk-A8UGFAi-Ab9tENXenJWLvM4qbyW71oqAFvA5FRKdv43QrDc6Jfv-uVGv9zpr7kvf-TMOFe3KVaFY_hn-us2PUaf8qR-pBysnNU6pOzrC8xYZPf3E2-v7p1J |
CitedBy_id | crossref_primary_10_1002_psp4_12155 crossref_primary_10_1002_psp4_12362 crossref_primary_10_3389_fnmol_2022_884790 crossref_primary_10_3934_mmc_2023010 crossref_primary_10_1088_1478_3975_ac8516 crossref_primary_10_1016_j_mbs_2021_108754 crossref_primary_10_1016_j_mbs_2016_05_002 crossref_primary_10_3934_math_2023093 crossref_primary_10_3389_fams_2022_1060489 |
Cites_doi | 10.1111/bpa.12046 10.2174/157015909787602814 10.1016/j.bpj.2009.12.4290 10.1201/9780203009963 10.1080/10255842.2014.994119 10.1002/cm.21019 10.1523/JNEUROSCI.1594-04.2004 10.1016/S1937-6448(08)01406-8 10.1242/jcs.00967 10.1242/jcs.02558 10.1523/JNEUROSCI.20-18-06849.2000 10.1146/annurev.neuro.23.1.39 10.1002/jnr.21154 10.1046/j.1471-4159.2003.02166.x 10.1111/j.1471-4159.2008.05612.x 10.1038/nrn3380 10.1016/S0306-4522(02)00143-4 10.1016/S0006-3495(01)75994-2 10.1088/1478-3975/11/2/026001 10.1523/JNEUROSCI.0927-07.2007 10.3389/fnmol.2014.00086 10.1523/JNEUROSCI.4926-11.2012 10.1074/jbc.274.48.33855 10.1093/brain/aws133 10.1523/JNEUROSCI.2581-13.2014 10.1046/j.1460-9568.1999.00754.x 10.1088/1478-3975/6/4/046002 10.1523/JNEUROSCI.4999-06.2007 10.1038/35040102 10.1186/1750-1326-5-9 10.1523/JNEUROSCI.0309-08.2008 |
ContentType | Journal Article |
Copyright | 2015 Taylor & Francis 2015 |
Copyright_xml | – notice: 2015 Taylor & Francis 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1080/10255842.2015.1043628 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-8259 |
EndPage | 526 |
ExternalDocumentID | 26207359 10_1080_10255842_2015_1043628 1043628 |
Genre | Article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .7F .QJ 0BK 0R~ 29F 2DF 30N 36B 4.4 53G 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD EMOBN E~A E~B F5P GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM M4Z NA5 P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AIYEW AMPGV CITATION 1TA ACTTO ADUMR AFBWG AFION AGVKY AGWUF ALRRR BWMZZ CAG CGR COF CUY CVF CYRSC DAOYK ECM EIF LJTGL NPM OPCYK TASJS 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c399t-fb0b2da59ff1f105d8e97eba537b37d55c28c4d3547bd4fbf16b05f2cab7f15d3 |
ISSN | 1025-5842 1476-8259 |
IngestDate | Sun Aug 24 03:51:22 EDT 2025 Sun Aug 24 03:57:43 EDT 2025 Mon Jul 21 05:59:36 EDT 2025 Tue Jul 01 03:32:05 EDT 2025 Thu Apr 24 23:01:12 EDT 2025 Wed Dec 25 09:05:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | mathematical modeling neuron diffusion Parkinson's disease motor-driven transport α-synuclein |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c399t-fb0b2da59ff1f105d8e97eba537b37d55c28c4d3547bd4fbf16b05f2cab7f15d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26207359 |
PQID | 1754521879 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1080_10255842_2015_1043628 crossref_citationtrail_10_1080_10255842_2015_1043628 pubmed_primary_26207359 proquest_miscellaneous_1768571419 proquest_miscellaneous_1754521879 informaworld_taylorfrancis_310_1080_10255842_2015_1043628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-03 |
PublicationDateYYYYMMDD | 2016-04-03 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Computer methods in biomechanics and biomedical engineering |
PublicationTitleAlternate | Comput Methods Biomech Biomed Engin |
PublicationYear | 2016 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0016 CIT0015 CIT0018 CIT0017 Roy S (CIT0022) 2009; 48 CIT0019 CIT0021 Kuznetsov IA (CIT0013) 2015 CIT0020 CIT0001 Roy S (CIT0023) 2000; 20 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0006 doi: 10.1111/bpa.12046 – ident: CIT0005 doi: 10.2174/157015909787602814 – ident: CIT0020 doi: 10.1016/j.bpj.2009.12.4290 – ident: CIT0032 doi: 10.1201/9780203009963 – ident: CIT0012 doi: 10.1080/10255842.2014.994119 – ident: CIT0031 doi: 10.1002/cm.21019 – ident: CIT0004 doi: 10.1523/JNEUROSCI.1594-04.2004 – year: 2015 ident: CIT0013 publication-title: Math Med Biol – ident: CIT0027 – ident: CIT0030 doi: 10.1016/S1937-6448(08)01406-8 – ident: CIT0026 doi: 10.1242/jcs.00967 – ident: CIT0033 doi: 10.1242/jcs.02558 – volume: 20 start-page: 6849 year: 2000 ident: CIT0023 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-18-06849.2000 – ident: CIT0007 doi: 10.1146/annurev.neuro.23.1.39 – ident: CIT0019 doi: 10.1002/jnr.21154 – ident: CIT0015 doi: 10.1046/j.1471-4159.2003.02166.x – ident: CIT0010 doi: 10.1111/j.1471-4159.2008.05612.x – ident: CIT0018 doi: 10.1038/nrn3380 – ident: CIT0014 doi: 10.1016/S0306-4522(02)00143-4 – ident: CIT0028 doi: 10.1016/S0006-3495(01)75994-2 – ident: CIT0016 doi: 10.1088/1478-3975/11/2/026001 – ident: CIT0011 doi: 10.1523/JNEUROSCI.0927-07.2007 – ident: CIT0021 doi: 10.3389/fnmol.2014.00086 – ident: CIT0017 doi: 10.1523/JNEUROSCI.4926-11.2012 – ident: CIT0001 doi: 10.1074/jbc.274.48.33855 – ident: CIT0003 doi: 10.1093/brain/aws133 – ident: CIT0029 doi: 10.1523/JNEUROSCI.2581-13.2014 – ident: CIT0008 doi: 10.1046/j.1460-9568.1999.00754.x – ident: CIT0009 doi: 10.1088/1478-3975/6/4/046002 – volume: 48 start-page: 159 year: 2009 ident: CIT0022 publication-title: Cell Biol Axon. – ident: CIT0024 doi: 10.1523/JNEUROSCI.4999-06.2007 – ident: CIT0002 doi: 10.1038/35040102 – ident: CIT0034 doi: 10.1186/1750-1326-5-9 – ident: CIT0025 doi: 10.1523/JNEUROSCI.0309-08.2008 |
SSID | ssj0008184 |
Score | 2.1248155 |
Snippet | To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn... To investigate possible effects of diffusion on alpha -synuclein ( alpha -syn) transport in axons, we developed two models of alpha -syn transport, one that... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 515 |
SubjectTerms | alpha-Synuclein - metabolism Axonal Transport - physiology Axons - metabolism Axons - pathology diffusion Humans mathematical modeling Models, Theoretical motor-driven transport neuron Parkinson Disease - pathology Parkinson's disease α-synuclein |
Title | Mathematical models of α-synuclein transport in axons |
URI | https://www.tandfonline.com/doi/abs/10.1080/10255842.2015.1043628 https://www.ncbi.nlm.nih.gov/pubmed/26207359 https://www.proquest.com/docview/1754521879 https://www.proquest.com/docview/1768571419 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFRIXxJuWh4JEjwnrxI7t41KKVkjl1ELFJfLzhLKITRHtv-of4TcxtuMkC0tLuUS73sROMrMzY3vm-xB6VXtUNlnKvOKyzsFDkFyV2uZW2FJYzowL7A2HH-rFMXl_Qk_GlKBQXdKpQp9vrCv5H6lCG8jVV8leQ7JDp9AAn0G-cAQJw_GfZHw4YK76GhDPaRMSM_b2D_be4Hx11nqwYp_ImBDM_eqG_JFW6BJAQU_s0LNJhwTZUJXvi4ITiHMs0w8D2RHCcNwIOm9tt1p-DyanmBcbf5gXH4vpKgOuQ3JKNTGMnvYWgpVoOW1sI6zOYYYp1qypmGgNnZhGGss2ey9LY538HwY8Zjz60fxgPvWO-m1ocLN89Fhpl_43RzakF-Ie9zR10_humr6bm2i7hCkF2MTt-eLt50-D34bQJeQgpCdN9V589nrj_axFMms4t3-frYSo5eguutNPN7J51J176IZt76NbkYD07AGqpxqURQ3Kli77eTFqTzZoTwZfgvY8RMfvDo72F3nPpJFrCEC73KmZKo2kwjnsIKI23ApmlaQVUxUzlOqSa2IqSpgyxCmHazWjrtRSMYepqR6hrXbZ2ico01hrxWTJFJbEMC6ILa3i1Gg3c1qbHUTSW2l0DzPv2U6-NJdKZQcVw2VfI87KVReI6StvurDA5SIbTVNdce3LJJ8GrKnfIpOtXZ6uGgimCQS0nInLzqk5ZZhgOOdxFO5wy57egVVU7F73cZ6i2-Pf7hna6r6d2ucQ7nbqRa-nvwDsbqBk |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1aEd34ftTnCG6nNJNkkixFlKptVxa6C3mCKFOxU7D-lT_iN5nMo6igLroahskdkjs3yZnk5hwAztPAyiYTGSMm09jPEDhWibax5TbhllHjCvWGXj_tDPDtkAy_nIUJaZXhH9qVRBHFWB06d1iMrlPi_NUDYYbDOSpIwi6lH4XZIlgiPKUh1lG7PxuN_YRU7CwH2dZgU5_i-e013-anb-ylv2PQYi66Xge6bkWZgvLYmuSqpd9-EDzO18wNsFZB1eiijK1NsGCzLbBcildOt0HamzG--lKFos44Grno4z0eT7NAk_yQRXnNnR75G_nqQ3wHDK6v7i87caXCEGsPXvLYqbZKjCTcOeg8GjPMcmqVJIgqRA0hOmEaG0QwVQY75WCq2sQlWirqIDFoFzSyUWb3QaSh1orKhCoosaGMY5tYxYjRru20Nk2Aa98LXVGUB6WMJwErJtPaJSK4RFQuaYLWzOy55Oj4z4B__bAiLxZHXKlkItA_tmd1FAjfE8P2iszsaDIWHohhD4YY5X-VSRmhEENfZq8MoVmVgzQARYQfzFG7U7DSue91Rfemf3cIVv2jtEgzQkegkb9M7LFHULk6KbrIJ49cDAs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46UXzxfpnXCr52LG3SpI-ijnnZ8MGBbyFXEKUbtgPnv_KP-JtMesMJ04c9ldKc0pye5HxtTr4PgPPIsbLxgPsh5ZFvMwTyRSC1r2MdxJoSZXL1hl4_6g7Q7ROuqgnTsqzSfUObgigin6vd4B4pU1XE2aPFwRS5bVQQu0VKOwnTRbAUuY2WbhdHu19PxjYf5QvLTrXV2VSbeGbdZio9TZGXzoageSrqrANRdaKoQHlpjTPRkh-_-B3n6uUGWCuBqndRRNYmWNDJFlgupCsn2yDq1XyvtlWup5N6Q-N9ffrpJHEkyc-Jl1XM6Z494e82wHfAoHP9eNn1Sw0GX1rokvlGtEWgOI6NgcZiMUV1TLTgOCQiJApjGVCJVIgREQoZYWAk2tgEkgtiIFbhLmgkw0TvA09CKQXhARGQI0VojHSgBcVKmraRUjUBqlzPZElQ7nQyXhkseUwrlzDnEla6pAlatdmoYOj4zyD--V5Zlv8aMYWOCQv_sT2rgoDZcegWV3iih-OUWRiGLBSiJP6rTUQxgQjaNntFBNWP7IQBSIjjgzme7hSsPFx12P1N_-4QrNorUV5jFB6BRvY21scWPmXiJB8g3y6uCq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+models+of+%CE%B1-synuclein+transport+in+axons&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Kuznetsov%2C+I.A.&rft.au=Kuznetsov%2C+A.V.&rft.date=2016-04-03&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=19&rft.issue=5&rft.spage=515&rft.epage=526&rft_id=info:doi/10.1080%2F10255842.2015.1043628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10255842_2015_1043628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon |