A Novel Virtual Navigation Route Generation Scheme for Augmented Reality Car Navigation System
This paper develops a novel virtual navigation route generation scheme for an augmented reality (AR) car navigation system based on the generative adversarial network–long short-term memory network (GAN–LSTM) framework with an integrated camera and GPS module. Unlike the present AR car navigation sy...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 3; p. 820 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
30.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper develops a novel virtual navigation route generation scheme for an augmented reality (AR) car navigation system based on the generative adversarial network–long short-term memory network (GAN–LSTM) framework with an integrated camera and GPS module. Unlike the present AR car navigation systems, the virtual navigation route is “autonomously” generated in captured images rather than superimposed on the image utilizing the pre-rendered 3D content, such as an arrow or trajectory, which not only provide a more authentic and correct AR effect to the user but also correctly guide the driver earlier when driving in complex road traffic environments. First, an evolved fully convolutional network architecture which uses a top-view image through an inverse perspective mapping scheme as input is utilized to obtain a more accurate semantic segmentation result for the lane markings in the traffic scene. Next, according to the above segmentation result and known location information from path planning, an AR Navigation-Nets based on an LSTM framework is proposed to predict the global relationship codes of the virtual navigation route. Simultaneously, the discriminator is utilized to evaluate the generated virtual navigation route that can approximate the real-world vehicle trajectory. Finally, the virtual navigation route can be superimposed on the original image with the correct ratio and position through an IPM process. |
---|---|
AbstractList | This paper develops a novel virtual navigation route generation scheme for an augmented reality (AR) car navigation system based on the generative adversarial network-long short-term memory network (GAN-LSTM) framework with an integrated camera and GPS module. Unlike the present AR car navigation systems, the virtual navigation route is "autonomously" generated in captured images rather than superimposed on the image utilizing the pre-rendered 3D content, such as an arrow or trajectory, which not only provide a more authentic and correct AR effect to the user but also correctly guide the driver earlier when driving in complex road traffic environments. First, an evolved fully convolutional network architecture which uses a top-view image through an inverse perspective mapping scheme as input is utilized to obtain a more accurate semantic segmentation result for the lane markings in the traffic scene. Next, according to the above segmentation result and known location information from path planning, an AR Navigation-Nets based on an LSTM framework is proposed to predict the global relationship codes of the virtual navigation route. Simultaneously, the discriminator is utilized to evaluate the generated virtual navigation route that can approximate the real-world vehicle trajectory. Finally, the virtual navigation route can be superimposed on the original image with the correct ratio and position through an IPM process.This paper develops a novel virtual navigation route generation scheme for an augmented reality (AR) car navigation system based on the generative adversarial network-long short-term memory network (GAN-LSTM) framework with an integrated camera and GPS module. Unlike the present AR car navigation systems, the virtual navigation route is "autonomously" generated in captured images rather than superimposed on the image utilizing the pre-rendered 3D content, such as an arrow or trajectory, which not only provide a more authentic and correct AR effect to the user but also correctly guide the driver earlier when driving in complex road traffic environments. First, an evolved fully convolutional network architecture which uses a top-view image through an inverse perspective mapping scheme as input is utilized to obtain a more accurate semantic segmentation result for the lane markings in the traffic scene. Next, according to the above segmentation result and known location information from path planning, an AR Navigation-Nets based on an LSTM framework is proposed to predict the global relationship codes of the virtual navigation route. Simultaneously, the discriminator is utilized to evaluate the generated virtual navigation route that can approximate the real-world vehicle trajectory. Finally, the virtual navigation route can be superimposed on the original image with the correct ratio and position through an IPM process. This paper develops a novel virtual navigation route generation scheme for an augmented reality (AR) car navigation system based on the generative adversarial network–long short-term memory network (GAN–LSTM) framework with an integrated camera and GPS module. Unlike the present AR car navigation systems, the virtual navigation route is “autonomously” generated in captured images rather than superimposed on the image utilizing the pre-rendered 3D content, such as an arrow or trajectory, which not only provide a more authentic and correct AR effect to the user but also correctly guide the driver earlier when driving in complex road traffic environments. First, an evolved fully convolutional network architecture which uses a top-view image through an inverse perspective mapping scheme as input is utilized to obtain a more accurate semantic segmentation result for the lane markings in the traffic scene. Next, according to the above segmentation result and known location information from path planning, an AR Navigation-Nets based on an LSTM framework is proposed to predict the global relationship codes of the virtual navigation route. Simultaneously, the discriminator is utilized to evaluate the generated virtual navigation route that can approximate the real-world vehicle trajectory. Finally, the virtual navigation route can be superimposed on the original image with the correct ratio and position through an IPM process. |
Audience | Academic |
Author | Lin, Ming-Chih Chan, Yu-Ching Lin, Yu-Chen |
AuthorAffiliation | Department of Automatic Control Engineering, Feng Chia University, Taichung City 407102, Taiwan; james397520@gmail.com (Y.-C.C.); mingchih071126@gmail.com (M.-C.L.) |
AuthorAffiliation_xml | – name: Department of Automatic Control Engineering, Feng Chia University, Taichung City 407102, Taiwan; james397520@gmail.com (Y.-C.C.); mingchih071126@gmail.com (M.-C.L.) |
Author_xml | – sequence: 1 givenname: Yu-Chen orcidid: 0000-0002-6735-0473 surname: Lin fullname: Lin, Yu-Chen – sequence: 2 givenname: Yu-Ching surname: Chan fullname: Chan, Yu-Ching – sequence: 3 givenname: Ming-Chih orcidid: 0000-0001-7701-6965 surname: Lin fullname: Lin, Ming-Chih |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39943459$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhiNURD_gwB9AkbjQwxZ_xbFPaLWCUqkqUgscsSbOOPUqiVsnWWn_Pd6mrLbIB1vjZ96Zsd_T7KgPPWbZe0ouONfk88AKwoli5FV2QgUTC8UYOTo4H2enw7AmhHHO1ZvsmGstuCj0SfZnmd-EDbb5bx_HCdr8Bja-gdGHPr8N04j5JfYY58CdvccOcxdivpyaDvsR6_wWofXjNl9BPEy-2w4jdm-z1w7aAd8972fZr29ff66-L65_XF6tltcLm1oZF9YRqqTiNdIKdFEDA4XaaSlAl6xEiRVyIlAqornkVQnEWkoEq1kBruL8LLuadesAa_MQfQdxawJ48xQIsTEQR29bNFRQqi1zrLSFYKk80MJZIWVNqVVQJK0vs9bDVHVY2zRmhPaF6Mub3t-bJmwMpYrqktKk8OlZIYbHCYfRdH6w2LbQY5gGw6mUTEqld41__A9dhyn26a12VKEZKYRM1MVMNZAm8L0LqbBNq8bO22QG51N8qTiTmlAqUsKHwxn2zf_7-AScz4CNYRgiuj1CidmZyuxNxf8CV428TA |
Cites_doi | 10.1049/itr2.12367 10.1109/TITS.2020.2971728 10.20944/preprints202409.2107.v1 10.1109/TITS.2019.2942089 10.1109/TITS.2020.3040955 10.1109/TVT.2020.2966765 10.1007/s10209-005-0017-5 10.1109/MWSCAS.2017.8053243 10.1109/TCE.2024.3387708 10.1049/iet-its.2019.0391 10.1109/TVT.2021.3113500 10.1109/TITS.2021.3083526 10.1109/SII.2019.8700359 10.1109/CVPR.2019.00144 10.1109/TITS.2024.3386568 10.1109/TVT.2019.2949603 10.1109/TVT.2021.3051178 10.1177/1557234X11410387 10.3390/s24227323 10.1109/ACCESS.2020.2991930 10.3390/s24072116 10.1162/neco.1997.9.8.1735 10.1109/ACCESS.2023.3348478 10.1109/TITS.2023.3289165 10.3390/s24010212 10.1109/ACCESS.2020.3039801 10.1109/TSMC.2024.3462469 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25030820 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: Proquest Central Journals url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_14119c2f27c542399a15fc466d11c8a5 PMC11819711 A832690114 39943459 10_3390_s25030820 |
Genre | Journal Article |
GeographicLocations | United States--US California |
GeographicLocations_xml | – name: United States--US – name: California |
GrantInformation_xml | – fundername: National Science and Technology Council, R.O.C. grantid: NSTC 112-2628-E-035-001-MY3 – fundername: National Science and Technology Council of Taiwan R.O.C. grantid: NSTC 112-2628-E-035-001-MY3 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c399t-cf018683de1ba95da2a8e9f964a9727e6ebe304e6809363b7a0cc1042d25afb33 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Thu Aug 21 18:29:20 EDT 2025 Fri Jul 11 00:16:07 EDT 2025 Fri Jul 25 22:06:36 EDT 2025 Tue Jun 10 21:01:07 EDT 2025 Sun Feb 16 01:21:10 EST 2025 Tue Jul 01 02:10:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | generative adversarial network virtual navigation route augmented reality long short-term memory network semantic segmentation navigation system |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-cf018683de1ba95da2a8e9f964a9727e6ebe304e6809363b7a0cc1042d25afb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7701-6965 0000-0002-6735-0473 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25030820 |
PMID | 39943459 |
PQID | 3165920546 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_14119c2f27c542399a15fc466d11c8a5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11819711 proquest_miscellaneous_3166266893 proquest_journals_3165920546 gale_infotracacademiconefile_A832690114 pubmed_primary_39943459 crossref_primary_10_3390_s25030820 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250130 |
PublicationDateYYYYMMDD | 2025-01-30 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250130 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Niu (ref_11) 2024; 25 Zhang (ref_24) 2021; 22 Wu (ref_32) 2020; 8 ref_35 ref_34 ref_33 ref_31 Yu (ref_18) 2023; 24 Chen (ref_12) 2024; 54 Chiang (ref_9) 2020; 69 Xiao (ref_13) 2021; 70 Hurts (ref_2) 2011; 7 Elsheikh (ref_8) 2022; 23 Marzougui (ref_14) 2020; 8 Shao (ref_21) 2022; 23 ref_25 Hochreiter (ref_27) 1997; 9 ref_23 ref_22 Yun (ref_16) 2024; 12 ref_1 ref_3 ref_29 Zou (ref_20) 2020; 69 ref_28 Rao (ref_19) 2024; 18 Zhong (ref_15) 2020; 14 ref_26 Sukumar (ref_17) 2024; 70 Li (ref_7) 2021; 70 ref_5 Narzt (ref_10) 2006; 4 ref_4 Hou (ref_30) 2020; 21 ref_6 |
References_xml | – volume: 18 start-page: 2552 year: 2024 ident: ref_19 article-title: A Multi-Stage Model for Bird’s Eye View Prediction Based on Stereo-Matching Model and RGB-D Semantic Segmentation publication-title: IET Intell. Transp. Syst. doi: 10.1049/itr2.12367 – ident: ref_5 – ident: ref_3 – volume: 22 start-page: 1532 year: 2021 ident: ref_24 article-title: Ripple-GAN: Lane Line Detection with Ripple Lane Line Detection Network and Wasserstein GAN publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2971728 – ident: ref_34 – ident: ref_29 doi: 10.20944/preprints202409.2107.v1 – volume: 21 start-page: 4615 year: 2020 ident: ref_30 article-title: Interactive Trajectory Prediction of Surrounding Road Users for Autonomous Driving Using Structural-LSTM Network publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2942089 – volume: 23 start-page: 2246 year: 2022 ident: ref_8 article-title: Integration of GNSS Precise Point Positioning and Reduced Inertial Sensor System for Lane-Level Car Navigation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3040955 – volume: 69 start-page: 2463 year: 2020 ident: ref_9 article-title: Performance Enhancement of INS/GNSS/Refreshed-SLAM Integration for Acceptable Lane-Level Navigation Accuracy publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2966765 – volume: 4 start-page: 177 year: 2006 ident: ref_10 article-title: Augmented Reality Navigation Systems publication-title: Univers. Access Inf. Soc doi: 10.1007/s10209-005-0017-5 – ident: ref_26 doi: 10.1109/MWSCAS.2017.8053243 – volume: 70 start-page: 4793 year: 2024 ident: ref_17 article-title: An Improved Lane Detection and Lane Departure Warning Framework for ADAS publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2024.3387708 – ident: ref_1 – ident: ref_35 – volume: 14 start-page: 1142 year: 2020 ident: ref_15 article-title: Robust Multi-Lane Detection Method Based on Semantic Discrimination publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2019.0391 – ident: ref_6 – volume: 70 start-page: 11404 year: 2021 ident: ref_13 article-title: Residual Attention Network-Based Confidence Estimation Algorithm for Non-Holonomic Constraint in GNSS/INS Integrated Navigation System publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3113500 – ident: ref_4 – volume: 23 start-page: 8498 year: 2022 ident: ref_21 article-title: Semantic Segmentation for Free Space and Lane Based on Grid-Based Interest Point Detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3083526 – ident: ref_25 doi: 10.1109/SII.2019.8700359 – ident: ref_31 doi: 10.1109/CVPR.2019.00144 – ident: ref_33 – volume: 25 start-page: 14890 year: 2024 ident: ref_11 article-title: MGINS: A Lane-Level Localization System for Challenging Urban Environments Using Magnetic Field Matching/GNSS/INS Fusion publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2024.3386568 – volume: 69 start-page: 41 year: 2020 ident: ref_20 article-title: Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2949603 – volume: 70 start-page: 1122 year: 2021 ident: ref_7 article-title: Semantic-Level Maneuver Sampling and Trajectory Planning for On-Road Autonomous Driving in Dynamic Scenarios publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3051178 – volume: 7 start-page: 3 year: 2011 ident: ref_2 article-title: The Distracted Driver: Mechanisms, Models, and Measurement publication-title: Rev. Hum. Factors Ergon. doi: 10.1177/1557234X11410387 – ident: ref_28 doi: 10.3390/s24227323 – volume: 8 start-page: 84893 year: 2020 ident: ref_14 article-title: A Lane Tracking Method Based on Progressive Probabilistic Hough Transform publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991930 – ident: ref_22 doi: 10.3390/s24072116 – volume: 9 start-page: 1735 year: 1997 ident: ref_27 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 12 start-page: 4339 year: 2024 ident: ref_16 article-title: Low-Power Lane Detection Unit with Sliding-Based Parallel Segment Detection Accelerator for FPGA publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3348478 – volume: 24 start-page: 8617 year: 2023 ident: ref_18 article-title: Shallow Detail and Semantic Segmentation Combined Bilateral Network Model for Lane Detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3289165 – ident: ref_23 doi: 10.3390/s24010212 – volume: 8 start-page: 212529 year: 2020 ident: ref_32 article-title: A Novel Trajectory Generator Based on a Constrained GAN and a Latent Variables Predictor publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039801 – volume: 54 start-page: 7721 year: 2024 ident: ref_12 article-title: Time-Dependent Lane-Level Navigation with Spatiotemporal Mobility Modeling Based on the Internet of Vehicles publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2024.3462469 |
SSID | ssj0023338 |
Score | 2.4391394 |
Snippet | This paper develops a novel virtual navigation route generation scheme for an augmented reality (AR) car navigation system based on the generative adversarial... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 820 |
SubjectTerms | Augmented Reality Cellular telephones generative adversarial network Liquors long short-term memory network navigation system Navigation systems Roads & highways semantic segmentation Telematics Three dimensional imaging virtual navigation route Virtual reality |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwEB2hnsoBQSkQaJGpkDhFtWPHax-XqlWFxB5oi3rCchwbKkEWbXf7_cw42VUiDly42o7kvJfxzMT2G4D3QURvZBPKVteyVDKq0miVylnEBVno1vBcpvPzQl_eqE-39e2o1BedCevlgXvgToUSwoYqVbNQk1id9aJOQWndChGMz-ql6PO2ydSQaknMvHodIYlJ_ek9OnrSZeET75NF-v9eike-aHpOcuR4Lp7CkyFiZPN-ps_gUewO4PFIR_A5fJuzxfIh_mRf71Z0H4Qt_EOWzlh2jI78RNarS-eGK6TpV2QYrLL55nvW5GzZl5jjcXbmV-OHez3zQ7i5OL8-uyyHwgllQIDWZUicVPBlG0Xjbd36yptok9XKW4xXokbmJFdRG26lls3M8xAwL6vaqvapkfIF7HXLLr4C1pKLF40yAUFXTWh04iokoSueamF8ASdbQN3vXh_DYV5BqLsd6gV8JKh3A0jSOjcg0W4g2v2L6AI-EFGODA_ZCH64P4DzJAkrN8e1iaprCVXA0ZZLN1jkvZOCNpAxQNUFvNt1oy3RBonv4nKTx2B-pzGEK-BlT_1uzjghJVVtCzCTj2LyUtOe7u5H1uumu712JsTr_wHDG9ivqAQxp9-GR7C3Xm3iMcZF6-ZtNoE_GusK2A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SZQkEFInKLa8SPOCS0VVYXEHoCiPRE5ttNWgqTso7-fGSe73QiJa-wokxnPyx5_A_DOi-isbHwejJa5klHl1qg2LyMaZGGC5alN55e5OT1Tnxd6MW64rcayyq1NTIY69J72yI-koANADDDMh6s_OXWNotPVsYXGbbhD0GVU0lUubhIuifnXgCYkMbU_WqG7J3QWPvFBCar_X4O855Gm1ZJ77ufkAdwf40Y2GwT9EG7F7hHc20MTfAw_Z2zeX8df7Mflkm6FsLm7TgAafceo8CeyAWM6PfiGwvodGYasbLY5T8icgX2NKSpnx265__KAav4Ezk4-fT8-zcf2CbnHqGOd-5YTFr4MUTSu0sEVzsaqrYxyFUYt0aD8JFfRWF5JI5vSce8xOytCoV3bSPkUDrq-i8-BBXL0olHWt16pxjem5cq3whS81cK6DN5uGVpfDSgZNWYXxPV6x_UMPhKrdxMI2Do96Jfn9agnmImgIH3RFqXXhE1YOaHxm8YEIbx1OoP3JKia1A-l4d14iwDpJCCreoYWinpsCZXB4VaW9aiXq_pmFWXwZjeMGkXHJK6L_SbNwSzPYCCXwbNB9DuakSAlla4ysJNFMfmp6Uh3eZFQu-mGb1UK8eL_dL2EuwW1GOa0LXgIB-vlJr7CuGfdvE6L-y91rANp priority: 102 providerName: ProQuest |
Title | A Novel Virtual Navigation Route Generation Scheme for Augmented Reality Car Navigation System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39943459 https://www.proquest.com/docview/3165920546 https://www.proquest.com/docview/3166266893 https://pubmed.ncbi.nlm.nih.gov/PMC11819711 https://doaj.org/article/14119c2f27c542399a15fc466d11c8a5 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9QwEB6VVkLlgHgTKCuDkDgF4thxkgNC26pLhdQVKizaE5HjOKVSSSDdreDfM-M8lAi45GA7L39jz3xx_A3AS8OtTkRu_EJFwpfCSj9RsvRjixMyV0USuDSdp0t1spIf1tF6B_ocm10HXv2T2lE-qVVz-frXz9_vcMC_JcaJlP3NFbpxUl1B5r6HDimm8Xkqh8WEUCANa0WFps334Sa6ZykkCZWOvJIT7_97ih75qOn_kyOHtLgDt7tIks1b6O_Cjq3uwa2RvuB9-Dpny_raXrIvFw3tE2FLfe0kNeqK0a9AlrWq067gE8L33TIMYtl8e-60Ogt2Zl2czo50Mz651Tl_AKvF8eejE79LqOAbfNGNb8qA1PFFYXmu06jQoU5sWqZK6hTjGKsQURFIq5IgFUrksQ6MQb4WFmGky1yIh7Bb1ZV9DKwg189zmZjSSJmbXJWBNCVXYVBGPNEevOg7NPvR6mZkyDcIgGwAwIND6uqhAUldu4K6Oc-6kYPchPPUhGUYm4jUClPNI7ynUgXnJtGRB68IqIxMBNEwuttXgM9J0lbZHOcsyrrFpQcHPZZZb2iZ4LSwjIGr8uD5UI1jjBZOdGXrrWuDvE9haOfBoxb64Zl7C_IgmRjF5KWmNdXFN6fjTXt-05jzJ_-96FPYDynfcEDfCA9gd9Ns7TMMgjb5DG7E6xiPyeL9DPYOj5cfz2bug8LMGf8f8roJEw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC1F4QAcEDuGAA0CcbLidi-2DwgNgWhCkjlAguaEabfbIRLYYZYgfopvpKptT8ZC4parF7ld--vlFcALy51JRWHDUisRSuFkmGpZhYnDgMx1mUa-TefhRI-P5Yepmm7An_4sDG2r7GOiD9RlY2mOfFtwWgDEAkO_OfsZUtcoWl3tW2i0ZrHvfv9CyDZ_vfcO9fsyjnffH-2Mw66rQGgxGS9CW0VEES9KxwuTqdLEJnVZlWlpMkzmTuNvIcZ3OkWwr0WRmMhaBC1xGStTFTQBiiH_CibeiDwqmV4APIF4r2UvEiKLtudYXhAbTDTIeb41wL8JYC0DDndnrqW73Ztwo6tT2ag1rFuw4erbcH2NvfAOfBmxSXPuvrPPpzM6hcIm5twTdjQ1o41GjrWc1v7CJzSOH45hicxGyxPPBFqyj86jALZjZusvtyzqd-H4UgR7DzbrpnYPgJVUWPBCprayUha20FUkbcV1HFWKpyaA571A87OWlSNHNENSz1dSD-AtiXr1ABFp-wvN7CTv_BKRD-eZjas4sYq4EDPDFX5T65JzmxoVwCtSVE7ujtqwpju1gOMk4qx8hBGRenpxGcBWr8u8iwPz_MJqA3i2uo0eTMsypnbN0j-DqFJj4RjA_Vb1qzHjgKSQKgsgHRjF4KeGd-rTb54lnE4UZwnnD_8_rqdwdXx0eJAf7E32H8G1mNobRzQluQWbi9nSPcaaa1E88YbO4Otle9Zf4zlAdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UCqIP4t3UqqMoPoXNZC5JHkTW1qW1uoha2afGyWRSCzWpe6n41_x1njNJtrsIvvU1FzI5928u3wF4brkzqShsWGolQimcDFMtqzBxGJC5LtPIt-n8MNZ7h_LdRE024E9_Foa2VfYx0QfqsrE0Rz4QnBYAscDQg6rbFvFxd_T67GdIHaRopbVvp9GayIH7_Qvh2-zV_i7q-kUcj95-2dkLuw4DocXEPA9tFRFdvCgdL0ymShOb1GVVpqXJMLE7jb-IeN_pFIG_FkViImsRwMRlrExV0GQohv8riVCcfCyZXIA9gdivZTISIosGMyw1iBkmWst_vk3Av8lgJRuu79RcSX2jm3Cjq1nZsDWyW7Dh6ttwfYXJ8A4cDdm4OXen7OvJlE6ksLE59-QdTc1o05FjLb-1v_AZDeWHY1gus-Hi2LOCluyT84iA7Zjp6ssto_pdOLwUwd6Dzbqp3QNgJRUZvJCprayUhS10FUlbcR1HleKpCeBZL9D8rGXoyBHZkNTzpdQDeEOiXj5ApNr-QjM9zjsfRRTEeWbjKk6sIl7EzHCF39S65NymRgXwkhSVk-ujNqzpTjDgOIlEKx9idKT-XlwGsN3rMu9iwiy_sOAAni5vozfTEo2pXbPwzyDC1FhEBnC_Vf1yzDggKaTKAkjXjGLtp9bv1CffPWM4nS7OEs63_j-uJ3AVfSp_vz8-eAjXYup0HNHs5DZszqcL9wjLr3nx2Ns5g2-X7Vh_AaYhRKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Virtual+Navigation+Route+Generation+Scheme+for+Augmented+Reality+Car+Navigation+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Yu-Chen&rft.au=Chan%2C+Yu-Ching&rft.au=Lin%2C+Ming-Chih&rft.date=2025-01-30&rft.eissn=1424-8220&rft.volume=25&rft.issue=3&rft_id=info:doi/10.3390%2Fs25030820&rft_id=info%3Apmid%2F39943459&rft.externalDocID=39943459 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |