Computational tools for aptamer identification and optimization
Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus,...
Saved in:
Published in | TrAC, Trends in analytical chemistry (Regular ed.) Vol. 157; p. 116767 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus, only a handful of aptamers have entered the practical use stage. Recently, computational approaches have demonstrated a significant capacity to assist in the discovery of high-performance aptamers. This review discusses the advances achieved in several aspects of computational tools in this field, as well as the new progress in machine learning and deep learning, which are used in aptamer identification and optimization. To illustrate these computationally aided processes, aptamer selections against SARS-CoV-2 are discussed in detail as a case study. We hope that this review will aid and motivate researchers to develop and utilize more computational techniques to discover ideal aptamers effectively.
•A comprehensive summary was provided on computational approaches for obtaining high-performance aptamers.•The supervised machine learning-based algorithms for identification and optimization of aptamers are well detailed.•The practical studies of structure modeling and binding surface inference for aptamers against SARS-CoV-2 were presented. |
---|---|
AbstractList | Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus, only a handful of aptamers have entered the practical use stage. Recently, computational approaches have demonstrated a significant capacity to assist in the discovery of high-performance aptamers. This review discusses the advances achieved in several aspects of computational tools in this field, as well as the new progress in machine learning and deep learning, which are used in aptamer identification and optimization. To illustrate these computationally aided processes, aptamer selections against SARS-CoV-2 are discussed in detail as a case study. We hope that this review will aid and motivate researchers to develop and utilize more computational techniques to discover ideal aptamers effectively. Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus, only a handful of aptamers have entered the practical use stage. Recently, computational approaches have demonstrated a significant capacity to assist in the discovery of high-performance aptamers. This review discusses the advances achieved in several aspects of computational tools in this field, as well as the new progress in machine learning and deep learning, which are used in aptamer identification and optimization. To illustrate these computationally aided processes, aptamer selections against SARS-CoV-2 are discussed in detail as a case study. We hope that this review will aid and motivate researchers to develop and utilize more computational techniques to discover ideal aptamers effectively. •A comprehensive summary was provided on computational approaches for obtaining high-performance aptamers.•The supervised machine learning-based algorithms for identification and optimization of aptamers are well detailed.•The practical studies of structure modeling and binding surface inference for aptamers against SARS-CoV-2 were presented. |
ArticleNumber | 116767 |
Author | Lin, Xin Lin, Fanghe Zhang, Peng Zhang, Yinkun Song, Jia Sun, Miao Zhang, Jialu Sun, Di Yang, Chaoyong |
Author_xml | – sequence: 1 givenname: Di surname: Sun fullname: Sun, Di organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China – sequence: 2 givenname: Miao surname: Sun fullname: Sun, Miao organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, And Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China – sequence: 3 givenname: Jialu surname: Zhang fullname: Zhang, Jialu organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, And Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China – sequence: 4 givenname: Xin surname: Lin fullname: Lin, Xin organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China – sequence: 5 givenname: Yinkun surname: Zhang fullname: Zhang, Yinkun organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, And Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China – sequence: 6 givenname: Fanghe surname: Lin fullname: Lin, Fanghe organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, And Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China – sequence: 7 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China – sequence: 8 givenname: Chaoyong surname: Yang fullname: Yang, Chaoyong organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China – sequence: 9 givenname: Jia surname: Song fullname: Song, Jia email: songjiajia2010@shsmu.edu.cn organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China |
BookMark | eNp9kEtLxDAUhYOM4MzoH3DVpZvWPPpIQBAZfMGAG12H2_QWMrRNTTKC_no7U1cuZnXhcr4D51uRxeAGJOSa0YxRVt7usujBZJxynjFWVmV1RpZMVioVLOcLspxCRaqUKC_IKoQdpbSkVC3J_cb14z5CtG6ALonOdSFpnU9gjNCjT2yDQ7StNcdIAkOTuDHa3v4cH5fkvIUu4NXfXZOPp8f3zUu6fXt-3TxsUyOUiqkxFDiTnEspK8hbQAWy5iKXgqkCaY0gEBpeiqIGnrO2ZHmuaF43hSmLQog1uZl7R-8-9xii7m0w2HUwoNsHzSsuGC2m-ikq56jxLgSPrTZ2Hjg5sp1mVB-c6Z0-ONMHZ3p2NqH8Hzp624P_Pg3dzRBO-78seh2MxcFgYz2aqBtnT-G_JgGHtQ |
CitedBy_id | crossref_primary_10_1016_j_omtn_2024_102358 crossref_primary_10_1016_j_omtn_2024_102436 crossref_primary_10_1016_j_talanta_2024_126226 crossref_primary_10_1080_17425247_2023_2292691 crossref_primary_10_3390_diagnostics14111100 crossref_primary_10_1007_s40242_024_4008_6 crossref_primary_10_1021_acs_analchem_3c02881 crossref_primary_10_1016_j_microc_2024_112326 crossref_primary_10_1016_j_jhazmat_2023_131995 crossref_primary_10_1021_acs_analchem_3c01194 crossref_primary_10_1021_acs_jctc_4c01246 crossref_primary_10_1016_j_microc_2024_110344 crossref_primary_10_3390_ijms24119249 crossref_primary_10_1016_j_cej_2023_147002 crossref_primary_10_1186_s12935_024_03295_4 crossref_primary_10_1186_s12859_023_05577_6 crossref_primary_10_1016_j_ab_2024_115756 crossref_primary_10_1080_17460441_2024_2412632 crossref_primary_10_1021_acs_jmedchem_3c01607 crossref_primary_10_1038_s43586_023_00238_7 crossref_primary_10_1016_j_sampre_2023_100083 crossref_primary_10_1007_s00425_025_04637_w crossref_primary_10_1016_j_cels_2023_10_009 crossref_primary_10_1093_bib_bbad186 crossref_primary_10_1021_acs_analchem_4c03307 crossref_primary_10_1016_j_tifs_2024_104784 crossref_primary_10_1016_j_tifs_2023_02_012 crossref_primary_10_1039_D3PM00027C crossref_primary_10_1080_10408398_2024_2436647 crossref_primary_10_1039_D3SC00439B crossref_primary_10_1039_D3CS00774J crossref_primary_10_1080_14712598_2024_2399148 |
Cites_doi | 10.1016/j.bioorg.2020.104321 10.1021/ct700301q 10.1146/annurev-bioeng-082020-035644 10.1002/bit.27618 10.1093/nar/gkaa434 10.1093/bioinformatics/bts210 10.1016/j.biotechadv.2021.107902 10.1093/nar/gkt290 10.1093/nar/gkt904 10.1093/database/bas006 10.1002/jcc.21777 10.1016/j.jtbi.2020.110268 10.1038/s41586-021-03819-2 10.1186/1748-7188-6-26 10.1002/anie.202100225 10.3390/ijms18122516 10.1002/anie.202008663 10.1016/j.cels.2016.07.003 10.1093/nar/gkz1097 10.1155/2015/198363 10.1016/j.sbi.2019.12.016 10.2142/biophysico.16.0_287 10.1126/science.abe5650 10.1021/acs.jcim.1c00696 10.1093/nar/gks339 10.1021/jacs.1c08226 10.1186/gb-2014-15-1-r16 10.1093/bioinformatics/btu348 10.1007/s12195-020-00651-y 10.1093/nar/gkg599 10.1371/journal.pcbi.1009247 10.1021/acssynbio.0c00129 10.1016/j.omtn.2018.04.006 10.1038/s41467-019-12920-0 10.1016/j.biochi.2020.10.005 10.1038/mtna.2015.4 10.1016/j.jmb.2017.06.013 10.3390/molecules24203781 10.1096/fj.201902696 10.1039/C8AN01467A 10.1007/978-3-319-05269-4_9 10.1093/nar/gkq311 10.1021/acs.jctc.7b01169 10.1073/pnas.1009331107 10.1093/nar/gkp367 10.1093/bioinformatics/btaa054 10.1016/j.omtn.2021.06.014 10.1002/anie.202107730 10.1002/jcc.21596 10.1371/journal.pcbi.1003571 10.1038/s41598-021-82350-w 10.1038/s41598-021-85629-0 10.1002/anie.202100345 10.1016/j.ymeth.2016.03.010 10.1016/j.nantod.2022.101499 10.1021/acs.analchem.9b05203 10.1093/nar/gkaa1157 10.1016/j.csbj.2021.05.039 10.1093/nar/gkv308 10.1016/j.csbj.2020.08.017 10.1002/anie.202100316 10.1038/s41467-021-22555-9 10.1109/TCBB.2019.2951114 10.1016/j.ygeno.2020.02.013 10.1186/s12859-020-03574-7 10.1093/bioinformatics/btz087 10.1002/jcc.20290 10.1186/1471-2105-14-106 10.1007/978-1-4939-7231-9_1 10.15252/msb.20156651 10.1186/s12859-020-03607-1 10.1038/s41598-017-01348-5 10.1007/s00214-012-1138-6 10.1016/j.chemolab.2017.09.010 10.1186/1479-7364-8-8 10.1093/nar/gkl206 10.3390/pharmaceutics13060888 10.1038/nprot.2016.180 10.1517/17460441.2010.484460 10.1016/j.chempr.2021.05.021 10.1093/nar/gkl253 10.1038/nprot.2010.32 10.1093/nar/gkp287 10.3389/fmolb.2021.713003 10.1002/jcc.21334 10.1093/nar/9.1.133 10.1002/prot.10389 10.1371/journal.pone.0011955 10.3390/ijms22073605 10.1016/j.biochi.2018.06.002 10.1080/15257770.2021.1951754 10.3390/ph9040076 10.1126/scitranslmed.aav9760 10.1016/j.omtn.2020.11.016 10.1016/j.mbs.2019.01.009 10.1093/nar/gkaa484 10.1007/s11030-021-10192-9 10.1186/s12859-016-1087-5 10.1093/nar/gkg595 10.1093/nar/gkv1479 10.1021/acs.analchem.0c01394 10.1093/nar/gkv493 10.1038/srep33697 10.1016/j.ymeth.2016.04.011 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.trac.2022.116767 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-3142 |
ExternalDocumentID | 10_1016_j_trac_2022_116767 S0165993622002503 |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE AEBSH AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K WH7 WUQ XFK YK3 ~02 ~G- ~S- AAHBH AATTM AAXKI AAYWO AAYXX AEIPS AFJKZ AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c399t-cc0a218228887a4fae9a8b23483195e0bea3ead2635ba241f6144904bd5c65533 |
IEDL.DBID | .~1 |
ISSN | 0165-9936 |
IngestDate | Thu Jul 10 18:38:39 EDT 2025 Tue Jul 01 02:32:14 EDT 2025 Thu Apr 24 23:12:02 EDT 2025 Fri Feb 23 02:39:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | AI DL SVM Aptamer optimization MFE Deep learning COVID-19 HT-SELEX NLP RF Aptamer identification Machine learning MD Bioinformatics MDS SELEX ML |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-cc0a218228887a4fae9a8b23483195e0bea3ead2635ba241f6144904bd5c65533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2723105888 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2723105888 crossref_citationtrail_10_1016_j_trac_2022_116767 crossref_primary_10_1016_j_trac_2022_116767 elsevier_sciencedirect_doi_10_1016_j_trac_2022_116767 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | TrAC, Trends in analytical chemistry (Regular ed.) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hoinka, Berezhnoy, Dao, Sauna, Gilboa, Przytycka (bib14) 2015; 43 Schmitz, Weber, Bayin, Breuers, Fieberg, Famulok, Mayer (bib117) 2021; 60 Iuchi, Matsutani, Yamada, Iwano, Sumi, Hosoda, Zhao, Fukunaga, Hamada (bib50) 2021; 19 Takahashi, Wu, Ho, Chomchan, Rossi, Burnett, Zhou (bib23) 2016; 6 Zadeh, Steenberg, Bois, Wolfe, Pierce, Khan, Dirks, Pierce (bib100) 2011; 32 Khoshbin, Housaindokht, Izadyar, Bozorgmehr, Verdian (bib13) 2021; 118 Kohlberger, Gadermaier (bib74) 2021 Sun, Wu, Zhang, Chen, Lu, Yang, Song (bib110) 2022; 44 Zhang, Chen, Liu, Jiang, Zhang, Lu, Zhang, Yu, Zhang (bib58) 2021 Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Zidek, Potapenko (bib119) 2021; 596 Iwano, Adachi, Aoki, Nakamura, Hamada, RaptGen (bib56) 2021 Zhang, Li, Gu, Amini, Stacey, Ang, White, Filipe, Mossman, Miller (bib112) 2022 Bellaousov, Reuter, Seetin, Mathews (bib64) 2013; 41 Torkamanian-Afshar, Nematzadeh, Tabarzad, Najafi, Lanjanian, Masoudi-Nejad (bib51) 2021; 25 Wang, Lamim Ribeiro, Tiwary (bib98) 2020; 61 Xie, You, Huang, Ni, Wang, Li, Yang, Zhang, Chen, Sun, Chen (bib124) 2020 Dao, Hoinka, Takahashi, Zhou, Ho, Wang, Costa, Rossi, Backofen, Burnett, Przytycka (bib26) 2016; 3 Shieh, Kratschmer, Maier, Greally, Levy, Golden (bib29) 2020; 36 Kato, Ono, Minagawa, Horii, Shiratori, Waga, Ito, Aoki (bib21) 2020; 21 Chen Z, Hu L, Zhang BT, Lu A, Wang Y, Yu Y, Zhang G: Artificial intelligence in aptamer-target binding prediction Nguyen Quang, Perret, Duconge (bib8) 2016; 9 Kilgour, Liu, Walker, Ren, Simine (bib99) 2021; 61 Zhang, Wang, Xiao (bib76) 2020; 18 Hess, Kutzner, van der Spoel, Lindahl (bib96) 2008; 4 Hoinka, Berezhnoy, Sauna, Gilboa, Przytycka (bib19) 2014; 8394 Sun, Liu, Wei, Wan, Huang, Song, Lu, Weng, Lin, Chen (bib108) 2021; 60 Hira, Gillies (bib52) 2015; 2015 Case, Cheatham, Darden, Gohlke, Luo, Merz, Onufriev, Simmerling, Wang, Woods (bib95) 2005; 26 Sato, Hamada, Asai, Mituyama (bib66) 2009; 37 Song, Zheng, Huang, Wu, Wang, Zhu, Song, Yang (bib18) 2020; 92 Chang, Ayeni, Breuer, Torbett (bib103) 2010; 5 Cosconati, Forli, Perryman, Harris, Goodsell, Olson (bib91) 2010; 5 Xu, Wang, Wu, Guo, Song, Tian, Wang, Zhu, Yang (bib106) 2020; 16 Tanaka, Okuda, Kasahara, Obika (bib33) 2021; 23 Di Gioacchino, Procyk, Molari, Schreck, Zhou, Liu, Monasson, Cocco, Šulc (bib57) 2022 De La Fuente, Zilio, Caroli, Van Simaeys, Mazza, Ince, Bronte, Bicciato, Weed, Serafini (bib27) 2020; 12 Song, Liu, Zhang, Wu, Gao, Wang, Li, Song, Yang (bib118) 2021; 49 Yu, Alkhamis, Canoura, Liu, Xiao (bib15) 2021; 60 Zuker (bib38) 2003; 31 Int. J. Mol. Sci. 2021, 22. Uemachi, Kasahara, Tanaka, Okuda, Yoneda, Obika (bib32) 2020; 105 Gupta, Anand, Jain, Goswami, Anantharaj, Patil, Singh, Kumar, Shrivastava, Bhatnagar (bib111) 2021; 26 Zhang, Lu, Jing, Wu, Piquemal, Ponder, Ren (bib101) 2018; 14 Fu, Cao, Wu, Peng, Nie, Xie (bib83) 2022 Cho, Xiao, Nie, Stewart, Csordas, Oh, Thomson, Soh (bib16) 2010; 107 Ishida, Adachi, Yokota, Yoshihara, Aoki, Nakamura, Hamada (bib36) 2020; 48 Patro, Kumar, Kolimi, Rathinavelan (bib79) 2017; 429 Puig Lombardi, Londono-Vallejo (bib69) 2020; 48 Kinghorn, Fraser, Lang, Shiu, Tanner (bib5) 2017; 18 Cai, Yan, Xiong, Liu, Peng, Liu (bib2) 2018; 143 Zhang, Zhang, Gao, Yang, Song (bib121) 2016; 17 Wu, Chattree, Ren (bib102) 2012; 131 Zhao, Zhao, Fan, Yuan, Mao, Yao (bib82) 2021 Liu, Wang, Wu, Qi, Zeng, Wan, Chen, Manandhar, Cavener, Boyle (bib114) 2021; 60 Cleri, Lensink, Blossey (bib113) 2021; 8 Chen, Li, Weng (bib87) 2003; 52 Hofacker (bib63) 2003; 31 Emami, Ferdousi (bib46) 2021; 11 Angermueller, Parnamaa, Parts, Stegle (bib49) 2016; 12 de Vries, van Dijk, Bonvin (bib89) 2010; 5 Kacherovsky, Yang, Dang, Cheng, Cardle, Walls, McCallum, Sellers, DiMaio, Salipante (bib123) 2021; 60 Weitzner, Jeliazkov, Lyskov, Marze, Kuroda, Frick, Adolf-Bryfogle, Biswas, Dunbrack, Gray (bib88) 2017; 12 Torkamanian-Afshar, Lanjanian, Nematzadeh, Tabarzad, Najafi, Kiani, Masoudi-Nejad (bib42) 2020; 112 Volk, Lourentzou, Mishra, Vo, Zhai, Zhao (bib10) 2020; 9 Lee, Han (bib122) 2020; 17 Macindoe, Mavridis, Venkatraman, Devignes, Ritchie (bib85) 2010; 38 Ruiz-Carmona, Alvarez-Garcia, Foloppe, Garmendia-Doval, Juhos, Schmidtke, Barril, Hubbard, Morley (bib104) 2014; 10 Yang, Wang, Yu, Yang, Guo, Tang, Jiang, Yu (bib53) 2017; 170 Zhao, Xu, Chen (bib65) 2017; 1654 Boniecki, Lach, Dawson, Tomala, Lukasz, Soltysinski, Rother, Bujnicki (bib77) 2016; 44 Lorenz, Bernhart, Honer Zu Siederdissen, Tafer, Flamm, Stadler, Hofacker (bib67) 2011; 6 Biesiada, Pachulska-Wieczorek, Adamiak, Purzycka (bib75) 2016; 103 Ahmad, Zulkifli, Hussin, Nadri (bib11) 2021 Emami, Pakchin, Ferdousi (bib9) 2020; 497 Zhou (bib93) 2021 Jiang, Meyer, Hou, Propson, Soh, Thomson, Stewart, Mpbind (bib25) 2014; 30 Sun, Liu, Song, Chen, Zhang, Huang, Wan, Lu, Chen, Tan (bib109) 2021; 143 Stanciu, Wei, Barui, Mohammad (bib3) 2021; 23 Afanasyeva, Nagao, Mizuguchi (bib62) 2019; 16 Valero, Civit, Dupont, Selnihhin, Reinert, Idorn, Israels, Bednarz, Bus, Asbach (bib116) 2021 Frees, Menendez, Crum, Bagga, Qgrs-Conserve (bib40) 2014; 8 Hoinka, Zotenko, Friedman, Sauna, Przytycka (bib24) 2012; 28 Rosch, Neal, Balikov, Rahim, Lippmann (bib34) 2020; 13 Li, Ma, Li, Gu (bib44) 2020; 21 Kikin, D'Antonio, Bagga, Mapper (bib70) 2006; 34 Klingler, Ashley, Shi, Stiefvater, Kyba, Sinnreich, Aihara, Kinter (bib31) 2020; 34 Yang, Jia, Li (bib47) 2019; 311 Jeddi, Saiz (bib81) 2017; 7 Komarova, Barkova, Kuznetsov (bib4) 2020 Jalili, Afgan, Gu, Clements, Blankenberg, Goecks, Taylor, Nekrutenko (bib28) 2020; 48 Lee, Jang, Kang, Song (bib48) 2021 Hoinka, Przytycka (bib30) 2016; 106 Townshend, Eismann, Watkins, Rangan, Karelina, Das, Dror (bib84) 2021; 373 Song, Song, Wei, Huang, Sun, Zhu, Lin, Shen, Zhu, Yang (bib107) 2020; 92 Zuker, Stiegler (bib39) 1981; 9 Buglak, Samokhvalov, Zherdev, Dzantiev (bib1) 2020 Heredia, Roche-Lima, Pares-Matos (bib45) 2021; 17 Navien, Thevendran, Hamdani, Tang, Citartan (bib12) 2021; 180 Hoinka, Backofen, Przytycka (bib20) 2018; 11 Fukunaga, Ozaki, Terai, Asai, Iwasaki, Kiryu (bib37) 2014; 15 Tovchigrechko, Vakser (bib86) 2006; 34 Qi, Duan, Khan, Dong, Zhang, Wu, Wang (bib60) 2022; 55 Alam, Chang, Burke (bib17) 2015; 4 Kramer, Gruenke, Alam, Xu, Burke (bib22) 2022 Amano, Namekata, Horiuchi, Saso, Yanagisawa, Tanaka, Ghani, Yamamoto, Sakamoto (bib61) 2021; 11 Escamilla-Gutierrez, Ribas-Aparicio, Cordova-Espinoza, Castelan-Vega (bib105) 2021; 40 Lam, Li, Zhu, Umarov, Jiang, Heliou, Sheong, Liu, Long, Li (bib54) 2019; 10 Denning, Priyakumar, Nilsson, Mackerell (bib94) 2011; 32 Li, Zhang, Huang, Cui, Zhang, Cai (bib120) 2014; 9 Roxo, Kotkowiak, Pasternak (bib68) 2019; 24 van Dijk, Bonvin (bib78) 2009; 37 Ferreira-Bravo, DeStefano (bib115) 2021; 13 Trott, Olson, Vina (bib92) 2010; 31 Manigrasso, Marcia, De Vivo (bib97) 2021; 7 Beaudoin, Jodoin, Perreault (bib72) 2014; 42 Brazda, Kolomaznik, Lysek, Bartas, Fojta, Stastny, Mergny (bib71) 2019; 35 Iwano, Adachi, Aoki, Nakamura, Hamada (bib55) 2022 Popenda, Szachniuk, Antczak, Purzycka, Lukasiak, Bartol, Blazewicz, Adamiak (bib80) 2012; 40 Cruz-Toledo, McKeague, Zhang, Giamberardino, McConnell, Francis, DeRosa, Dumontier (bib41) 2012; 2012 Tuszynska, Magnus, Jonak, Dawson, Bujnicki (bib90) 2015; 43 Blagus, Lusa (bib43) 2013; 14 Bashir, Yang, Wang, Hoyer, Chou, McLean, Davis, Gong, Armstrong, Jang (bib7) 2021; 12 Cai, Yan, Xiong, Liu, Peng, Liu (bib59) 2018; 143 Garant, Perreault, Scott (bib73) 2018; 151 Uemachi, Kasahara, Tanaka, Okuda, Yoneda, Obika (bib35) 2021; 13 Zhang (10.1016/j.trac.2022.116767_bib58) 2021 Macindoe (10.1016/j.trac.2022.116767_bib85) 2010; 38 Zhang (10.1016/j.trac.2022.116767_bib112) 2022 Ferreira-Bravo (10.1016/j.trac.2022.116767_bib115) 2021; 13 Brazda (10.1016/j.trac.2022.116767_bib71) 2019; 35 Weitzner (10.1016/j.trac.2022.116767_bib88) 2017; 12 Patro (10.1016/j.trac.2022.116767_bib79) 2017; 429 Yang (10.1016/j.trac.2022.116767_bib53) 2017; 170 Zadeh (10.1016/j.trac.2022.116767_bib100) 2011; 32 Emami (10.1016/j.trac.2022.116767_bib46) 2021; 11 Nguyen Quang (10.1016/j.trac.2022.116767_bib8) 2016; 9 Stanciu (10.1016/j.trac.2022.116767_bib3) 2021; 23 Di Gioacchino (10.1016/j.trac.2022.116767_bib57) 2022 Cosconati (10.1016/j.trac.2022.116767_bib91) 2010; 5 Hess (10.1016/j.trac.2022.116767_bib96) 2008; 4 Sun (10.1016/j.trac.2022.116767_bib109) 2021; 143 Jiang (10.1016/j.trac.2022.116767_bib25) 2014; 30 Zhao (10.1016/j.trac.2022.116767_bib65) 2017; 1654 Dao (10.1016/j.trac.2022.116767_bib26) 2016; 3 Song (10.1016/j.trac.2022.116767_bib107) 2020; 92 10.1016/j.trac.2022.116767_bib6 Zhang (10.1016/j.trac.2022.116767_bib121) 2016; 17 Xu (10.1016/j.trac.2022.116767_bib106) 2020; 16 Kramer (10.1016/j.trac.2022.116767_bib22) 2022 Tanaka (10.1016/j.trac.2022.116767_bib33) 2021; 23 Rosch (10.1016/j.trac.2022.116767_bib34) 2020; 13 Iwano (10.1016/j.trac.2022.116767_bib56) 2021 Yu (10.1016/j.trac.2022.116767_bib15) 2021; 60 Fu (10.1016/j.trac.2022.116767_bib83) 2022 Wang (10.1016/j.trac.2022.116767_bib98) 2020; 61 Xie (10.1016/j.trac.2022.116767_bib124) 2020 De La Fuente (10.1016/j.trac.2022.116767_bib27) 2020; 12 Jeddi (10.1016/j.trac.2022.116767_bib81) 2017; 7 Zuker (10.1016/j.trac.2022.116767_bib38) 2003; 31 Hoinka (10.1016/j.trac.2022.116767_bib20) 2018; 11 Jalili (10.1016/j.trac.2022.116767_bib28) 2020; 48 Torkamanian-Afshar (10.1016/j.trac.2022.116767_bib51) 2021; 25 Khoshbin (10.1016/j.trac.2022.116767_bib13) 2021; 118 Popenda (10.1016/j.trac.2022.116767_bib80) 2012; 40 Kohlberger (10.1016/j.trac.2022.116767_bib74) 2021 Cai (10.1016/j.trac.2022.116767_bib2) 2018; 143 Uemachi (10.1016/j.trac.2022.116767_bib35) 2021; 13 Kinghorn (10.1016/j.trac.2022.116767_bib5) 2017; 18 Lam (10.1016/j.trac.2022.116767_bib54) 2019; 10 Schmitz (10.1016/j.trac.2022.116767_bib117) 2021; 60 Tovchigrechko (10.1016/j.trac.2022.116767_bib86) 2006; 34 Hoinka (10.1016/j.trac.2022.116767_bib19) 2014; 8394 Tuszynska (10.1016/j.trac.2022.116767_bib90) 2015; 43 Qi (10.1016/j.trac.2022.116767_bib60) 2022; 55 Chang (10.1016/j.trac.2022.116767_bib103) 2010; 5 Sun (10.1016/j.trac.2022.116767_bib110) 2022; 44 Beaudoin (10.1016/j.trac.2022.116767_bib72) 2014; 42 Zuker (10.1016/j.trac.2022.116767_bib39) 1981; 9 Ahmad (10.1016/j.trac.2022.116767_bib11) 2021 Puig Lombardi (10.1016/j.trac.2022.116767_bib69) 2020; 48 Cai (10.1016/j.trac.2022.116767_bib59) 2018; 143 Garant (10.1016/j.trac.2022.116767_bib73) 2018; 151 Wu (10.1016/j.trac.2022.116767_bib102) 2012; 131 Alam (10.1016/j.trac.2022.116767_bib17) 2015; 4 Hoinka (10.1016/j.trac.2022.116767_bib30) 2016; 106 Li (10.1016/j.trac.2022.116767_bib120) 2014; 9 Cho (10.1016/j.trac.2022.116767_bib16) 2010; 107 Sato (10.1016/j.trac.2022.116767_bib66) 2009; 37 Afanasyeva (10.1016/j.trac.2022.116767_bib62) 2019; 16 Song (10.1016/j.trac.2022.116767_bib118) 2021; 49 Jumper (10.1016/j.trac.2022.116767_bib119) 2021; 596 van Dijk (10.1016/j.trac.2022.116767_bib78) 2009; 37 Boniecki (10.1016/j.trac.2022.116767_bib77) 2016; 44 Blagus (10.1016/j.trac.2022.116767_bib43) 2013; 14 Kikin (10.1016/j.trac.2022.116767_bib70) 2006; 34 Kato (10.1016/j.trac.2022.116767_bib21) 2020; 21 Case (10.1016/j.trac.2022.116767_bib95) 2005; 26 Ruiz-Carmona (10.1016/j.trac.2022.116767_bib104) 2014; 10 Valero (10.1016/j.trac.2022.116767_bib116) 2021 Roxo (10.1016/j.trac.2022.116767_bib68) 2019; 24 Hira (10.1016/j.trac.2022.116767_bib52) 2015; 2015 Cleri (10.1016/j.trac.2022.116767_bib113) 2021; 8 Komarova (10.1016/j.trac.2022.116767_bib4) 2020 Amano (10.1016/j.trac.2022.116767_bib61) 2021; 11 Zhang (10.1016/j.trac.2022.116767_bib101) 2018; 14 Angermueller (10.1016/j.trac.2022.116767_bib49) 2016; 12 Sun (10.1016/j.trac.2022.116767_bib108) 2021; 60 Manigrasso (10.1016/j.trac.2022.116767_bib97) 2021; 7 Yang (10.1016/j.trac.2022.116767_bib47) 2019; 311 Biesiada (10.1016/j.trac.2022.116767_bib75) 2016; 103 Lee (10.1016/j.trac.2022.116767_bib122) 2020; 17 Zhang (10.1016/j.trac.2022.116767_bib76) 2020; 18 Gupta (10.1016/j.trac.2022.116767_bib111) 2021; 26 Cruz-Toledo (10.1016/j.trac.2022.116767_bib41) 2012; 2012 Hoinka (10.1016/j.trac.2022.116767_bib14) 2015; 43 Ishida (10.1016/j.trac.2022.116767_bib36) 2020; 48 Frees (10.1016/j.trac.2022.116767_bib40) 2014; 8 Torkamanian-Afshar (10.1016/j.trac.2022.116767_bib42) 2020; 112 de Vries (10.1016/j.trac.2022.116767_bib89) 2010; 5 Takahashi (10.1016/j.trac.2022.116767_bib23) 2016; 6 Song (10.1016/j.trac.2022.116767_bib18) 2020; 92 Hoinka (10.1016/j.trac.2022.116767_bib24) 2012; 28 Uemachi (10.1016/j.trac.2022.116767_bib32) 2020; 105 Bashir (10.1016/j.trac.2022.116767_bib7) 2021; 12 Chen (10.1016/j.trac.2022.116767_bib87) 2003; 52 Lorenz (10.1016/j.trac.2022.116767_bib67) 2011; 6 Kilgour (10.1016/j.trac.2022.116767_bib99) 2021; 61 Iwano (10.1016/j.trac.2022.116767_bib55) 2022 Townshend (10.1016/j.trac.2022.116767_bib84) 2021; 373 Iuchi (10.1016/j.trac.2022.116767_bib50) 2021; 19 Lee (10.1016/j.trac.2022.116767_bib48) 2021 Fukunaga (10.1016/j.trac.2022.116767_bib37) 2014; 15 Zhao (10.1016/j.trac.2022.116767_bib82) 2021 Escamilla-Gutierrez (10.1016/j.trac.2022.116767_bib105) 2021; 40 Bellaousov (10.1016/j.trac.2022.116767_bib64) 2013; 41 Liu (10.1016/j.trac.2022.116767_bib114) 2021; 60 Li (10.1016/j.trac.2022.116767_bib44) 2020; 21 Denning (10.1016/j.trac.2022.116767_bib94) 2011; 32 Buglak (10.1016/j.trac.2022.116767_bib1) 2020 Volk (10.1016/j.trac.2022.116767_bib10) 2020; 9 Hofacker (10.1016/j.trac.2022.116767_bib63) 2003; 31 Emami (10.1016/j.trac.2022.116767_bib9) 2020; 497 Shieh (10.1016/j.trac.2022.116767_bib29) 2020; 36 Heredia (10.1016/j.trac.2022.116767_bib45) 2021; 17 Zhou (10.1016/j.trac.2022.116767_bib93) 2021 Kacherovsky (10.1016/j.trac.2022.116767_bib123) 2021; 60 Navien (10.1016/j.trac.2022.116767_bib12) 2021; 180 Klingler (10.1016/j.trac.2022.116767_bib31) 2020; 34 Trott (10.1016/j.trac.2022.116767_bib92) 2010; 31 |
References_xml | – volume: 373 start-page: 1047 year: 2021 end-page: 1051 ident: bib84 article-title: Geometric deep learning of RNA structure publication-title: Science – volume: 1654 start-page: 3 year: 2017 end-page: 15 ident: bib65 article-title: Predicting RNA structure with Vfold publication-title: Methods Mol. Biol. – volume: 13 start-page: 559 year: 2020 end-page: 574 ident: bib34 article-title: CRISPR-mediated isogenic cell-SELEX approach for generating highly specific aptamers against native membrane proteins publication-title: Cell. Mol. Bioeng. – volume: 44 start-page: e63 year: 2016 ident: bib77 article-title: SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction publication-title: Nucleic Acids Res. – volume: 143 start-page: 5317 year: 2018 end-page: 5338 ident: bib2 article-title: Investigations on the interface of nucleic acid aptamers and binding targets publication-title: Analyst – volume: 103 start-page: 120 year: 2016 end-page: 127 ident: bib75 article-title: RNAComposer and RNA 3D structure prediction for nanotechnology publication-title: Methods – volume: 12 year: 2020 ident: bib27 article-title: Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy publication-title: Sci. Transl. Med. – start-page: 105 year: 2021 ident: bib11 article-title: In silico approach for Post-SELEX DNA aptamers: a mini-review publication-title: J. Mol. Graph. Model. – start-page: 1 year: 2022 end-page: 9 ident: bib55 article-title: Generative aptamer discovery using RaptGen publication-title: Nature Computational Science – volume: 31 start-page: 455 year: 2010 end-page: 461 ident: bib92 article-title: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. – volume: 429 start-page: 2438 year: 2017 end-page: 2448 ident: bib79 article-title: 3D-NuS: a web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures publication-title: J. Mol. Biol. – volume: 60 start-page: 16800 year: 2021 end-page: 16823 ident: bib15 article-title: Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development publication-title: Angew Chem. Int. Ed. Engl. – volume: 30 start-page: 2665 year: 2014 end-page: 2667 ident: bib25 article-title: A Meta-motif-based statistical framework and pipeline to Predict Binding potential of SELEX-derived aptamers publication-title: Bioinformatics – volume: 12 start-page: 401 year: 2017 end-page: 416 ident: bib88 article-title: Modeling and docking of antibody structures with Rosetta publication-title: Nat. Protoc. – volume: 180 start-page: 54 year: 2021 end-page: 67 ident: bib12 article-title: In silico molecular docking in DNA aptamer development publication-title: Biochimie – volume: 60 start-page: 10279 year: 2021 end-page: 10285 ident: bib117 article-title: A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism∗∗ publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 10273 year: 2021 end-page: 10278 ident: bib114 article-title: Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection publication-title: Angew. Chem. Int. Ed. – volume: 106 start-page: 82 year: 2016 end-page: 85 ident: bib30 article-title: AptaPLEX - a dedicated, multithreaded demultiplexer for HT-SELEX data publication-title: Methods – volume: 26 start-page: 1668 year: 2005 end-page: 1688 ident: bib95 article-title: The Amber biomolecular simulation programs publication-title: J. Comput. Chem. – volume: 49 year: 2021 ident: bib118 article-title: Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data publication-title: Nucleic Acids Res. – start-page: 1 year: 2021 end-page: 22 ident: bib74 article-title: SELEX: critical factors and optimization strategies for successful aptamer selection publication-title: Biotechnol. Appl. Biochem. – volume: 15 start-page: R16 year: 2014 ident: bib37 article-title: CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data publication-title: Genome Biol. – volume: 17 year: 2021 ident: bib45 article-title: A novel artificial intelligence-based approach for identification of deoxynucleotide aptamers publication-title: PLoS Comput. Biol. – volume: 24 year: 2019 ident: bib68 article-title: G-Quadruplex-Forming aptamers-characteristics, applications, and perspectives publication-title: Molecules – volume: 34 start-page: W310 year: 2006 end-page: W314 ident: bib86 article-title: GRAMM-X public web server for protein–protein docking publication-title: Nucleic Acids Res. – volume: 32 start-page: 1929 year: 2011 end-page: 1943 ident: bib94 article-title: Impact of 2'-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA publication-title: J. Comput. Chem. – volume: 31 start-page: 3406 year: 2003 end-page: 3415 ident: bib38 article-title: Mfold web server for nucleic acid folding and hybridization prediction publication-title: Nucleic Acids Res. – volume: 16 year: 2020 ident: bib106 article-title: Microfluidic single-cell omics analysis publication-title: Small – volume: 5 start-page: 883 year: 2010 end-page: 897 ident: bib89 article-title: The HADDOCK web server for data-driven biomolecular docking publication-title: Nat. Protoc. – volume: 8394 start-page: 115 year: 2014 end-page: 128 ident: bib19 article-title: AptaCluster - a method to cluster HT-SELEX aptamer pools and lessons from its application publication-title: Res Comput Mol Biol – volume: 42 start-page: 1209 year: 2014 end-page: 1223 ident: bib72 article-title: New scoring system to identify RNA G-quadruplex folding publication-title: Nucleic Acids Res. – volume: 92 start-page: 9895 year: 2020 end-page: 9900 ident: bib107 article-title: Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein publication-title: Anal. Chem. – volume: 44 year: 2022 ident: bib110 article-title: Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape publication-title: Nano Today – volume: 23 start-page: 433 year: 2021 end-page: 459 ident: bib3 article-title: Recent advances in aptamer-based biosensors for global health applications publication-title: Annu. Rev. Biomed. Eng. – volume: 4 start-page: 435 year: 2008 end-page: 447 ident: bib96 article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theor. Comput. – reference: Int. J. Mol. Sci. 2021, 22. – volume: 92 start-page: 3307 year: 2020 end-page: 3314 ident: bib18 article-title: A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning publication-title: Anal. Chem. – volume: 2015 year: 2015 ident: bib52 article-title: A review of feature selection and feature extraction methods applied on microarray data publication-title: Adv Bioinformatics – volume: 8 year: 2021 ident: bib113 article-title: DNA aptamers block the receptor binding domain at the spike protein of SARS-CoV-2 publication-title: Front. Mol. Biosci. – volume: 8 start-page: 8 year: 2014 ident: bib40 article-title: A computational method for discovering evolutionarily conserved G-quadruplex motifs publication-title: Hum. Genom. – volume: 311 start-page: 103 year: 2019 end-page: 108 ident: bib47 article-title: Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier publication-title: Math. Biosci. – volume: 36 start-page: 2905 year: 2020 end-page: 2906 ident: bib29 article-title: AptCompare: optimized de novo motif discovery of RNA aptamers via HTS-SELEX publication-title: Bioinformatics – volume: 13 year: 2021 ident: bib35 article-title: Hybrid-type SELEX for the selection of artificial nucleic acid aptamers exhibiting cell internalization activity publication-title: Pharmaceutics – volume: 2012 year: 2012 ident: bib41 article-title: Aptamer Base: a collaborative knowledge base to describe aptamers and SELEX experiments publication-title: Database – volume: 112 start-page: 2623 year: 2020 end-page: 2632 ident: bib42 article-title: RPINBASE: an online toolbox to extract features for predicting RNA-protein interactions publication-title: Genomics – volume: 3 start-page: 62 year: 2016 end-page: 70 ident: bib26 article-title: AptaTRACE elucidates RNA sequence-structure motifs from selection trends in HT-SELEX experiments publication-title: Cell Syst – volume: 34 start-page: 4573 year: 2020 end-page: 4590 ident: bib31 article-title: DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD publication-title: Faseb. J. – volume: 9 start-page: 133 year: 1981 end-page: 148 ident: bib39 article-title: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information publication-title: Nucleic Acids Res. – volume: 43 start-page: W425 year: 2015 end-page: W430 ident: bib90 article-title: NPDock: a web server for protein-nucleic acid docking publication-title: Nucleic Acids Res. – volume: 16 start-page: 287 year: 2019 end-page: 294 ident: bib62 article-title: Prediction of the secondary structure of short DNA aptamers publication-title: Biophys Physicobiol – volume: 13 year: 2021 ident: bib115 article-title: Xeno-nucleic acid (XNA) 2'-fluoro-arabino nucleic acid (FANA) aptamers to the receptor-binding domain of SARS-CoV-2 S protein block ACE2 binding publication-title: Viruses-Basel – volume: 26 start-page: 321 year: 2021 end-page: 332 ident: bib111 article-title: A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2 publication-title: Mol. Ther. Nucleic Acids – volume: 32 start-page: 170 year: 2011 end-page: 173 ident: bib100 article-title: NUPACK: analysis and design of nucleic acid systems publication-title: J. Comput. Chem. – start-page: 1 year: 2022 end-page: 25 ident: bib57 article-title: Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection publication-title: bioRxiv – volume: 21 start-page: 236 year: 2020 ident: bib44 article-title: PPAI: a web server for predicting protein-aptamer interactions publication-title: BMC Bioinf. – volume: 48 start-page: e82 year: 2020 ident: bib36 article-title: RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information publication-title: Nucleic Acids Res. – volume: 7 year: 2017 ident: bib81 article-title: Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors publication-title: Sci. Rep. – start-page: 21 year: 2020 ident: bib1 article-title: Methods and applications of in silico aptamer design and modeling publication-title: Int. J. Mol. Sci. – volume: 118 start-page: 555 year: 2021 end-page: 578 ident: bib13 article-title: Recent advances in computational methods for biosensor design publication-title: Biotechnol. Bioeng. – reference: Chen Z, Hu L, Zhang BT, Lu A, Wang Y, Yu Y, Zhang G: Artificial intelligence in aptamer-target binding prediction – start-page: 50 year: 2022 ident: bib83 article-title: UFold: fast and accurate RNA secondary structure prediction with deep learning publication-title: Nucleic Acids Res. – volume: 11 start-page: 2976 year: 2021 ident: bib61 article-title: Specific inhibition of FGF5-induced cell proliferation by RNA aptamers publication-title: Sci. Rep. – volume: 4 year: 2015 ident: bib17 article-title: FASTAptamer: a bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections publication-title: Mol. Ther. Nucleic Acids – volume: 40 start-page: 798 year: 2021 end-page: 807 ident: bib105 article-title: In silico strategies for modeling RNA aptamers and predicting binding sites of their molecular targets publication-title: Nucleos Nucleot. Nucleic Acids – volume: 55 year: 2022 ident: bib60 article-title: Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment publication-title: Biotechnol. Adv. – volume: 34 start-page: W676 year: 2006 end-page: W682 ident: bib70 article-title: A web-based server for predicting G-quadruplexes in nucleotide sequences publication-title: Nucleic Acids Res. – year: 2021 ident: bib93 article-title: Theoretical and Computational Modeling of Rna-Ligand Interactions – volume: 25 start-page: 1395 year: 2021 end-page: 1407 ident: bib51 article-title: In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm publication-title: Mol. Divers. – volume: 21 start-page: 263 year: 2020 ident: bib21 article-title: FSBC: fast string-based clustering for HT-SELEX data publication-title: BMC Bioinf. – volume: 18 start-page: 2416 year: 2020 end-page: 2423 ident: bib76 article-title: 3dRNA: building RNA 3D structure with improved template library publication-title: Comput. Struct. Biotechnol. J. – volume: 61 start-page: 139 year: 2020 end-page: 145 ident: bib98 article-title: Machine learning approaches for analyzing and enhancing molecular dynamics simulations publication-title: Curr. Opin. Struct. Biol. – volume: 7 start-page: 2965 year: 2021 end-page: 2988 ident: bib97 article-title: Computer-aided design of RNA-targeted small molecules: a growing need in drug discovery publication-title: Chem – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: bib119 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature – volume: 105 year: 2020 ident: bib32 article-title: Discovery of cell-internalizing artificial nucleic acid aptamers for lung fibroblasts and targeted drug delivery publication-title: Bioorg. Chem. – volume: 10 year: 2014 ident: bib104 article-title: rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids publication-title: PLoS Comput. Biol. – volume: 38 start-page: W445 year: 2010 end-page: W449 ident: bib85 article-title: HexServer: an FFT-based protein docking server powered by graphics processors publication-title: Nucleic Acids Res. – volume: 497 year: 2020 ident: bib9 article-title: Computational predictive approaches for interaction and structure of aptamers publication-title: J. Theor. Biol. – volume: 40 start-page: e112 year: 2012 ident: bib80 article-title: Automated 3D structure composition for large RNAs publication-title: Nucleic Acids Res. – start-page: 11 year: 2020 ident: bib124 article-title: 3D-printed integrative probeheads for magnetic resonance publication-title: Nat. Commun. – volume: 12 start-page: 878 year: 2016 ident: bib49 article-title: Deep learning for computational biology publication-title: Mol. Syst. Biol. – start-page: 22 year: 2021 ident: bib58 article-title: Structural biology for the molecular insight between aptamers and target proteins publication-title: Int. J. Mol. Sci. – volume: 28 start-page: i215 year: 2012 end-page: i223 ident: bib24 article-title: Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers publication-title: Bioinformatics – volume: 31 start-page: 3429 year: 2003 end-page: 3431 ident: bib63 article-title: Vienna RNA secondary structure server publication-title: Nucleic Acids Res. – start-page: 17 year: 2021 ident: bib82 article-title: Review of machine learning methods for RNA secondary structure prediction publication-title: PLoS Comput. Biol. – volume: 143 start-page: 21541 year: 2021 end-page: 21548 ident: bib109 article-title: Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape publication-title: J. Am. Chem. Soc. – volume: 151 start-page: 115 year: 2018 end-page: 118 ident: bib73 article-title: G4RNA screener web server: user focused interface for RNA G-quadruplex prediction publication-title: Biochimie – volume: 131 start-page: 1138 year: 2012 ident: bib102 article-title: Automation of AMOEBA polarizable force field parameterization for small molecules publication-title: Theor. Chem. Acc. – volume: 17 start-page: 1476 year: 2020 end-page: 1482 ident: bib122 article-title: Constructive prediction of potential RNA aptamers for a protein target publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – volume: 5 start-page: 597 year: 2010 end-page: 607 ident: bib91 article-title: Virtual screening with AutoDock: theory and practice publication-title: Expet Opin. Drug Discov. – volume: 10 start-page: 4941 year: 2019 ident: bib54 article-title: A deep learning framework to predict binding preference of RNA constituents on protein surface publication-title: Nat. Commun. – volume: 41 start-page: W471 year: 2013 end-page: W474 ident: bib64 article-title: RNAstructure: web servers for RNA secondary structure prediction and analysis publication-title: Nucleic Acids Res. – volume: 14 start-page: 2084 year: 2018 end-page: 2108 ident: bib101 article-title: AMOEBA polarizable atomic multipole force field for nucleic acids publication-title: J. Chem. Theor. Comput. – volume: 9 year: 2014 ident: bib120 article-title: Prediction of aptamer-target interacting pairs with pseudo-amino acid composition publication-title: PLoS One – volume: 143 start-page: 5317 year: 2018 end-page: 5338 ident: bib59 article-title: Investigations on the interface of nucleic acid aptamers and binding targets publication-title: Analyst – start-page: 28 year: 2022 ident: bib112 article-title: A universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern publication-title: Chem.--Eur. J. – start-page: 1 year: 2022 end-page: 19 ident: bib22 article-title: FASTAptameR 2.0: a web tool for combinatorial sequence selections publication-title: bioRxiv – volume: 52 start-page: 80 year: 2003 end-page: 87 ident: bib87 article-title: ZDOCK: an initial-stage protein-docking algorithm publication-title: Proteins – volume: 14 start-page: 106 year: 2013 ident: bib43 article-title: SMOTE for high-dimensional class-imbalanced data publication-title: BMC Bioinf. – volume: 60 start-page: 21211 year: 2021 end-page: 21215 ident: bib123 article-title: Discovery and characterization of spike N-terminal domain-binding aptamers for rapid SARS-CoV-2 detection publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 1514 year: 2020 end-page: 1533 ident: bib10 article-title: Biosystems design by machine learning publication-title: ACS Synth. Biol. – volume: 12 start-page: 2366 year: 2021 ident: bib7 article-title: Machine learning guided aptamer refinement and discovery publication-title: Nat. Commun. – volume: 5 year: 2010 ident: bib103 article-title: Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina publication-title: PLoS One – volume: 48 start-page: W395 year: 2020 end-page: W402 ident: bib28 article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update publication-title: Nucleic Acids Res. – volume: 48 start-page: 1 year: 2020 end-page: 15 ident: bib69 article-title: A guide to computational methods for G-quadruplex prediction publication-title: Nucleic Acids Res. – volume: 37 start-page: W277 year: 2009 end-page: W280 ident: bib66 article-title: CENTROIDFOLD: a web server for RNA secondary structure prediction publication-title: Nucleic Acids Res. – volume: 19 start-page: 3198 year: 2021 end-page: 3208 ident: bib50 article-title: Representation learning applications in biological sequence analysis publication-title: Comput. Struct. Biotechnol. J. – volume: 9 year: 2016 ident: bib8 article-title: Applications of high-throughput sequencing for in vitro selection and characterization of aptamers publication-title: Pharmaceuticals – volume: 11 start-page: 6074 year: 2021 ident: bib46 article-title: AptaNet as a deep learning approach for aptamer-protein interaction prediction publication-title: Sci. Rep. – volume: 17 year: 2016 ident: bib121 article-title: Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes publication-title: BMC Bioinf. – start-page: 118 year: 2021 ident: bib116 article-title: A Serum-Stable RNA Aptamer Specific for SARS-CoV-2 Neutralizes Viral Entry – volume: 6 year: 2016 ident: bib23 article-title: High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency publication-title: Sci. Rep. – volume: 37 start-page: W235 year: 2009 end-page: W239 ident: bib78 article-title: 3D-DART: a DNA structure modelling server publication-title: Nucleic Acids Res. – volume: 107 start-page: 15373 year: 2010 end-page: 15378 ident: bib16 article-title: Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing publication-title: Proc. Natl. Acad. Sci. USA – start-page: 16 year: 2021 ident: bib48 article-title: Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach publication-title: PLoS One – volume: 35 start-page: 3493 year: 2019 end-page: 3495 ident: bib71 article-title: G4Hunter web application: a web server for G-quadruplex prediction publication-title: Bioinformatics – volume: 61 start-page: 4139 year: 2021 end-page: 4144 ident: bib99 article-title: E2EDNA: simulation protocol for DNA aptamers with ligands publication-title: J. Chem. Inf. Model. – start-page: 21 year: 2020 ident: bib4 article-title: Implementation of high-throughput sequencing (HTS) in aptamer selection technology publication-title: Int. J. Mol. Sci. – volume: 170 start-page: 32 year: 2017 end-page: 37 ident: bib53 article-title: A novel nucleic acid sequence encoding strategy for high-performance aptamer identification and the aid of sequence design and optimization publication-title: Chemometr. Intell. Lab. Syst. – start-page: 1 year: 2021 end-page: 30 ident: bib56 article-title: A variational autoencoder with profile hidden Markov model for generative aptamer discovery publication-title: bioRxiv – volume: 43 start-page: 5699 year: 2015 end-page: 5707 ident: bib14 article-title: Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery publication-title: Nucleic Acids Res. – volume: 11 start-page: 515 year: 2018 end-page: 517 ident: bib20 article-title: AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments publication-title: Mol. Ther. Nucleic Acids – volume: 60 start-page: 10266 year: 2021 end-page: 10272 ident: bib108 article-title: Aptamer blocking strategy inhibits SARS-CoV-2 virus infection publication-title: Angew. Chem. Int. Ed. – volume: 18 year: 2017 ident: bib5 article-title: Aptamer bioinformatics publication-title: Int. J. Mol. Sci. – volume: 23 start-page: 440 year: 2021 end-page: 449 ident: bib33 article-title: Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide publication-title: Mol. Ther. Nucleic Acids – volume: 6 start-page: 26 year: 2011 ident: bib67 article-title: ViennaRNA package 2.0 publication-title: Algorithm Mol. Biol. – volume: 105 year: 2020 ident: 10.1016/j.trac.2022.116767_bib32 article-title: Discovery of cell-internalizing artificial nucleic acid aptamers for lung fibroblasts and targeted drug delivery publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2020.104321 – volume: 4 start-page: 435 year: 2008 ident: 10.1016/j.trac.2022.116767_bib96 article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theor. Comput. doi: 10.1021/ct700301q – volume: 23 start-page: 433 year: 2021 ident: 10.1016/j.trac.2022.116767_bib3 article-title: Recent advances in aptamer-based biosensors for global health applications publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-082020-035644 – start-page: 1 year: 2021 ident: 10.1016/j.trac.2022.116767_bib74 article-title: SELEX: critical factors and optimization strategies for successful aptamer selection publication-title: Biotechnol. Appl. Biochem. – volume: 118 start-page: 555 year: 2021 ident: 10.1016/j.trac.2022.116767_bib13 article-title: Recent advances in computational methods for biosensor design publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27618 – volume: 48 start-page: W395 year: 2020 ident: 10.1016/j.trac.2022.116767_bib28 article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa434 – volume: 28 start-page: i215 year: 2012 ident: 10.1016/j.trac.2022.116767_bib24 article-title: Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts210 – start-page: 22 year: 2021 ident: 10.1016/j.trac.2022.116767_bib58 article-title: Structural biology for the molecular insight between aptamers and target proteins publication-title: Int. J. Mol. Sci. – volume: 55 year: 2022 ident: 10.1016/j.trac.2022.116767_bib60 article-title: Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2021.107902 – volume: 41 start-page: W471 year: 2013 ident: 10.1016/j.trac.2022.116767_bib64 article-title: RNAstructure: web servers for RNA secondary structure prediction and analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt290 – volume: 42 start-page: 1209 year: 2014 ident: 10.1016/j.trac.2022.116767_bib72 article-title: New scoring system to identify RNA G-quadruplex folding publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt904 – volume: 2012 year: 2012 ident: 10.1016/j.trac.2022.116767_bib41 article-title: Aptamer Base: a collaborative knowledge base to describe aptamers and SELEX experiments publication-title: Database doi: 10.1093/database/bas006 – volume: 32 start-page: 1929 year: 2011 ident: 10.1016/j.trac.2022.116767_bib94 article-title: Impact of 2'-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA publication-title: J. Comput. Chem. doi: 10.1002/jcc.21777 – volume: 497 year: 2020 ident: 10.1016/j.trac.2022.116767_bib9 article-title: Computational predictive approaches for interaction and structure of aptamers publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2020.110268 – volume: 596 start-page: 583 year: 2021 ident: 10.1016/j.trac.2022.116767_bib119 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – start-page: 16 year: 2021 ident: 10.1016/j.trac.2022.116767_bib48 article-title: Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach publication-title: PLoS One – volume: 6 start-page: 26 year: 2011 ident: 10.1016/j.trac.2022.116767_bib67 article-title: ViennaRNA package 2.0 publication-title: Algorithm Mol. Biol. doi: 10.1186/1748-7188-6-26 – volume: 60 start-page: 10266 year: 2021 ident: 10.1016/j.trac.2022.116767_bib108 article-title: Aptamer blocking strategy inhibits SARS-CoV-2 virus infection publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202100225 – volume: 18 year: 2017 ident: 10.1016/j.trac.2022.116767_bib5 article-title: Aptamer bioinformatics publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18122516 – volume: 60 start-page: 16800 year: 2021 ident: 10.1016/j.trac.2022.116767_bib15 article-title: Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.202008663 – volume: 3 start-page: 62 year: 2016 ident: 10.1016/j.trac.2022.116767_bib26 article-title: AptaTRACE elucidates RNA sequence-structure motifs from selection trends in HT-SELEX experiments publication-title: Cell Syst doi: 10.1016/j.cels.2016.07.003 – volume: 48 start-page: 1 year: 2020 ident: 10.1016/j.trac.2022.116767_bib69 article-title: A guide to computational methods for G-quadruplex prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1097 – volume: 2015 year: 2015 ident: 10.1016/j.trac.2022.116767_bib52 article-title: A review of feature selection and feature extraction methods applied on microarray data publication-title: Adv Bioinformatics doi: 10.1155/2015/198363 – volume: 61 start-page: 139 year: 2020 ident: 10.1016/j.trac.2022.116767_bib98 article-title: Machine learning approaches for analyzing and enhancing molecular dynamics simulations publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.12.016 – volume: 16 start-page: 287 year: 2019 ident: 10.1016/j.trac.2022.116767_bib62 article-title: Prediction of the secondary structure of short DNA aptamers publication-title: Biophys Physicobiol doi: 10.2142/biophysico.16.0_287 – start-page: 17 year: 2021 ident: 10.1016/j.trac.2022.116767_bib82 article-title: Review of machine learning methods for RNA secondary structure prediction publication-title: PLoS Comput. Biol. – volume: 373 start-page: 1047 year: 2021 ident: 10.1016/j.trac.2022.116767_bib84 article-title: Geometric deep learning of RNA structure publication-title: Science doi: 10.1126/science.abe5650 – volume: 61 start-page: 4139 year: 2021 ident: 10.1016/j.trac.2022.116767_bib99 article-title: E2EDNA: simulation protocol for DNA aptamers with ligands publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00696 – volume: 40 start-page: e112 year: 2012 ident: 10.1016/j.trac.2022.116767_bib80 article-title: Automated 3D structure composition for large RNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks339 – volume: 143 start-page: 21541 year: 2021 ident: 10.1016/j.trac.2022.116767_bib109 article-title: Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08226 – start-page: 1 year: 2022 ident: 10.1016/j.trac.2022.116767_bib22 article-title: FASTAptameR 2.0: a web tool for combinatorial sequence selections publication-title: bioRxiv – volume: 15 start-page: R16 year: 2014 ident: 10.1016/j.trac.2022.116767_bib37 article-title: CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data publication-title: Genome Biol. doi: 10.1186/gb-2014-15-1-r16 – volume: 30 start-page: 2665 year: 2014 ident: 10.1016/j.trac.2022.116767_bib25 article-title: A Meta-motif-based statistical framework and pipeline to Predict Binding potential of SELEX-derived aptamers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu348 – volume: 13 start-page: 559 year: 2020 ident: 10.1016/j.trac.2022.116767_bib34 article-title: CRISPR-mediated isogenic cell-SELEX approach for generating highly specific aptamers against native membrane proteins publication-title: Cell. Mol. Bioeng. doi: 10.1007/s12195-020-00651-y – volume: 31 start-page: 3429 year: 2003 ident: 10.1016/j.trac.2022.116767_bib63 article-title: Vienna RNA secondary structure server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg599 – volume: 17 year: 2021 ident: 10.1016/j.trac.2022.116767_bib45 article-title: A novel artificial intelligence-based approach for identification of deoxynucleotide aptamers publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009247 – volume: 9 start-page: 1514 year: 2020 ident: 10.1016/j.trac.2022.116767_bib10 article-title: Biosystems design by machine learning publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.0c00129 – volume: 11 start-page: 515 year: 2018 ident: 10.1016/j.trac.2022.116767_bib20 article-title: AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2018.04.006 – volume: 10 start-page: 4941 year: 2019 ident: 10.1016/j.trac.2022.116767_bib54 article-title: A deep learning framework to predict binding preference of RNA constituents on protein surface publication-title: Nat. Commun. doi: 10.1038/s41467-019-12920-0 – volume: 180 start-page: 54 year: 2021 ident: 10.1016/j.trac.2022.116767_bib12 article-title: In silico molecular docking in DNA aptamer development publication-title: Biochimie doi: 10.1016/j.biochi.2020.10.005 – volume: 4 year: 2015 ident: 10.1016/j.trac.2022.116767_bib17 article-title: FASTAptamer: a bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2015.4 – volume: 429 start-page: 2438 year: 2017 ident: 10.1016/j.trac.2022.116767_bib79 article-title: 3D-NuS: a web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.06.013 – volume: 24 year: 2019 ident: 10.1016/j.trac.2022.116767_bib68 article-title: G-Quadruplex-Forming aptamers-characteristics, applications, and perspectives publication-title: Molecules doi: 10.3390/molecules24203781 – year: 2021 ident: 10.1016/j.trac.2022.116767_bib93 – volume: 13 year: 2021 ident: 10.1016/j.trac.2022.116767_bib115 article-title: Xeno-nucleic acid (XNA) 2'-fluoro-arabino nucleic acid (FANA) aptamers to the receptor-binding domain of SARS-CoV-2 S protein block ACE2 binding publication-title: Viruses-Basel – volume: 34 start-page: 4573 year: 2020 ident: 10.1016/j.trac.2022.116767_bib31 article-title: DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD publication-title: Faseb. J. doi: 10.1096/fj.201902696 – volume: 143 start-page: 5317 year: 2018 ident: 10.1016/j.trac.2022.116767_bib59 article-title: Investigations on the interface of nucleic acid aptamers and binding targets publication-title: Analyst doi: 10.1039/C8AN01467A – volume: 8394 start-page: 115 year: 2014 ident: 10.1016/j.trac.2022.116767_bib19 article-title: AptaCluster - a method to cluster HT-SELEX aptamer pools and lessons from its application publication-title: Res Comput Mol Biol doi: 10.1007/978-3-319-05269-4_9 – volume: 38 start-page: W445 year: 2010 ident: 10.1016/j.trac.2022.116767_bib85 article-title: HexServer: an FFT-based protein docking server powered by graphics processors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq311 – volume: 14 start-page: 2084 year: 2018 ident: 10.1016/j.trac.2022.116767_bib101 article-title: AMOEBA polarizable atomic multipole force field for nucleic acids publication-title: J. Chem. Theor. Comput. doi: 10.1021/acs.jctc.7b01169 – volume: 107 start-page: 15373 year: 2010 ident: 10.1016/j.trac.2022.116767_bib16 article-title: Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1009331107 – volume: 37 start-page: W277 year: 2009 ident: 10.1016/j.trac.2022.116767_bib66 article-title: CENTROIDFOLD: a web server for RNA secondary structure prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp367 – start-page: 1 year: 2022 ident: 10.1016/j.trac.2022.116767_bib55 article-title: Generative aptamer discovery using RaptGen publication-title: Nature Computational Science – volume: 36 start-page: 2905 year: 2020 ident: 10.1016/j.trac.2022.116767_bib29 article-title: AptCompare: optimized de novo motif discovery of RNA aptamers via HTS-SELEX publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa054 – volume: 26 start-page: 321 year: 2021 ident: 10.1016/j.trac.2022.116767_bib111 article-title: A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2 publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.06.014 – volume: 60 start-page: 21211 year: 2021 ident: 10.1016/j.trac.2022.116767_bib123 article-title: Discovery and characterization of spike N-terminal domain-binding aptamers for rapid SARS-CoV-2 detection publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202107730 – volume: 32 start-page: 170 year: 2011 ident: 10.1016/j.trac.2022.116767_bib100 article-title: NUPACK: analysis and design of nucleic acid systems publication-title: J. Comput. Chem. doi: 10.1002/jcc.21596 – volume: 10 year: 2014 ident: 10.1016/j.trac.2022.116767_bib104 article-title: rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003571 – volume: 11 start-page: 2976 year: 2021 ident: 10.1016/j.trac.2022.116767_bib61 article-title: Specific inhibition of FGF5-induced cell proliferation by RNA aptamers publication-title: Sci. Rep. doi: 10.1038/s41598-021-82350-w – volume: 11 start-page: 6074 year: 2021 ident: 10.1016/j.trac.2022.116767_bib46 article-title: AptaNet as a deep learning approach for aptamer-protein interaction prediction publication-title: Sci. Rep. doi: 10.1038/s41598-021-85629-0 – volume: 60 start-page: 10273 year: 2021 ident: 10.1016/j.trac.2022.116767_bib114 article-title: Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202100345 – start-page: 21 year: 2020 ident: 10.1016/j.trac.2022.116767_bib4 article-title: Implementation of high-throughput sequencing (HTS) in aptamer selection technology publication-title: Int. J. Mol. Sci. – volume: 103 start-page: 120 year: 2016 ident: 10.1016/j.trac.2022.116767_bib75 article-title: RNAComposer and RNA 3D structure prediction for nanotechnology publication-title: Methods doi: 10.1016/j.ymeth.2016.03.010 – volume: 44 year: 2022 ident: 10.1016/j.trac.2022.116767_bib110 article-title: Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape publication-title: Nano Today doi: 10.1016/j.nantod.2022.101499 – volume: 92 start-page: 3307 year: 2020 ident: 10.1016/j.trac.2022.116767_bib18 article-title: A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05203 – volume: 49 year: 2021 ident: 10.1016/j.trac.2022.116767_bib118 article-title: Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1157 – volume: 19 start-page: 3198 year: 2021 ident: 10.1016/j.trac.2022.116767_bib50 article-title: Representation learning applications in biological sequence analysis publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.05.039 – start-page: 118 year: 2021 ident: 10.1016/j.trac.2022.116767_bib116 – volume: 43 start-page: 5699 year: 2015 ident: 10.1016/j.trac.2022.116767_bib14 article-title: Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv308 – volume: 18 start-page: 2416 year: 2020 ident: 10.1016/j.trac.2022.116767_bib76 article-title: 3dRNA: building RNA 3D structure with improved template library publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.08.017 – volume: 60 start-page: 10279 year: 2021 ident: 10.1016/j.trac.2022.116767_bib117 article-title: A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism∗∗ publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202100316 – volume: 12 start-page: 2366 year: 2021 ident: 10.1016/j.trac.2022.116767_bib7 article-title: Machine learning guided aptamer refinement and discovery publication-title: Nat. Commun. doi: 10.1038/s41467-021-22555-9 – volume: 17 start-page: 1476 year: 2020 ident: 10.1016/j.trac.2022.116767_bib122 article-title: Constructive prediction of potential RNA aptamers for a protein target publication-title: IEEE ACM Trans. Comput. Biol. Bioinf doi: 10.1109/TCBB.2019.2951114 – start-page: 28 year: 2022 ident: 10.1016/j.trac.2022.116767_bib112 article-title: A universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern publication-title: Chem.--Eur. J. – volume: 9 year: 2014 ident: 10.1016/j.trac.2022.116767_bib120 article-title: Prediction of aptamer-target interacting pairs with pseudo-amino acid composition publication-title: PLoS One – volume: 112 start-page: 2623 year: 2020 ident: 10.1016/j.trac.2022.116767_bib42 article-title: RPINBASE: an online toolbox to extract features for predicting RNA-protein interactions publication-title: Genomics doi: 10.1016/j.ygeno.2020.02.013 – volume: 21 start-page: 236 year: 2020 ident: 10.1016/j.trac.2022.116767_bib44 article-title: PPAI: a web server for predicting protein-aptamer interactions publication-title: BMC Bioinf. doi: 10.1186/s12859-020-03574-7 – volume: 35 start-page: 3493 year: 2019 ident: 10.1016/j.trac.2022.116767_bib71 article-title: G4Hunter web application: a web server for G-quadruplex prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz087 – volume: 143 start-page: 5317 year: 2018 ident: 10.1016/j.trac.2022.116767_bib2 article-title: Investigations on the interface of nucleic acid aptamers and binding targets publication-title: Analyst doi: 10.1039/C8AN01467A – volume: 26 start-page: 1668 year: 2005 ident: 10.1016/j.trac.2022.116767_bib95 article-title: The Amber biomolecular simulation programs publication-title: J. Comput. Chem. doi: 10.1002/jcc.20290 – start-page: 105 year: 2021 ident: 10.1016/j.trac.2022.116767_bib11 article-title: In silico approach for Post-SELEX DNA aptamers: a mini-review publication-title: J. Mol. Graph. Model. – volume: 14 start-page: 106 year: 2013 ident: 10.1016/j.trac.2022.116767_bib43 article-title: SMOTE for high-dimensional class-imbalanced data publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-106 – volume: 1654 start-page: 3 year: 2017 ident: 10.1016/j.trac.2022.116767_bib65 article-title: Predicting RNA structure with Vfold publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7231-9_1 – start-page: 1 year: 2022 ident: 10.1016/j.trac.2022.116767_bib57 article-title: Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection publication-title: bioRxiv – volume: 12 start-page: 878 year: 2016 ident: 10.1016/j.trac.2022.116767_bib49 article-title: Deep learning for computational biology publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20156651 – volume: 21 start-page: 263 year: 2020 ident: 10.1016/j.trac.2022.116767_bib21 article-title: FSBC: fast string-based clustering for HT-SELEX data publication-title: BMC Bioinf. doi: 10.1186/s12859-020-03607-1 – volume: 7 year: 2017 ident: 10.1016/j.trac.2022.116767_bib81 article-title: Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors publication-title: Sci. Rep. doi: 10.1038/s41598-017-01348-5 – volume: 131 start-page: 1138 year: 2012 ident: 10.1016/j.trac.2022.116767_bib102 article-title: Automation of AMOEBA polarizable force field parameterization for small molecules publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-012-1138-6 – volume: 170 start-page: 32 year: 2017 ident: 10.1016/j.trac.2022.116767_bib53 article-title: A novel nucleic acid sequence encoding strategy for high-performance aptamer identification and the aid of sequence design and optimization publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.09.010 – volume: 8 start-page: 8 year: 2014 ident: 10.1016/j.trac.2022.116767_bib40 article-title: A computational method for discovering evolutionarily conserved G-quadruplex motifs publication-title: Hum. Genom. doi: 10.1186/1479-7364-8-8 – volume: 34 start-page: W310 year: 2006 ident: 10.1016/j.trac.2022.116767_bib86 article-title: GRAMM-X public web server for protein–protein docking publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl206 – volume: 13 year: 2021 ident: 10.1016/j.trac.2022.116767_bib35 article-title: Hybrid-type SELEX for the selection of artificial nucleic acid aptamers exhibiting cell internalization activity publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13060888 – volume: 12 start-page: 401 year: 2017 ident: 10.1016/j.trac.2022.116767_bib88 article-title: Modeling and docking of antibody structures with Rosetta publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.180 – volume: 5 start-page: 597 year: 2010 ident: 10.1016/j.trac.2022.116767_bib91 article-title: Virtual screening with AutoDock: theory and practice publication-title: Expet Opin. Drug Discov. doi: 10.1517/17460441.2010.484460 – volume: 7 start-page: 2965 year: 2021 ident: 10.1016/j.trac.2022.116767_bib97 article-title: Computer-aided design of RNA-targeted small molecules: a growing need in drug discovery publication-title: Chem doi: 10.1016/j.chempr.2021.05.021 – volume: 34 start-page: W676 year: 2006 ident: 10.1016/j.trac.2022.116767_bib70 article-title: A web-based server for predicting G-quadruplexes in nucleotide sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl253 – volume: 5 start-page: 883 year: 2010 ident: 10.1016/j.trac.2022.116767_bib89 article-title: The HADDOCK web server for data-driven biomolecular docking publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.32 – volume: 37 start-page: W235 year: 2009 ident: 10.1016/j.trac.2022.116767_bib78 article-title: 3D-DART: a DNA structure modelling server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp287 – volume: 8 year: 2021 ident: 10.1016/j.trac.2022.116767_bib113 article-title: DNA aptamers block the receptor binding domain at the spike protein of SARS-CoV-2 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.713003 – volume: 31 start-page: 455 year: 2010 ident: 10.1016/j.trac.2022.116767_bib92 article-title: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – volume: 9 start-page: 133 year: 1981 ident: 10.1016/j.trac.2022.116767_bib39 article-title: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information publication-title: Nucleic Acids Res. doi: 10.1093/nar/9.1.133 – volume: 52 start-page: 80 year: 2003 ident: 10.1016/j.trac.2022.116767_bib87 article-title: ZDOCK: an initial-stage protein-docking algorithm publication-title: Proteins doi: 10.1002/prot.10389 – volume: 5 year: 2010 ident: 10.1016/j.trac.2022.116767_bib103 article-title: Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina publication-title: PLoS One doi: 10.1371/journal.pone.0011955 – ident: 10.1016/j.trac.2022.116767_bib6 doi: 10.3390/ijms22073605 – volume: 151 start-page: 115 year: 2018 ident: 10.1016/j.trac.2022.116767_bib73 article-title: G4RNA screener web server: user focused interface for RNA G-quadruplex prediction publication-title: Biochimie doi: 10.1016/j.biochi.2018.06.002 – volume: 40 start-page: 798 year: 2021 ident: 10.1016/j.trac.2022.116767_bib105 article-title: In silico strategies for modeling RNA aptamers and predicting binding sites of their molecular targets publication-title: Nucleos Nucleot. Nucleic Acids doi: 10.1080/15257770.2021.1951754 – start-page: 50 year: 2022 ident: 10.1016/j.trac.2022.116767_bib83 article-title: UFold: fast and accurate RNA secondary structure prediction with deep learning publication-title: Nucleic Acids Res. – start-page: 21 year: 2020 ident: 10.1016/j.trac.2022.116767_bib1 article-title: Methods and applications of in silico aptamer design and modeling publication-title: Int. J. Mol. Sci. – volume: 9 year: 2016 ident: 10.1016/j.trac.2022.116767_bib8 article-title: Applications of high-throughput sequencing for in vitro selection and characterization of aptamers publication-title: Pharmaceuticals doi: 10.3390/ph9040076 – volume: 12 year: 2020 ident: 10.1016/j.trac.2022.116767_bib27 article-title: Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aav9760 – volume: 23 start-page: 440 year: 2021 ident: 10.1016/j.trac.2022.116767_bib33 article-title: Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2020.11.016 – start-page: 1 year: 2021 ident: 10.1016/j.trac.2022.116767_bib56 article-title: A variational autoencoder with profile hidden Markov model for generative aptamer discovery publication-title: bioRxiv – volume: 311 start-page: 103 year: 2019 ident: 10.1016/j.trac.2022.116767_bib47 article-title: Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier publication-title: Math. Biosci. doi: 10.1016/j.mbs.2019.01.009 – volume: 48 start-page: e82 year: 2020 ident: 10.1016/j.trac.2022.116767_bib36 article-title: RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa484 – volume: 25 start-page: 1395 year: 2021 ident: 10.1016/j.trac.2022.116767_bib51 article-title: In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm publication-title: Mol. Divers. doi: 10.1007/s11030-021-10192-9 – volume: 17 year: 2016 ident: 10.1016/j.trac.2022.116767_bib121 article-title: Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes publication-title: BMC Bioinf. doi: 10.1186/s12859-016-1087-5 – start-page: 11 year: 2020 ident: 10.1016/j.trac.2022.116767_bib124 article-title: 3D-printed integrative probeheads for magnetic resonance publication-title: Nat. Commun. – volume: 31 start-page: 3406 year: 2003 ident: 10.1016/j.trac.2022.116767_bib38 article-title: Mfold web server for nucleic acid folding and hybridization prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg595 – volume: 44 start-page: e63 year: 2016 ident: 10.1016/j.trac.2022.116767_bib77 article-title: SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1479 – volume: 92 start-page: 9895 year: 2020 ident: 10.1016/j.trac.2022.116767_bib107 article-title: Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c01394 – volume: 16 year: 2020 ident: 10.1016/j.trac.2022.116767_bib106 article-title: Microfluidic single-cell omics analysis publication-title: Small – volume: 43 start-page: W425 year: 2015 ident: 10.1016/j.trac.2022.116767_bib90 article-title: NPDock: a web server for protein-nucleic acid docking publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv493 – volume: 6 year: 2016 ident: 10.1016/j.trac.2022.116767_bib23 article-title: High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency publication-title: Sci. Rep. doi: 10.1038/srep33697 – volume: 106 start-page: 82 year: 2016 ident: 10.1016/j.trac.2022.116767_bib30 article-title: AptaPLEX - a dedicated, multithreaded demultiplexer for HT-SELEX data publication-title: Methods doi: 10.1016/j.ymeth.2016.04.011 |
SSID | ssj0006009 |
Score | 2.5488563 |
SecondaryResourceType | review_article |
Snippet | Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116767 |
SubjectTerms | analytical chemistry Aptamer identification Aptamer optimization Bioinformatics case studies COVID-19 Deep learning Machine learning oligonucleotides RNA Severe acute respiratory syndrome coronavirus 2 single-stranded DNA systematic evolution of ligands by exponential enrichment |
Title | Computational tools for aptamer identification and optimization |
URI | https://dx.doi.org/10.1016/j.trac.2022.116767 https://www.proquest.com/docview/2723105888 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHvQiPrE-ygreJH0ku3mcpBRLVexFC70tu5sNVNqktOnV3-5MdqMo0oPHhN0Qvt35ZpKd-YaQ20hlcRRxYD_GlMe4CcDmNANz5704M3FXKqxGfhmHowl7mvJpgwzqWhhMq3Tcbzm9Ymt3p-PQ7Cxns84rFuKAdw19v3LkqPjJWIS7vP3xneYBDj2x-t7cw9GucMbmeJUriTKGvt_G44iq1_yfzukXTVe-Z3hIDlzQSPv2vY5Iw-THZG9Q92o7Ife2OYP7sUfLopivKYSjVC5LuTArOktdVlA1hMo8pQWQxcJVYZ6SyfDhbTDyXGsET0NEUXpadyVqr_vwARtJlkmTyFj5AYvBpLjpKiMD2COoNKMkOOkMv_uSLlMp1yGHEO-M7ORFbs4JjVRq0pBJDa6aZTpUgUpClioGph4madwkvRoToZ1uOLavmIs6QexdII4CcRQWxya5-5qztKoZW0fzGmrxY-0F0PrWeTf1ugjAG086ZG6KzVr4EYatHMC5-OezL8k-XtnElSuyU6425hrCj1K1qv3VIrv9x-fR-BM729jG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja8JAFH5YPdhL6UrtmkJvJTUmM1lORaQS63KpgrdhJpmARRPR-P_7JpkILcVDr0kmhG_mfd-bzFsAnj2R-J5Hkf0IESah0kGbiwiaO-34ifQtLlQ28njihjPyMafzGvSqXBgVVqm5v-T0gq31lbZGs71eLNqfKhEH1dW17ULInSNoqOpUtA6N7mAYTvaEjJoelCW-qakG6NyZMswr33BVydC2X9WJRNFu_k99-sXUhfz0T-FE-41Gt_y0M6jJ9Byavapd2wW8lf0Z9L89I8-y5dZAj9Tg65yv5MZYxDowqHjE4GlsZMgXK52IeQmz_vu0F5q6O4IZoVORm1FkcVV-3cY9rMdJwmXAfWE7xEerotISkju4TFSxGcFRpxO19QssImIauRS9vCuop1kqr8HwRCxjl_AI1ZokkSscEbgkFgSt3Q1ivwWdChMW6dLhqoPFklUxYl9M4cgUjqzEsQUv-zHrsnDGwadpBTX7Mf0Mmf3guKdqXhjirQ47eCqz3ZbZnvJcKYJz8893P0IznI5HbDSYDG_hWN0p41juoJ5vdvIevZFcPOjV9g24Htt3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+tools+for+aptamer+identification+and+optimization&rft.jtitle=TrAC%2C+Trends+in+analytical+chemistry+%28Regular+ed.%29&rft.au=Sun%2C+Di&rft.au=Sun%2C+Miao&rft.au=Zhang%2C+Jialu&rft.au=Lin%2C+Xin&rft.date=2022-12-01&rft.issn=0165-9936&rft.volume=157&rft.spage=116767&rft_id=info:doi/10.1016%2Fj.trac.2022.116767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trac_2022_116767 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-9936&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-9936&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-9936&client=summon |