Mathematical models of α-synuclein transport in axons

To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 19; no. 5; pp. 515 - 526
Main Authors Kuznetsov, I.A., Kuznetsov, A.V.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons).
AbstractList To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons).To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons).
To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven α-syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of α-syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of α-syn. We also attempted to simulate possible defects in α-syn transport early in Parkinson's disease (PD). We assumed that in healthy axons α-syn localizes in the axon terminal while in diseased axons α-syn does not localize in the terminal (this was simulated by postulating a zero α-syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of α-syn close to the axon terminal. This build-up could cause α-syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons).
To investigate possible effects of diffusion on alpha -synuclein ( alpha -syn) transport in axons, we developed two models of alpha -syn transport, one that assumes that alpha -syn is transported only by active transport, as part of multiprotein complexes, and a second that assumes an interplay between motor-driven and diffusion-driven alpha -syn transport. By comparing predictions of the two models, we were able to investigate how diffusion could influence axonal transport of alpha -syn. The predictions obtained could be useful for future experimental work aimed at elucidating the mechanisms of axonal transport of alpha -syn. We also attempted to simulate possible defects in alpha -syn transport early in Parkinson's disease (PD). We assumed that in healthy axons alpha -syn localizes in the axon terminal while in diseased axons alpha -syn does not localize in the terminal (this was simulated by postulating a zero alpha -syn flux into the terminal). We found that our model of a diseased axon predicts the build-up of alpha -syn close to the axon terminal. This build-up could cause alpha -syn accumulation in Lewy bodies and the subsequent axonal death pattern observed in PD ('dying back' of axons).
Author Kuznetsov, I.A.
Kuznetsov, A.V.
Author_xml – sequence: 1
  givenname: I.A.
  surname: Kuznetsov
  fullname: Kuznetsov, I.A.
  organization: Department of Biomedical Engineering, Johns Hopkins University
– sequence: 2
  givenname: A.V.
  surname: Kuznetsov
  fullname: Kuznetsov, A.V.
  email: avkuznet@ncsu.edu
  organization: Department of Mechanical and Aerospace Engineering, North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26207359$$D View this record in MEDLINE/PubMed
BookMark eNqNkbtOHDEUhi0ECrc8AtGUaQZsj8_YozSJVtwkEA3Ulq9ikMfe2LNK9rF4kTwTXu2SIkWS6lz0_af4zjHajyk6hM4IPidY4AuCKYBg9JxiAnXFup6KPXREGO9bQWHYr31l2g10iI5LecEYCyLYB3RIe4p5B8MR6u_V_OwmNY9GhWZK1oXSJN_8em3LOq5McGNs5qxiWaY8N3VQP1Msp-jAq1Dcx109QU9Xl4-Lm_bu4fp28e2uNd0wzK3XWFOrYPCeeILBCjdwpxV0XHfcAhgqDLMdMK4t89qTXmPw1CjNPQHbnaDP27vLnL6vXJnlNBbjQlDRpVWRhPcCOGFk-A8UGFAi-Ab9tENXenJWLvM4qbyW71oqAFvA5FRKdv43QrDc6Jfv-uVGv9zpr7kvf-TMOFe3KVaFY_hn-us2PUaf8qR-pBysnNU6pOzrC8xYZPf3E2-v7p1J
CitedBy_id crossref_primary_10_1002_psp4_12155
crossref_primary_10_1002_psp4_12362
crossref_primary_10_3389_fnmol_2022_884790
crossref_primary_10_3934_mmc_2023010
crossref_primary_10_1088_1478_3975_ac8516
crossref_primary_10_1016_j_mbs_2021_108754
crossref_primary_10_1016_j_mbs_2016_05_002
crossref_primary_10_3934_math_2023093
crossref_primary_10_3389_fams_2022_1060489
Cites_doi 10.1111/bpa.12046
10.2174/157015909787602814
10.1016/j.bpj.2009.12.4290
10.1201/9780203009963
10.1080/10255842.2014.994119
10.1002/cm.21019
10.1523/JNEUROSCI.1594-04.2004
10.1016/S1937-6448(08)01406-8
10.1242/jcs.00967
10.1242/jcs.02558
10.1523/JNEUROSCI.20-18-06849.2000
10.1146/annurev.neuro.23.1.39
10.1002/jnr.21154
10.1046/j.1471-4159.2003.02166.x
10.1111/j.1471-4159.2008.05612.x
10.1038/nrn3380
10.1016/S0306-4522(02)00143-4
10.1016/S0006-3495(01)75994-2
10.1088/1478-3975/11/2/026001
10.1523/JNEUROSCI.0927-07.2007
10.3389/fnmol.2014.00086
10.1523/JNEUROSCI.4926-11.2012
10.1074/jbc.274.48.33855
10.1093/brain/aws133
10.1523/JNEUROSCI.2581-13.2014
10.1046/j.1460-9568.1999.00754.x
10.1088/1478-3975/6/4/046002
10.1523/JNEUROSCI.4999-06.2007
10.1038/35040102
10.1186/1750-1326-5-9
10.1523/JNEUROSCI.0309-08.2008
ContentType Journal Article
Copyright 2015 Taylor & Francis 2015
Copyright_xml – notice: 2015 Taylor & Francis 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1080/10255842.2015.1043628
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-8259
EndPage 526
ExternalDocumentID 26207359
10_1080_10255842_2015_1043628
1043628
Genre Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
53G
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
1TA
ACTTO
ADUMR
AFBWG
AFION
AGVKY
AGWUF
ALRRR
BWMZZ
CAG
CGR
COF
CUY
CVF
CYRSC
DAOYK
ECM
EIF
LJTGL
NPM
OPCYK
TASJS
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c399t-fb0b2da59ff1f105d8e97eba537b37d55c28c4d3547bd4fbf16b05f2cab7f15d3
ISSN 1025-5842
1476-8259
IngestDate Sun Aug 24 03:51:22 EDT 2025
Sun Aug 24 03:57:43 EDT 2025
Mon Jul 21 05:59:36 EDT 2025
Tue Jul 01 03:32:05 EDT 2025
Thu Apr 24 23:01:12 EDT 2025
Wed Dec 25 09:05:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords mathematical modeling
neuron
diffusion
Parkinson's disease
motor-driven transport
α-synuclein
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-fb0b2da59ff1f105d8e97eba537b37d55c28c4d3547bd4fbf16b05f2cab7f15d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26207359
PQID 1754521879
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1080_10255842_2015_1043628
crossref_citationtrail_10_1080_10255842_2015_1043628
pubmed_primary_26207359
proquest_miscellaneous_1768571419
proquest_miscellaneous_1754521879
informaworld_taylorfrancis_310_1080_10255842_2015_1043628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-03
PublicationDateYYYYMMDD 2016-04-03
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-03
  day: 03
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Computer methods in biomechanics and biomedical engineering
PublicationTitleAlternate Comput Methods Biomech Biomed Engin
PublicationYear 2016
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0016
CIT0015
CIT0018
CIT0017
Roy  S (CIT0022) 2009; 48
CIT0019
CIT0021
Kuznetsov  IA (CIT0013) 2015
CIT0020
CIT0001
Roy  S (CIT0023) 2000; 20
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0006
  doi: 10.1111/bpa.12046
– ident: CIT0005
  doi: 10.2174/157015909787602814
– ident: CIT0020
  doi: 10.1016/j.bpj.2009.12.4290
– ident: CIT0032
  doi: 10.1201/9780203009963
– ident: CIT0012
  doi: 10.1080/10255842.2014.994119
– ident: CIT0031
  doi: 10.1002/cm.21019
– ident: CIT0004
  doi: 10.1523/JNEUROSCI.1594-04.2004
– year: 2015
  ident: CIT0013
  publication-title: Math Med Biol
– ident: CIT0027
– ident: CIT0030
  doi: 10.1016/S1937-6448(08)01406-8
– ident: CIT0026
  doi: 10.1242/jcs.00967
– ident: CIT0033
  doi: 10.1242/jcs.02558
– volume: 20
  start-page: 6849
  year: 2000
  ident: CIT0023
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-18-06849.2000
– ident: CIT0007
  doi: 10.1146/annurev.neuro.23.1.39
– ident: CIT0019
  doi: 10.1002/jnr.21154
– ident: CIT0015
  doi: 10.1046/j.1471-4159.2003.02166.x
– ident: CIT0010
  doi: 10.1111/j.1471-4159.2008.05612.x
– ident: CIT0018
  doi: 10.1038/nrn3380
– ident: CIT0014
  doi: 10.1016/S0306-4522(02)00143-4
– ident: CIT0028
  doi: 10.1016/S0006-3495(01)75994-2
– ident: CIT0016
  doi: 10.1088/1478-3975/11/2/026001
– ident: CIT0011
  doi: 10.1523/JNEUROSCI.0927-07.2007
– ident: CIT0021
  doi: 10.3389/fnmol.2014.00086
– ident: CIT0017
  doi: 10.1523/JNEUROSCI.4926-11.2012
– ident: CIT0001
  doi: 10.1074/jbc.274.48.33855
– ident: CIT0003
  doi: 10.1093/brain/aws133
– ident: CIT0029
  doi: 10.1523/JNEUROSCI.2581-13.2014
– ident: CIT0008
  doi: 10.1046/j.1460-9568.1999.00754.x
– ident: CIT0009
  doi: 10.1088/1478-3975/6/4/046002
– volume: 48
  start-page: 159
  year: 2009
  ident: CIT0022
  publication-title: Cell Biol Axon. 
– ident: CIT0024
  doi: 10.1523/JNEUROSCI.4999-06.2007
– ident: CIT0002
  doi: 10.1038/35040102
– ident: CIT0034
  doi: 10.1186/1750-1326-5-9
– ident: CIT0025
  doi: 10.1523/JNEUROSCI.0309-08.2008
SSID ssj0008184
Score 2.1248155
Snippet To investigate possible effects of diffusion on α-synuclein (α-syn) transport in axons, we developed two models of α-syn transport, one that assumes that α-syn...
To investigate possible effects of diffusion on alpha -synuclein ( alpha -syn) transport in axons, we developed two models of alpha -syn transport, one that...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 515
SubjectTerms alpha-Synuclein - metabolism
Axonal Transport - physiology
Axons - metabolism
Axons - pathology
diffusion
Humans
mathematical modeling
Models, Theoretical
motor-driven transport
neuron
Parkinson Disease - pathology
Parkinson's disease
α-synuclein
Title Mathematical models of α-synuclein transport in axons
URI https://www.tandfonline.com/doi/abs/10.1080/10255842.2015.1043628
https://www.ncbi.nlm.nih.gov/pubmed/26207359
https://www.proquest.com/docview/1754521879
https://www.proquest.com/docview/1768571419
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFRIXxJuWh4JEjwnrxI7t41KKVkjl1ELFJfLzhLKITRHtv-of4TcxtuMkC0tLuUS73sROMrMzY3vm-xB6VXtUNlnKvOKyzsFDkFyV2uZW2FJYzowL7A2HH-rFMXl_Qk_GlKBQXdKpQp9vrCv5H6lCG8jVV8leQ7JDp9AAn0G-cAQJw_GfZHw4YK76GhDPaRMSM_b2D_be4Hx11nqwYp_ImBDM_eqG_JFW6BJAQU_s0LNJhwTZUJXvi4ITiHMs0w8D2RHCcNwIOm9tt1p-DyanmBcbf5gXH4vpKgOuQ3JKNTGMnvYWgpVoOW1sI6zOYYYp1qypmGgNnZhGGss2ey9LY538HwY8Zjz60fxgPvWO-m1ocLN89Fhpl_43RzakF-Ie9zR10_humr6bm2i7hCkF2MTt-eLt50-D34bQJeQgpCdN9V589nrj_axFMms4t3-frYSo5eguutNPN7J51J176IZt76NbkYD07AGqpxqURQ3Kli77eTFqTzZoTwZfgvY8RMfvDo72F3nPpJFrCEC73KmZKo2kwjnsIKI23ApmlaQVUxUzlOqSa2IqSpgyxCmHazWjrtRSMYepqR6hrXbZ2ico01hrxWTJFJbEMC6ILa3i1Gg3c1qbHUTSW2l0DzPv2U6-NJdKZQcVw2VfI87KVReI6StvurDA5SIbTVNdce3LJJ8GrKnfIpOtXZ6uGgimCQS0nInLzqk5ZZhgOOdxFO5wy57egVVU7F73cZ6i2-Pf7hna6r6d2ucQ7nbqRa-nvwDsbqBk
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1aEd34ftTnCG6nNJNkkixFlKptVxa6C3mCKFOxU7D-lT_iN5nMo6igLroahskdkjs3yZnk5hwAztPAyiYTGSMm09jPEDhWibax5TbhllHjCvWGXj_tDPDtkAy_nIUJaZXhH9qVRBHFWB06d1iMrlPi_NUDYYbDOSpIwi6lH4XZIlgiPKUh1lG7PxuN_YRU7CwH2dZgU5_i-e013-anb-ylv2PQYi66Xge6bkWZgvLYmuSqpd9-EDzO18wNsFZB1eiijK1NsGCzLbBcildOt0HamzG--lKFos44Grno4z0eT7NAk_yQRXnNnR75G_nqQ3wHDK6v7i87caXCEGsPXvLYqbZKjCTcOeg8GjPMcmqVJIgqRA0hOmEaG0QwVQY75WCq2sQlWirqIDFoFzSyUWb3QaSh1orKhCoosaGMY5tYxYjRru20Nk2Aa98LXVGUB6WMJwErJtPaJSK4RFQuaYLWzOy55Oj4z4B__bAiLxZHXKlkItA_tmd1FAjfE8P2iszsaDIWHohhD4YY5X-VSRmhEENfZq8MoVmVgzQARYQfzFG7U7DSue91Rfemf3cIVv2jtEgzQkegkb9M7LFHULk6KbrIJ49cDAs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46UXzxfpnXCr52LG3SpI-ijnnZ8MGBbyFXEKUbtgPnv_KP-JtMesMJ04c9ldKc0pye5HxtTr4PgPPIsbLxgPsh5ZFvMwTyRSC1r2MdxJoSZXL1hl4_6g7Q7ROuqgnTsqzSfUObgigin6vd4B4pU1XE2aPFwRS5bVQQu0VKOwnTRbAUuY2WbhdHu19PxjYf5QvLTrXV2VSbeGbdZio9TZGXzoageSrqrANRdaKoQHlpjTPRkh-_-B3n6uUGWCuBqndRRNYmWNDJFlgupCsn2yDq1XyvtlWup5N6Q-N9ffrpJHEkyc-Jl1XM6Z494e82wHfAoHP9eNn1Sw0GX1rokvlGtEWgOI6NgcZiMUV1TLTgOCQiJApjGVCJVIgREQoZYWAk2tgEkgtiIFbhLmgkw0TvA09CKQXhARGQI0VojHSgBcVKmraRUjUBqlzPZElQ7nQyXhkseUwrlzDnEla6pAlatdmoYOj4zyD--V5Zlv8aMYWOCQv_sT2rgoDZcegWV3iih-OUWRiGLBSiJP6rTUQxgQjaNntFBNWP7IQBSIjjgzme7hSsPFx12P1N_-4QrNorUV5jFB6BRvY21scWPmXiJB8g3y6uCq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+models+of+%CE%B1-synuclein+transport+in+axons&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Kuznetsov%2C+I.A.&rft.au=Kuznetsov%2C+A.V.&rft.date=2016-04-03&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=19&rft.issue=5&rft.spage=515&rft.epage=526&rft_id=info:doi/10.1080%2F10255842.2015.1043628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10255842_2015_1043628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon