Collagen/poly(acrylic acid)/ MXene hydrogels with tissue‐adhesive, biosensing, and photothermal antibacterial properties

The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional MXene nanosheets were introduced into collagen/ acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol-...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 63; no. 11; pp. 3672 - 3683
Main Authors Zhang, Min, Yang, Qili, Liang, Kaiwen, Gao, Lu, Lu, Peng, Ding, Cuicui, Dang, Yuan
Format Journal Article
LanguageEnglish
Published Newtown Society of Plastics Engineers, Inc 01.11.2023
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional MXene nanosheets were introduced into collagen/ acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol-MX-PAA). The tensile stress and compressive stress values of the resultant hydrogel at the MXene concentration of 5 mg/mL reached 211.5 kPa and 7.8 MPa, respectively, which were approximately 4.0 and 1.4 times higher than those of GCol-PAA. The bonding strength of the hydrogel reached 30.7 kPa in the porcine skin-adhesive model owing to the large number of free phenolic hydroxyl groups on GCol. Furthermore, GCol-MX-PAA could be applied to monitor large and subtle activities of human body due to the excellent electrical conductivity of MXene. Thanks to the outstanding photothermal conversion performance of MXene, the hydrogel could kill E. coli and S. aureus effectively under NIR irradiation. In addition, in vitro cytotoxicity test performed on L929 fibroblasts demonstrated the desirable biocompatibility of GCol-MX-PAA. The design strategy in this work gives guidance for the development of multifunctional collagen-based hydrogel in a wide range of applications.
AbstractList The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional MXene nanosheets were introduced into collagen/ acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol-MX-PAA). The tensile stress and compressive stress values of the resultant hydrogel at the MXene concentration of 5 mg/mL reached 211.5 kPa and 7.8 MPa, respectively, which were approximately 4.0 and 1.4 times higher than those of GCol-PAA. The bonding strength of the hydrogel reached 30.7 kPa in the porcine skin-adhesive model owing to the large number of free phenolic hydroxyl groups on GCol. Furthermore, GCol-MX-PAA could be applied to monitor large and subtle activities of human body due to the excellent electrical conductivity of MXene. Thanks to the outstanding photothermal conversion performance of MXene, the hydrogel could kill E. coli and S. aureus effectively under NIR irradiation. In addition, in vitro cytotoxicity test performed on L929 fibroblasts demonstrated the desirable biocompatibility of GCol-MX-PAA. The design strategy in this work gives guidance for the development of multifunctional collagen-based hydrogel in a wide range of applications. Highlights * Versatile hydrogel constructed from GA-modified collagen, PAA, and MXene. * The composite hydrogel displays improved mechanical properties. * This hydrogel possesses superior tissue adhesion and strain sensitivity. * This hydrogel shows desired photothermal antibacterial property and biocompatibility. KEYWORDS adhesion, biological applications of polymers, biomaterials, biopolymers, hydrogels
The application of collagen‐based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two‐dimensional MXene nanosheets were introduced into collagen/acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol‐MX‐PAA). The tensile stress and compressive stress values of the resultant hydrogel at the MXene concentration of 5 mg/mL reached 211.5 kPa and 7.8 MPa, respectively, which were approximately 4.0 and 1.4 times higher than those of GCol‐PAA. The bonding strength of the hydrogel reached 30.7 kPa in the porcine skin‐adhesive model owing to the large number of free phenolic hydroxyl groups on GCol. Furthermore, GCol‐MX‐PAA could be applied to monitor large and subtle activities of human body due to the excellent electrical conductivity of MXene. Thanks to the outstanding photothermal conversion performance of MXene, the hydrogel could kill E. coli and S. aureus effectively under NIR irradiation. In addition, in vitro cytotoxicity test performed on L929 fibroblasts demonstrated the desirable biocompatibility of GCol‐MX‐PAA. The design strategy in this work gives guidance for the development of multifunctional collagen‐based hydrogel in a wide range of applications.HighlightsVersatile hydrogel constructed from GA‐modified collagen, PAA, and MXene.The composite hydrogel displays improved mechanical properties.This hydrogel possesses superior tissue adhesion and strain sensitivity.This hydrogel shows desired photothermal antibacterial property and biocompatibility.
The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional MXene nanosheets were introduced into collagen/ acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol-MX-PAA). The tensile stress and compressive stress values of the resultant hydrogel at the MXene concentration of 5 mg/mL reached 211.5 kPa and 7.8 MPa, respectively, which were approximately 4.0 and 1.4 times higher than those of GCol-PAA. The bonding strength of the hydrogel reached 30.7 kPa in the porcine skin-adhesive model owing to the large number of free phenolic hydroxyl groups on GCol. Furthermore, GCol-MX-PAA could be applied to monitor large and subtle activities of human body due to the excellent electrical conductivity of MXene. Thanks to the outstanding photothermal conversion performance of MXene, the hydrogel could kill E. coli and S. aureus effectively under NIR irradiation. In addition, in vitro cytotoxicity test performed on L929 fibroblasts demonstrated the desirable biocompatibility of GCol-MX-PAA. The design strategy in this work gives guidance for the development of multifunctional collagen-based hydrogel in a wide range of applications.
Audience Academic
Author Yang, Qili
Gao, Lu
Ding, Cuicui
Dang, Yuan
Lu, Peng
Liang, Kaiwen
Zhang, Min
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0001-7117-8007
  surname: Zhang
  fullname: Zhang, Min
  organization: Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering Guangxi University Nanning China, College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China
– sequence: 2
  givenname: Qili
  surname: Yang
  fullname: Yang, Qili
  organization: College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China
– sequence: 3
  givenname: Kaiwen
  surname: Liang
  fullname: Liang, Kaiwen
  organization: College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China
– sequence: 4
  givenname: Lu
  surname: Gao
  fullname: Gao, Lu
  organization: College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China
– sequence: 5
  givenname: Peng
  surname: Lu
  fullname: Lu, Peng
  organization: Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering Guangxi University Nanning China
– sequence: 6
  givenname: Cuicui
  orcidid: 0000-0002-4785-6629
  surname: Ding
  fullname: Ding, Cuicui
  organization: College of Ecological Environment and Urban Construction Fujian University of Technology Fuzhou China
– sequence: 7
  givenname: Yuan
  surname: Dang
  fullname: Dang, Yuan
  organization: Fujian Medical University Cancer Hospital Fujian Cancer Hospital Fuzhou China
BookMark eNptks-KFDEQxoOs4OzqwTdo8OLC9Ew66elOH5fBPwsrXhS8Nemk0p0lk7SptDKefASf0Scx7gq6MgQqpPh9VaHqOydnPngg5HlFNxWlbDuD37CmbnePyKra1aJkDa_PyIpSzkouhHhCzhFvaWb5rluRb_vgnBzBb-fgji-likdnVSGV1Zfb4t0n8FBMRx3DCA6LrzZNRbKIC_z8_kPqCdB-gXUx2IDg0fpxXUivi3kKKaQJ4kG6nEh2kCpBtPk1xzBDTBbwKXlspEN49ue-IB9fv_qwf1vevH9zvb-6KRXvulRqLnRdGSFoO1TdjtZt2wwV5VRSAxpayTozdHTQmleMN5SpZjBNZ4TRwLiu-QV5cV83t_68AKb-NizR55Y9E6LeNbVo6V9qlA56601IUaqDRdVftS1vuppVTabKE1QeH0Tp8iaMzekH_OYEn4-Gg1UnBet_BMOSZwqYA9pxSjjKBfEhfnmPqxgQI5h-jvYg47GvaP_bEH02RH9niMxu_2OVTTLZ4POfrDuh-AUQULtb
CitedBy_id crossref_primary_10_1088_2053_1591_ad913c
crossref_primary_10_1002_pen_26581
crossref_primary_10_1002_pen_27164
crossref_primary_10_1002_pen_26571
crossref_primary_10_1021_acssensors_4c01428
crossref_primary_10_1021_acsbiomaterials_4c02203
crossref_primary_10_3389_fbioe_2024_1338539
crossref_primary_10_1016_j_inoche_2024_112457
crossref_primary_10_1002_pen_26668
crossref_primary_10_1021_acs_iecr_4c02197
Cites_doi 10.1021/acsbiomaterials.0c00161
10.3390/s18020569
10.3390/pharmaceutics14030540
10.1002/mame.201800664
10.1016/j.eurpolymj.2020.110253
10.1021/acsami.6b16195
10.1002/adfm.201901693
10.1016/j.actbio.2022.02.019
10.1021/acsami.8b08314
10.1021/acs.biomac.1c01641
10.1016/j.msec.2019.01.109
10.1039/D0TB01422B
10.1002/adfm.202004407
10.1021/acs.biomac.7b00921
10.1016/j.cej.2020.127962
10.1002/adma.201702037
10.1016/j.ijbiomac.2018.02.027
10.1039/D0CS00022A
10.1016/j.envpol.2019.113574
10.1016/j.carbpol.2022.119506
10.1002/adfm.201809110
10.1021/acsami.0c20702
10.1016/j.biotechadv.2017.05.006
10.1002/adma.201801651
10.1021/acsbiomaterials.0c00588
10.1021/acsnano.1c01751
10.1016/j.carbpol.2022.119572
10.1021/acsami.9b15817
10.1016/j.cej.2020.125439
10.18063/ijb.v7i3.353
10.1039/C8TC00157J
10.3390/ma15051666
10.1016/j.cej.2020.126756
ContentType Journal Article
Copyright COPYRIGHT 2023 Society of Plastics Engineers, Inc.
2023 Society of Plastics Engineers
Copyright_xml – notice: COPYRIGHT 2023 Society of Plastics Engineers, Inc.
– notice: 2023 Society of Plastics Engineers
DBID AAYXX
CITATION
N95
7SR
8FD
JG9
DOI 10.1002/pen.26475
DatabaseName CrossRef
Gale Business: Insights
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 3683
ExternalDocumentID A773694216
10_1002_pen_26475
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWL
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7SR
8FD
JG9
ID FETCH-LOGICAL-c399t-d38d41f8807b19504776b1030a0fede7a29fb90bdd3123602c6bf69f8fde23d43
ISSN 0032-3888
IngestDate Fri Jul 25 10:50:13 EDT 2025
Wed Aug 27 16:51:01 EDT 2025
Mon Aug 25 12:16:06 EDT 2025
Tue Aug 26 03:42:00 EDT 2025
Tue Aug 26 01:12:47 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Tue Jul 01 02:33:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-d38d41f8807b19504776b1030a0fede7a29fb90bdd3123602c6bf69f8fde23d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4785-6629
0000-0001-7117-8007
PQID 2884564870
PQPubID 41843
PageCount 12
ParticipantIDs proquest_journals_2884564870
gale_infotracmisc_A773694216
gale_infotracgeneralonefile_A773694216
gale_infotracacademiconefile_A773694216
gale_businessinsightsgauss_A773694216
crossref_primary_10_1002_pen_26475
crossref_citationtrail_10_1002_pen_26475
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-00
PublicationDecade 2020
PublicationPlace Newtown
PublicationPlace_xml – name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2023
Publisher Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Yang X (e_1_2_8_11_1) 2020; 8
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – ident: e_1_2_8_17_1
  doi: 10.1021/acsbiomaterials.0c00161
– ident: e_1_2_8_32_1
  doi: 10.3390/s18020569
– ident: e_1_2_8_3_1
  doi: 10.3390/pharmaceutics14030540
– ident: e_1_2_8_28_1
  doi: 10.1002/mame.201800664
– ident: e_1_2_8_9_1
  doi: 10.1016/j.eurpolymj.2020.110253
– ident: e_1_2_8_13_1
  doi: 10.1021/acsami.6b16195
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.201901693
– ident: e_1_2_8_19_1
  doi: 10.1016/j.actbio.2022.02.019
– ident: e_1_2_8_35_1
  doi: 10.1021/acsami.8b08314
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.biomac.1c01641
– ident: e_1_2_8_15_1
  doi: 10.1016/j.msec.2019.01.109
– ident: e_1_2_8_10_1
  doi: 10.1039/D0TB01422B
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.202004407
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.biomac.7b00921
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cej.2020.127962
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201702037
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ijbiomac.2018.02.027
– ident: e_1_2_8_34_1
  doi: 10.1039/D0CS00022A
– ident: e_1_2_8_14_1
  doi: 10.1016/j.envpol.2019.113574
– ident: e_1_2_8_21_1
  doi: 10.1016/j.carbpol.2022.119506
– ident: e_1_2_8_29_1
  doi: 10.1002/adfm.201809110
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.0c20702
– ident: e_1_2_8_6_1
  doi: 10.1016/j.biotechadv.2017.05.006
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201801651
– ident: e_1_2_8_7_1
  doi: 10.1021/acsbiomaterials.0c00588
– ident: e_1_2_8_22_1
  doi: 10.1021/acsnano.1c01751
– ident: e_1_2_8_20_1
  doi: 10.1016/j.carbpol.2022.119572
– ident: e_1_2_8_2_1
  doi: 10.1021/acsami.9b15817
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cej.2020.125439
– volume: 8
  start-page: 10726
  issue: 29
  year: 2020
  ident: e_1_2_8_11_1
  article-title: Sandwich‐like Polypyrrole/reduced graphene oxide Nanosheets integrated gelatin hydrogel as mechanically and thermally sensitive Skinlike bioelectronics
  publication-title: ACS Sustain Chem Eng
– ident: e_1_2_8_16_1
  doi: 10.18063/ijb.v7i3.353
– ident: e_1_2_8_33_1
  doi: 10.1039/C8TC00157J
– ident: e_1_2_8_18_1
  doi: 10.3390/ma15051666
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cej.2020.126756
SSID ssj0002359
Score 2.469187
Snippet The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional...
The application of collagen‐based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two‐dimensional...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3672
SubjectTerms Antibacterial agents
Biocompatibility
Bonding strength
Collagen
Composition
Compressive properties
E coli
Electrical resistivity
Fibroblasts
Gels (Pharmacy)
Health aspects
Hydrogels
Hydroxides
Hydroxyl groups
In vitro methods and tests
Mechanical properties
MXenes
Near infrared radiation
Photothermal conversion
Polyacrylic acid
Properties
Strain
Tensile stress
Testing
Toxicity testing
Title Collagen/poly(acrylic acid)/ MXene hydrogels with tissue‐adhesive, biosensing, and photothermal antibacterial properties
URI https://www.proquest.com/docview/2884564870
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeAAeEAwQhYEixMfQljW1Uyd5RONjAjoB2qTtKbITp420tVWTahr_Df8pd7bztfVh8GJV7imxfL_c2ae73xHymmU8oxlVLuOhdMHjczcaKeqKEY9EEPBEZBjvGB_yg2P_68nopNf708paWpVyL_m9tq7kf7QKc6BXrJL9B83WD4UJ-A36hRE0DOONdIy3frAHaGkXc2wZHYpkeYm01SLBxSDJ5_gErNnO9DJdzifgB23gVW-3K9KpwvR13GeZzwtMZjffvqYPmM5LXZ91rvkEylwaZmes3cIQ_rKsEhDt4fYHrOFcLXdUw3GoH2S97LUY9TivkXlqp37mZ3mdI5TbyW8iv2gq1r4IHd39vmoHLCizlXt1wNJmo2KKH1wQNBl1xb1YGca2xWbUZaFp_VdZbGsSLTKHLfvLuGkEdM0xGKLZhZrtwQnQ9Grpkm8fRlcmDSlwEDAe-XTIb5HbFG4i2CTj46-GoYyykblh2WVW5FUeHdQv6xx51jt-fZo5ekDu22uI88Fg6iHpqdkmubNfdf_bJPdaRJWPyEWFtAHibNuizEGUvR9ohDk1whxEmHMFYbtOg69dB0DhtNHldNDlNOh6TI4_fzraP3Btyw43gZNu6aYsTP1hBk4hkNhg2IfPXWInO-FlKlWBoFEmI0-mKUPaH48mXGY8ysIsVZSlPntCNmbzmXpKHMpHUkaB54so87knhUy4l3gSQwwBy6I-2a52NU4snz22VTmLDRM3jUEBsVZAn7yqRReGxGWd0BtUTWybv8JQYHismIhVUcQNEPrknZZDeMH7EmHrWGDVSKXWkXzbkZwYIvl1glsdQVB10v27QktsrU8R0zBEJihwt89uuPDn5G7zOW6RjXK5Ui_gRF3KlxrTfwFTBtJG
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collagen%2Fpoly%28acrylic+acid%29%2FMXene+hydrogels+with+tissue-adhesive%2C+biosensing%2C+and+photothermal+antibacterial+properties&rft.jtitle=Polymer+engineering+and+science&rft.au=Zhang%2C+Min&rft.au=Yang%2C+Qili&rft.au=Liang%2C+Kaiwen&rft.au=Gao%2C+Lu&rft.date=2023-11-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=63&rft.issue=11&rft.spage=3672&rft_id=info:doi/10.1002%2Fpen.26475&rft.externalDBID=N95&rft.externalDocID=A773694216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon