Preparing Medical Imaging Data for Machine Learning

Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the entirety of the medical imaging life cycle from image creation to diagnosis to outcome prediction. The chief obstacles to development and clinical implementat...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 295; no. 1; pp. 4 - 15
Main Authors Willemink, Martin J., Koszek, Wojciech A., Hardell, Cailin, Wu, Jie, Fleischmann, Dominik, Harvey, Hugh, Folio, Les R., Summers, Ronald M., Rubin, Daniel L., Lungren, Matthew P.
Format Journal Article
LanguageEnglish
Published United States Radiological Society of North America 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the entirety of the medical imaging life cycle from image creation to diagnosis to outcome prediction. The chief obstacles to development and clinical implementation of AI algorithms include availability of sufficiently large, curated, and representative training data that includes expert labeling (eg, annotations). Current supervised AI methods require a curation process for data to optimally train, validate, and test algorithms. Currently, most research groups and industry have limited data access based on small sample sizes from small geographic areas. In addition, the preparation of data is a costly and time-intensive process, the results of which are algorithms with limited utility and poor generalization. In this article, the authors describe fundamental steps for preparing medical imaging data in AI algorithm development, explain current limitations to data curation, and explore new approaches to address the problem of data availability.
AbstractList Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the entirety of the medical imaging life cycle from image creation to diagnosis to outcome prediction. The chief obstacles to development and clinical implementation of AI algorithms include availability of sufficiently large, curated, and representative training data that includes expert labeling (eg, annotations). Current supervised AI methods require a curation process for data to optimally train, validate, and test algorithms. Currently, most research groups and industry have limited data access based on small sample sizes from small geographic areas. In addition, the preparation of data is a costly and time-intensive process, the results of which are algorithms with limited utility and poor generalization. In this article, the authors describe fundamental steps for preparing medical imaging data in AI algorithm development, explain current limitations to data curation, and explore new approaches to address the problem of data availability.
Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the entirety of the medical imaging life cycle from image creation to diagnosis to outcome prediction. The chief obstacles to development and clinical implementation of AI algorithms include availability of sufficiently large, curated, and representative training data that includes expert labeling (eg, annotations). Current supervised AI methods require a curation process for data to optimally train, validate, and test algorithms. Currently, most research groups and industry have limited data access based on small sample sizes from small geographic areas. In addition, the preparation of data is a costly and time-intensive process, the results of which are algorithms with limited utility and poor generalization. In this article, the authors describe fundamental steps for preparing medical imaging data in AI algorithm development, explain current limitations to data curation, and explore new approaches to address the problem of data availability. © RSNA, 2020
Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the entirety of the medical imaging life cycle from image creation to diagnosis to outcome prediction. The chief obstacles to development and clinical implementation of AI algorithms include availability of sufficiently large, curated, and representative training data that includes expert labeling (eg, annotations). Current supervised AI methods require a curation process for data to optimally train, validate, and test algorithms. Currently, most research groups and industry have limited data access based on small sample sizes from small geographic areas. In addition, the preparation of data is a costly and time-intensive process, the results of which are algorithms with limited utility and poor generalization. In this article, the authors describe fundamental steps for preparing medical imaging data in AI algorithm development, explain current limitations to data curation, and explore new approaches to address the problem of data availability.Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the entirety of the medical imaging life cycle from image creation to diagnosis to outcome prediction. The chief obstacles to development and clinical implementation of AI algorithms include availability of sufficiently large, curated, and representative training data that includes expert labeling (eg, annotations). Current supervised AI methods require a curation process for data to optimally train, validate, and test algorithms. Currently, most research groups and industry have limited data access based on small sample sizes from small geographic areas. In addition, the preparation of data is a costly and time-intensive process, the results of which are algorithms with limited utility and poor generalization. In this article, the authors describe fundamental steps for preparing medical imaging data in AI algorithm development, explain current limitations to data curation, and explore new approaches to address the problem of data availability.
Author Willemink, Martin J.
Harvey, Hugh
Wu, Jie
Koszek, Wojciech A.
Rubin, Daniel L.
Summers, Ronald M.
Lungren, Matthew P.
Fleischmann, Dominik
Hardell, Cailin
Folio, Les R.
Author_xml – sequence: 1
  givenname: Martin J.
  orcidid: 0000-0002-6991-6557
  surname: Willemink
  fullname: Willemink, Martin J.
– sequence: 2
  givenname: Wojciech A.
  orcidid: 0000-0002-8949-8858
  surname: Koszek
  fullname: Koszek, Wojciech A.
– sequence: 3
  givenname: Cailin
  surname: Hardell
  fullname: Hardell, Cailin
– sequence: 4
  givenname: Jie
  orcidid: 0000-0003-3564-9056
  surname: Wu
  fullname: Wu, Jie
– sequence: 5
  givenname: Dominik
  orcidid: 0000-0003-0715-0952
  surname: Fleischmann
  fullname: Fleischmann, Dominik
– sequence: 6
  givenname: Hugh
  orcidid: 0000-0003-4528-1312
  surname: Harvey
  fullname: Harvey, Hugh
– sequence: 7
  givenname: Les R.
  surname: Folio
  fullname: Folio, Les R.
– sequence: 8
  givenname: Ronald M.
  orcidid: 0000-0001-8081-7376
  surname: Summers
  fullname: Summers, Ronald M.
– sequence: 9
  givenname: Daniel L.
  surname: Rubin
  fullname: Rubin, Daniel L.
– sequence: 10
  givenname: Matthew P.
  orcidid: 0000-0002-8591-5861
  surname: Lungren
  fullname: Lungren, Matthew P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32068507$$D View this record in MEDLINE/PubMed
BookMark eNp1UclOwzAQtVARXeADuKAcuaSMl8TOBQmxVmoFBzhbtuO0RqldnBSJvydVWzaJ02hm3jKaN0Q9H7xF6BTDGGMmLqIqXajHBAjgghDCDtAAZ4SnmOKshwYAlKaC4aKPhk3zCoBZJvgR6lMCuciADxB9inalovPzZGZLZ1SdTJZqvulvVKuSKsRkpszCeZtMrYq-2xyjw0rVjT3Z1RF6ubt9vn5Ip4_3k-uraWpoUbSpKbOSg2VCg2FKCw4VoxXBQC1owQqic62BZnmFTVl2Z1YFzY0WwLszS2PpCF1udVdrvbTdxLdR1XIV3VLFDxmUk7833i3kPLxLjoFxwJ3A-U4ghre1bVq5dI2xda28DetGEppxxnLBeAc9--n1ZbL_VAfgW4CJoWmiraRxrWpd2Fi7WmKQm0zkNhP5nUnHxH-Ye_H_OZ-l_o_i
CitedBy_id crossref_primary_10_1148_ryai_2021210097
crossref_primary_10_1093_bjro_tzad004
crossref_primary_10_3390_jpm12091471
crossref_primary_10_1016_j_ejmp_2021_03_009
crossref_primary_10_3233_JIFS_221386
crossref_primary_10_1016_j_xops_2022_100198
crossref_primary_10_1177_08465371241236376
crossref_primary_10_1002_acm2_13662
crossref_primary_10_1055_s_0044_1800860
crossref_primary_10_1016_j_slast_2024_100218
crossref_primary_10_1007_s11263_024_02145_0
crossref_primary_10_2139_ssrn_4673217
crossref_primary_10_1007_s10664_024_10521_0
crossref_primary_10_1007_s00246_020_02518_5
crossref_primary_10_1007_s11042_022_14305_w
crossref_primary_10_1016_j_jdent_2022_104115
crossref_primary_10_1016_j_acra_2022_03_025
crossref_primary_10_1148_ryai_230019
crossref_primary_10_1016_j_media_2024_103296
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1007_s11517_023_02867_2
crossref_primary_10_4329_wjr_v15_i12_359
crossref_primary_10_3390_diagnostics11122206
crossref_primary_10_1016_j_compbiomed_2023_107295
crossref_primary_10_3174_ajnr_A8211
crossref_primary_10_1016_j_engappai_2024_109817
crossref_primary_10_1007_s00247_020_04895_8
crossref_primary_10_1038_s41746_021_00544_y
crossref_primary_10_1148_ryai_230006
crossref_primary_10_3390_app11219904
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_3390_s23219004
crossref_primary_10_3389_fcvm_2021_768245
crossref_primary_10_3390_ai3030043
crossref_primary_10_1016_j_media_2024_103282
crossref_primary_10_1109_ACCESS_2025_3532719
crossref_primary_10_1186_s12885_024_12456_7
crossref_primary_10_1007_s11548_024_03213_z
crossref_primary_10_14366_usg_20078
crossref_primary_10_3389_fradi_2023_1149461
crossref_primary_10_1007_s00330_022_09184_6
crossref_primary_10_1056_NEJMra2301725
crossref_primary_10_1186_s13244_022_01311_7
crossref_primary_10_2214_AJR_22_27487
crossref_primary_10_1007_s00784_025_06216_5
crossref_primary_10_1016_j_rmed_2020_106271
crossref_primary_10_1097_RCT_0000000000001169
crossref_primary_10_1109_TRPMS_2022_3231702
crossref_primary_10_20517_ais_2024_36
crossref_primary_10_47671_TVG_79_23_110
crossref_primary_10_1002_adfm_202305136
crossref_primary_10_1016_j_jcjq_2020_08_002
crossref_primary_10_3390_tomography8030117
crossref_primary_10_2196_49949
crossref_primary_10_1016_j_media_2021_102246
crossref_primary_10_1200_CCI_23_00074
crossref_primary_10_1016_j_artmed_2023_102553
crossref_primary_10_1259_dmfr_20210185
crossref_primary_10_1016_j_ejmp_2021_02_006
crossref_primary_10_1016_j_ejmp_2021_02_007
crossref_primary_10_38079_igusabder_1326830
crossref_primary_10_1186_s40537_021_00419_9
crossref_primary_10_3390_s24144668
crossref_primary_10_1053_j_gastro_2023_08_034
crossref_primary_10_1148_ryai_230227
crossref_primary_10_3390_app11052187
crossref_primary_10_3390_machines11030325
crossref_primary_10_1007_s10278_022_00649_0
crossref_primary_10_1016_j_csi_2025_103973
crossref_primary_10_1038_s41551_024_01257_9
crossref_primary_10_1038_s41551_021_00704_1
crossref_primary_10_1097_RCT_0000000000001183
crossref_primary_10_1067_j_cpradiol_2022_08_001
crossref_primary_10_1016_j_amc_2024_128952
crossref_primary_10_3389_fbioe_2024_1404058
crossref_primary_10_3348_jksr_2020_0177
crossref_primary_10_46904_eea_23_71_4_1108004
crossref_primary_10_1007_s10278_022_00748_y
crossref_primary_10_1109_RBME_2024_3496744
crossref_primary_10_1148_ryai_230337
crossref_primary_10_4236_jcc_2021_911010
crossref_primary_10_3233_ADR_240129
crossref_primary_10_3349_ymj_2022_63_S74
crossref_primary_10_3389_fphys_2024_1342572
crossref_primary_10_6009_jjrt_2023_1418
crossref_primary_10_1007_s00330_023_09860_1
crossref_primary_10_1117_1_JMI_10_6_061404
crossref_primary_10_1016_j_ejmp_2021_02_026
crossref_primary_10_1016_j_jvcir_2024_104296
crossref_primary_10_1371_journal_pone_0305947
crossref_primary_10_1016_j_procir_2024_08_254
crossref_primary_10_3389_fdgth_2021_671015
crossref_primary_10_1038_s41585_021_00465_1
crossref_primary_10_1038_s41598_022_11549_2
crossref_primary_10_1007_s43545_024_00954_1
crossref_primary_10_1016_j_knosys_2022_108230
crossref_primary_10_1038_s41597_020_00674_0
crossref_primary_10_1109_ACCESS_2023_3292158
crossref_primary_10_3390_technologies10060119
crossref_primary_10_1007_s10278_022_00594_y
crossref_primary_10_1142_S2810958923300056
crossref_primary_10_1016_j_ejrad_2020_109083
crossref_primary_10_1038_s41598_022_19045_3
crossref_primary_10_1007_s00330_022_08724_4
crossref_primary_10_1007_s10278_022_00605_y
crossref_primary_10_1097_RLI_0000000000001106
crossref_primary_10_3390_cancers14133063
crossref_primary_10_1007_s11042_022_12932_x
crossref_primary_10_1097_RLI_0000000000001126
crossref_primary_10_2196_60521
crossref_primary_10_3390_diagnostics12071601
crossref_primary_10_1016_j_xops_2024_100623
crossref_primary_10_1016_j_jacep_2025_03_002
crossref_primary_10_1212_WNL_0000000000206808
crossref_primary_10_1016_j_compbiomed_2023_106901
crossref_primary_10_1111_isj_12567
crossref_primary_10_1148_ryai_230550
crossref_primary_10_3348_kjr_2021_0048
crossref_primary_10_1016_j_clinimag_2021_02_017
crossref_primary_10_1007_s00259_020_05167_1
crossref_primary_10_4274_dir_2024_242830
crossref_primary_10_1016_j_jvir_2023_07_019
crossref_primary_10_1007_s00256_021_03824_6
crossref_primary_10_1016_j_cviu_2024_104269
crossref_primary_10_1016_j_xops_2024_100477
crossref_primary_10_1259_bjr_20211028
crossref_primary_10_1007_s12553_021_00586_y
crossref_primary_10_1007_s10278_024_01083_0
crossref_primary_10_1259_dmfr_20200611
crossref_primary_10_35596_1729_7648_2025_23_1_60_67
crossref_primary_10_3389_fradi_2021_748968
crossref_primary_10_3390_s24051664
crossref_primary_10_1007_s00414_023_02958_7
crossref_primary_10_1016_j_media_2024_103107
crossref_primary_10_1038_s41598_022_22222_z
crossref_primary_10_4250_jcvi_2021_0039
crossref_primary_10_1038_s41551_023_01049_7
crossref_primary_10_1148_ryai_220055
crossref_primary_10_1016_j_artmed_2024_102861
crossref_primary_10_1148_ryai_220299
crossref_primary_10_1186_s13244_020_00929_9
crossref_primary_10_1080_21681163_2022_2156391
crossref_primary_10_3390_bioengineering11040338
crossref_primary_10_1016_j_patter_2021_100426
crossref_primary_10_24835_1607_0763_1346
crossref_primary_10_1007_s11042_024_20292_x
crossref_primary_10_1148_ryai_210026
crossref_primary_10_1016_j_matpr_2021_12_016
crossref_primary_10_1016_j_media_2024_103335
crossref_primary_10_1007_s00330_021_07782_4
crossref_primary_10_1007_s10278_024_01095_w
crossref_primary_10_1371_journal_pdig_0000102
crossref_primary_10_1088_1361_6560_ac6d9c
crossref_primary_10_1016_j_dche_2022_100072
crossref_primary_10_4103_ijo_IJO_424_22
crossref_primary_10_1111_ajt_16934
crossref_primary_10_3389_fonc_2023_1290313
crossref_primary_10_1208_s12249_024_02973_w
crossref_primary_10_12968_hmed_2024_0312
crossref_primary_10_1007_s11604_022_01249_2
crossref_primary_10_3390_bioengineering11050484
crossref_primary_10_1038_s41598_023_37508_z
crossref_primary_10_1148_ryai_240377
crossref_primary_10_1148_ryai_240376
crossref_primary_10_1038_s41467_023_41820_7
crossref_primary_10_1186_s12911_022_01843_4
crossref_primary_10_3390_cancers15041174
crossref_primary_10_1007_s43681_023_00329_x
crossref_primary_10_1016_j_compbiomed_2024_109261
crossref_primary_10_3348_kjr_2022_0588
crossref_primary_10_3390_diagnostics12123112
crossref_primary_10_1007_s00417_024_06420_1
crossref_primary_10_32604_cmc_2021_013159
crossref_primary_10_1016_j_radphyschem_2021_109437
crossref_primary_10_3390_diagnostics13101799
crossref_primary_10_1148_ryai_220270
crossref_primary_10_1016_j_ajur_2022_05_003
crossref_primary_10_1038_s41598_021_87762_2
crossref_primary_10_1183_16000617_0055_2023
crossref_primary_10_1007_s00330_021_07781_5
crossref_primary_10_1148_rg_2021200210
crossref_primary_10_1148_radiol_212151
crossref_primary_10_17816_DD60635
crossref_primary_10_1002_ail2_100
crossref_primary_10_3390_cancers17020285
crossref_primary_10_3390_su15032737
crossref_primary_10_1177_15330338221126869
crossref_primary_10_3389_fmed_2024_1360143
crossref_primary_10_1016_j_cpet_2021_09_010
crossref_primary_10_1177_08465371231180844
crossref_primary_10_1007_s00586_022_07155_5
crossref_primary_10_1016_j_ejrad_2024_111399
crossref_primary_10_1167_tvst_10_8_2
crossref_primary_10_3390_cancers14163867
crossref_primary_10_1016_j_compbiomed_2022_105464
crossref_primary_10_1109_TRPMS_2024_3436697
crossref_primary_10_3390_diagnostics11112049
crossref_primary_10_3389_fnins_2022_832276
crossref_primary_10_3390_diagnostics13061070
crossref_primary_10_1088_1361_6560_ad1f86
crossref_primary_10_3233_IDT_230231
crossref_primary_10_1007_s13246_024_01408_x
crossref_primary_10_1016_j_procs_2024_05_081
crossref_primary_10_1039_D2AN02057B
crossref_primary_10_1148_radiol_223170
crossref_primary_10_1038_s41597_024_03836_6
crossref_primary_10_1007_s10278_020_00413_2
crossref_primary_10_1158_1078_0432_CCR_22_1663
crossref_primary_10_1161_CIR_0000000000001202
crossref_primary_10_3390_cancers16152761
crossref_primary_10_1016_j_media_2025_103553
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_1021_acs_analchem_3c02688
crossref_primary_10_1016_j_compbiomed_2023_106962
crossref_primary_10_1007_s12194_024_00827_5
crossref_primary_10_1186_s12903_022_02539_x
crossref_primary_10_1016_j_media_2024_103258
crossref_primary_10_1186_s12859_022_04979_2
crossref_primary_10_1007_s00261_020_02741_x
crossref_primary_10_1016_j_ins_2022_05_076
crossref_primary_10_3390_app10238575
crossref_primary_10_1038_s41591_021_01614_0
crossref_primary_10_3390_biomedinformatics4020050
crossref_primary_10_1002_btm2_70002
crossref_primary_10_1016_j_artmed_2024_102814
crossref_primary_10_3389_fradi_2022_881777
crossref_primary_10_1093_radadv_umae035
crossref_primary_10_1007_s10278_022_00717_5
crossref_primary_10_1016_j_neuroimage_2021_118606
crossref_primary_10_1038_s41416_021_01333_w
crossref_primary_10_1371_journal_pone_0315434
crossref_primary_10_1016_j_compbiomed_2023_107823
crossref_primary_10_1615_CritRevOncog_2023050852
crossref_primary_10_1038_s41698_024_00789_2
crossref_primary_10_1148_ryai_220007
crossref_primary_10_1016_j_matpr_2021_04_241
crossref_primary_10_1109_TMI_2023_3260974
crossref_primary_10_3389_frai_2025_1512438
crossref_primary_10_3390_ai5040111
crossref_primary_10_1016_j_ejmp_2021_04_004
crossref_primary_10_1002_mp_15551
crossref_primary_10_3389_fdgth_2024_1456911
crossref_primary_10_3389_fncom_2021_785244
crossref_primary_10_1038_s41598_022_16798_9
crossref_primary_10_1016_j_jacr_2022_05_022
crossref_primary_10_1117_1_JMI_11_1_014501
crossref_primary_10_1016_j_jvsvi_2023_100016
crossref_primary_10_1016_j_media_2023_103059
crossref_primary_10_1080_17474086_2023_2192474
crossref_primary_10_18705_2782_3806_2024_4_5_384_389
crossref_primary_10_1145_3592616
crossref_primary_10_3390_rs14236031
crossref_primary_10_3390_s24154777
crossref_primary_10_1038_s42256_023_00625_5
crossref_primary_10_1097_RTI_0000000000000705
crossref_primary_10_1111_vru_13062
crossref_primary_10_3389_fnimg_2022_1012639
crossref_primary_10_1016_j_bspc_2023_105081
crossref_primary_10_2147_RMI_S295205
crossref_primary_10_3390_diagnostics11050742
crossref_primary_10_32604_cmc_2023_040264
crossref_primary_10_7759_cureus_46454
crossref_primary_10_1302_0301_620X_104B8_BJJ_2022_0416
crossref_primary_10_1038_s41571_022_00707_0
crossref_primary_10_1016_j_cpet_2021_06_003
crossref_primary_10_1038_s41598_024_74229_3
crossref_primary_10_1007_s11912_021_01054_6
crossref_primary_10_1016_j_cpet_2021_06_001
crossref_primary_10_1007_s00259_023_06422_x
crossref_primary_10_3389_fradi_2024_1283392
crossref_primary_10_21105_joss_02868
crossref_primary_10_1016_j_inffus_2023_102060
crossref_primary_10_3390_biomedicines12081753
crossref_primary_10_1080_21655979_2023_2244232
crossref_primary_10_1117_1_NPh_10_3_035004
crossref_primary_10_1183_23120541_00145_2023
crossref_primary_10_1016_j_eswa_2023_121165
crossref_primary_10_1177_08465371221145023
crossref_primary_10_1109_ACCESS_2022_3178382
crossref_primary_10_1089_neu_2022_0201
crossref_primary_10_1007_s11042_022_13991_w
crossref_primary_10_1016_j_bj_2024_100743
crossref_primary_10_1186_s41747_020_00159_0
crossref_primary_10_1371_journal_pone_0267976
crossref_primary_10_3390_jimaging8100270
crossref_primary_10_1007_s12574_023_00611_1
crossref_primary_10_1038_s41598_021_86995_5
crossref_primary_10_1080_17452759_2024_2424463
crossref_primary_10_1109_JBHI_2022_3152267
crossref_primary_10_1007_s11517_024_03066_3
crossref_primary_10_1016_j_radphyschem_2022_110300
crossref_primary_10_1016_j_acra_2020_12_026
crossref_primary_10_1148_radiol_221257
crossref_primary_10_1007_s00247_023_05746_y
crossref_primary_10_1126_science_adj3312
crossref_primary_10_1111_jon_13078
crossref_primary_10_1109_ACCESS_2022_3154061
crossref_primary_10_35596_1729_7648_2023_21_1_66_73
crossref_primary_10_1029_2023JD040126
crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_1016_j_rmed_2024_107809
crossref_primary_10_1620_tjem_2024_J071
crossref_primary_10_3389_frai_2023_1253183
crossref_primary_10_3389_fradi_2023_1202412
crossref_primary_10_1016_j_mri_2023_07_001
crossref_primary_10_1002_mrm_29750
crossref_primary_10_1007_s00330_020_07148_2
crossref_primary_10_1016_j_gpb_2023_09_003
crossref_primary_10_1038_s41598_024_62151_7
crossref_primary_10_1021_acssensors_1c01618
crossref_primary_10_1016_j_patter_2022_100641
crossref_primary_10_1038_s41598_024_58223_3
crossref_primary_10_1038_s41597_023_02457_9
crossref_primary_10_1109_JBHI_2021_3110805
crossref_primary_10_1148_ryai_210290
crossref_primary_10_1140_epjs_s11734_024_01289_x
crossref_primary_10_1007_s10278_021_00450_5
crossref_primary_10_3390_environments10120204
crossref_primary_10_1016_j_bspc_2025_107734
crossref_primary_10_1148_radiol_222126
crossref_primary_10_1002_hcs2_40
crossref_primary_10_1177_20552076211048654
crossref_primary_10_1016_j_biocel_2022_106195
crossref_primary_10_1016_j_semradonc_2022_06_009
crossref_primary_10_1007_s00234_021_02890_w
crossref_primary_10_3389_fcvm_2023_1213290
crossref_primary_10_3389_fonc_2022_960984
crossref_primary_10_1109_MTS_2021_3056173
crossref_primary_10_1016_j_ejmp_2022_08_004
crossref_primary_10_1007_s00247_022_05368_w
crossref_primary_10_1055_s_0044_1790232
crossref_primary_10_1016_j_compbiomed_2023_106576
crossref_primary_10_1007_s00330_024_10907_0
crossref_primary_10_1155_2022_9699612
crossref_primary_10_1117_1_JMI_9_3_035504
crossref_primary_10_1016_j_jid_2023_02_035
crossref_primary_10_1007_s10589_022_00392_w
crossref_primary_10_3390_app10082908
crossref_primary_10_1016_j_matdes_2022_110735
crossref_primary_10_1007_s00234_023_03126_9
crossref_primary_10_1016_j_neucom_2021_01_065
crossref_primary_10_1088_2057_1976_ac37ab
crossref_primary_10_1186_s12877_023_04477_x
crossref_primary_10_1002_jmri_29748
crossref_primary_10_1136_flgastro_2021_101994
crossref_primary_10_1016_j_imu_2022_101017
crossref_primary_10_1148_ryai_210285
crossref_primary_10_1186_s12903_024_03970_y
crossref_primary_10_1016_j_rx_2022_03_003
crossref_primary_10_1148_ryai_210284
crossref_primary_10_1186_s40644_021_00413_7
crossref_primary_10_1148_ryai_240225
crossref_primary_10_1148_ryai_240345
crossref_primary_10_1145_3586580
crossref_primary_10_1016_j_eswa_2024_123660
crossref_primary_10_7717_peerj_cs_2371
crossref_primary_10_29194_NJES_27040465
crossref_primary_10_1016_j_nec_2022_02_012
crossref_primary_10_1016_j_fsisyn_2023_100319
crossref_primary_10_1038_s43856_021_00008_0
crossref_primary_10_1186_s12880_022_00766_w
crossref_primary_10_3389_fimag_2023_1175860
crossref_primary_10_3389_frai_2025_1533508
crossref_primary_10_1007_s10140_024_02306_1
crossref_primary_10_1097_RCT_0000000000001316
crossref_primary_10_1148_ryai_2021210014
crossref_primary_10_1109_TVCG_2021_3114784
crossref_primary_10_1007_s13721_024_00491_0
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_1016_j_jvcir_2023_103949
crossref_primary_10_32604_cmes_2025_059152
crossref_primary_10_1016_j_jhepr_2022_100443
crossref_primary_10_1088_1361_6560_ac1157
crossref_primary_10_1155_2022_8026580
crossref_primary_10_3390_biomedicines10112796
crossref_primary_10_1016_j_engappai_2022_104978
crossref_primary_10_1007_s10462_022_10256_8
crossref_primary_10_1016_j_radonc_2024_110179
crossref_primary_10_1088_1741_2552_aceca3
crossref_primary_10_1007_s00784_023_04992_6
crossref_primary_10_1016_j_mrl_2024_200138
crossref_primary_10_1088_1361_6560_ad8857
crossref_primary_10_1016_j_ejrad_2021_109808
crossref_primary_10_3233_THC_230920
crossref_primary_10_1055_a_1717_0955
crossref_primary_10_3389_fonc_2022_742701
crossref_primary_10_1016_j_jacr_2021_09_022
crossref_primary_10_3389_fcimb_2024_1384809
crossref_primary_10_1007_s10278_022_00690_z
crossref_primary_10_3390_bioengineering12010009
crossref_primary_10_15701_kcgs_2023_29_5_21
crossref_primary_10_1364_BOE_453536
crossref_primary_10_1093_eurheartj_ehad456
crossref_primary_10_3389_frai_2022_813842
crossref_primary_10_1186_s12968_021_00824_2
crossref_primary_10_3174_ajnr_A7850
crossref_primary_10_3389_fradi_2023_1242902
crossref_primary_10_3390_app14177822
crossref_primary_10_1111_jgh_15415
crossref_primary_10_1146_annurev_bioeng_083120_023315
crossref_primary_10_1016_j_compmedimag_2021_102013
crossref_primary_10_59717_j_xinn_life_2024_100079
crossref_primary_10_1016_j_jdent_2025_105690
crossref_primary_10_1016_j_media_2022_102396
crossref_primary_10_2196_38655
crossref_primary_10_1007_s00428_023_03589_4
crossref_primary_10_32604_cmc_2022_028154
crossref_primary_10_1016_j_cjca_2024_04_026
crossref_primary_10_3390_onco1020016
crossref_primary_10_1016_j_jacr_2022_08_006
crossref_primary_10_1186_s13244_022_01220_9
crossref_primary_10_1016_j_cmpb_2024_108117
crossref_primary_10_1111_cas_16395
crossref_primary_10_3174_ajnr_A7500
crossref_primary_10_3390_app12063190
crossref_primary_10_1007_s00330_022_09056_z
crossref_primary_10_1097_ICU_0000000000000785
crossref_primary_10_1016_j_metrad_2024_100098
crossref_primary_10_1016_S2589_7500_21_00056_X
crossref_primary_10_1007_s10439_023_03232_y
crossref_primary_10_1002_hbm_26683
crossref_primary_10_1259_bjr_20220215
crossref_primary_10_1093_bjr_tqae108
crossref_primary_10_1007_s00247_022_05483_8
crossref_primary_10_1093_bjrai_ubae006
crossref_primary_10_1016_j_patcog_2021_108139
crossref_primary_10_1016_j_neucom_2022_07_005
crossref_primary_10_2196_50342
crossref_primary_10_1109_ACCESS_2022_3181730
crossref_primary_10_1038_s41598_025_90453_x
crossref_primary_10_1021_acs_chemrev_3c00070
crossref_primary_10_1007_s44206_022_00009_z
crossref_primary_10_1016_j_heliyon_2023_e17104
crossref_primary_10_1007_s11227_023_05448_0
crossref_primary_10_1016_j_ssci_2023_106180
crossref_primary_10_1016_j_media_2023_102868
crossref_primary_10_1007_s42979_024_03025_7
crossref_primary_10_2139_ssrn_4017219
crossref_primary_10_1007_s42979_023_01882_2
crossref_primary_10_1016_j_ejrad_2021_110073
crossref_primary_10_1016_j_ejrad_2022_110291
crossref_primary_10_1038_s43856_024_00538_3
crossref_primary_10_1016_j_rxeng_2022_03_005
crossref_primary_10_1016_j_tele_2023_102085
crossref_primary_10_29194_NJES_27040396
crossref_primary_10_3390_diagnostics13050974
crossref_primary_10_1038_s41597_023_02125_y
crossref_primary_10_1088_1361_6560_ac678a
crossref_primary_10_1016_j_placenta_2023_02_009
crossref_primary_10_1007_s10278_021_00505_7
crossref_primary_10_1155_2021_7259414
crossref_primary_10_1097_RCT_0000000000001374
crossref_primary_10_1111_jdv_18963
crossref_primary_10_1177_26317745241306562
crossref_primary_10_26599_AIR_2024_9150035
crossref_primary_10_60084_ijcr_v2i1_150
crossref_primary_10_1002_ima_22674
crossref_primary_10_1016_j_ejrad_2024_111852
crossref_primary_10_1093_hropen_hoad031
crossref_primary_10_1148_radiol_232471
crossref_primary_10_1007_s00146_023_01684_3
crossref_primary_10_4103_RID_RID_39_22
crossref_primary_10_3390_inventions8060153
crossref_primary_10_1007_s00261_024_04379_5
crossref_primary_10_1016_j_compbiomed_2023_107023
crossref_primary_10_1007_s00330_020_07056_5
crossref_primary_10_1016_j_acra_2021_08_002
crossref_primary_10_1097_RLI_0000000000000673
crossref_primary_10_1186_s13244_024_01833_2
crossref_primary_10_1038_s41586_023_06555_x
crossref_primary_10_1115_1_4062808
crossref_primary_10_1007_s10278_022_00658_z
crossref_primary_10_1002_jmri_29100
crossref_primary_10_1016_j_imu_2024_101575
crossref_primary_10_1002_jmri_29101
crossref_primary_10_1002_adma_202419579
crossref_primary_10_1007_s10140_023_02120_1
Cites_doi 10.1007/s13244-017-0588-8
10.1007/978-3-319-59050-9_12
10.1002/jmri.25970
10.1109/TMI.2004.828354
10.1148/radiol.11110938
10.1148/radiol.12112438
10.1093/jamia/ocy017
10.1109/TASL.2007.911503
10.1016/j.neuroimage.2012.10.064
10.1148/radiol.2019182908
10.1148/radiol.2017170236
10.1038/mp.2013.78
10.1148/radiol.2272012051
10.1109/TMI.2019.2899534
10.1109/TMI.2018.2881415
10.1038/s41591-018-0272-7
10.1148/radiol.2017162664
10.1016/j.neuroimage.2013.05.041
10.1148/radiol.2018180694
10.1016/j.jalz.2005.06.003
10.1007/978-3-319-94878-2_14
10.1148/radiol.2018181422
10.1007/s10278-013-9622-7
10.1148/radiol.2018180513
10.1056/NEJMoa0800996
10.1148/radiol.2018180958
10.1038/sdata.2017.117
10.1197/jamia.M2716
10.1109/TMI.2018.2827462
10.1148/radiol.2019191225
10.1007/s00330-015-3794-0
10.1148/radiol.2019190613
10.1038/sdata.2017.177
10.1001/jamanetworkopen.2018.5474
10.1038/s41746-017-0015-z
10.1007/978-3-319-94878-2_6
10.1002/jmri.21049
10.1093/jamia/ocw028
10.1371/journal.pmed.1002686
10.1118/1.3528204
10.1371/journal.pmed.1002699
10.1001/jama.2016.17216
10.1158/0008-5472.CAN-17-0334
10.1016/S2589-7500(19)30123-2
10.1016/j.artmed.2018.11.004
10.1016/j.media.2016.05.009
10.4137/CIN.S37032
10.1016/j.jclinepi.2008.04.008
10.1007/s10278-011-9426-6
10.1109/TMI.2014.2303821
10.1016/j.acra.2019.09.014
10.1148/radiol.10091808
10.1109/TMI.2014.2377694
10.2214/AJR.12.10136
10.1148/rg.2017170047
10.1001/jamanetworkopen.2019.1095
10.1109/MeMeA.2018.8438639
10.1145/1401890.1401965
10.1016/j.neuroimage.2015.05.049
10.1148/ryai.2019180066
10.1007/s00330-018-5810-7
10.1613/jair.606
10.1148/radiol.2017171920
10.1109/MIS.2009.36
10.1007/s10278-009-9193-9
10.1148/rg.2015140244
10.18383/j.tom.2018.00055
10.2214/AJR.07.3354
10.1148/radiol.2017171115
10.1148/radiol.2019190938
10.1038/s41598-017-10371-5
10.7717/peerj.2057
10.1148/radiol.2018180547
10.1093/jamia/ocw112
10.1148/radiol.2019182304
10.1109/TMI.2017.2708987
10.1136/amiajnl-2012-000896
10.1038/sdata.2016.18
10.1007/s10278-016-9938-1
ContentType Journal Article
Copyright RSNA, 2020.
2020 by the Radiological Society of North America, Inc. 2020
Copyright_xml – notice: RSNA, 2020.
– notice: 2020 by the Radiological Society of North America, Inc. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1148/radiol.2020192224
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 15
ExternalDocumentID PMC7104701
32068507
10_1148_radiol_2020192224
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM012966
– fundername: NCATS NIH HHS
  grantid: UL1 TR003142
– fundername: NCI NIH HHS
  grantid: U01 CA190214
– fundername: NCATS NIH HHS
  grantid: UL1 TR001085
– fundername: NCI NIH HHS
  grantid: U01 CA242879
– fundername: NCI NIH HHS
  grantid: U01 CA142555
– fundername: NCI NIH HHS
  grantid: U01 CA187947
– fundername: ; ;
  grantid: U01CA142555
– fundername: ; ;
  grantid: UL1 TR001085
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
ACRZS
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
ZKG
7X8
5PM
ID FETCH-LOGICAL-c399t-cd5d70e48b0c4ab870f43f2103e0b8492b6bb0356f1cdd841f936cb807145dce3
ISSN 0033-8419
1527-1315
IngestDate Thu Aug 21 13:36:04 EDT 2025
Thu Jul 10 21:05:12 EDT 2025
Wed Feb 19 02:05:35 EST 2025
Tue Jul 01 00:43:48 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License RSNA, 2020.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-cd5d70e48b0c4ab870f43f2103e0b8492b6bb0356f1cdd841f936cb807145dce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8949-8858
0000-0002-6991-6557
0000-0003-3564-9056
0000-0001-8081-7376
0000-0002-8591-5861
0000-0003-0715-0952
0000-0003-4528-1312
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7104701
PMID 32068507
PQID 2357446847
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104701
proquest_miscellaneous_2357446847
pubmed_primary_32068507
crossref_citationtrail_10_1148_radiol_2020192224
crossref_primary_10_1148_radiol_2020192224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2020
Publisher Radiological Society of North America
Publisher_xml – name: Radiological Society of North America
References r2
r3
r4
r5
r6
r7
r8
r9
r91
r94
r93
r96
r95
r10
r12
r11
r14
r13
r16
r15
r18
r17
r19
Brady A (r58) 2012; 81
Schlegl T (r68)
r21
r20
r22
r25
r24
r29
Nuance (r26)
Ray L (r88)
r30
r32
r34
r33
r36
r112
r35
r38
r37
r39
Rajpurkar P (r107)
McMahan B (r98)
r110
r111
Conway D (r43) 2011
r41
r40
r105
r42
r106
r45
r44
r108
r46
r102
r49
r103
r48
r104
Do HM (r62) 2019
r109
Choi E (r55) 2017; 24
r50
r51
r54
r53
r56
Xi P (r78)
r57
Three-Palm-Software (r90)
r59
Irvin J (r79)
Su H (r100)
Lipton ZC (r52)
r61
U.S. Department of Labor (r101) 2004
r63
r65
r64
r66
Heim E (r47) 2018; 5
Yan K (r60) 2018; 5
r70
Korkinof D (r69)
r72
r71
r74
r73
r76
r75
r77
Dean J (r99) 2012; 25
DICOM-Standards-Committee (r92)
r81
r80
r83
r82
r84
r1
References_xml – ident: r40
  doi: 10.1007/s13244-017-0588-8
– ident: r96
– volume-title: Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
  ident: r68
  doi: 10.1007/978-3-319-59050-9_12
– ident: r5
  doi: 10.1002/jmri.25970
– ident: r44
  doi: 10.1109/TMI.2004.828354
– ident: r45
  doi: 10.1148/radiol.11110938
– ident: r51
  doi: 10.1148/radiol.12112438
– ident: r35
  doi: 10.1093/jamia/ocy017
– ident: r42
  doi: 10.1109/TASL.2007.911503
– ident: r75
  doi: 10.1016/j.neuroimage.2012.10.064
– ident: r4
  doi: 10.1148/radiol.2019182908
– ident: r15
  doi: 10.1148/radiol.2017170236
– ident: r73
  doi: 10.1038/mp.2013.78
– ident: r66
  doi: 10.1148/radiol.2272012051
– ident: r16
  doi: 10.1109/TMI.2019.2899534
– ident: r70
  doi: 10.1109/TMI.2018.2881415
– ident: r32
  doi: 10.1038/s41591-018-0272-7
– volume-title: A Critical Review of Recurrent Neural Networks for Sequence Learning
  ident: r52
– ident: r3
  doi: 10.1148/radiol.2017162664
– ident: r77
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: r18
  doi: 10.1148/radiol.2018180694
– ident: r53
– ident: r103
  doi: 10.1016/j.jalz.2005.06.003
– ident: r34
  doi: 10.1007/978-3-319-94878-2_14
– volume-title: Machine Learning for Email: Spam Filtering and Priority Inbox. Sebastopol
  year: 2011
  ident: r43
– ident: r2
  doi: 10.1148/radiol.2018181422
– volume-title: Experiments on Parallel Training of Deep Neural Network using Model Averaging
  ident: r100
– ident: r111
  doi: 10.1007/s10278-013-9622-7
– ident: r20
  doi: 10.1148/radiol.2018180513
– ident: r102
  doi: 10.1056/NEJMoa0800996
– ident: r13
  doi: 10.1148/radiol.2018180958
– ident: r72
  doi: 10.1038/sdata.2017.117
– ident: r46
– ident: r33
  doi: 10.1197/jamia.M2716
– volume-title: mPower Clinical Analytics for medical imaging
  ident: r26
– ident: r9
  doi: 10.1109/TMI.2018.2827462
– volume: 5
  start-page: 034002
  issue: 3
  year: 2018
  ident: r47
  publication-title: J Med Imaging (Bellingham)
– ident: r11
  doi: 10.1148/radiol.2019191225
– ident: r29
  doi: 10.1007/s00330-015-3794-0
– ident: r41
– ident: r1
  doi: 10.1148/radiol.2019190613
– ident: r36
  doi: 10.1038/sdata.2017.177
– ident: r112
  doi: 10.1001/jamanetworkopen.2018.5474
– ident: r12
  doi: 10.1038/s41746-017-0015-z
– ident: r24
  doi: 10.1007/978-3-319-94878-2_6
– ident: r74
  doi: 10.1002/jmri.21049
– ident: r57
  doi: 10.1093/jamia/ocw028
– ident: r83
  doi: 10.1371/journal.pmed.1002686
– ident: r106
  doi: 10.1118/1.3528204
– ident: r80
  doi: 10.1371/journal.pmed.1002699
– ident: r82
  doi: 10.1001/jama.2016.17216
– ident: r49
  doi: 10.1158/0008-5472.CAN-17-0334
– ident: r84
  doi: 10.1016/S2589-7500(19)30123-2
– ident: r54
  doi: 10.1016/j.artmed.2018.11.004
– ident: r19
  doi: 10.1016/j.media.2016.05.009
– ident: r93
  doi: 10.4137/CIN.S37032
– ident: r81
  doi: 10.1016/j.jclinepi.2008.04.008
– volume-title: DICOM PS3.3 2019e - Information Object Definitions
  ident: r92
– ident: r50
  doi: 10.1007/s10278-011-9426-6
– ident: r109
  doi: 10.1109/TMI.2014.2303821
– ident: r61
  doi: 10.1016/j.acra.2019.09.014
– volume: 25
  start-page: 1
  year: 2012
  ident: r99
  publication-title: Adv Neural Inf Process Syst
– ident: r108
  doi: 10.1148/radiol.10091808
– ident: r76
  doi: 10.1109/TMI.2014.2377694
– ident: r91
  doi: 10.2214/AJR.12.10136
– ident: r59
  doi: 10.1148/rg.2017170047
– ident: r10
  doi: 10.1001/jamanetworkopen.2019.1095
– volume-title: Abnormality Detection in Mammography using Deep Convolutional Neural Networks
  ident: r78
  doi: 10.1109/MeMeA.2018.8438639
– ident: r39
  doi: 10.1145/1401890.1401965
– volume-title: MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs
  ident: r107
– ident: r104
  doi: 10.1016/j.neuroimage.2015.05.049
– ident: r14
  doi: 10.1148/ryai.2019180066
– ident: r7
  doi: 10.1007/s00330-018-5810-7
– ident: r38
  doi: 10.1613/jair.606
– volume: 81
  start-page: 3
  issue: 1
  year: 2012
  ident: r58
  publication-title: Ulster Med J
– ident: r22
  doi: 10.1148/radiol.2017171920
– ident: r64
  doi: 10.1109/MIS.2009.36
– volume-title: Employee Benefits Security Administration. The Health Insurance Portability and Accountability Act (HIPAA)
  year: 2004
  ident: r101
– ident: r95
  doi: 10.1007/s10278-009-9193-9
– volume-title: Federated Learning: Collaborative Machine Learning without Centralized Training Data. Google AI Blog
  ident: r98
– volume-title: Detailed and Precise Measurement with Lesion Management
  ident: r88
– ident: r65
– ident: r110
– ident: r30
  doi: 10.1148/rg.2015140244
– volume-title: High-Resolution Mammogram Synthesis using Progressive Generative Adversarial Networks
  ident: r69
– ident: r48
  doi: 10.18383/j.tom.2018.00055
– ident: r63
  doi: 10.2214/AJR.07.3354
– ident: r56
  doi: 10.1148/radiol.2017171115
– ident: r17
  doi: 10.1148/radiol.2019190938
– volume: 5
  start-page: 036501
  issue: 3
  year: 2018
  ident: r60
  publication-title: J Med Imaging (Bellingham)
– ident: r105
  doi: 10.1038/s41598-017-10371-5
– ident: r94
  doi: 10.7717/peerj.2057
– volume-title: CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
  ident: r79
– ident: r21
  doi: 10.1148/radiol.2018180547
– volume: 24
  start-page: 361
  issue: 2
  year: 2017
  ident: r55
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocw112
– volume-title: AI Radiomics in a Monogenic Autoimmune Disease: Deep Learning of Routine Radiologist Annotations Correlated with Pathologically Verified Lung Findings
  year: 2019
  ident: r62
– ident: r6
  doi: 10.1148/radiol.2019182304
– ident: r8
  doi: 10.1109/TMI.2017.2708987
– ident: r37
  doi: 10.1136/amiajnl-2012-000896
– ident: r71
  doi: 10.1038/sdata.2016.18
– volume-title: LesionOne – Lesion Tracking Application Framework
  ident: r90
– ident: r25
  doi: 10.1007/s10278-016-9938-1
SSID ssj0014587
Score 2.71796
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the entirety of the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4
SubjectTerms Algorithms
Data Collection
Data Management
Diagnostic Imaging
Humans
Machine Learning
Reviews and
Title Preparing Medical Imaging Data for Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/32068507
https://www.proquest.com/docview/2357446847
https://pubmed.ncbi.nlm.nih.gov/PMC7104701
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgL4s3yUpA4UWVJYsdxjlULaosWIdSqvUV-0qA2i7bZS38949hxki4gyiWK8hjZni_jmcwLoXeppDxlBswSnauYSLBZhVAylpJSpQkjitl858UXun9MDk_z0yGFoMsuacVcXv02r-R_uArXgK82S_YGnA1E4QKcA3_hCByG4z_x-OtK2yaCYOz3_paDC9d1aI-3vIsgXHTBkrqvo_p9rIx-46qe_lW3iYEXYJ36LJ62brYP50EmLy-vdHfrZPkDRII8296ZDxJspbwLY5fX53XA3Mm6A0qtx_8XsmQUluJlJsYxI16waS8msyJOsUvE7OVo5rplTgDjpCIZba_unU3BTWwywqqb99wOAzTPLCPDLtV75q9tXiGk0CVYs8qRqAYSt9GdDEwI291i7-Bz8DCRnLl6qn523uMNJD5sjGKqs2wYItfjaUcKytEDdN9bFtGOg8lDdEs3j9DdhY-deIxwQEvk0RJ5tEQWLRGgJfJoiXq0PEHHnz4e7e7HvmVGLEHTbGOpclUk8I2JRBIuQBgbgg2Y9VgngpEyE1SIBOfUpFIpmLcpMZWC2TS2HMaPn6KtZtno5yiCnVCV1iLglBFJTWmApCo1N0ZokqYzlPSLUklfT962NTmv_siKGXofXvnpiqn87eG3_UpXIPKsH4s3erm-rGyFJkJgVMUMPXMrH8jhLKEMbJwZKiY8CQ_YcurTO0191pVVL2zVkiR9cZNBvkT3hm_mFdpqV2v9GrTUVrzp4PYL93GQKQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparing+Medical+Imaging+Data+for+Machine+Learning&rft.jtitle=Radiology&rft.au=Willemink%2C+Martin+J.&rft.au=Koszek%2C+Wojciech+A.&rft.au=Hardell%2C+Cailin&rft.au=Wu%2C+Jie&rft.date=2020-04-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=295&rft.issue=1&rft.spage=4&rft.epage=15&rft_id=info:doi/10.1148%2Fradiol.2020192224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2020192224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon