Collagen/poly(acrylic acid)/ MXene hydrogels with tissue‐adhesive, biosensing, and photothermal antibacterial properties
The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional MXene nanosheets were introduced into collagen/ acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol-...
Saved in:
Published in | Polymer engineering and science Vol. 63; no. 11; pp. 3672 - 3683 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Newtown
Society of Plastics Engineers, Inc
01.11.2023
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional MXene nanosheets were introduced into collagen/ acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol-MX-PAA). The tensile stress and compressive stress values of the resultant hydrogel at the MXene concentration of 5 mg/mL reached 211.5 kPa and 7.8 MPa, respectively, which were approximately 4.0 and 1.4 times higher than those of GCol-PAA. The bonding strength of the hydrogel reached 30.7 kPa in the porcine skin-adhesive model owing to the large number of free phenolic hydroxyl groups on GCol. Furthermore, GCol-MX-PAA could be applied to monitor large and subtle activities of human body due to the excellent electrical conductivity of MXene. Thanks to the outstanding photothermal conversion performance of MXene, the hydrogel could kill E. coli and S. aureus effectively under NIR irradiation. In addition, in vitro cytotoxicity test performed on L929 fibroblasts demonstrated the desirable biocompatibility of GCol-MX-PAA. The design strategy in this work gives guidance for the development of multifunctional collagen-based hydrogel in a wide range of applications. |
---|---|
AbstractList | The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional MXene nanosheets were introduced into collagen/ acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol-MX-PAA). The tensile stress and compressive stress values of the resultant hydrogel at the MXene concentration of 5 mg/mL reached 211.5 kPa and 7.8 MPa, respectively, which were approximately 4.0 and 1.4 times higher than those of GCol-PAA. The bonding strength of the hydrogel reached 30.7 kPa in the porcine skin-adhesive model owing to the large number of free phenolic hydroxyl groups on GCol. Furthermore, GCol-MX-PAA could be applied to monitor large and subtle activities of human body due to the excellent electrical conductivity of MXene. Thanks to the outstanding photothermal conversion performance of MXene, the hydrogel could kill E. coli and S. aureus effectively under NIR irradiation. In addition, in vitro cytotoxicity test performed on L929 fibroblasts demonstrated the desirable biocompatibility of GCol-MX-PAA. The design strategy in this work gives guidance for the development of multifunctional collagen-based hydrogel in a wide range of applications. Highlights * Versatile hydrogel constructed from GA-modified collagen, PAA, and MXene. * The composite hydrogel displays improved mechanical properties. * This hydrogel possesses superior tissue adhesion and strain sensitivity. * This hydrogel shows desired photothermal antibacterial property and biocompatibility. KEYWORDS adhesion, biological applications of polymers, biomaterials, biopolymers, hydrogels The application of collagen‐based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two‐dimensional MXene nanosheets were introduced into collagen/acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol‐MX‐PAA). The tensile stress and compressive stress values of the resultant hydrogel at the MXene concentration of 5 mg/mL reached 211.5 kPa and 7.8 MPa, respectively, which were approximately 4.0 and 1.4 times higher than those of GCol‐PAA. The bonding strength of the hydrogel reached 30.7 kPa in the porcine skin‐adhesive model owing to the large number of free phenolic hydroxyl groups on GCol. Furthermore, GCol‐MX‐PAA could be applied to monitor large and subtle activities of human body due to the excellent electrical conductivity of MXene. Thanks to the outstanding photothermal conversion performance of MXene, the hydrogel could kill E. coli and S. aureus effectively under NIR irradiation. In addition, in vitro cytotoxicity test performed on L929 fibroblasts demonstrated the desirable biocompatibility of GCol‐MX‐PAA. The design strategy in this work gives guidance for the development of multifunctional collagen‐based hydrogel in a wide range of applications.HighlightsVersatile hydrogel constructed from GA‐modified collagen, PAA, and MXene.The composite hydrogel displays improved mechanical properties.This hydrogel possesses superior tissue adhesion and strain sensitivity.This hydrogel shows desired photothermal antibacterial property and biocompatibility. The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional MXene nanosheets were introduced into collagen/ acrylic acid (AA) system, which was polymerized in situ to produce versatile hydrogel (GCol-MX-PAA). The tensile stress and compressive stress values of the resultant hydrogel at the MXene concentration of 5 mg/mL reached 211.5 kPa and 7.8 MPa, respectively, which were approximately 4.0 and 1.4 times higher than those of GCol-PAA. The bonding strength of the hydrogel reached 30.7 kPa in the porcine skin-adhesive model owing to the large number of free phenolic hydroxyl groups on GCol. Furthermore, GCol-MX-PAA could be applied to monitor large and subtle activities of human body due to the excellent electrical conductivity of MXene. Thanks to the outstanding photothermal conversion performance of MXene, the hydrogel could kill E. coli and S. aureus effectively under NIR irradiation. In addition, in vitro cytotoxicity test performed on L929 fibroblasts demonstrated the desirable biocompatibility of GCol-MX-PAA. The design strategy in this work gives guidance for the development of multifunctional collagen-based hydrogel in a wide range of applications. |
Audience | Academic |
Author | Yang, Qili Gao, Lu Ding, Cuicui Dang, Yuan Lu, Peng Liang, Kaiwen Zhang, Min |
Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0001-7117-8007 surname: Zhang fullname: Zhang, Min organization: Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering Guangxi University Nanning China, College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China – sequence: 2 givenname: Qili surname: Yang fullname: Yang, Qili organization: College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China – sequence: 3 givenname: Kaiwen surname: Liang fullname: Liang, Kaiwen organization: College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China – sequence: 4 givenname: Lu surname: Gao fullname: Gao, Lu organization: College of Material Engineering Fujian Agriculture and Forestry University Fuzhou China – sequence: 5 givenname: Peng surname: Lu fullname: Lu, Peng organization: Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering Guangxi University Nanning China – sequence: 6 givenname: Cuicui orcidid: 0000-0002-4785-6629 surname: Ding fullname: Ding, Cuicui organization: College of Ecological Environment and Urban Construction Fujian University of Technology Fuzhou China – sequence: 7 givenname: Yuan surname: Dang fullname: Dang, Yuan organization: Fujian Medical University Cancer Hospital Fujian Cancer Hospital Fuzhou China |
BookMark | eNptks-KFDEQxoOs4OzqwTdo8OLC9Ew66elOH5fBPwsrXhS8Nemk0p0lk7SptDKefASf0Scx7gq6MgQqpPh9VaHqOydnPngg5HlFNxWlbDuD37CmbnePyKra1aJkDa_PyIpSzkouhHhCzhFvaWb5rluRb_vgnBzBb-fgji-likdnVSGV1Zfb4t0n8FBMRx3DCA6LrzZNRbKIC_z8_kPqCdB-gXUx2IDg0fpxXUivi3kKKaQJ4kG6nEh2kCpBtPk1xzBDTBbwKXlspEN49ue-IB9fv_qwf1vevH9zvb-6KRXvulRqLnRdGSFoO1TdjtZt2wwV5VRSAxpayTozdHTQmleMN5SpZjBNZ4TRwLiu-QV5cV83t_68AKb-NizR55Y9E6LeNbVo6V9qlA56601IUaqDRdVftS1vuppVTabKE1QeH0Tp8iaMzekH_OYEn4-Gg1UnBet_BMOSZwqYA9pxSjjKBfEhfnmPqxgQI5h-jvYg47GvaP_bEH02RH9niMxu_2OVTTLZ4POfrDuh-AUQULtb |
CitedBy_id | crossref_primary_10_1088_2053_1591_ad913c crossref_primary_10_1002_pen_26581 crossref_primary_10_1002_pen_27164 crossref_primary_10_1002_pen_26571 crossref_primary_10_1021_acssensors_4c01428 crossref_primary_10_1021_acsbiomaterials_4c02203 crossref_primary_10_3389_fbioe_2024_1338539 crossref_primary_10_1016_j_inoche_2024_112457 crossref_primary_10_1002_pen_26668 crossref_primary_10_1021_acs_iecr_4c02197 |
Cites_doi | 10.1021/acsbiomaterials.0c00161 10.3390/s18020569 10.3390/pharmaceutics14030540 10.1002/mame.201800664 10.1016/j.eurpolymj.2020.110253 10.1021/acsami.6b16195 10.1002/adfm.201901693 10.1016/j.actbio.2022.02.019 10.1021/acsami.8b08314 10.1021/acs.biomac.1c01641 10.1016/j.msec.2019.01.109 10.1039/D0TB01422B 10.1002/adfm.202004407 10.1021/acs.biomac.7b00921 10.1016/j.cej.2020.127962 10.1002/adma.201702037 10.1016/j.ijbiomac.2018.02.027 10.1039/D0CS00022A 10.1016/j.envpol.2019.113574 10.1016/j.carbpol.2022.119506 10.1002/adfm.201809110 10.1021/acsami.0c20702 10.1016/j.biotechadv.2017.05.006 10.1002/adma.201801651 10.1021/acsbiomaterials.0c00588 10.1021/acsnano.1c01751 10.1016/j.carbpol.2022.119572 10.1021/acsami.9b15817 10.1016/j.cej.2020.125439 10.18063/ijb.v7i3.353 10.1039/C8TC00157J 10.3390/ma15051666 10.1016/j.cej.2020.126756 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 Society of Plastics Engineers, Inc. 2023 Society of Plastics Engineers |
Copyright_xml | – notice: COPYRIGHT 2023 Society of Plastics Engineers, Inc. – notice: 2023 Society of Plastics Engineers |
DBID | AAYXX CITATION N95 7SR 8FD JG9 |
DOI | 10.1002/pen.26475 |
DatabaseName | CrossRef Gale Business: Insights Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1548-2634 |
EndPage | 3683 |
ExternalDocumentID | A773694216 10_1002_pen_26475 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CITATION CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PHGZM PHGZT PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWL RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c399t-d38d41f8807b19504776b1030a0fede7a29fb90bdd3123602c6bf69f8fde23d43 |
ISSN | 0032-3888 |
IngestDate | Fri Jul 25 10:50:13 EDT 2025 Wed Aug 27 16:51:01 EDT 2025 Mon Aug 25 12:16:06 EDT 2025 Tue Aug 26 03:42:00 EDT 2025 Tue Aug 26 01:12:47 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Tue Jul 01 02:33:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c399t-d38d41f8807b19504776b1030a0fede7a29fb90bdd3123602c6bf69f8fde23d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4785-6629 0000-0001-7117-8007 |
PQID | 2884564870 |
PQPubID | 41843 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2884564870 gale_infotracmisc_A773694216 gale_infotracgeneralonefile_A773694216 gale_infotracacademiconefile_A773694216 gale_businessinsightsgauss_A773694216 crossref_primary_10_1002_pen_26475 crossref_citationtrail_10_1002_pen_26475 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-00 |
PublicationDecade | 2020 |
PublicationPlace | Newtown |
PublicationPlace_xml | – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationYear | 2023 |
Publisher | Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd |
References | e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Yang X (e_1_2_8_11_1) 2020; 8 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – ident: e_1_2_8_17_1 doi: 10.1021/acsbiomaterials.0c00161 – ident: e_1_2_8_32_1 doi: 10.3390/s18020569 – ident: e_1_2_8_3_1 doi: 10.3390/pharmaceutics14030540 – ident: e_1_2_8_28_1 doi: 10.1002/mame.201800664 – ident: e_1_2_8_9_1 doi: 10.1016/j.eurpolymj.2020.110253 – ident: e_1_2_8_13_1 doi: 10.1021/acsami.6b16195 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.201901693 – ident: e_1_2_8_19_1 doi: 10.1016/j.actbio.2022.02.019 – ident: e_1_2_8_35_1 doi: 10.1021/acsami.8b08314 – ident: e_1_2_8_8_1 doi: 10.1021/acs.biomac.1c01641 – ident: e_1_2_8_15_1 doi: 10.1016/j.msec.2019.01.109 – ident: e_1_2_8_10_1 doi: 10.1039/D0TB01422B – ident: e_1_2_8_26_1 doi: 10.1002/adfm.202004407 – ident: e_1_2_8_27_1 doi: 10.1021/acs.biomac.7b00921 – ident: e_1_2_8_23_1 doi: 10.1016/j.cej.2020.127962 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201702037 – ident: e_1_2_8_24_1 doi: 10.1016/j.ijbiomac.2018.02.027 – ident: e_1_2_8_34_1 doi: 10.1039/D0CS00022A – ident: e_1_2_8_14_1 doi: 10.1016/j.envpol.2019.113574 – ident: e_1_2_8_21_1 doi: 10.1016/j.carbpol.2022.119506 – ident: e_1_2_8_29_1 doi: 10.1002/adfm.201809110 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.0c20702 – ident: e_1_2_8_6_1 doi: 10.1016/j.biotechadv.2017.05.006 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201801651 – ident: e_1_2_8_7_1 doi: 10.1021/acsbiomaterials.0c00588 – ident: e_1_2_8_22_1 doi: 10.1021/acsnano.1c01751 – ident: e_1_2_8_20_1 doi: 10.1016/j.carbpol.2022.119572 – ident: e_1_2_8_2_1 doi: 10.1021/acsami.9b15817 – ident: e_1_2_8_31_1 doi: 10.1016/j.cej.2020.125439 – volume: 8 start-page: 10726 issue: 29 year: 2020 ident: e_1_2_8_11_1 article-title: Sandwich‐like Polypyrrole/reduced graphene oxide Nanosheets integrated gelatin hydrogel as mechanically and thermally sensitive Skinlike bioelectronics publication-title: ACS Sustain Chem Eng – ident: e_1_2_8_16_1 doi: 10.18063/ijb.v7i3.353 – ident: e_1_2_8_33_1 doi: 10.1039/C8TC00157J – ident: e_1_2_8_18_1 doi: 10.3390/ma15051666 – ident: e_1_2_8_4_1 doi: 10.1016/j.cej.2020.126756 |
SSID | ssj0002359 |
Score | 2.469187 |
Snippet | The application of collagen-based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two-dimensional... The application of collagen‐based hydrogel is severely restricted due to its poor mechanical strength and functional singleness. In this paper, two‐dimensional... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3672 |
SubjectTerms | Antibacterial agents Biocompatibility Bonding strength Collagen Composition Compressive properties E coli Electrical resistivity Fibroblasts Gels (Pharmacy) Health aspects Hydrogels Hydroxides Hydroxyl groups In vitro methods and tests Mechanical properties MXenes Near infrared radiation Photothermal conversion Polyacrylic acid Properties Strain Tensile stress Testing Toxicity testing |
Title | Collagen/poly(acrylic acid)/ MXene hydrogels with tissue‐adhesive, biosensing, and photothermal antibacterial properties |
URI | https://www.proquest.com/docview/2884564870 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeAAeEAwQhYEixMfQljW1Uyd5RONjAjoB2qTtKbITp420tVWTahr_Df8pd7bztfVh8GJV7imxfL_c2ae73xHymmU8oxlVLuOhdMHjczcaKeqKEY9EEPBEZBjvGB_yg2P_68nopNf708paWpVyL_m9tq7kf7QKc6BXrJL9B83WD4UJ-A36hRE0DOONdIy3frAHaGkXc2wZHYpkeYm01SLBxSDJ5_gErNnO9DJdzifgB23gVW-3K9KpwvR13GeZzwtMZjffvqYPmM5LXZ91rvkEylwaZmes3cIQ_rKsEhDt4fYHrOFcLXdUw3GoH2S97LUY9TivkXlqp37mZ3mdI5TbyW8iv2gq1r4IHd39vmoHLCizlXt1wNJmo2KKH1wQNBl1xb1YGca2xWbUZaFp_VdZbGsSLTKHLfvLuGkEdM0xGKLZhZrtwQnQ9Grpkm8fRlcmDSlwEDAe-XTIb5HbFG4i2CTj46-GoYyykblh2WVW5FUeHdQv6xx51jt-fZo5ekDu22uI88Fg6iHpqdkmubNfdf_bJPdaRJWPyEWFtAHibNuizEGUvR9ohDk1whxEmHMFYbtOg69dB0DhtNHldNDlNOh6TI4_fzraP3Btyw43gZNu6aYsTP1hBk4hkNhg2IfPXWInO-FlKlWBoFEmI0-mKUPaH48mXGY8ysIsVZSlPntCNmbzmXpKHMpHUkaB54so87knhUy4l3gSQwwBy6I-2a52NU4snz22VTmLDRM3jUEBsVZAn7yqRReGxGWd0BtUTWybv8JQYHismIhVUcQNEPrknZZDeMH7EmHrWGDVSKXWkXzbkZwYIvl1glsdQVB10v27QktsrU8R0zBEJihwt89uuPDn5G7zOW6RjXK5Ui_gRF3KlxrTfwFTBtJG |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collagen%2Fpoly%28acrylic+acid%29%2FMXene+hydrogels+with+tissue-adhesive%2C+biosensing%2C+and+photothermal+antibacterial+properties&rft.jtitle=Polymer+engineering+and+science&rft.au=Zhang%2C+Min&rft.au=Yang%2C+Qili&rft.au=Liang%2C+Kaiwen&rft.au=Gao%2C+Lu&rft.date=2023-11-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=63&rft.issue=11&rft.spage=3672&rft_id=info:doi/10.1002%2Fpen.26475&rft.externalDBID=N95&rft.externalDocID=A773694216 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |