Proteolysis, synaptic plasticity and memory
Protein degradation has many critical functions in the nervous system such as refinement of synaptic connections during development and synaptic plasticity and memory in the adult organisms. A major cellular machinery of proteolysis is the ubiquitin-proteasome pathway (UPP). The UPP precisely regula...
Saved in:
Published in | Neurobiology of learning and memory Vol. 138; pp. 98 - 110 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1074-7427 1095-9564 |
DOI | 10.1016/j.nlm.2016.09.003 |
Cover
Loading…
Abstract | Protein degradation has many critical functions in the nervous system such as refinement of synaptic connections during development and synaptic plasticity and memory in the adult organisms. A major cellular machinery of proteolysis is the ubiquitin-proteasome pathway (UPP). The UPP precisely regulates proteolysis by covalently attaching ubiquitin, a small protein, to substrates through sequential enzymatic reactions and the proteins marked with the ubiquitin tag are degraded by complex containing many subunits called the proteasome. Research over the years has shown a role for the UPP in regulating presynaptic and postsynaptic proteins critical for neurotransmission and synaptic plasticity. Studies have also revealed a role for the UPP in various forms of memory. Mechanistic investigations suggest that the function of the UPP in neurons is not homogenous and is subject to local regulation in different neuronal sub-compartments. In both invertebrate and vertebrate model systems, local roles have been found for enzymes that attach ubiquitin to substrate proteins as well as for enzymes that remove ubiquitin from substrates. The proteasome also has disparate functions in different parts of the neuron. In addition to the UPP, proteolysis by the lysosome and autophagy play a role in synaptic plasticity and memory. This review details the functions of proteolysis in synaptic plasticity and summarizes the findings on the connection between proteolysis and memory mainly focusing on the UPP including its local roles. |
---|---|
AbstractList | Protein degradation has many critical functions in the nervous system such as refinement of synaptic connections during development and synaptic plasticity and memory in the adult organisms. A major cellular machinery of proteolysis is the ubiquitin-proteasome pathway (UPP). The UPP precisely regulates proteolysis by covalently attaching ubiquitin, a small protein, to substrates through sequential enzymatic reactions and the proteins marked with the ubiquitin tag are degraded by complex containing many subunits called the proteasome. Research over the years has shown a role for the UPP in regulating presynaptic and postsynaptic proteins critical for neurotransmission and synaptic plasticity. Studies have also revealed a role for the UPP in various forms of memory. Mechanistic investigations suggest that the function of the UPP in neurons is not homogenous and is subject to local regulation in different neuronal sub-compartments. In both invertebrate and vertebrate model systems, local roles have been found for enzymes that attach ubiquitin to substrate proteins as well as for enzymes that remove ubiquitin from substrates. The proteasome also has disparate functions in different parts of the neuron. In addition to the UPP, proteolysis by the lysosome and autophagy play a role in synaptic plasticity and memory. This review details the functions of proteolysis in synaptic plasticity and summarizes the findings on the connection between proteolysis and memory mainly focusing on the UPP including its local roles. |
Author | Hegde, Ashok N. |
Author_xml | – sequence: 1 givenname: Ashok N. surname: Hegde fullname: Hegde, Ashok N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27614141$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UVtLwzAUDjJxF_0BvsgeBW3NaW7NiyDDGwz0QZ9Dmmaa0Taz6YT-ezO2iQpyHs6B813g-8Zo0PjGInQKOAUM_GqZNlWdZvFMsUwxJgdoBFiyRDJOB5tb0ETQTAzROIQlxgBM5kdomAkONM4IXTy3vrO-6oMLl9PQN3rVOTNdVTrE7bp-qptyWtvat_0xOlzoKtiT3Z6g17vbl9lDMn-6f5zdzBNDpOwSYxawsGVhTEbBFCIrOSup0CUIaXPJCwacWkJYCRnVZU4KyCMMDCcCpBZkgq63uqt1UdvS2KZrdaVWrat12yuvnfr9ady7evOfihHCWZZFgfOdQOs_1jZ0qnbB2KrSjfXroCAnjGFGeR6hZz-9vk32CUWA2AJM60No7ULFVHTn_MbaVQqw2nShlip2oTZdKCxV7CIy4Q9zL_4_5wsDDo44 |
CitedBy_id | crossref_primary_10_1101_lm_053429_121 crossref_primary_10_1016_j_isci_2024_111147 crossref_primary_10_1021_acs_chemrestox_7b00260 crossref_primary_10_1038_nrd_2018_109 crossref_primary_10_1016_j_bbr_2022_113928 crossref_primary_10_18679_CN11_6030_R_2017_036 crossref_primary_10_3390_agronomy11112360 crossref_primary_10_3390_futurepharmacol4010009 crossref_primary_10_1042_NS20210063 crossref_primary_10_1096_fj_201900092R crossref_primary_10_1101_lm_053498_121 crossref_primary_10_1016_j_semcdb_2021_11_017 crossref_primary_10_1038_s41380_019_0533_y crossref_primary_10_1159_000529981 crossref_primary_10_1126_sciadv_aay0351 crossref_primary_10_3389_fnmol_2017_00220 crossref_primary_10_3389_fnbeh_2021_709392 crossref_primary_10_3390_ijms26072909 crossref_primary_10_1146_annurev_genet_030321_054851 crossref_primary_10_3390_cells11172621 crossref_primary_10_1038_s41467_022_28613_0 crossref_primary_10_3389_fphar_2022_984997 crossref_primary_10_1001_jamapsychiatry_2019_2974 crossref_primary_10_1016_j_neuroscience_2020_08_018 crossref_primary_10_1152_ajpcell_00466_2024 crossref_primary_10_1146_annurev_neuro_080317_062155 crossref_primary_10_1523_JNEUROSCI_0298_24_2024 crossref_primary_10_1042_NS20210030 crossref_primary_10_1016_j_neuropharm_2021_108690 crossref_primary_10_1016_j_biopsych_2018_07_013 crossref_primary_10_1016_j_ygcen_2018_05_005 crossref_primary_10_1016_j_chembiol_2021_04_003 crossref_primary_10_3390_cells8010034 crossref_primary_10_7554_eLife_54812 crossref_primary_10_3389_fnbeh_2021_807215 crossref_primary_10_1096_fj_201902844RR crossref_primary_10_1101_lm_053492_121 crossref_primary_10_1371_journal_pone_0182895 crossref_primary_10_31857_S1027813323020036 crossref_primary_10_3389_fnagi_2022_1028148 crossref_primary_10_3389_fneur_2024_1459678 crossref_primary_10_1016_j_neubiorev_2023_105280 crossref_primary_10_1523_JNEUROSCI_0599_17_2018 crossref_primary_10_3389_fnmol_2021_689495 crossref_primary_10_1083_jcb_201805099 crossref_primary_10_1016_j_isci_2023_105925 crossref_primary_10_1093_schbul_sbaa160 crossref_primary_10_1016_S1474_4422_18_30238_2 crossref_primary_10_3390_ijms232315351 crossref_primary_10_3390_ijms20092197 crossref_primary_10_1155_2022_4163188 crossref_primary_10_1016_j_bbi_2019_02_018 crossref_primary_10_1507_endocrj_EJ20_0134 crossref_primary_10_1016_j_neulet_2018_09_017 crossref_primary_10_1016_j_neubiorev_2019_05_008 crossref_primary_10_1210_endocr_bqaa166 crossref_primary_10_1002_ca_23673 crossref_primary_10_1016_j_molmed_2017_11_006 crossref_primary_10_1134_S1819712423020034 crossref_primary_10_1007_s12035_020_01991_6 crossref_primary_10_1016_j_bcp_2018_08_026 crossref_primary_10_1073_pnas_2216537120 crossref_primary_10_1101_lm_054092_125 crossref_primary_10_1016_j_nlm_2020_107286 crossref_primary_10_1074_jbc_M117_815514 crossref_primary_10_1016_j_heliyon_2024_e38959 crossref_primary_10_7554_eLife_52939 crossref_primary_10_1016_j_celrep_2017_06_078 crossref_primary_10_1016_j_neures_2017_09_014 crossref_primary_10_1038_s41598_024_84479_w crossref_primary_10_3389_fgene_2020_00790 crossref_primary_10_1016_j_arr_2023_102162 crossref_primary_10_1101_lm_048785_118 |
Cites_doi | 10.1101/lm.1998411 10.1016/j.molcel.2009.11.015 10.1016/j.nlm.2016.01.001 10.1523/JNEUROSCI.3686-10.2010 10.1038/ncb1975 10.1016/j.neuint.2005.11.003 10.1126/science.3029875 10.1007/BF00711089 10.1073/pnas.1102458108 10.1111/j.1460-9568.2008.06262.x 10.1038/nrm2780 10.1016/j.pneurobio.2004.05.005 10.1038/nn0901-908 10.1126/science.1082475 10.1016/j.celrep.2015.01.015 10.1096/fj.07-102509 10.1038/nature06926 10.1101/lm.026575.112 10.1128/IAI.67.6.3055-3060.1999 10.1523/JNEUROSCI.4573-05.2006 10.1046/j.1471-4159.1999.0732415.x 10.1038/nrn1604 10.1016/j.molcel.2008.02.014 10.1016/j.mcn.2010.04.002 10.1515/revneuro-2013-0008 10.1016/S0896-6273(00)80686-8 10.1016/S0960-9822(03)00332-4 10.1101/gad.887201 10.1523/JNEUROSCI.2452-14.2014 10.1146/annurev-cellbio-092910-154005 10.1523/JNEUROSCI.1571-07.2007 10.1016/j.neuron.2006.08.015 10.1101/lm.032771.113 10.1016/S1097-2765(02)00638-X 10.1523/JNEUROSCI.2139-08.2008 10.1074/jbc.M114.579292 10.1016/j.bbr.2015.07.038 10.1126/science.279.5348.242 10.1016/j.neuron.2004.09.012 10.3389/fnbeh.2013.00150 10.1038/nn1013 10.1016/j.neuron.2012.04.031 10.1111/jnc.13164 10.1523/JNEUROSCI.3712-09.2010 10.1016/S1534-5807(03)00158-8 10.1016/j.neurobiolaging.2008.06.009 10.1371/journal.pone.0025902 10.1074/jbc.M102121200 10.1016/j.neuron.2011.05.019 10.1083/jcb.200907109 10.1038/25159 10.1074/jbc.271.5.2823 10.1523/JNEUROSCI.4965-09.2010 10.1186/1471-2091-8-S1-S12 10.1186/1756-8935-3-16 10.1523/JNEUROSCI.4427-11.2012 10.1002/path.1711550105 10.3389/fnmol.2014.00096 10.1016/S0896-6273(03)00687-1 10.1093/brain/awt095 10.1021/cr8004857 10.1038/nrm2708 10.1093/hmg/ddm320 10.1038/ng.2562 10.3389/fnmol.2014.00063 10.1046/j.0953-816x.2001.01806.x 10.1126/science.1069490 10.1074/jbc.M402229200 10.15252/embr.201540298 10.1038/embor.2008.229 10.1016/j.neulet.2015.02.029 10.1111/j.1460-9568.2009.06950.x 10.1016/S0092-8674(00)80188-9 10.1126/science.274.5284.99 10.1073/pnas.0501769102 10.1523/JNEUROSCI.0147-12.2012 10.1016/j.cub.2003.10.028 10.1006/scdb.2000.0164 10.1016/j.ajhg.2012.10.019 10.1371/journal.pone.0034041 10.1016/j.cell.2007.06.052 10.1523/JNEUROSCI.4533-11.2012 10.1073/pnas.172511199 10.1074/jbc.M109.021956 10.1152/physrev.00027.2001 10.1523/JNEUROSCI.1684-06.2006 10.1038/nn.3512 10.1016/j.neuron.2009.11.023 10.1016/j.bbr.2016.03.023 10.1016/j.coph.2005.10.003 10.1523/JNEUROSCI.3291-13.2014 10.1038/sj.emboj.7600483 10.1529/biophysj.105.074500 10.1016/j.sbi.2009.02.004 10.1016/j.cell.2006.06.046 10.1101/lm.1504010 10.1093/nar/gkt590 10.1038/nature04769 10.1523/JNEUROSCI.3277-07.2007 10.1126/science.1074069 10.1101/lm.035998.114 10.4161/auto.5172 10.3389/fnmol.2015.00047 10.1111/j.1471-4159.2004.02707.x 10.1038/ncb1712 10.1016/S0960-9822(03)00338-5 10.1126/science.1150541 10.1074/jbc.M705580200 10.1126/science.8066450 10.1038/329062a0 10.1371/journal.pone.0024349 10.1016/j.molcel.2007.01.035 10.1074/jbc.M203300200 10.1016/S0092-8674(00)00126-4 10.1073/pnas.93.2.856 10.1073/pnas.90.16.7436 10.1242/jeb.108142 10.1016/j.celrep.2015.02.020 10.1016/S0896-6273(02)00749-3 10.1042/BST0370937 10.1038/nn1110 10.1016/S0304-3940(02)01400-3 10.1101/lm.984508 10.15252/embr.201439152 10.1016/j.cell.2010.01.024 10.1038/emm.2014.117 10.1074/mcp.R113.029751 10.1016/j.neuron.2005.09.005 10.1016/j.cell.2007.09.046 10.1016/S0092-8674(02)01074-7 10.2174/138161205774580651 10.1016/j.nlm.2010.12.010 10.3389/fnmol.2014.00077 10.1073/pnas.91.8.3358 10.1016/j.neuron.2006.07.005 10.1126/science.279.5349.338 10.1016/0092-8674(95)90213-9 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.nlm.2016.09.003 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Anatomy & Physiology Zoology Psychology |
EISSN | 1095-9564 |
EndPage | 110 |
ExternalDocumentID | PMC5336522 27614141 10_1016_j_nlm_2016_09_003 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS066583 |
GroupedDBID | --- --K --M -DZ -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO AAYXX ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABOYX ABWVN ABXDB ACDAQ ACGFO ACGFS ACHQT ACIWK ACPRK ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG CITATION COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ H~9 IHE J1W KOM LG5 M41 MO0 MOBAO N9A O-L O9- OAUVE OKEIE OVD OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SSB SSH SSN SSY SSZ T5K TEORI TN5 UNMZH WH7 XOL XPP XSW YQT ZGI ZMT ZU3 ~G- EFKBS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c399t-ccf1fedbcc241cb72d65d47ad179e896b5164e335d124ad83b18cb71c63719a73 |
ISSN | 1074-7427 |
IngestDate | Thu Aug 21 14:13:33 EDT 2025 Fri Jul 11 14:25:04 EDT 2025 Mon Jul 21 05:53:45 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Tue Jul 01 01:15:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ubiquitin Local protein degradation Long-term depression Long-term potentiation Memory Proteasome |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c399t-ccf1fedbcc241cb72d65d47ad179e896b5164e335d124ad83b18cb71c63719a73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5336522 |
PMID | 27614141 |
PQID | 1835505468 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5336522 proquest_miscellaneous_1835505468 pubmed_primary_27614141 crossref_citationtrail_10_1016_j_nlm_2016_09_003 crossref_primary_10_1016_j_nlm_2016_09_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of learning and memory |
PublicationTitleAlternate | Neurobiol Learn Mem |
PublicationYear | 2017 |
References | Fischer (10.1016/j.nlm.2016.09.003_b0170) 2009; 30 Hegde (10.1016/j.nlm.2016.09.003_b0260) 1993; 90 Jarome (10.1016/j.nlm.2016.09.003_b0310) 2013; 24 Furini (10.1016/j.nlm.2016.09.003_b0180) 2015; 294 Yamamoto (10.1016/j.nlm.2016.09.003_b0640) 1999; 73 Hayflick (10.1016/j.nlm.2016.09.003_b0245) 2013; 136 Lee (10.1016/j.nlm.2016.09.003_b0355) 2008; 319 Komander (10.1016/j.nlm.2016.09.003_b0340) 2009; 37 Banerjee (10.1016/j.nlm.2016.09.003_b9000) 2009; 64 Dong (10.1016/j.nlm.2016.09.003_b0140) 2008; 15 Rudolph (10.1016/j.nlm.2016.09.003_b0495) 2006; 6 Wyce (10.1016/j.nlm.2016.09.003_b0635) 2007; 27 Gupta-Agarwal (10.1016/j.nlm.2016.09.003_b0230) 2012; 32 Sajikumar (10.1016/j.nlm.2016.09.003_b0505) 2003; 338 Fenteany (10.1016/j.nlm.2016.09.003_b0160) 1994; 91 Atkin (10.1016/j.nlm.2016.09.003_b0020) 2014; 7 Rodriguez-Ortiz (10.1016/j.nlm.2016.09.003_b0485) 2011; 95 Day (10.1016/j.nlm.2016.09.003_b0115) 2011; 70 Dong (10.1016/j.nlm.2016.09.003_b0135) 2014; 34 Marques (10.1016/j.nlm.2016.09.003_b0405) 2009; 109 Upadhya (10.1016/j.nlm.2016.09.003_b0600) 2004; 91 Saliba (10.1016/j.nlm.2016.09.003_b0510) 2007; 27 Haack (10.1016/j.nlm.2016.09.003_b0235) 2012; 91 Tan (10.1016/j.nlm.2016.09.003_b0575) 2008; 17 Wilkinson (10.1016/j.nlm.2016.09.003_b0625) 2000; 11 Bingol (10.1016/j.nlm.2016.09.003_b0050) 2006; 441 Peth (10.1016/j.nlm.2016.09.003_b0465) 2009; 36 Jarome (10.1016/j.nlm.2016.09.003_b0295) 2016; 128 Saitsu (10.1016/j.nlm.2016.09.003_b0500) 2013; 45 Scudder (10.1016/j.nlm.2016.09.003_b0525) 2014; 34 Shen (10.1016/j.nlm.2016.09.003_b0545) 2007; 27 Martin (10.1016/j.nlm.2016.09.003_b0410) 2004; 23 Jiang (10.1016/j.nlm.2016.09.003_b9010) 2010; 30 Kottler (10.1016/j.nlm.2016.09.003_b0345) 2011; 6 Cheng (10.1016/j.nlm.2016.09.003_b0080) 2009; 19 Gupta (10.1016/j.nlm.2016.09.003_b0225) 2013; 16 Upadhya (10.1016/j.nlm.2016.09.003_b0595) 2007; 8 Ortega (10.1016/j.nlm.2016.09.003_b0450) 2014; 7 Reis (10.1016/j.nlm.2016.09.003_b0470) 2013; 7 Jarome (10.1016/j.nlm.2016.09.003_b0300) 2014; 21 Bach (10.1016/j.nlm.2016.09.003_b0030) 2015; 591 Im (10.1016/j.nlm.2016.09.003_b0290) 2015; 134 Yao (10.1016/j.nlm.2016.09.003_b0645) 2007; 130 Patrick (10.1016/j.nlm.2016.09.003_b0460) 2003; 13 Chain (10.1016/j.nlm.2016.09.003_b0075) 1999; 22 Ciechanover (10.1016/j.nlm.2016.09.003_b0090) 2015; 47 Malenka (10.1016/j.nlm.2016.09.003_b0400) 2004; 44 Gingras (10.1016/j.nlm.2016.09.003_b0190) 2001; 15 Zovkic (10.1016/j.nlm.2016.09.003_b0670) 2013; 20 Gentier (10.1016/j.nlm.2016.09.003_b0185) 2015; 8 Hegde (10.1016/j.nlm.2016.09.003_b0275) 2010 Ohtake (10.1016/j.nlm.2016.09.003_b0440) 2015; 16 Rinetti (10.1016/j.nlm.2016.09.003_b0480) 2010; 30 Hegde (10.1016/j.nlm.2016.09.003_b0270) 1997; 89 Karpova (10.1016/j.nlm.2016.09.003_b0325) 2006; 26 Meffert (10.1016/j.nlm.2016.09.003_b0415) 2003; 6 Sol Fustinana (10.1016/j.nlm.2016.09.003_b0550) 2014; 21 Buro (10.1016/j.nlm.2016.09.003_b0065) 2010; 3 Guinez (10.1016/j.nlm.2016.09.003_b0220) 2008; 22 Olzmann (10.1016/j.nlm.2016.09.003_b0445) 2008; 4 Schnell (10.1016/j.nlm.2016.09.003_b0515) 2002; 99 Yaron (10.1016/j.nlm.2016.09.003_b0650) 1998; 396 Citri (10.1016/j.nlm.2016.09.003_b0095) 2009; 30 Abel (10.1016/j.nlm.2016.09.003_b0005) 1998; 279 Nguyen (10.1016/j.nlm.2016.09.003_b0435) 1994; 265 Mori (10.1016/j.nlm.2016.09.003_b9020) 1987; 235 Hegde (10.1016/j.nlm.2016.09.003_b0255) 2010; 17 Husnjak (10.1016/j.nlm.2016.09.003_b0285) 2008; 453 Tang (10.1016/j.nlm.2016.09.003_b0580) 1999; 67 Buttner (10.1016/j.nlm.2016.09.003_b0070) 2001; 276 Widagdo (10.1016/j.nlm.2016.09.003_b0620) 2015 van Leeuwen (10.1016/j.nlm.2016.09.003_b0605) 1998; 279 Felsenberg (10.1016/j.nlm.2016.09.003_b0155) 2014; 217 Mizushima (10.1016/j.nlm.2016.09.003_b0425) 2011; 27 Shen (10.1016/j.nlm.2016.09.003_b0540) 2009; 187 Djakovic (10.1016/j.nlm.2016.09.003_b0125) 2012; 32 Gong (10.1016/j.nlm.2016.09.003_b0200) 2006; 126 Klein (10.1016/j.nlm.2016.09.003_b0335) 2015; 10 Kato (10.1016/j.nlm.2016.09.003_b0330) 2005; 102 Jurd (10.1016/j.nlm.2016.09.003_b0320) 2008; 283 Zhao (10.1016/j.nlm.2016.09.003_b0665) 2003; 13 Levenson (10.1016/j.nlm.2016.09.003_b0375) 2005; 6 Hamilton (10.1016/j.nlm.2016.09.003_b0240) 2012; 74 Hou (10.1016/j.nlm.2016.09.003_b0280) 2006; 51 Jarome (10.1016/j.nlm.2016.09.003_b0315) 2011; 6 Lopez-Atalaya (10.1016/j.nlm.2016.09.003_b0390) 2013; 41 Levenson (10.1016/j.nlm.2016.09.003_b0370) 2004; 279 Abrams (10.1016/j.nlm.2016.09.003_b0010) 1985; 5 Upadhya (10.1016/j.nlm.2016.09.003_b0590) 2005; 11 Eisenberg (10.1016/j.nlm.2016.09.003_b0150) 2009; 11 Kuczera (10.1016/j.nlm.2016.09.003_b0350) 2011; 18 Song (10.1016/j.nlm.2016.09.003_b0555) 2006; 90 Ehlers (10.1016/j.nlm.2016.09.003_b0145) 2003; 6 Pak (10.1016/j.nlm.2016.09.003_b0455) 2003; 302 Lee (10.1016/j.nlm.2016.09.003_b0360) 2007; 131 Minsky (10.1016/j.nlm.2016.09.003_b0420) 2008; 10 Selkoe (10.1016/j.nlm.2016.09.003_b9025) 2002; 298 Djakovic (10.1016/j.nlm.2016.09.003_b0130) 2009; 284 Lopez-Salon (10.1016/j.nlm.2016.09.003_b0395) 2001; 14 Greenberg (10.1016/j.nlm.2016.09.003_b0210) 1987; 329 Hegde (10.1016/j.nlm.2016.09.003_b0265) 2014; 7 Bartsch (10.1016/j.nlm.2016.09.003_b0040) 1995; 83 Lowe (10.1016/j.nlm.2016.09.003_b9015) 1988; 155 Li (10.1016/j.nlm.2016.09.003_b0385) 2015 Weake (10.1016/j.nlm.2016.09.003_b0615) 2008; 29 Jarome (10.1016/j.nlm.2016.09.003_b0305) 2013; 7 Ye (10.1016/j.nlm.2016.09.003_b0655) 2009; 10 Willeumier (10.1016/j.nlm.2016.09.003_b0630) 2006; 26 Hsiao (10.1016/j.nlm.2016.09.003_b9005) 1996; 274 Burbea (10.1016/j.nlm.2016.09.003_b0060) 2002; 35 Chin (10.1016/j.nlm.2016.09.003_b0085) 2002; 277 Artinian (10.1016/j.nlm.2016.09.003_b0015) 2008; 27 Nakatogawa (10.1016/j.nlm.2016.09.003_b0430) 2009; 10 Fioravante (10.1016/j.nlm.2016.09.003_b0165) 2008; 28 Schwarz (10.1016/j.nlm.2016.09.003_b0520) 2010; 30 Davis (10.1016/j.nlm.2016.09.003_b0110) 2010; 44 Segref (10.1016/j.nlm.2016.09.003_b0530) 2009; 10 Bedford (10.1016/j.nlm.2016.09.003_b0045) 2001; 4 Hegde (10.1016/j.nlm.2016.09.003_b0250) 2004; 73 Ruan (10.1016/j.nlm.2016.09.003_b0490) 2013; 12 Dai (10.1016/j.nlm.2016.09.003_b0105) 2003; 4 Gonzalez (10.1016/j.nlm.2016.09.003_b0205) 2002; 296 Bingol (10.1016/j.nlm.2016.09.003_b0055) 2010; 140 Upadhya (10.1016/j.nlm.2016.09.003_b0585) 2006; 48 van Nocker (10.1016/j.nlm.2016.09.003_b0610) 1996; 93 Leggett (10.1016/j.nlm.2016.09.003_b0365) 2002; 10 Swaney (10.1016/j.nlm.2016.09.003_b0570) 2015; 16 Glickman (10.1016/j.nlm.2016.09.003_b0195) 2002; 82 Stacey (10.1016/j.nlm.2016.09.003_b0565) 2012; 7 Barco (10.1016/j.nlm.2016.09.003_b0035) 2005; 48 Deng (10.1016/j.nlm.2016.09.003_b0120) 2000; 103 Shehata (10.1016/j.nlm.2016.09.003_b0535) 2012; 32 Baboshina (10.1016/j.nlm.2016.09.003_b0025) 1996; 271 Guan (10.1016/j.nlm.2016.09.003_b0215) 2002; 111 Speese (10.1016/j.nlm.2016.09.003_b0560) 2003; 13 Fonseca (10.1016/j.nlm.2016.09.003_b0175) 2006; 52 Li (10.1016/j.nlm.2016.09.003_b0380) 2016; 305 Riffo-Campos (10.1016/j.nlm.2016.09.003_b0475) 2015; 290 Colledge (10.1016/j.nlm.2016.09.003_b0100) 2003; 40 Zaro (10.1016/j.nlm.2016.09.003_b0660) 2011; 108 8395048 - Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7436-40 22496558 - J Neurosci. 2012 Apr 11;32(15):5126-31 26971628 - Behav Brain Res. 2016 May 15;305:265-77 18047736 - BMC Biochem. 2007 Nov 22;8 Suppl 1:S12 15312912 - Prog Neurobiol. 2004 Aug;73(5):311-57 19286367 - Curr Opin Struct Biol. 2009 Apr;19(2):203-8 11560918 - J Biol Chem. 2001 Nov 16;276(46):42978-85 21191042 - Learn Mem. 2010 Dec 22;18(1):49-57 8066450 - Science. 1994 Aug 19;265(5175):1104-7 25378406 - J Biol Chem. 2015 Jan 2;290(1):197-208 26779588 - Neurobiol Learn Mem. 2016 Feb;128:103-9 15654323 - Nat Rev Neurosci. 2005 Feb;6(2):108-18 21148011 - J Neurosci. 2010 Dec 8;30(49):16718-29 12577062 - Nat Neurosci. 2003 Mar;6(3):231-42 18374642 - Mol Cell. 2008 Mar 28;29(6):653-63 18497817 - Nature. 2008 May 22;453(7194):481-8 21801009 - Annu Rev Cell Dev Biol. 2011;27:107-32 18842884 - J Neurosci. 2008 Oct 8;28(41):10245-56 20005843 - Mol Cell. 2009 Dec 11;36(5):794-804 16810255 - Nature. 2006 Jun 29;441(7097):1144-8 23821663 - Nucleic Acids Res. 2013 Sep;41(17):8072-84 12437922 - Cell. 2002 Nov 15;111(4):483-93 17803915 - Cell. 2007 Sep 7;130(5):943-57 11528422 - Nat Neurosci. 2001 Sep;4(9):908-16 19079132 - EMBO Rep. 2009 Jan;10(1):44-50 25753412 - Cell Rep. 2015 Mar 3;:null 23322554 - Learn Mem. 2013 Jan 15;20(2):61-74 25766616 - Exp Mol Med. 2015 Mar 13;47:e147 19801973 - Nat Cell Biol. 2009 Nov;11(11):1305-14 19851334 - Nat Rev Mol Cell Biol. 2009 Nov;10 (11):755-64 25505317 - J Neurosci. 2014 Dec 10;34(50):16637-49 23435086 - Nat Genet. 2013 Apr;45(4):445-9, 449e1 25520617 - Front Mol Neurosci. 2014 Dec 01;7:96 11860477 - Eur J Neurosci. 2001 Dec;14(11):1820-6 12791275 - Dev Cell. 2003 Jun;4(6):917-28 12123612 - Neuron. 2002 Jul 3;35(1):107-20 25660027 - Cell Rep. 2015 Feb 4;:null 16908410 - Neuron. 2006 Aug 17;51(4):441-54 17699672 - J Neurosci. 2007 Aug 15;27(33):8903-13 21991383 - PLoS One. 2011;6(10):e25902 9094720 - Cell. 1997 Apr 4;89(1):115-26 21961035 - PLoS One. 2011;6(9):e24349 25071440 - Front Mol Neurosci. 2014 Jul 08;7:63 17957134 - Autophagy. 2008 Jan;4(1):85-7 19265443 - Chem Rev. 2009 Apr;109(4):1509-36 12121982 - J Biol Chem. 2002 Sep 20;277(38):35071-9 2411403 - Cell Mol Neurobiol. 1985 Jun;5(1-2):123-45 25324717 - Front Mol Neurosci. 2014 Sep 29;7:77 19491929 - Nat Rev Mol Cell Biol. 2009 Jul;10 (7):458-67 23995066 - Nat Neurosci. 2013 Oct;16(10):1453-60 15549132 - EMBO J. 2004 Dec 8;23(24):4749-59 3041225 - Nature. 1987 Sep 3-9;329(6134):62-5 17046687 - Neuron. 2006 Oct 19;52(2):239-45 11057907 - Cell. 2000 Oct 13;103(2):351-61 15809437 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5600-5 15379901 - J Neurochem. 2004 Oct;91(1):210-9 20178748 - Cell. 2010 Feb 19;140(4):567-78 23687123 - Brain. 2013 Jun;136(Pt 6):1708-17 10027297 - Neuron. 1999 Jan;22(1):147-56 26388726 - Front Mol Neurosci. 2015 Sep 02;8:47 17079661 - J Neurosci. 2006 Nov 1;26(44):11333-41 14576440 - Science. 2003 Nov 21;302(5649):1368-73 20203175 - J Neurosci. 2010 Mar 3;30(9):3157-66 18434435 - FASEB J. 2008 Aug;22(8):2901-11 17981811 - Hum Mol Genet. 2008 Feb 1;17 (3):431-9 21658577 - Neuron. 2011 Jun 9;70(5):813-29 10582601 - J Neurochem. 1999 Dec;73(6):2415-23 19786572 - J Cell Biol. 2009 Oct 5;187(1):71-9 14642282 - Neuron. 2003 Oct 30;40(3):595-607 25687290 - Neurosci Lett. 2015 Mar 30;591:59-64 21540332 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8146-51 15450156 - Neuron. 2004 Sep 30;44(1):5-21 17962190 - J Biol Chem. 2008 Jan 4;283(1):301-10 11917093 - Physiol Rev. 2002 Apr;82(2):373-428 11964484 - Science. 2002 Apr 19;296(5567):548-50 8521521 - Cell. 1995 Dec 15;83(6):979-92 22479513 - PLoS One. 2012;7(3):e34041 23176820 - Am J Hum Genet. 2012 Dec 7;91(6):1144-9 8576261 - J Biol Chem. 1996 Feb 2;271(5):2823-31 22726833 - Neuron. 2012 Jun 21;74(6):1023-30 16376150 - Curr Opin Pharmacol. 2006 Feb;6(1):18-23 25963095 - J Neurochem. 2015 Aug;134(4):756-68 9454331 - Science. 1998 Jan 16;279(5349):338-41 16428285 - Biophys J. 2006 Apr 1;90(7):2309-25 16672670 - J Neurosci. 2006 May 3;26(18):4949-55 12947408 - Nat Neurosci. 2003 Oct;6(10):1072-8 9422699 - Science. 1998 Jan 9;279(5348):242-7 25135196 - Learn Mem. 2014 Aug 18;21(9):478-87 16202713 - Neuron. 2005 Oct 6;48(1):123-37 9859996 - Nature. 1998 Dec 10;396(6711):590-4 20825659 - Epigenetics Chromatin. 2010 Sep 08;3(1):16 19821836 - Eur J Neurosci. 2009 Oct;30(8):1443-50 26200717 - Behav Brain Res. 2015 Nov 1;294:17-24 19754430 - Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53 25924950 - Cereb Cortex. 2016 Jun;26(6):2541-8 17643376 - Mol Cell. 2007 Jul 20;27(2):275-88 20403442 - Mol Cell Neurosci. 2010 Aug;44(4):307-17 23729618 - Rev Neurosci. 2013;24(4):375-87 25527407 - EMBO Rep. 2015 Feb;16(2):192-201 18045928 - J Neurosci. 2007 Nov 28;27(48):13341-51 18760506 - Neurobiol Aging. 2009 Jun;30(6):847-63 10906270 - Semin Cell Dev Biol. 2000 Jun;11(3):141-8 24344179 - Learn Mem. 2013 Dec 16;21(1):9-13 22836274 - J Neurosci. 2012 Jul 25;32(30):10413-22 8570648 - Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):856-60 16305513 - Curr Pharm Des. 2005;11(29):3807-28 14653997 - Curr Biol. 2003 Dec 2;13(23 ):2073-81 18083099 - Cell. 2007 Dec 14;131(6):1084-96 26142280 - EMBO Rep. 2015 Sep;16(9):1131-44 16352375 - Neurochem Int. 2006 Mar;48(4):296-305 24009566 - Front Behav Neurosci. 2013 Aug 30;7:115 15273246 - J Biol Chem. 2004 Sep 24;279(39):40545-59 12408819 - Mol Cell. 2002 Sep;10 (3):495-507 22514307 - J Neurosci. 2012 Apr 18;32(16):5440-53 21193052 - Neurobiol Learn Mem. 2011 Mar;95(3):311-5 24573276 - J Neurosci. 2014 Feb 26;34(9):3171-82 8159752 - Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3358-62 12566174 - Neurosci Lett. 2003 Feb 27;338(2):147-50 12781128 - Curr Biol. 2003 May 27;13(11):899-910 18588539 - Eur J Neurosci. 2008 Jun;27(11):3009-19 20566674 - Learn Mem. 2010 Jun 21;17(7):314-27 18258863 - Science. 2008 Feb 29;319(5867):1253-6 12781127 - Curr Biol. 2003 May 27;13(11):887-98 16923396 - Cell. 2006 Aug 25;126(4):775-88 12359873 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13902-7 18441292 - Learn Mem. 2008 Apr 25;15(5):335-47 11297505 - Genes Dev. 2001 Apr 1;15(7):807-26 10338520 - Infect Immun. 1999 Jun;67(6):3055-60 19638347 - J Biol Chem. 2009 Sep 25;284(39):26655-65 23824911 - Mol Cell Proteomics. 2013 Dec;12(12):3489-97 24167477 - Front Behav Neurosci. 2013 Oct 23;7:150 18344985 - Nat Cell Biol. 2008 Apr;10(4):483-8 25063852 - J Exp Biol. 2014 Oct 1;217(Pt 19):3441-6 |
References_xml | – volume: 18 start-page: 49 year: 2011 ident: 10.1016/j.nlm.2016.09.003_b0350 article-title: The anaphase promoting complex is required for memory function in mice publication-title: Learning & Memory doi: 10.1101/lm.1998411 – volume: 36 start-page: 794 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0465 article-title: Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening publication-title: Molecular Cell doi: 10.1016/j.molcel.2009.11.015 – volume: 128 start-page: 103 year: 2016 ident: 10.1016/j.nlm.2016.09.003_b0295 article-title: CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval publication-title: Neurobiol Learning & Memory doi: 10.1016/j.nlm.2016.01.001 – volume: 30 start-page: 16718 year: 2010 ident: 10.1016/j.nlm.2016.09.003_b0520 article-title: Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3686-10.2010 – volume: 11 start-page: 1305 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0150 article-title: Induction of autophagy by spermidine promotes longevity publication-title: Nature Cell Biology doi: 10.1038/ncb1975 – volume: 48 start-page: 296 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0585 article-title: Differential regulation of proteasome activity in the nucleus and the synaptic terminals publication-title: Neurochemistry International doi: 10.1016/j.neuint.2005.11.003 – volume: 235 start-page: 1641 year: 1987 ident: 10.1016/j.nlm.2016.09.003_b9020 article-title: Ubiquitin is a component of paired helical filaments in Alzheimer’s disease publication-title: Science doi: 10.1126/science.3029875 – volume: 5 start-page: 123 year: 1985 ident: 10.1016/j.nlm.2016.09.003_b0010 article-title: Activity-dependent presynaptic facilitation: An associative mechanism in Aplysia publication-title: Cellular and Molecular Neurobiology doi: 10.1007/BF00711089 – volume: 108 start-page: 8146 year: 2011 ident: 10.1016/j.nlm.2016.09.003_b0660 article-title: Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1 publication-title: Proceedings of the National academy of Sciences of the United States of America doi: 10.1073/pnas.1102458108 – volume: 27 start-page: 3009 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0015 article-title: Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.2008.06262.x – volume: 10 start-page: 755 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0655 article-title: Building ubiquitin chains: E2 enzymes at work publication-title: Nature Reviews Molecular and Cellular Biology doi: 10.1038/nrm2780 – volume: 73 start-page: 311 year: 2004 ident: 10.1016/j.nlm.2016.09.003_b0250 article-title: Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity publication-title: Progress in Neurobiology doi: 10.1016/j.pneurobio.2004.05.005 – volume: 4 start-page: 908 year: 2001 ident: 10.1016/j.nlm.2016.09.003_b0045 article-title: GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1 publication-title: Nature Neuroscience doi: 10.1038/nn0901-908 – volume: 302 start-page: 1368 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0455 article-title: Targeted protein degradation and synapse remodeling by an inducible protein kinase publication-title: Science doi: 10.1126/science.1082475 – year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0620 article-title: Activity-dependent ubiquitination of GluA1 and GluA2 regulates AMPA receptor intracellular sorting and degradation publication-title: Cell Reports doi: 10.1016/j.celrep.2015.01.015 – volume: 22 start-page: 2901 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0220 article-title: Protein ubiquitination is modulated by O-GlcNAc glycosylation publication-title: The FASEB Journal doi: 10.1096/fj.07-102509 – volume: 453 start-page: 481 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0285 article-title: Proteasome subunit Rpn13 is a novel ubiquitin receptor publication-title: Nature doi: 10.1038/nature06926 – volume: 20 start-page: 61 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0670 article-title: Epigenetic regulation of memory formation and maintenance publication-title: Learning & Memory doi: 10.1101/lm.026575.112 – volume: 67 start-page: 3055 year: 1999 ident: 10.1016/j.nlm.2016.09.003_b0580 article-title: Proteasome activity is required for anthrax lethal toxin to kill macrophages publication-title: Infection and Immunity doi: 10.1128/IAI.67.6.3055-3060.1999 – volume: 26 start-page: 4949 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0325 article-title: Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4573-05.2006 – volume: 73 start-page: 2415 year: 1999 ident: 10.1016/j.nlm.2016.09.003_b0640 article-title: Activation and degradation of the transcription factor C/EBP during long-term facilitation in Aplysia publication-title: Journal of Neurochemistry doi: 10.1046/j.1471-4159.1999.0732415.x – volume: 6 start-page: 108 year: 2005 ident: 10.1016/j.nlm.2016.09.003_b0375 article-title: Epigenetic mechanisms in memory formation publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1604 – volume: 29 start-page: 653 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0615 article-title: Histone ubiquitination: Triggering gene activity publication-title: Molecular Cell doi: 10.1016/j.molcel.2008.02.014 – volume: 44 start-page: 307 year: 2010 ident: 10.1016/j.nlm.2016.09.003_b0110 article-title: Regulated lysosomal trafficking as a mechanism for regulating GABAA receptor abundance at synapses in Caenorhabditis elegans publication-title: Molecular and Cellular Neuroscience doi: 10.1016/j.mcn.2010.04.002 – volume: 24 start-page: 375 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0310 article-title: Histone lysine methylation: Critical regulator of memory and behavior publication-title: Reviews in the Neurosciences doi: 10.1515/revneuro-2013-0008 – volume: 22 start-page: 147 year: 1999 ident: 10.1016/j.nlm.2016.09.003_b0075 article-title: Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia publication-title: Neuron doi: 10.1016/S0896-6273(00)80686-8 – volume: 13 start-page: 887 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0665 article-title: The ubiquitin proteasome system functions as an inhibitory constraint on synaptic strengthening publication-title: Current Biology doi: 10.1016/S0960-9822(03)00332-4 – volume: 15 start-page: 807 year: 2001 ident: 10.1016/j.nlm.2016.09.003_b0190 article-title: Regulation of translation initiation by FRAP/mTOR publication-title: Genes & Development doi: 10.1101/gad.887201 – volume: 34 start-page: 16637 year: 2014 ident: 10.1016/j.nlm.2016.09.003_b0525 article-title: Synaptic strength is bidirectionally controlled by opposing activity-dependent regulation of Nedd4-1 and USP8 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2452-14.2014 – volume: 27 start-page: 107 year: 2011 ident: 10.1016/j.nlm.2016.09.003_b0425 article-title: The role of Atg proteins in autophagosome formation publication-title: Annual Review of Cell and Developmental Biology doi: 10.1146/annurev-cellbio-092910-154005 – volume: 27 start-page: 8903 year: 2007 ident: 10.1016/j.nlm.2016.09.003_b0545 article-title: NAC1 regulates the recruitment of the proteasome complex into dendritic spines publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1571-07.2007 – volume: 52 start-page: 239 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0175 article-title: A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP publication-title: Neuron doi: 10.1016/j.neuron.2006.08.015 – volume: 21 start-page: 9 year: 2014 ident: 10.1016/j.nlm.2016.09.003_b0300 article-title: The ubiquitin-specific protease 14 (USP14) is a critical regulator of long-term memory formation publication-title: Learning & Memory doi: 10.1101/lm.032771.113 – volume: 10 start-page: 495 year: 2002 ident: 10.1016/j.nlm.2016.09.003_b0365 article-title: Multiple associated proteins regulate proteasome structure and function publication-title: Molecular Cell doi: 10.1016/S1097-2765(02)00638-X – volume: 28 start-page: 10245 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0165 article-title: The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2139-08.2008 – volume: 290 start-page: 197 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0475 article-title: Nucleosome-specific, time-dependent changes in histone modifications during activation of the early growth response 1 (Egr1) gene publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M114.579292 – volume: 294 start-page: 17 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0180 article-title: The relationship between protein synthesis and protein degradation in object recognition memory publication-title: Behavioural Brain Research doi: 10.1016/j.bbr.2015.07.038 – year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0385 article-title: Ubiquitin-proteasome system inhibition promotes long-term depression and synaptic tagging/capture publication-title: Cerebral Cortex – volume: 279 start-page: 242 year: 1998 ident: 10.1016/j.nlm.2016.09.003_b0605 article-title: Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients publication-title: Science doi: 10.1126/science.279.5348.242 – volume: 44 start-page: 5 year: 2004 ident: 10.1016/j.nlm.2016.09.003_b0400 article-title: LTP and LTD: An embarrassment of riches publication-title: Neuron doi: 10.1016/j.neuron.2004.09.012 – volume: 7 start-page: 150 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0470 article-title: Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex publication-title: Frontiers in Behavioral Neuroscience doi: 10.3389/fnbeh.2013.00150 – volume: 6 start-page: 231 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0145 article-title: Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system publication-title: Nature Neuroscience doi: 10.1038/nn1013 – volume: 74 start-page: 1023 year: 2012 ident: 10.1016/j.nlm.2016.09.003_b0240 article-title: Activity-dependent growth of new dendritic spines is regulated by the proteasome publication-title: Neuron doi: 10.1016/j.neuron.2012.04.031 – volume: 134 start-page: 756 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0290 article-title: Dyrk1A phosphorylates parkin at Ser-131 and negatively regulates its ubiquitin E3 ligase activity publication-title: Journal of Neurochemistry doi: 10.1111/jnc.13164 – volume: 30 start-page: 3157 year: 2010 ident: 10.1016/j.nlm.2016.09.003_b0480 article-title: Ubiquitination acutely regulates presynaptic neurotransmitter release in mammalian neurons publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3712-09.2010 – volume: 4 start-page: 917 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0105 article-title: A hedgehog-responsive region in the Drosophila wing disc is defined by debra-mediated ubiquitination and lysosomal degradation of Ci publication-title: Developmental Cell doi: 10.1016/S1534-5807(03)00158-8 – volume: 30 start-page: 847 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0170 article-title: Long-term proteasome dysfunction in the mouse brain by expression of aberrant ubiquitin publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2008.06.009 – volume: 6 start-page: e25902 year: 2011 ident: 10.1016/j.nlm.2016.09.003_b0345 article-title: Debra, a protein mediating lysosomal degradation, is required for long-term memory in Drosophila publication-title: PLoS One doi: 10.1371/journal.pone.0025902 – volume: 276 start-page: 42978 year: 2001 ident: 10.1016/j.nlm.2016.09.003_b0070 article-title: Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-bound glycine receptors publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M102121200 – volume: 70 start-page: 813 year: 2011 ident: 10.1016/j.nlm.2016.09.003_b0115 article-title: Epigenetic mechanisms in cognition publication-title: Neuron doi: 10.1016/j.neuron.2011.05.019 – volume: 187 start-page: 71 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0540 article-title: Autophagy promotes synapse development in Drosophila publication-title: Journal of Cell Biology doi: 10.1083/jcb.200907109 – volume: 396 start-page: 590 year: 1998 ident: 10.1016/j.nlm.2016.09.003_b0650 article-title: Identification of the receptor component of the IkappaBalpha-ubiquitin ligase publication-title: Nature doi: 10.1038/25159 – volume: 271 start-page: 2823 year: 1996 ident: 10.1016/j.nlm.2016.09.003_b0025 article-title: Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.271.5.2823 – volume: 30 start-page: 1798 year: 2010 ident: 10.1016/j.nlm.2016.09.003_b9010 article-title: A role for the ubiquitin-proteasome system in activity-dependent presynaptic silencing publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.4965-09.2010 – volume: 8 start-page: S12 issue: Suppl. 1 year: 2007 ident: 10.1016/j.nlm.2016.09.003_b0595 article-title: Role of the ubiquitin proteasome system in Alzheimer’s disease publication-title: BMC Biochemistry doi: 10.1186/1471-2091-8-S1-S12 – volume: 3 start-page: 16 year: 2010 ident: 10.1016/j.nlm.2016.09.003_b0065 article-title: Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1) publication-title: Epigenetics Chromatin doi: 10.1186/1756-8935-3-16 – volume: 32 start-page: 5126 year: 2012 ident: 10.1016/j.nlm.2016.09.003_b0125 article-title: Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4427-11.2012 – volume: 155 start-page: 9 year: 1988 ident: 10.1016/j.nlm.2016.09.003_b9015 publication-title: J. Pathol doi: 10.1002/path.1711550105 – volume: 7 start-page: 96 year: 2014 ident: 10.1016/j.nlm.2016.09.003_b0265 article-title: Local ubiquitin-proteasome-mediated proteolysis and long-term synaptic plasticity publication-title: Frontiers in Molecular Neuroscience doi: 10.3389/fnmol.2014.00096 – volume: 40 start-page: 595 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0100 article-title: Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression publication-title: Neuron doi: 10.1016/S0896-6273(03)00687-1 – volume: 136 start-page: 1708 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0245 article-title: Beta-Propeller protein-associated neurodegeneration: A new X-linked dominant disorder with brain iron accumulation publication-title: Brain doi: 10.1093/brain/awt095 – volume: 109 start-page: 1509 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0405 article-title: Catalytic mechanism and assembly of the proteasome publication-title: Chemical Reviews doi: 10.1021/cr8004857 – volume: 10 start-page: 458 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0430 article-title: Dynamics and diversity in autophagy mechanisms: Lessons from yeast publication-title: Nature Reviews Molecular and Cellular Biology doi: 10.1038/nrm2708 – volume: 17 start-page: 431 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0575 article-title: Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddm320 – volume: 45 start-page: 445 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0500 article-title: De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood publication-title: Nature Genetics doi: 10.1038/ng.2562 – volume: 7 start-page: 63 year: 2014 ident: 10.1016/j.nlm.2016.09.003_b0020 article-title: Ubiquitin pathways in neurodegenerative disease publication-title: Frontiers in Molecular Neuroscience doi: 10.3389/fnmol.2014.00063 – volume: 14 start-page: 1820 year: 2001 ident: 10.1016/j.nlm.2016.09.003_b0395 article-title: The ubiquitin-proteasome cascade is required for mammalian long-term memory formation publication-title: European Journal of Neuroscience doi: 10.1046/j.0953-816x.2001.01806.x – volume: 296 start-page: 548 year: 2002 ident: 10.1016/j.nlm.2016.09.003_b0205 article-title: Recruitment of a 19S proteasome subcomplex to an activated promoter publication-title: Science doi: 10.1126/science.1069490 – volume: 279 start-page: 40545 year: 2004 ident: 10.1016/j.nlm.2016.09.003_b0370 article-title: Regulation of histone acetylation during memory formation in the hippocampus publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M402229200 – volume: 16 start-page: 1131 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0570 article-title: Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover publication-title: EMBO Reports doi: 10.15252/embr.201540298 – volume: 10 start-page: 44 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0530 article-title: Think locally: Control of ubiquitin-dependent protein degradation in neurons publication-title: EMBO Reports doi: 10.1038/embor.2008.229 – volume: 591 start-page: 59 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0030 article-title: Proteasome regulates transcription-favoring histone methylation, acetylation and ubiquitination in long-term synaptic plasticity publication-title: Neuroscience Letters doi: 10.1016/j.neulet.2015.02.029 – volume: 30 start-page: 1443 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0095 article-title: N-methyl-D-aspartate receptor- and metabotropic glutamate receptor-dependent long-term depression are differentially regulated by the ubiquitin-proteasome system publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.2009.06950.x – volume: 89 start-page: 115 year: 1997 ident: 10.1016/j.nlm.2016.09.003_b0270 article-title: Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia publication-title: Cell doi: 10.1016/S0092-8674(00)80188-9 – volume: 274 start-page: 99 year: 1996 ident: 10.1016/j.nlm.2016.09.003_b9005 article-title: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice publication-title: Science doi: 10.1126/science.274.5284.99 – volume: 102 start-page: 5600 year: 2005 ident: 10.1016/j.nlm.2016.09.003_b0330 article-title: Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0501769102 – volume: 32 start-page: 5440 year: 2012 ident: 10.1016/j.nlm.2016.09.003_b0230 article-title: G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0147-12.2012 – volume: 13 start-page: 2073 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0460 article-title: Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs publication-title: Current Biology doi: 10.1016/j.cub.2003.10.028 – volume: 11 start-page: 141 year: 2000 ident: 10.1016/j.nlm.2016.09.003_b0625 article-title: Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome publication-title: Seminars in Cell and Developmental Biology doi: 10.1006/scdb.2000.0164 – volume: 91 start-page: 1144 year: 2012 ident: 10.1016/j.nlm.2016.09.003_b0235 article-title: Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA publication-title: American Journal of Human Genetics doi: 10.1016/j.ajhg.2012.10.019 – volume: 7 start-page: e34041 year: 2012 ident: 10.1016/j.nlm.2016.09.003_b0565 article-title: Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity publication-title: PLoS One doi: 10.1371/journal.pone.0034041 – volume: 130 start-page: 943 year: 2007 ident: 10.1016/j.nlm.2016.09.003_b0645 article-title: SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release publication-title: Cell doi: 10.1016/j.cell.2007.06.052 – volume: 32 start-page: 10413 year: 2012 ident: 10.1016/j.nlm.2016.09.003_b0535 article-title: Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4533-11.2012 – volume: 99 start-page: 13902 year: 2002 ident: 10.1016/j.nlm.2016.09.003_b0515 article-title: Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.172511199 – volume: 284 start-page: 26655 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0130 article-title: Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M109.021956 – volume: 82 start-page: 373 year: 2002 ident: 10.1016/j.nlm.2016.09.003_b0195 article-title: The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction publication-title: Physiological Reviews doi: 10.1152/physrev.00027.2001 – volume: 26 start-page: 11333 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0630 article-title: Proteasome inhibition triggers activity-dependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1684-06.2006 – volume: 16 start-page: 1453 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0225 article-title: Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner publication-title: Nature Neuroscience doi: 10.1038/nn.3512 – volume: 64 start-page: 871 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b9000 article-title: A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation publication-title: Neuron doi: 10.1016/j.neuron.2009.11.023 – volume: 305 start-page: 265 year: 2016 ident: 10.1016/j.nlm.2016.09.003_b0380 article-title: Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice publication-title: Behavioural Brain Research doi: 10.1016/j.bbr.2016.03.023 – volume: 6 start-page: 18 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0495 article-title: GABA-based therapeutic approaches: GABAA receptor subtype functions publication-title: Current Opinion in Pharmacology doi: 10.1016/j.coph.2005.10.003 – volume: 34 start-page: 3171 year: 2014 ident: 10.1016/j.nlm.2016.09.003_b0135 article-title: Proteasome modulates positive and negative translational regulators in long-term synaptic plasticity publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3291-13.2014 – volume: 23 start-page: 4749 year: 2004 ident: 10.1016/j.nlm.2016.09.003_b0410 article-title: Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways publication-title: EMBO Journal doi: 10.1038/sj.emboj.7600483 – volume: 90 start-page: 2309 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0555 article-title: Bifurcation and singularity analysis of a molecular network for the induction of long-term memory publication-title: Biophysical Journal doi: 10.1529/biophysj.105.074500 – volume: 19 start-page: 203 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0080 article-title: Toward an atomic model of the 26S proteasome publication-title: Current Opinion in Structural Biology doi: 10.1016/j.sbi.2009.02.004 – volume: 126 start-page: 775 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0200 article-title: Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory publication-title: Cell doi: 10.1016/j.cell.2006.06.046 – volume: 17 start-page: 314 year: 2010 ident: 10.1016/j.nlm.2016.09.003_b0255 article-title: The ubiquitin-proteasome pathway and synaptic plasticity publication-title: Learning & Memory doi: 10.1101/lm.1504010 – volume: 41 start-page: 8072 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0390 article-title: Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition publication-title: Nucleic Acids Research doi: 10.1093/nar/gkt590 – volume: 441 start-page: 1144 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0050 article-title: Activity-dependent dynamics and sequestration of proteasomes in dendritic spines publication-title: Nature doi: 10.1038/nature04769 – start-page: 699 year: 2010 ident: 10.1016/j.nlm.2016.09.003_b0275 article-title: Ubiquitin-dependent protein degradation – volume: 27 start-page: 13341 year: 2007 ident: 10.1016/j.nlm.2016.09.003_b0510 article-title: Activity-dependent ubiquitination of GABA(A) receptors regulates their accumulation at synaptic sites publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3277-07.2007 – volume: 298 start-page: 789 year: 2002 ident: 10.1016/j.nlm.2016.09.003_b9025 article-title: Alzheimer’s disease is a synaptic failure publication-title: Science doi: 10.1126/science.1074069 – volume: 21 start-page: 478 year: 2014 ident: 10.1016/j.nlm.2016.09.003_b0550 article-title: Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory publication-title: Learning & Memory doi: 10.1101/lm.035998.114 – volume: 4 start-page: 85 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0445 article-title: Parkin-mediated K63-linked polyubiquitination: A signal for targeting misfolded proteins to the aggresome-autophagy pathway publication-title: Autophagy doi: 10.4161/auto.5172 – volume: 8 start-page: 47 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0185 article-title: Misframed ubiquitin and impaired protein quality control: An early event in Alzheimer’s disease publication-title: Frontiers in Molecular Neuroscience doi: 10.3389/fnmol.2015.00047 – volume: 91 start-page: 210 year: 2004 ident: 10.1016/j.nlm.2016.09.003_b0600 article-title: Ubiquitin-proteasome-mediated CREB repressor degradation during induction of long-term facilitation publication-title: Journal of Neurochemisty doi: 10.1111/j.1471-4159.2004.02707.x – volume: 10 start-page: 483 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0420 article-title: Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells publication-title: Nature Cell Biology doi: 10.1038/ncb1712 – volume: 13 start-page: 899 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0560 article-title: The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy publication-title: Current Biology doi: 10.1016/S0960-9822(03)00338-5 – volume: 319 start-page: 1253 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0355 article-title: Synaptic protein degradation underlies destabilization of retrieved fear memory publication-title: Science doi: 10.1126/science.1150541 – volume: 7 start-page: 115 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0305 article-title: CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories publication-title: Frontiers in Behavioral Neuroscience – volume: 283 start-page: 301 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0320 article-title: Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B subunit in a phosphorylation-dependent manner publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M705580200 – volume: 265 start-page: 1104 year: 1994 ident: 10.1016/j.nlm.2016.09.003_b0435 article-title: Requirement of a critical period of transcription for induction of a late phase of LTP publication-title: Science doi: 10.1126/science.8066450 – volume: 329 start-page: 62 year: 1987 ident: 10.1016/j.nlm.2016.09.003_b0210 article-title: A molecular mechanism for long-term sensitization in Aplysia publication-title: Nature doi: 10.1038/329062a0 – volume: 6 start-page: e24349 year: 2011 ident: 10.1016/j.nlm.2016.09.003_b0315 article-title: Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala publication-title: PLoS One doi: 10.1371/journal.pone.0024349 – volume: 27 start-page: 275 year: 2007 ident: 10.1016/j.nlm.2016.09.003_b0635 article-title: H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex publication-title: Molecular Cell doi: 10.1016/j.molcel.2007.01.035 – volume: 277 start-page: 35071 year: 2002 ident: 10.1016/j.nlm.2016.09.003_b0085 article-title: Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M203300200 – volume: 103 start-page: 351 year: 2000 ident: 10.1016/j.nlm.2016.09.003_b0120 article-title: Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain publication-title: Cell doi: 10.1016/S0092-8674(00)00126-4 – volume: 93 start-page: 856 year: 1996 ident: 10.1016/j.nlm.2016.09.003_b0610 article-title: Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.93.2.856 – volume: 90 start-page: 7436 year: 1993 ident: 10.1016/j.nlm.2016.09.003_b0260 article-title: Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: A molecular mechanism underlying long-term synaptic plasticity publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.90.16.7436 – volume: 217 start-page: 3441 year: 2014 ident: 10.1016/j.nlm.2016.09.003_b0155 article-title: Two inhibitors of the ubiquitin proteasome system enhance long-term memory formation upon olfactory conditioning in the honeybee (Apis mellifera) publication-title: Journal of Experimental Biology doi: 10.1242/jeb.108142 – volume: 10 start-page: 1459 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0335 article-title: Coordination between translation and degradation regulates inducibility of mGluR-LTD publication-title: Cell Reports doi: 10.1016/j.celrep.2015.02.020 – volume: 35 start-page: 107 year: 2002 ident: 10.1016/j.nlm.2016.09.003_b0060 article-title: Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans publication-title: Neuron doi: 10.1016/S0896-6273(02)00749-3 – volume: 37 start-page: 937 year: 2009 ident: 10.1016/j.nlm.2016.09.003_b0340 article-title: The emerging complexity of protein ubiquitination publication-title: Biochemical Society Transactions doi: 10.1042/BST0370937 – volume: 6 start-page: 1072 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0415 article-title: NF-kappa B functions in synaptic signaling and behavior publication-title: Nature Neuroscience doi: 10.1038/nn1110 – volume: 338 start-page: 147 year: 2003 ident: 10.1016/j.nlm.2016.09.003_b0505 article-title: Anisomycin inhibits the late maintenance of long-term depression in rat hippocampal slices in vitro publication-title: Neuroscience Letters doi: 10.1016/S0304-3940(02)01400-3 – volume: 15 start-page: 335 year: 2008 ident: 10.1016/j.nlm.2016.09.003_b0140 article-title: Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation publication-title: Learning & Memory doi: 10.1101/lm.984508 – volume: 16 start-page: 192 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0440 article-title: Ubiquitin acetylation inhibits polyubiquitin chain elongation publication-title: EMBO Reports doi: 10.15252/embr.201439152 – volume: 140 start-page: 567 year: 2010 ident: 10.1016/j.nlm.2016.09.003_b0055 article-title: Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines publication-title: Cell doi: 10.1016/j.cell.2010.01.024 – volume: 47 start-page: e147 year: 2015 ident: 10.1016/j.nlm.2016.09.003_b0090 article-title: Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies publication-title: Experimental & Molecular Medicine doi: 10.1038/emm.2014.117 – volume: 12 start-page: 3489 year: 2013 ident: 10.1016/j.nlm.2016.09.003_b0490 article-title: Regulation of protein degradation by O-GlcNAcylation: Crosstalk with ubiquitination publication-title: Molecular and Cellular Proteomics doi: 10.1074/mcp.R113.029751 – volume: 48 start-page: 123 year: 2005 ident: 10.1016/j.nlm.2016.09.003_b0035 article-title: Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture publication-title: Neuron doi: 10.1016/j.neuron.2005.09.005 – volume: 131 start-page: 1084 year: 2007 ident: 10.1016/j.nlm.2016.09.003_b0360 article-title: Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS publication-title: Cell doi: 10.1016/j.cell.2007.09.046 – volume: 111 start-page: 483 year: 2002 ident: 10.1016/j.nlm.2016.09.003_b0215 article-title: Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure publication-title: Cell doi: 10.1016/S0092-8674(02)01074-7 – volume: 11 start-page: 3807 year: 2005 ident: 10.1016/j.nlm.2016.09.003_b0590 article-title: Ubiquitin-proteasome pathway components as therapeutic targets for CNS maladies publication-title: Current Pharmaceutical Design doi: 10.2174/138161205774580651 – volume: 95 start-page: 311 year: 2011 ident: 10.1016/j.nlm.2016.09.003_b0485 article-title: Long-term aversive taste memory requires insular and amygdala protein degradation publication-title: Neurobiol Learning & Memory doi: 10.1016/j.nlm.2010.12.010 – volume: 7 start-page: 77 year: 2014 ident: 10.1016/j.nlm.2016.09.003_b0450 article-title: Ubiquitin-proteasome system involvement in Huntington’s disease publication-title: Frontiers in Molecular Neuroscience doi: 10.3389/fnmol.2014.00077 – volume: 91 start-page: 3358 year: 1994 ident: 10.1016/j.nlm.2016.09.003_b0160 article-title: A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.91.8.3358 – volume: 51 start-page: 441 year: 2006 ident: 10.1016/j.nlm.2016.09.003_b0280 article-title: Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression publication-title: Neuron doi: 10.1016/j.neuron.2006.07.005 – volume: 279 start-page: 338 year: 1998 ident: 10.1016/j.nlm.2016.09.003_b0005 article-title: Memory suppressor genes: Inhibitory constraints on the storage of long-term memory publication-title: Science doi: 10.1126/science.279.5349.338 – volume: 83 start-page: 979 year: 1995 ident: 10.1016/j.nlm.2016.09.003_b0040 article-title: Aplysia CREB2 represses long-term facilitation: Relief of repression converts transient facilitation into long-term functional and structural change publication-title: Cell doi: 10.1016/0092-8674(95)90213-9 – reference: 21148011 - J Neurosci. 2010 Dec 8;30(49):16718-29 – reference: 11560918 - J Biol Chem. 2001 Nov 16;276(46):42978-85 – reference: 21540332 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8146-51 – reference: 17981811 - Hum Mol Genet. 2008 Feb 1;17 (3):431-9 – reference: 17957134 - Autophagy. 2008 Jan;4(1):85-7 – reference: 8159752 - Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3358-62 – reference: 11057907 - Cell. 2000 Oct 13;103(2):351-61 – reference: 11860477 - Eur J Neurosci. 2001 Dec;14(11):1820-6 – reference: 17962190 - J Biol Chem. 2008 Jan 4;283(1):301-10 – reference: 26142280 - EMBO Rep. 2015 Sep;16(9):1131-44 – reference: 12408819 - Mol Cell. 2002 Sep;10 (3):495-507 – reference: 20825659 - Epigenetics Chromatin. 2010 Sep 08;3(1):16 – reference: 19821836 - Eur J Neurosci. 2009 Oct;30(8):1443-50 – reference: 15379901 - J Neurochem. 2004 Oct;91(1):210-9 – reference: 10906270 - Semin Cell Dev Biol. 2000 Jun;11(3):141-8 – reference: 19801973 - Nat Cell Biol. 2009 Nov;11(11):1305-14 – reference: 26200717 - Behav Brain Res. 2015 Nov 1;294:17-24 – reference: 10338520 - Infect Immun. 1999 Jun;67(6):3055-60 – reference: 19491929 - Nat Rev Mol Cell Biol. 2009 Jul;10 (7):458-67 – reference: 16428285 - Biophys J. 2006 Apr 1;90(7):2309-25 – reference: 21801009 - Annu Rev Cell Dev Biol. 2011;27:107-32 – reference: 18045928 - J Neurosci. 2007 Nov 28;27(48):13341-51 – reference: 23824911 - Mol Cell Proteomics. 2013 Dec;12(12):3489-97 – reference: 10027297 - Neuron. 1999 Jan;22(1):147-56 – reference: 18434435 - FASEB J. 2008 Aug;22(8):2901-11 – reference: 25660027 - Cell Rep. 2015 Feb 4;:null – reference: 9454331 - Science. 1998 Jan 16;279(5349):338-41 – reference: 18083099 - Cell. 2007 Dec 14;131(6):1084-96 – reference: 22514307 - J Neurosci. 2012 Apr 18;32(16):5440-53 – reference: 19754430 - Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53 – reference: 25378406 - J Biol Chem. 2015 Jan 2;290(1):197-208 – reference: 9422699 - Science. 1998 Jan 9;279(5348):242-7 – reference: 17079661 - J Neurosci. 2006 Nov 1;26(44):11333-41 – reference: 18588539 - Eur J Neurosci. 2008 Jun;27(11):3009-19 – reference: 24167477 - Front Behav Neurosci. 2013 Oct 23;7:150 – reference: 23995066 - Nat Neurosci. 2013 Oct;16(10):1453-60 – reference: 14576440 - Science. 2003 Nov 21;302(5649):1368-73 – reference: 24344179 - Learn Mem. 2013 Dec 16;21(1):9-13 – reference: 14653997 - Curr Biol. 2003 Dec 2;13(23 ):2073-81 – reference: 16923396 - Cell. 2006 Aug 25;126(4):775-88 – reference: 23176820 - Am J Hum Genet. 2012 Dec 7;91(6):1144-9 – reference: 8395048 - Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7436-40 – reference: 22836274 - J Neurosci. 2012 Jul 25;32(30):10413-22 – reference: 3041225 - Nature. 1987 Sep 3-9;329(6134):62-5 – reference: 12566174 - Neurosci Lett. 2003 Feb 27;338(2):147-50 – reference: 15654323 - Nat Rev Neurosci. 2005 Feb;6(2):108-18 – reference: 25963095 - J Neurochem. 2015 Aug;134(4):756-68 – reference: 20566674 - Learn Mem. 2010 Jun 21;17(7):314-27 – reference: 8066450 - Science. 1994 Aug 19;265(5175):1104-7 – reference: 22496558 - J Neurosci. 2012 Apr 11;32(15):5126-31 – reference: 18374642 - Mol Cell. 2008 Mar 28;29(6):653-63 – reference: 12781128 - Curr Biol. 2003 May 27;13(11):899-910 – reference: 23821663 - Nucleic Acids Res. 2013 Sep;41(17):8072-84 – reference: 26388726 - Front Mol Neurosci. 2015 Sep 02;8:47 – reference: 16376150 - Curr Opin Pharmacol. 2006 Feb;6(1):18-23 – reference: 16202713 - Neuron. 2005 Oct 6;48(1):123-37 – reference: 12121982 - J Biol Chem. 2002 Sep 20;277(38):35071-9 – reference: 11964484 - Science. 2002 Apr 19;296(5567):548-50 – reference: 2411403 - Cell Mol Neurobiol. 1985 Jun;5(1-2):123-45 – reference: 26971628 - Behav Brain Res. 2016 May 15;305:265-77 – reference: 12123612 - Neuron. 2002 Jul 3;35(1):107-20 – reference: 17699672 - J Neurosci. 2007 Aug 15;27(33):8903-13 – reference: 19638347 - J Biol Chem. 2009 Sep 25;284(39):26655-65 – reference: 10582601 - J Neurochem. 1999 Dec;73(6):2415-23 – reference: 11528422 - Nat Neurosci. 2001 Sep;4(9):908-16 – reference: 17643376 - Mol Cell. 2007 Jul 20;27(2):275-88 – reference: 18760506 - Neurobiol Aging. 2009 Jun;30(6):847-63 – reference: 11297505 - Genes Dev. 2001 Apr 1;15(7):807-26 – reference: 19079132 - EMBO Rep. 2009 Jan;10(1):44-50 – reference: 21658577 - Neuron. 2011 Jun 9;70(5):813-29 – reference: 25135196 - Learn Mem. 2014 Aug 18;21(9):478-87 – reference: 19851334 - Nat Rev Mol Cell Biol. 2009 Nov;10 (11):755-64 – reference: 25924950 - Cereb Cortex. 2016 Jun;26(6):2541-8 – reference: 25687290 - Neurosci Lett. 2015 Mar 30;591:59-64 – reference: 21191042 - Learn Mem. 2010 Dec 22;18(1):49-57 – reference: 15809437 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5600-5 – reference: 18344985 - Nat Cell Biol. 2008 Apr;10(4):483-8 – reference: 25063852 - J Exp Biol. 2014 Oct 1;217(Pt 19):3441-6 – reference: 21193052 - Neurobiol Learn Mem. 2011 Mar;95(3):311-5 – reference: 25753412 - Cell Rep. 2015 Mar 3;:null – reference: 16305513 - Curr Pharm Des. 2005;11(29):3807-28 – reference: 16352375 - Neurochem Int. 2006 Mar;48(4):296-305 – reference: 18842884 - J Neurosci. 2008 Oct 8;28(41):10245-56 – reference: 25527407 - EMBO Rep. 2015 Feb;16(2):192-201 – reference: 23687123 - Brain. 2013 Jun;136(Pt 6):1708-17 – reference: 15312912 - Prog Neurobiol. 2004 Aug;73(5):311-57 – reference: 8576261 - J Biol Chem. 1996 Feb 2;271(5):2823-31 – reference: 11917093 - Physiol Rev. 2002 Apr;82(2):373-428 – reference: 15450156 - Neuron. 2004 Sep 30;44(1):5-21 – reference: 18441292 - Learn Mem. 2008 Apr 25;15(5):335-47 – reference: 19786572 - J Cell Biol. 2009 Oct 5;187(1):71-9 – reference: 24009566 - Front Behav Neurosci. 2013 Aug 30;7:115 – reference: 8521521 - Cell. 1995 Dec 15;83(6):979-92 – reference: 12437922 - Cell. 2002 Nov 15;111(4):483-93 – reference: 12577062 - Nat Neurosci. 2003 Mar;6(3):231-42 – reference: 19286367 - Curr Opin Struct Biol. 2009 Apr;19(2):203-8 – reference: 12781127 - Curr Biol. 2003 May 27;13(11):887-98 – reference: 17803915 - Cell. 2007 Sep 7;130(5):943-57 – reference: 18047736 - BMC Biochem. 2007 Nov 22;8 Suppl 1:S12 – reference: 25505317 - J Neurosci. 2014 Dec 10;34(50):16637-49 – reference: 20403442 - Mol Cell Neurosci. 2010 Aug;44(4):307-17 – reference: 23729618 - Rev Neurosci. 2013;24(4):375-87 – reference: 21991383 - PLoS One. 2011;6(10):e25902 – reference: 14642282 - Neuron. 2003 Oct 30;40(3):595-607 – reference: 12791275 - Dev Cell. 2003 Jun;4(6):917-28 – reference: 16810255 - Nature. 2006 Jun 29;441(7097):1144-8 – reference: 25071440 - Front Mol Neurosci. 2014 Jul 08;7:63 – reference: 15549132 - EMBO J. 2004 Dec 8;23(24):4749-59 – reference: 19265443 - Chem Rev. 2009 Apr;109(4):1509-36 – reference: 18258863 - Science. 2008 Feb 29;319(5867):1253-6 – reference: 20178748 - Cell. 2010 Feb 19;140(4):567-78 – reference: 15273246 - J Biol Chem. 2004 Sep 24;279(39):40545-59 – reference: 26779588 - Neurobiol Learn Mem. 2016 Feb;128:103-9 – reference: 25766616 - Exp Mol Med. 2015 Mar 13;47:e147 – reference: 23322554 - Learn Mem. 2013 Jan 15;20(2):61-74 – reference: 20203175 - J Neurosci. 2010 Mar 3;30(9):3157-66 – reference: 17046687 - Neuron. 2006 Oct 19;52(2):239-45 – reference: 21961035 - PLoS One. 2011;6(9):e24349 – reference: 25324717 - Front Mol Neurosci. 2014 Sep 29;7:77 – reference: 22479513 - PLoS One. 2012;7(3):e34041 – reference: 9859996 - Nature. 1998 Dec 10;396(6711):590-4 – reference: 12947408 - Nat Neurosci. 2003 Oct;6(10):1072-8 – reference: 12359873 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13902-7 – reference: 8570648 - Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):856-60 – reference: 9094720 - Cell. 1997 Apr 4;89(1):115-26 – reference: 23435086 - Nat Genet. 2013 Apr;45(4):445-9, 449e1 – reference: 20005843 - Mol Cell. 2009 Dec 11;36(5):794-804 – reference: 22726833 - Neuron. 2012 Jun 21;74(6):1023-30 – reference: 16672670 - J Neurosci. 2006 May 3;26(18):4949-55 – reference: 24573276 - J Neurosci. 2014 Feb 26;34(9):3171-82 – reference: 16908410 - Neuron. 2006 Aug 17;51(4):441-54 – reference: 18497817 - Nature. 2008 May 22;453(7194):481-8 – reference: 25520617 - Front Mol Neurosci. 2014 Dec 01;7:96 |
SSID | ssj0011598 |
Score | 2.4441056 |
SecondaryResourceType | review_article |
Snippet | Protein degradation has many critical functions in the nervous system such as refinement of synaptic connections during development and synaptic plasticity and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 98 |
Title | Proteolysis, synaptic plasticity and memory |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27614141 https://www.proquest.com/docview/1835505468 https://pubmed.ncbi.nlm.nih.gov/PMC5336522 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA5iEXwprZd2rZYRSh-0s8xMMsnM41paRLD0QUH6MuQ2VVlnFnd8sA_97Z4kk-zFtmhZGEI2G8J82ZPvJOd8QeiDxirRTLI417WMCVY6FpqQmALXz0oitarNie7pN3p8Tk4u8ovZFZw2u6QTQ_nrj3kl_4Mq1AGuJkv2GciGTqECyoAvPAFheD4J4-9GZKG1oiLmVU3vGz4xAqwToMQmWrpz4ko3Jpp24fjWSnJ4_SWgi2O_QbLU3G6S_nTKvKPppUmLGM7vE8Dak4SYC2fabOQlcZn4wfY5aZXeern7oPt1MHXhpo9MrPP2r4fN2CTyp9TKxCZ4tp74M_SlZSYE__m4susKuqhMF1VSVlay9UUGZN-Y1-HvEKgDlLUsQuQojN-fTdsovaVRLLKLRy7DcuTrHJU4e4Ve9j5ANHKAvkYrutlAm6OGd-3NffQxslG5FpsNtHbkS-thrTLVP1pb2kSHc5PgU-SnQDSbAhFgGjlMt9D51y9nn4_j_gaMWAJx7GIp67TWSkgJREsKlimaK8K4AjOqi5KKHLxdjXGugKZxVWCRFtAslRSztOQMb6PVpm30WxQJSnld1lwxzAiQfsFFqqTimc5rsOH1ACX-zVWyl4c3t5SMq7_iNUAH4ScTp43yr8b7Ho4KLJg5luKNbu-mFSwqxk0mtBigNw6e0F3GgD7CZ4DYAnChgVFHX_ymubq0Kungx1BwLnaeM8h3aH3219lFq93tnd4D0tmJ93ZOPgABUIJQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteolysis%2C+synaptic+plasticity+and+memory&rft.jtitle=Neurobiology+of+learning+and+memory&rft.au=Hegde%2C+Ashok+N.&rft.date=2017-02-01&rft.issn=1074-7427&rft.volume=138&rft.spage=98&rft.epage=110&rft_id=info:doi/10.1016%2Fj.nlm.2016.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nlm_2016_09_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7427&client=summon |