Computational tools for aptamer identification and optimization

Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus,...

Full description

Saved in:
Bibliographic Details
Published inTrAC, Trends in analytical chemistry (Regular ed.) Vol. 157; p. 116767
Main Authors Sun, Di, Sun, Miao, Zhang, Jialu, Lin, Xin, Zhang, Yinkun, Lin, Fanghe, Zhang, Peng, Yang, Chaoyong, Song, Jia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus, only a handful of aptamers have entered the practical use stage. Recently, computational approaches have demonstrated a significant capacity to assist in the discovery of high-performance aptamers. This review discusses the advances achieved in several aspects of computational tools in this field, as well as the new progress in machine learning and deep learning, which are used in aptamer identification and optimization. To illustrate these computationally aided processes, aptamer selections against SARS-CoV-2 are discussed in detail as a case study. We hope that this review will aid and motivate researchers to develop and utilize more computational techniques to discover ideal aptamers effectively. •A comprehensive summary was provided on computational approaches for obtaining high-performance aptamers.•The supervised machine learning-based algorithms for identification and optimization of aptamers are well detailed.•The practical studies of structure modeling and binding surface inference for aptamers against SARS-CoV-2 were presented.
AbstractList Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus, only a handful of aptamers have entered the practical use stage. Recently, computational approaches have demonstrated a significant capacity to assist in the discovery of high-performance aptamers. This review discusses the advances achieved in several aspects of computational tools in this field, as well as the new progress in machine learning and deep learning, which are used in aptamer identification and optimization. To illustrate these computationally aided processes, aptamer selections against SARS-CoV-2 are discussed in detail as a case study. We hope that this review will aid and motivate researchers to develop and utilize more computational techniques to discover ideal aptamers effectively.
Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the procedure is challenging and time-consuming. Moreover, the identified aptamers tend to be insufficient in stability, specificity, and affinity. Thus, only a handful of aptamers have entered the practical use stage. Recently, computational approaches have demonstrated a significant capacity to assist in the discovery of high-performance aptamers. This review discusses the advances achieved in several aspects of computational tools in this field, as well as the new progress in machine learning and deep learning, which are used in aptamer identification and optimization. To illustrate these computationally aided processes, aptamer selections against SARS-CoV-2 are discussed in detail as a case study. We hope that this review will aid and motivate researchers to develop and utilize more computational techniques to discover ideal aptamers effectively. •A comprehensive summary was provided on computational approaches for obtaining high-performance aptamers.•The supervised machine learning-based algorithms for identification and optimization of aptamers are well detailed.•The practical studies of structure modeling and binding surface inference for aptamers against SARS-CoV-2 were presented.
ArticleNumber 116767
Author Lin, Xin
Lin, Fanghe
Zhang, Peng
Zhang, Yinkun
Song, Jia
Sun, Miao
Zhang, Jialu
Sun, Di
Yang, Chaoyong
Author_xml – sequence: 1
  givenname: Di
  surname: Sun
  fullname: Sun, Di
  organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
– sequence: 2
  givenname: Miao
  surname: Sun
  fullname: Sun, Miao
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, And Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
– sequence: 3
  givenname: Jialu
  surname: Zhang
  fullname: Zhang, Jialu
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, And Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
– sequence: 4
  givenname: Xin
  surname: Lin
  fullname: Lin, Xin
  organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
– sequence: 5
  givenname: Yinkun
  surname: Zhang
  fullname: Zhang, Yinkun
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, And Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
– sequence: 6
  givenname: Fanghe
  surname: Lin
  fullname: Lin, Fanghe
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, And Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
– sequence: 7
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
– sequence: 8
  givenname: Chaoyong
  surname: Yang
  fullname: Yang, Chaoyong
  organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
– sequence: 9
  givenname: Jia
  surname: Song
  fullname: Song, Jia
  email: songjiajia2010@shsmu.edu.cn
  organization: Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
BookMark eNp9kEtLxDAUhYOM4MzoH3DVpZvWPPpIQBAZfMGAG12H2_QWMrRNTTKC_no7U1cuZnXhcr4D51uRxeAGJOSa0YxRVt7usujBZJxynjFWVmV1RpZMVioVLOcLspxCRaqUKC_IKoQdpbSkVC3J_cb14z5CtG6ALonOdSFpnU9gjNCjT2yDQ7StNcdIAkOTuDHa3v4cH5fkvIUu4NXfXZOPp8f3zUu6fXt-3TxsUyOUiqkxFDiTnEspK8hbQAWy5iKXgqkCaY0gEBpeiqIGnrO2ZHmuaF43hSmLQog1uZl7R-8-9xii7m0w2HUwoNsHzSsuGC2m-ikq56jxLgSPrTZ2Hjg5sp1mVB-c6Z0-ONMHZ3p2NqH8Hzp624P_Pg3dzRBO-78seh2MxcFgYz2aqBtnT-G_JgGHtQ
CitedBy_id crossref_primary_10_1016_j_omtn_2024_102358
crossref_primary_10_1016_j_omtn_2024_102436
crossref_primary_10_1016_j_talanta_2024_126226
crossref_primary_10_1080_17425247_2023_2292691
crossref_primary_10_3390_diagnostics14111100
crossref_primary_10_1007_s40242_024_4008_6
crossref_primary_10_1021_acs_analchem_3c02881
crossref_primary_10_1016_j_microc_2024_112326
crossref_primary_10_1016_j_jhazmat_2023_131995
crossref_primary_10_1021_acs_analchem_3c01194
crossref_primary_10_1021_acs_jctc_4c01246
crossref_primary_10_1016_j_microc_2024_110344
crossref_primary_10_3390_ijms24119249
crossref_primary_10_1016_j_cej_2023_147002
crossref_primary_10_1186_s12935_024_03295_4
crossref_primary_10_1186_s12859_023_05577_6
crossref_primary_10_1016_j_ab_2024_115756
crossref_primary_10_1080_17460441_2024_2412632
crossref_primary_10_1021_acs_jmedchem_3c01607
crossref_primary_10_1038_s43586_023_00238_7
crossref_primary_10_1016_j_sampre_2023_100083
crossref_primary_10_1007_s00425_025_04637_w
crossref_primary_10_1016_j_cels_2023_10_009
crossref_primary_10_1093_bib_bbad186
crossref_primary_10_1021_acs_analchem_4c03307
crossref_primary_10_1016_j_tifs_2024_104784
crossref_primary_10_1016_j_tifs_2023_02_012
crossref_primary_10_1039_D3PM00027C
crossref_primary_10_1080_10408398_2024_2436647
crossref_primary_10_1039_D3SC00439B
crossref_primary_10_1039_D3CS00774J
crossref_primary_10_1080_14712598_2024_2399148
Cites_doi 10.1016/j.bioorg.2020.104321
10.1021/ct700301q
10.1146/annurev-bioeng-082020-035644
10.1002/bit.27618
10.1093/nar/gkaa434
10.1093/bioinformatics/bts210
10.1016/j.biotechadv.2021.107902
10.1093/nar/gkt290
10.1093/nar/gkt904
10.1093/database/bas006
10.1002/jcc.21777
10.1016/j.jtbi.2020.110268
10.1038/s41586-021-03819-2
10.1186/1748-7188-6-26
10.1002/anie.202100225
10.3390/ijms18122516
10.1002/anie.202008663
10.1016/j.cels.2016.07.003
10.1093/nar/gkz1097
10.1155/2015/198363
10.1016/j.sbi.2019.12.016
10.2142/biophysico.16.0_287
10.1126/science.abe5650
10.1021/acs.jcim.1c00696
10.1093/nar/gks339
10.1021/jacs.1c08226
10.1186/gb-2014-15-1-r16
10.1093/bioinformatics/btu348
10.1007/s12195-020-00651-y
10.1093/nar/gkg599
10.1371/journal.pcbi.1009247
10.1021/acssynbio.0c00129
10.1016/j.omtn.2018.04.006
10.1038/s41467-019-12920-0
10.1016/j.biochi.2020.10.005
10.1038/mtna.2015.4
10.1016/j.jmb.2017.06.013
10.3390/molecules24203781
10.1096/fj.201902696
10.1039/C8AN01467A
10.1007/978-3-319-05269-4_9
10.1093/nar/gkq311
10.1021/acs.jctc.7b01169
10.1073/pnas.1009331107
10.1093/nar/gkp367
10.1093/bioinformatics/btaa054
10.1016/j.omtn.2021.06.014
10.1002/anie.202107730
10.1002/jcc.21596
10.1371/journal.pcbi.1003571
10.1038/s41598-021-82350-w
10.1038/s41598-021-85629-0
10.1002/anie.202100345
10.1016/j.ymeth.2016.03.010
10.1016/j.nantod.2022.101499
10.1021/acs.analchem.9b05203
10.1093/nar/gkaa1157
10.1016/j.csbj.2021.05.039
10.1093/nar/gkv308
10.1016/j.csbj.2020.08.017
10.1002/anie.202100316
10.1038/s41467-021-22555-9
10.1109/TCBB.2019.2951114
10.1016/j.ygeno.2020.02.013
10.1186/s12859-020-03574-7
10.1093/bioinformatics/btz087
10.1002/jcc.20290
10.1186/1471-2105-14-106
10.1007/978-1-4939-7231-9_1
10.15252/msb.20156651
10.1186/s12859-020-03607-1
10.1038/s41598-017-01348-5
10.1007/s00214-012-1138-6
10.1016/j.chemolab.2017.09.010
10.1186/1479-7364-8-8
10.1093/nar/gkl206
10.3390/pharmaceutics13060888
10.1038/nprot.2016.180
10.1517/17460441.2010.484460
10.1016/j.chempr.2021.05.021
10.1093/nar/gkl253
10.1038/nprot.2010.32
10.1093/nar/gkp287
10.3389/fmolb.2021.713003
10.1002/jcc.21334
10.1093/nar/9.1.133
10.1002/prot.10389
10.1371/journal.pone.0011955
10.3390/ijms22073605
10.1016/j.biochi.2018.06.002
10.1080/15257770.2021.1951754
10.3390/ph9040076
10.1126/scitranslmed.aav9760
10.1016/j.omtn.2020.11.016
10.1016/j.mbs.2019.01.009
10.1093/nar/gkaa484
10.1007/s11030-021-10192-9
10.1186/s12859-016-1087-5
10.1093/nar/gkg595
10.1093/nar/gkv1479
10.1021/acs.analchem.0c01394
10.1093/nar/gkv493
10.1038/srep33697
10.1016/j.ymeth.2016.04.011
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.trac.2022.116767
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-3142
ExternalDocumentID 10_1016_j_trac_2022_116767
S0165993622002503
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
WH7
WUQ
XFK
YK3
~02
~G-
~S-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
AEIPS
AFJKZ
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c399t-cc0a218228887a4fae9a8b23483195e0bea3ead2635ba241f6144904bd5c65533
IEDL.DBID .~1
ISSN 0165-9936
IngestDate Thu Jul 10 18:38:39 EDT 2025
Tue Jul 01 02:32:14 EDT 2025
Thu Apr 24 23:12:02 EDT 2025
Fri Feb 23 02:39:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AI
DL
SVM
Aptamer optimization
MFE
Deep learning
COVID-19
HT-SELEX
NLP
RF
Aptamer identification
Machine learning
MD
Bioinformatics
MDS
SELEX
ML
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-cc0a218228887a4fae9a8b23483195e0bea3ead2635ba241f6144904bd5c65533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2723105888
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2723105888
crossref_citationtrail_10_1016_j_trac_2022_116767
crossref_primary_10_1016_j_trac_2022_116767
elsevier_sciencedirect_doi_10_1016_j_trac_2022_116767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle TrAC, Trends in analytical chemistry (Regular ed.)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hoinka, Berezhnoy, Dao, Sauna, Gilboa, Przytycka (bib14) 2015; 43
Schmitz, Weber, Bayin, Breuers, Fieberg, Famulok, Mayer (bib117) 2021; 60
Iuchi, Matsutani, Yamada, Iwano, Sumi, Hosoda, Zhao, Fukunaga, Hamada (bib50) 2021; 19
Takahashi, Wu, Ho, Chomchan, Rossi, Burnett, Zhou (bib23) 2016; 6
Zadeh, Steenberg, Bois, Wolfe, Pierce, Khan, Dirks, Pierce (bib100) 2011; 32
Khoshbin, Housaindokht, Izadyar, Bozorgmehr, Verdian (bib13) 2021; 118
Kohlberger, Gadermaier (bib74) 2021
Sun, Wu, Zhang, Chen, Lu, Yang, Song (bib110) 2022; 44
Zhang, Chen, Liu, Jiang, Zhang, Lu, Zhang, Yu, Zhang (bib58) 2021
Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Zidek, Potapenko (bib119) 2021; 596
Iwano, Adachi, Aoki, Nakamura, Hamada, RaptGen (bib56) 2021
Zhang, Li, Gu, Amini, Stacey, Ang, White, Filipe, Mossman, Miller (bib112) 2022
Bellaousov, Reuter, Seetin, Mathews (bib64) 2013; 41
Torkamanian-Afshar, Nematzadeh, Tabarzad, Najafi, Lanjanian, Masoudi-Nejad (bib51) 2021; 25
Wang, Lamim Ribeiro, Tiwary (bib98) 2020; 61
Xie, You, Huang, Ni, Wang, Li, Yang, Zhang, Chen, Sun, Chen (bib124) 2020
Dao, Hoinka, Takahashi, Zhou, Ho, Wang, Costa, Rossi, Backofen, Burnett, Przytycka (bib26) 2016; 3
Shieh, Kratschmer, Maier, Greally, Levy, Golden (bib29) 2020; 36
Kato, Ono, Minagawa, Horii, Shiratori, Waga, Ito, Aoki (bib21) 2020; 21
Chen Z, Hu L, Zhang BT, Lu A, Wang Y, Yu Y, Zhang G: Artificial intelligence in aptamer-target binding prediction
Nguyen Quang, Perret, Duconge (bib8) 2016; 9
Kilgour, Liu, Walker, Ren, Simine (bib99) 2021; 61
Zhang, Wang, Xiao (bib76) 2020; 18
Hess, Kutzner, van der Spoel, Lindahl (bib96) 2008; 4
Hoinka, Berezhnoy, Sauna, Gilboa, Przytycka (bib19) 2014; 8394
Sun, Liu, Wei, Wan, Huang, Song, Lu, Weng, Lin, Chen (bib108) 2021; 60
Hira, Gillies (bib52) 2015; 2015
Case, Cheatham, Darden, Gohlke, Luo, Merz, Onufriev, Simmerling, Wang, Woods (bib95) 2005; 26
Sato, Hamada, Asai, Mituyama (bib66) 2009; 37
Song, Zheng, Huang, Wu, Wang, Zhu, Song, Yang (bib18) 2020; 92
Chang, Ayeni, Breuer, Torbett (bib103) 2010; 5
Cosconati, Forli, Perryman, Harris, Goodsell, Olson (bib91) 2010; 5
Xu, Wang, Wu, Guo, Song, Tian, Wang, Zhu, Yang (bib106) 2020; 16
Tanaka, Okuda, Kasahara, Obika (bib33) 2021; 23
Di Gioacchino, Procyk, Molari, Schreck, Zhou, Liu, Monasson, Cocco, Šulc (bib57) 2022
De La Fuente, Zilio, Caroli, Van Simaeys, Mazza, Ince, Bronte, Bicciato, Weed, Serafini (bib27) 2020; 12
Song, Liu, Zhang, Wu, Gao, Wang, Li, Song, Yang (bib118) 2021; 49
Yu, Alkhamis, Canoura, Liu, Xiao (bib15) 2021; 60
Zuker (bib38) 2003; 31
Int. J. Mol. Sci. 2021, 22.
Uemachi, Kasahara, Tanaka, Okuda, Yoneda, Obika (bib32) 2020; 105
Gupta, Anand, Jain, Goswami, Anantharaj, Patil, Singh, Kumar, Shrivastava, Bhatnagar (bib111) 2021; 26
Zhang, Lu, Jing, Wu, Piquemal, Ponder, Ren (bib101) 2018; 14
Fu, Cao, Wu, Peng, Nie, Xie (bib83) 2022
Cho, Xiao, Nie, Stewart, Csordas, Oh, Thomson, Soh (bib16) 2010; 107
Ishida, Adachi, Yokota, Yoshihara, Aoki, Nakamura, Hamada (bib36) 2020; 48
Patro, Kumar, Kolimi, Rathinavelan (bib79) 2017; 429
Puig Lombardi, Londono-Vallejo (bib69) 2020; 48
Kinghorn, Fraser, Lang, Shiu, Tanner (bib5) 2017; 18
Cai, Yan, Xiong, Liu, Peng, Liu (bib2) 2018; 143
Zhang, Zhang, Gao, Yang, Song (bib121) 2016; 17
Wu, Chattree, Ren (bib102) 2012; 131
Zhao, Zhao, Fan, Yuan, Mao, Yao (bib82) 2021
Liu, Wang, Wu, Qi, Zeng, Wan, Chen, Manandhar, Cavener, Boyle (bib114) 2021; 60
Cleri, Lensink, Blossey (bib113) 2021; 8
Chen, Li, Weng (bib87) 2003; 52
Hofacker (bib63) 2003; 31
Emami, Ferdousi (bib46) 2021; 11
Angermueller, Parnamaa, Parts, Stegle (bib49) 2016; 12
de Vries, van Dijk, Bonvin (bib89) 2010; 5
Kacherovsky, Yang, Dang, Cheng, Cardle, Walls, McCallum, Sellers, DiMaio, Salipante (bib123) 2021; 60
Weitzner, Jeliazkov, Lyskov, Marze, Kuroda, Frick, Adolf-Bryfogle, Biswas, Dunbrack, Gray (bib88) 2017; 12
Torkamanian-Afshar, Lanjanian, Nematzadeh, Tabarzad, Najafi, Kiani, Masoudi-Nejad (bib42) 2020; 112
Volk, Lourentzou, Mishra, Vo, Zhai, Zhao (bib10) 2020; 9
Lee, Han (bib122) 2020; 17
Macindoe, Mavridis, Venkatraman, Devignes, Ritchie (bib85) 2010; 38
Ruiz-Carmona, Alvarez-Garcia, Foloppe, Garmendia-Doval, Juhos, Schmidtke, Barril, Hubbard, Morley (bib104) 2014; 10
Yang, Wang, Yu, Yang, Guo, Tang, Jiang, Yu (bib53) 2017; 170
Zhao, Xu, Chen (bib65) 2017; 1654
Boniecki, Lach, Dawson, Tomala, Lukasz, Soltysinski, Rother, Bujnicki (bib77) 2016; 44
Lorenz, Bernhart, Honer Zu Siederdissen, Tafer, Flamm, Stadler, Hofacker (bib67) 2011; 6
Biesiada, Pachulska-Wieczorek, Adamiak, Purzycka (bib75) 2016; 103
Ahmad, Zulkifli, Hussin, Nadri (bib11) 2021
Emami, Pakchin, Ferdousi (bib9) 2020; 497
Zhou (bib93) 2021
Jiang, Meyer, Hou, Propson, Soh, Thomson, Stewart, Mpbind (bib25) 2014; 30
Sun, Liu, Song, Chen, Zhang, Huang, Wan, Lu, Chen, Tan (bib109) 2021; 143
Stanciu, Wei, Barui, Mohammad (bib3) 2021; 23
Afanasyeva, Nagao, Mizuguchi (bib62) 2019; 16
Valero, Civit, Dupont, Selnihhin, Reinert, Idorn, Israels, Bednarz, Bus, Asbach (bib116) 2021
Frees, Menendez, Crum, Bagga, Qgrs-Conserve (bib40) 2014; 8
Hoinka, Zotenko, Friedman, Sauna, Przytycka (bib24) 2012; 28
Rosch, Neal, Balikov, Rahim, Lippmann (bib34) 2020; 13
Li, Ma, Li, Gu (bib44) 2020; 21
Kikin, D'Antonio, Bagga, Mapper (bib70) 2006; 34
Klingler, Ashley, Shi, Stiefvater, Kyba, Sinnreich, Aihara, Kinter (bib31) 2020; 34
Yang, Jia, Li (bib47) 2019; 311
Jeddi, Saiz (bib81) 2017; 7
Komarova, Barkova, Kuznetsov (bib4) 2020
Jalili, Afgan, Gu, Clements, Blankenberg, Goecks, Taylor, Nekrutenko (bib28) 2020; 48
Lee, Jang, Kang, Song (bib48) 2021
Hoinka, Przytycka (bib30) 2016; 106
Townshend, Eismann, Watkins, Rangan, Karelina, Das, Dror (bib84) 2021; 373
Song, Song, Wei, Huang, Sun, Zhu, Lin, Shen, Zhu, Yang (bib107) 2020; 92
Zuker, Stiegler (bib39) 1981; 9
Buglak, Samokhvalov, Zherdev, Dzantiev (bib1) 2020
Heredia, Roche-Lima, Pares-Matos (bib45) 2021; 17
Navien, Thevendran, Hamdani, Tang, Citartan (bib12) 2021; 180
Hoinka, Backofen, Przytycka (bib20) 2018; 11
Fukunaga, Ozaki, Terai, Asai, Iwasaki, Kiryu (bib37) 2014; 15
Tovchigrechko, Vakser (bib86) 2006; 34
Qi, Duan, Khan, Dong, Zhang, Wu, Wang (bib60) 2022; 55
Alam, Chang, Burke (bib17) 2015; 4
Kramer, Gruenke, Alam, Xu, Burke (bib22) 2022
Amano, Namekata, Horiuchi, Saso, Yanagisawa, Tanaka, Ghani, Yamamoto, Sakamoto (bib61) 2021; 11
Escamilla-Gutierrez, Ribas-Aparicio, Cordova-Espinoza, Castelan-Vega (bib105) 2021; 40
Lam, Li, Zhu, Umarov, Jiang, Heliou, Sheong, Liu, Long, Li (bib54) 2019; 10
Denning, Priyakumar, Nilsson, Mackerell (bib94) 2011; 32
Li, Zhang, Huang, Cui, Zhang, Cai (bib120) 2014; 9
Roxo, Kotkowiak, Pasternak (bib68) 2019; 24
van Dijk, Bonvin (bib78) 2009; 37
Ferreira-Bravo, DeStefano (bib115) 2021; 13
Trott, Olson, Vina (bib92) 2010; 31
Manigrasso, Marcia, De Vivo (bib97) 2021; 7
Beaudoin, Jodoin, Perreault (bib72) 2014; 42
Brazda, Kolomaznik, Lysek, Bartas, Fojta, Stastny, Mergny (bib71) 2019; 35
Iwano, Adachi, Aoki, Nakamura, Hamada (bib55) 2022
Popenda, Szachniuk, Antczak, Purzycka, Lukasiak, Bartol, Blazewicz, Adamiak (bib80) 2012; 40
Cruz-Toledo, McKeague, Zhang, Giamberardino, McConnell, Francis, DeRosa, Dumontier (bib41) 2012; 2012
Tuszynska, Magnus, Jonak, Dawson, Bujnicki (bib90) 2015; 43
Blagus, Lusa (bib43) 2013; 14
Bashir, Yang, Wang, Hoyer, Chou, McLean, Davis, Gong, Armstrong, Jang (bib7) 2021; 12
Cai, Yan, Xiong, Liu, Peng, Liu (bib59) 2018; 143
Garant, Perreault, Scott (bib73) 2018; 151
Uemachi, Kasahara, Tanaka, Okuda, Yoneda, Obika (bib35) 2021; 13
Zhang (10.1016/j.trac.2022.116767_bib58) 2021
Macindoe (10.1016/j.trac.2022.116767_bib85) 2010; 38
Zhang (10.1016/j.trac.2022.116767_bib112) 2022
Ferreira-Bravo (10.1016/j.trac.2022.116767_bib115) 2021; 13
Brazda (10.1016/j.trac.2022.116767_bib71) 2019; 35
Weitzner (10.1016/j.trac.2022.116767_bib88) 2017; 12
Patro (10.1016/j.trac.2022.116767_bib79) 2017; 429
Yang (10.1016/j.trac.2022.116767_bib53) 2017; 170
Zadeh (10.1016/j.trac.2022.116767_bib100) 2011; 32
Emami (10.1016/j.trac.2022.116767_bib46) 2021; 11
Nguyen Quang (10.1016/j.trac.2022.116767_bib8) 2016; 9
Stanciu (10.1016/j.trac.2022.116767_bib3) 2021; 23
Di Gioacchino (10.1016/j.trac.2022.116767_bib57) 2022
Cosconati (10.1016/j.trac.2022.116767_bib91) 2010; 5
Hess (10.1016/j.trac.2022.116767_bib96) 2008; 4
Sun (10.1016/j.trac.2022.116767_bib109) 2021; 143
Jiang (10.1016/j.trac.2022.116767_bib25) 2014; 30
Zhao (10.1016/j.trac.2022.116767_bib65) 2017; 1654
Dao (10.1016/j.trac.2022.116767_bib26) 2016; 3
Song (10.1016/j.trac.2022.116767_bib107) 2020; 92
10.1016/j.trac.2022.116767_bib6
Zhang (10.1016/j.trac.2022.116767_bib121) 2016; 17
Xu (10.1016/j.trac.2022.116767_bib106) 2020; 16
Kramer (10.1016/j.trac.2022.116767_bib22) 2022
Tanaka (10.1016/j.trac.2022.116767_bib33) 2021; 23
Rosch (10.1016/j.trac.2022.116767_bib34) 2020; 13
Iwano (10.1016/j.trac.2022.116767_bib56) 2021
Yu (10.1016/j.trac.2022.116767_bib15) 2021; 60
Fu (10.1016/j.trac.2022.116767_bib83) 2022
Wang (10.1016/j.trac.2022.116767_bib98) 2020; 61
Xie (10.1016/j.trac.2022.116767_bib124) 2020
De La Fuente (10.1016/j.trac.2022.116767_bib27) 2020; 12
Jeddi (10.1016/j.trac.2022.116767_bib81) 2017; 7
Zuker (10.1016/j.trac.2022.116767_bib38) 2003; 31
Hoinka (10.1016/j.trac.2022.116767_bib20) 2018; 11
Jalili (10.1016/j.trac.2022.116767_bib28) 2020; 48
Torkamanian-Afshar (10.1016/j.trac.2022.116767_bib51) 2021; 25
Khoshbin (10.1016/j.trac.2022.116767_bib13) 2021; 118
Popenda (10.1016/j.trac.2022.116767_bib80) 2012; 40
Kohlberger (10.1016/j.trac.2022.116767_bib74) 2021
Cai (10.1016/j.trac.2022.116767_bib2) 2018; 143
Uemachi (10.1016/j.trac.2022.116767_bib35) 2021; 13
Kinghorn (10.1016/j.trac.2022.116767_bib5) 2017; 18
Lam (10.1016/j.trac.2022.116767_bib54) 2019; 10
Schmitz (10.1016/j.trac.2022.116767_bib117) 2021; 60
Tovchigrechko (10.1016/j.trac.2022.116767_bib86) 2006; 34
Hoinka (10.1016/j.trac.2022.116767_bib19) 2014; 8394
Tuszynska (10.1016/j.trac.2022.116767_bib90) 2015; 43
Qi (10.1016/j.trac.2022.116767_bib60) 2022; 55
Chang (10.1016/j.trac.2022.116767_bib103) 2010; 5
Sun (10.1016/j.trac.2022.116767_bib110) 2022; 44
Beaudoin (10.1016/j.trac.2022.116767_bib72) 2014; 42
Zuker (10.1016/j.trac.2022.116767_bib39) 1981; 9
Ahmad (10.1016/j.trac.2022.116767_bib11) 2021
Puig Lombardi (10.1016/j.trac.2022.116767_bib69) 2020; 48
Cai (10.1016/j.trac.2022.116767_bib59) 2018; 143
Garant (10.1016/j.trac.2022.116767_bib73) 2018; 151
Wu (10.1016/j.trac.2022.116767_bib102) 2012; 131
Alam (10.1016/j.trac.2022.116767_bib17) 2015; 4
Hoinka (10.1016/j.trac.2022.116767_bib30) 2016; 106
Li (10.1016/j.trac.2022.116767_bib120) 2014; 9
Cho (10.1016/j.trac.2022.116767_bib16) 2010; 107
Sato (10.1016/j.trac.2022.116767_bib66) 2009; 37
Afanasyeva (10.1016/j.trac.2022.116767_bib62) 2019; 16
Song (10.1016/j.trac.2022.116767_bib118) 2021; 49
Jumper (10.1016/j.trac.2022.116767_bib119) 2021; 596
van Dijk (10.1016/j.trac.2022.116767_bib78) 2009; 37
Boniecki (10.1016/j.trac.2022.116767_bib77) 2016; 44
Blagus (10.1016/j.trac.2022.116767_bib43) 2013; 14
Kikin (10.1016/j.trac.2022.116767_bib70) 2006; 34
Kato (10.1016/j.trac.2022.116767_bib21) 2020; 21
Case (10.1016/j.trac.2022.116767_bib95) 2005; 26
Ruiz-Carmona (10.1016/j.trac.2022.116767_bib104) 2014; 10
Valero (10.1016/j.trac.2022.116767_bib116) 2021
Roxo (10.1016/j.trac.2022.116767_bib68) 2019; 24
Hira (10.1016/j.trac.2022.116767_bib52) 2015; 2015
Cleri (10.1016/j.trac.2022.116767_bib113) 2021; 8
Komarova (10.1016/j.trac.2022.116767_bib4) 2020
Amano (10.1016/j.trac.2022.116767_bib61) 2021; 11
Zhang (10.1016/j.trac.2022.116767_bib101) 2018; 14
Angermueller (10.1016/j.trac.2022.116767_bib49) 2016; 12
Sun (10.1016/j.trac.2022.116767_bib108) 2021; 60
Manigrasso (10.1016/j.trac.2022.116767_bib97) 2021; 7
Yang (10.1016/j.trac.2022.116767_bib47) 2019; 311
Biesiada (10.1016/j.trac.2022.116767_bib75) 2016; 103
Lee (10.1016/j.trac.2022.116767_bib122) 2020; 17
Zhang (10.1016/j.trac.2022.116767_bib76) 2020; 18
Gupta (10.1016/j.trac.2022.116767_bib111) 2021; 26
Cruz-Toledo (10.1016/j.trac.2022.116767_bib41) 2012; 2012
Hoinka (10.1016/j.trac.2022.116767_bib14) 2015; 43
Ishida (10.1016/j.trac.2022.116767_bib36) 2020; 48
Frees (10.1016/j.trac.2022.116767_bib40) 2014; 8
Torkamanian-Afshar (10.1016/j.trac.2022.116767_bib42) 2020; 112
de Vries (10.1016/j.trac.2022.116767_bib89) 2010; 5
Takahashi (10.1016/j.trac.2022.116767_bib23) 2016; 6
Song (10.1016/j.trac.2022.116767_bib18) 2020; 92
Hoinka (10.1016/j.trac.2022.116767_bib24) 2012; 28
Uemachi (10.1016/j.trac.2022.116767_bib32) 2020; 105
Bashir (10.1016/j.trac.2022.116767_bib7) 2021; 12
Chen (10.1016/j.trac.2022.116767_bib87) 2003; 52
Lorenz (10.1016/j.trac.2022.116767_bib67) 2011; 6
Kilgour (10.1016/j.trac.2022.116767_bib99) 2021; 61
Iwano (10.1016/j.trac.2022.116767_bib55) 2022
Townshend (10.1016/j.trac.2022.116767_bib84) 2021; 373
Iuchi (10.1016/j.trac.2022.116767_bib50) 2021; 19
Lee (10.1016/j.trac.2022.116767_bib48) 2021
Fukunaga (10.1016/j.trac.2022.116767_bib37) 2014; 15
Zhao (10.1016/j.trac.2022.116767_bib82) 2021
Escamilla-Gutierrez (10.1016/j.trac.2022.116767_bib105) 2021; 40
Bellaousov (10.1016/j.trac.2022.116767_bib64) 2013; 41
Liu (10.1016/j.trac.2022.116767_bib114) 2021; 60
Li (10.1016/j.trac.2022.116767_bib44) 2020; 21
Denning (10.1016/j.trac.2022.116767_bib94) 2011; 32
Buglak (10.1016/j.trac.2022.116767_bib1) 2020
Volk (10.1016/j.trac.2022.116767_bib10) 2020; 9
Hofacker (10.1016/j.trac.2022.116767_bib63) 2003; 31
Emami (10.1016/j.trac.2022.116767_bib9) 2020; 497
Shieh (10.1016/j.trac.2022.116767_bib29) 2020; 36
Heredia (10.1016/j.trac.2022.116767_bib45) 2021; 17
Zhou (10.1016/j.trac.2022.116767_bib93) 2021
Kacherovsky (10.1016/j.trac.2022.116767_bib123) 2021; 60
Navien (10.1016/j.trac.2022.116767_bib12) 2021; 180
Klingler (10.1016/j.trac.2022.116767_bib31) 2020; 34
Trott (10.1016/j.trac.2022.116767_bib92) 2010; 31
References_xml – volume: 373
  start-page: 1047
  year: 2021
  end-page: 1051
  ident: bib84
  article-title: Geometric deep learning of RNA structure
  publication-title: Science
– volume: 1654
  start-page: 3
  year: 2017
  end-page: 15
  ident: bib65
  article-title: Predicting RNA structure with Vfold
  publication-title: Methods Mol. Biol.
– volume: 13
  start-page: 559
  year: 2020
  end-page: 574
  ident: bib34
  article-title: CRISPR-mediated isogenic cell-SELEX approach for generating highly specific aptamers against native membrane proteins
  publication-title: Cell. Mol. Bioeng.
– volume: 44
  start-page: e63
  year: 2016
  ident: bib77
  article-title: SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction
  publication-title: Nucleic Acids Res.
– volume: 143
  start-page: 5317
  year: 2018
  end-page: 5338
  ident: bib2
  article-title: Investigations on the interface of nucleic acid aptamers and binding targets
  publication-title: Analyst
– volume: 103
  start-page: 120
  year: 2016
  end-page: 127
  ident: bib75
  article-title: RNAComposer and RNA 3D structure prediction for nanotechnology
  publication-title: Methods
– volume: 12
  year: 2020
  ident: bib27
  article-title: Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy
  publication-title: Sci. Transl. Med.
– start-page: 105
  year: 2021
  ident: bib11
  article-title: In silico approach for Post-SELEX DNA aptamers: a mini-review
  publication-title: J. Mol. Graph. Model.
– start-page: 1
  year: 2022
  end-page: 9
  ident: bib55
  article-title: Generative aptamer discovery using RaptGen
  publication-title: Nature Computational Science
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  ident: bib92
  article-title: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
– volume: 429
  start-page: 2438
  year: 2017
  end-page: 2448
  ident: bib79
  article-title: 3D-NuS: a web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures
  publication-title: J. Mol. Biol.
– volume: 60
  start-page: 16800
  year: 2021
  end-page: 16823
  ident: bib15
  article-title: Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 30
  start-page: 2665
  year: 2014
  end-page: 2667
  ident: bib25
  article-title: A Meta-motif-based statistical framework and pipeline to Predict Binding potential of SELEX-derived aptamers
  publication-title: Bioinformatics
– volume: 12
  start-page: 401
  year: 2017
  end-page: 416
  ident: bib88
  article-title: Modeling and docking of antibody structures with Rosetta
  publication-title: Nat. Protoc.
– volume: 180
  start-page: 54
  year: 2021
  end-page: 67
  ident: bib12
  article-title: In silico molecular docking in DNA aptamer development
  publication-title: Biochimie
– volume: 60
  start-page: 10279
  year: 2021
  end-page: 10285
  ident: bib117
  article-title: A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism∗∗
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 10273
  year: 2021
  end-page: 10278
  ident: bib114
  article-title: Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection
  publication-title: Angew. Chem. Int. Ed.
– volume: 106
  start-page: 82
  year: 2016
  end-page: 85
  ident: bib30
  article-title: AptaPLEX - a dedicated, multithreaded demultiplexer for HT-SELEX data
  publication-title: Methods
– volume: 26
  start-page: 1668
  year: 2005
  end-page: 1688
  ident: bib95
  article-title: The Amber biomolecular simulation programs
  publication-title: J. Comput. Chem.
– volume: 49
  year: 2021
  ident: bib118
  article-title: Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
  publication-title: Nucleic Acids Res.
– start-page: 1
  year: 2021
  end-page: 22
  ident: bib74
  article-title: SELEX: critical factors and optimization strategies for successful aptamer selection
  publication-title: Biotechnol. Appl. Biochem.
– volume: 15
  start-page: R16
  year: 2014
  ident: bib37
  article-title: CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data
  publication-title: Genome Biol.
– volume: 17
  year: 2021
  ident: bib45
  article-title: A novel artificial intelligence-based approach for identification of deoxynucleotide aptamers
  publication-title: PLoS Comput. Biol.
– volume: 24
  year: 2019
  ident: bib68
  article-title: G-Quadruplex-Forming aptamers-characteristics, applications, and perspectives
  publication-title: Molecules
– volume: 34
  start-page: W310
  year: 2006
  end-page: W314
  ident: bib86
  article-title: GRAMM-X public web server for protein–protein docking
  publication-title: Nucleic Acids Res.
– volume: 32
  start-page: 1929
  year: 2011
  end-page: 1943
  ident: bib94
  article-title: Impact of 2'-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA
  publication-title: J. Comput. Chem.
– volume: 31
  start-page: 3406
  year: 2003
  end-page: 3415
  ident: bib38
  article-title: Mfold web server for nucleic acid folding and hybridization prediction
  publication-title: Nucleic Acids Res.
– volume: 16
  year: 2020
  ident: bib106
  article-title: Microfluidic single-cell omics analysis
  publication-title: Small
– volume: 5
  start-page: 883
  year: 2010
  end-page: 897
  ident: bib89
  article-title: The HADDOCK web server for data-driven biomolecular docking
  publication-title: Nat. Protoc.
– volume: 8394
  start-page: 115
  year: 2014
  end-page: 128
  ident: bib19
  article-title: AptaCluster - a method to cluster HT-SELEX aptamer pools and lessons from its application
  publication-title: Res Comput Mol Biol
– volume: 42
  start-page: 1209
  year: 2014
  end-page: 1223
  ident: bib72
  article-title: New scoring system to identify RNA G-quadruplex folding
  publication-title: Nucleic Acids Res.
– volume: 92
  start-page: 9895
  year: 2020
  end-page: 9900
  ident: bib107
  article-title: Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein
  publication-title: Anal. Chem.
– volume: 44
  year: 2022
  ident: bib110
  article-title: Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape
  publication-title: Nano Today
– volume: 23
  start-page: 433
  year: 2021
  end-page: 459
  ident: bib3
  article-title: Recent advances in aptamer-based biosensors for global health applications
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 4
  start-page: 435
  year: 2008
  end-page: 447
  ident: bib96
  article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation
  publication-title: J. Chem. Theor. Comput.
– reference: Int. J. Mol. Sci. 2021, 22.
– volume: 92
  start-page: 3307
  year: 2020
  end-page: 3314
  ident: bib18
  article-title: A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning
  publication-title: Anal. Chem.
– volume: 2015
  year: 2015
  ident: bib52
  article-title: A review of feature selection and feature extraction methods applied on microarray data
  publication-title: Adv Bioinformatics
– volume: 8
  year: 2021
  ident: bib113
  article-title: DNA aptamers block the receptor binding domain at the spike protein of SARS-CoV-2
  publication-title: Front. Mol. Biosci.
– volume: 8
  start-page: 8
  year: 2014
  ident: bib40
  article-title: A computational method for discovering evolutionarily conserved G-quadruplex motifs
  publication-title: Hum. Genom.
– volume: 311
  start-page: 103
  year: 2019
  end-page: 108
  ident: bib47
  article-title: Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier
  publication-title: Math. Biosci.
– volume: 36
  start-page: 2905
  year: 2020
  end-page: 2906
  ident: bib29
  article-title: AptCompare: optimized de novo motif discovery of RNA aptamers via HTS-SELEX
  publication-title: Bioinformatics
– volume: 13
  year: 2021
  ident: bib35
  article-title: Hybrid-type SELEX for the selection of artificial nucleic acid aptamers exhibiting cell internalization activity
  publication-title: Pharmaceutics
– volume: 2012
  year: 2012
  ident: bib41
  article-title: Aptamer Base: a collaborative knowledge base to describe aptamers and SELEX experiments
  publication-title: Database
– volume: 112
  start-page: 2623
  year: 2020
  end-page: 2632
  ident: bib42
  article-title: RPINBASE: an online toolbox to extract features for predicting RNA-protein interactions
  publication-title: Genomics
– volume: 3
  start-page: 62
  year: 2016
  end-page: 70
  ident: bib26
  article-title: AptaTRACE elucidates RNA sequence-structure motifs from selection trends in HT-SELEX experiments
  publication-title: Cell Syst
– volume: 34
  start-page: 4573
  year: 2020
  end-page: 4590
  ident: bib31
  article-title: DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD
  publication-title: Faseb. J.
– volume: 9
  start-page: 133
  year: 1981
  end-page: 148
  ident: bib39
  article-title: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information
  publication-title: Nucleic Acids Res.
– volume: 43
  start-page: W425
  year: 2015
  end-page: W430
  ident: bib90
  article-title: NPDock: a web server for protein-nucleic acid docking
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 287
  year: 2019
  end-page: 294
  ident: bib62
  article-title: Prediction of the secondary structure of short DNA aptamers
  publication-title: Biophys Physicobiol
– volume: 13
  year: 2021
  ident: bib115
  article-title: Xeno-nucleic acid (XNA) 2'-fluoro-arabino nucleic acid (FANA) aptamers to the receptor-binding domain of SARS-CoV-2 S protein block ACE2 binding
  publication-title: Viruses-Basel
– volume: 26
  start-page: 321
  year: 2021
  end-page: 332
  ident: bib111
  article-title: A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2
  publication-title: Mol. Ther. Nucleic Acids
– volume: 32
  start-page: 170
  year: 2011
  end-page: 173
  ident: bib100
  article-title: NUPACK: analysis and design of nucleic acid systems
  publication-title: J. Comput. Chem.
– start-page: 1
  year: 2022
  end-page: 25
  ident: bib57
  article-title: Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection
  publication-title: bioRxiv
– volume: 21
  start-page: 236
  year: 2020
  ident: bib44
  article-title: PPAI: a web server for predicting protein-aptamer interactions
  publication-title: BMC Bioinf.
– volume: 48
  start-page: e82
  year: 2020
  ident: bib36
  article-title: RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information
  publication-title: Nucleic Acids Res.
– volume: 7
  year: 2017
  ident: bib81
  article-title: Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors
  publication-title: Sci. Rep.
– start-page: 21
  year: 2020
  ident: bib1
  article-title: Methods and applications of in silico aptamer design and modeling
  publication-title: Int. J. Mol. Sci.
– volume: 118
  start-page: 555
  year: 2021
  end-page: 578
  ident: bib13
  article-title: Recent advances in computational methods for biosensor design
  publication-title: Biotechnol. Bioeng.
– reference: Chen Z, Hu L, Zhang BT, Lu A, Wang Y, Yu Y, Zhang G: Artificial intelligence in aptamer-target binding prediction
– start-page: 50
  year: 2022
  ident: bib83
  article-title: UFold: fast and accurate RNA secondary structure prediction with deep learning
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 2976
  year: 2021
  ident: bib61
  article-title: Specific inhibition of FGF5-induced cell proliferation by RNA aptamers
  publication-title: Sci. Rep.
– volume: 4
  year: 2015
  ident: bib17
  article-title: FASTAptamer: a bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections
  publication-title: Mol. Ther. Nucleic Acids
– volume: 40
  start-page: 798
  year: 2021
  end-page: 807
  ident: bib105
  article-title: In silico strategies for modeling RNA aptamers and predicting binding sites of their molecular targets
  publication-title: Nucleos Nucleot. Nucleic Acids
– volume: 55
  year: 2022
  ident: bib60
  article-title: Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment
  publication-title: Biotechnol. Adv.
– volume: 34
  start-page: W676
  year: 2006
  end-page: W682
  ident: bib70
  article-title: A web-based server for predicting G-quadruplexes in nucleotide sequences
  publication-title: Nucleic Acids Res.
– year: 2021
  ident: bib93
  article-title: Theoretical and Computational Modeling of Rna-Ligand Interactions
– volume: 25
  start-page: 1395
  year: 2021
  end-page: 1407
  ident: bib51
  article-title: In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm
  publication-title: Mol. Divers.
– volume: 21
  start-page: 263
  year: 2020
  ident: bib21
  article-title: FSBC: fast string-based clustering for HT-SELEX data
  publication-title: BMC Bioinf.
– volume: 18
  start-page: 2416
  year: 2020
  end-page: 2423
  ident: bib76
  article-title: 3dRNA: building RNA 3D structure with improved template library
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 61
  start-page: 139
  year: 2020
  end-page: 145
  ident: bib98
  article-title: Machine learning approaches for analyzing and enhancing molecular dynamics simulations
  publication-title: Curr. Opin. Struct. Biol.
– volume: 7
  start-page: 2965
  year: 2021
  end-page: 2988
  ident: bib97
  article-title: Computer-aided design of RNA-targeted small molecules: a growing need in drug discovery
  publication-title: Chem
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: bib119
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 105
  year: 2020
  ident: bib32
  article-title: Discovery of cell-internalizing artificial nucleic acid aptamers for lung fibroblasts and targeted drug delivery
  publication-title: Bioorg. Chem.
– volume: 10
  year: 2014
  ident: bib104
  article-title: rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids
  publication-title: PLoS Comput. Biol.
– volume: 38
  start-page: W445
  year: 2010
  end-page: W449
  ident: bib85
  article-title: HexServer: an FFT-based protein docking server powered by graphics processors
  publication-title: Nucleic Acids Res.
– volume: 497
  year: 2020
  ident: bib9
  article-title: Computational predictive approaches for interaction and structure of aptamers
  publication-title: J. Theor. Biol.
– volume: 40
  start-page: e112
  year: 2012
  ident: bib80
  article-title: Automated 3D structure composition for large RNAs
  publication-title: Nucleic Acids Res.
– start-page: 11
  year: 2020
  ident: bib124
  article-title: 3D-printed integrative probeheads for magnetic resonance
  publication-title: Nat. Commun.
– volume: 12
  start-page: 878
  year: 2016
  ident: bib49
  article-title: Deep learning for computational biology
  publication-title: Mol. Syst. Biol.
– start-page: 22
  year: 2021
  ident: bib58
  article-title: Structural biology for the molecular insight between aptamers and target proteins
  publication-title: Int. J. Mol. Sci.
– volume: 28
  start-page: i215
  year: 2012
  end-page: i223
  ident: bib24
  article-title: Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers
  publication-title: Bioinformatics
– volume: 31
  start-page: 3429
  year: 2003
  end-page: 3431
  ident: bib63
  article-title: Vienna RNA secondary structure server
  publication-title: Nucleic Acids Res.
– start-page: 17
  year: 2021
  ident: bib82
  article-title: Review of machine learning methods for RNA secondary structure prediction
  publication-title: PLoS Comput. Biol.
– volume: 143
  start-page: 21541
  year: 2021
  end-page: 21548
  ident: bib109
  article-title: Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape
  publication-title: J. Am. Chem. Soc.
– volume: 151
  start-page: 115
  year: 2018
  end-page: 118
  ident: bib73
  article-title: G4RNA screener web server: user focused interface for RNA G-quadruplex prediction
  publication-title: Biochimie
– volume: 131
  start-page: 1138
  year: 2012
  ident: bib102
  article-title: Automation of AMOEBA polarizable force field parameterization for small molecules
  publication-title: Theor. Chem. Acc.
– volume: 17
  start-page: 1476
  year: 2020
  end-page: 1482
  ident: bib122
  article-title: Constructive prediction of potential RNA aptamers for a protein target
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
– volume: 5
  start-page: 597
  year: 2010
  end-page: 607
  ident: bib91
  article-title: Virtual screening with AutoDock: theory and practice
  publication-title: Expet Opin. Drug Discov.
– volume: 10
  start-page: 4941
  year: 2019
  ident: bib54
  article-title: A deep learning framework to predict binding preference of RNA constituents on protein surface
  publication-title: Nat. Commun.
– volume: 41
  start-page: W471
  year: 2013
  end-page: W474
  ident: bib64
  article-title: RNAstructure: web servers for RNA secondary structure prediction and analysis
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 2084
  year: 2018
  end-page: 2108
  ident: bib101
  article-title: AMOEBA polarizable atomic multipole force field for nucleic acids
  publication-title: J. Chem. Theor. Comput.
– volume: 9
  year: 2014
  ident: bib120
  article-title: Prediction of aptamer-target interacting pairs with pseudo-amino acid composition
  publication-title: PLoS One
– volume: 143
  start-page: 5317
  year: 2018
  end-page: 5338
  ident: bib59
  article-title: Investigations on the interface of nucleic acid aptamers and binding targets
  publication-title: Analyst
– start-page: 28
  year: 2022
  ident: bib112
  article-title: A universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern
  publication-title: Chem.--Eur. J.
– start-page: 1
  year: 2022
  end-page: 19
  ident: bib22
  article-title: FASTAptameR 2.0: a web tool for combinatorial sequence selections
  publication-title: bioRxiv
– volume: 52
  start-page: 80
  year: 2003
  end-page: 87
  ident: bib87
  article-title: ZDOCK: an initial-stage protein-docking algorithm
  publication-title: Proteins
– volume: 14
  start-page: 106
  year: 2013
  ident: bib43
  article-title: SMOTE for high-dimensional class-imbalanced data
  publication-title: BMC Bioinf.
– volume: 60
  start-page: 21211
  year: 2021
  end-page: 21215
  ident: bib123
  article-title: Discovery and characterization of spike N-terminal domain-binding aptamers for rapid SARS-CoV-2 detection
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1514
  year: 2020
  end-page: 1533
  ident: bib10
  article-title: Biosystems design by machine learning
  publication-title: ACS Synth. Biol.
– volume: 12
  start-page: 2366
  year: 2021
  ident: bib7
  article-title: Machine learning guided aptamer refinement and discovery
  publication-title: Nat. Commun.
– volume: 5
  year: 2010
  ident: bib103
  article-title: Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina
  publication-title: PLoS One
– volume: 48
  start-page: W395
  year: 2020
  end-page: W402
  ident: bib28
  article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update
  publication-title: Nucleic Acids Res.
– volume: 48
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib69
  article-title: A guide to computational methods for G-quadruplex prediction
  publication-title: Nucleic Acids Res.
– volume: 37
  start-page: W277
  year: 2009
  end-page: W280
  ident: bib66
  article-title: CENTROIDFOLD: a web server for RNA secondary structure prediction
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 3198
  year: 2021
  end-page: 3208
  ident: bib50
  article-title: Representation learning applications in biological sequence analysis
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 9
  year: 2016
  ident: bib8
  article-title: Applications of high-throughput sequencing for in vitro selection and characterization of aptamers
  publication-title: Pharmaceuticals
– volume: 11
  start-page: 6074
  year: 2021
  ident: bib46
  article-title: AptaNet as a deep learning approach for aptamer-protein interaction prediction
  publication-title: Sci. Rep.
– volume: 17
  year: 2016
  ident: bib121
  article-title: Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes
  publication-title: BMC Bioinf.
– start-page: 118
  year: 2021
  ident: bib116
  article-title: A Serum-Stable RNA Aptamer Specific for SARS-CoV-2 Neutralizes Viral Entry
– volume: 6
  year: 2016
  ident: bib23
  article-title: High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency
  publication-title: Sci. Rep.
– volume: 37
  start-page: W235
  year: 2009
  end-page: W239
  ident: bib78
  article-title: 3D-DART: a DNA structure modelling server
  publication-title: Nucleic Acids Res.
– volume: 107
  start-page: 15373
  year: 2010
  end-page: 15378
  ident: bib16
  article-title: Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 16
  year: 2021
  ident: bib48
  article-title: Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach
  publication-title: PLoS One
– volume: 35
  start-page: 3493
  year: 2019
  end-page: 3495
  ident: bib71
  article-title: G4Hunter web application: a web server for G-quadruplex prediction
  publication-title: Bioinformatics
– volume: 61
  start-page: 4139
  year: 2021
  end-page: 4144
  ident: bib99
  article-title: E2EDNA: simulation protocol for DNA aptamers with ligands
  publication-title: J. Chem. Inf. Model.
– start-page: 21
  year: 2020
  ident: bib4
  article-title: Implementation of high-throughput sequencing (HTS) in aptamer selection technology
  publication-title: Int. J. Mol. Sci.
– volume: 170
  start-page: 32
  year: 2017
  end-page: 37
  ident: bib53
  article-title: A novel nucleic acid sequence encoding strategy for high-performance aptamer identification and the aid of sequence design and optimization
  publication-title: Chemometr. Intell. Lab. Syst.
– start-page: 1
  year: 2021
  end-page: 30
  ident: bib56
  article-title: A variational autoencoder with profile hidden Markov model for generative aptamer discovery
  publication-title: bioRxiv
– volume: 43
  start-page: 5699
  year: 2015
  end-page: 5707
  ident: bib14
  article-title: Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 515
  year: 2018
  end-page: 517
  ident: bib20
  article-title: AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments
  publication-title: Mol. Ther. Nucleic Acids
– volume: 60
  start-page: 10266
  year: 2021
  end-page: 10272
  ident: bib108
  article-title: Aptamer blocking strategy inhibits SARS-CoV-2 virus infection
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  year: 2017
  ident: bib5
  article-title: Aptamer bioinformatics
  publication-title: Int. J. Mol. Sci.
– volume: 23
  start-page: 440
  year: 2021
  end-page: 449
  ident: bib33
  article-title: Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide
  publication-title: Mol. Ther. Nucleic Acids
– volume: 6
  start-page: 26
  year: 2011
  ident: bib67
  article-title: ViennaRNA package 2.0
  publication-title: Algorithm Mol. Biol.
– volume: 105
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib32
  article-title: Discovery of cell-internalizing artificial nucleic acid aptamers for lung fibroblasts and targeted drug delivery
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2020.104321
– volume: 4
  start-page: 435
  year: 2008
  ident: 10.1016/j.trac.2022.116767_bib96
  article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/ct700301q
– volume: 23
  start-page: 433
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib3
  article-title: Recent advances in aptamer-based biosensors for global health applications
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-082020-035644
– start-page: 1
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib74
  article-title: SELEX: critical factors and optimization strategies for successful aptamer selection
  publication-title: Biotechnol. Appl. Biochem.
– volume: 118
  start-page: 555
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib13
  article-title: Recent advances in computational methods for biosensor design
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27618
– volume: 48
  start-page: W395
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib28
  article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa434
– volume: 28
  start-page: i215
  year: 2012
  ident: 10.1016/j.trac.2022.116767_bib24
  article-title: Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts210
– start-page: 22
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib58
  article-title: Structural biology for the molecular insight between aptamers and target proteins
  publication-title: Int. J. Mol. Sci.
– volume: 55
  year: 2022
  ident: 10.1016/j.trac.2022.116767_bib60
  article-title: Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2021.107902
– volume: 41
  start-page: W471
  year: 2013
  ident: 10.1016/j.trac.2022.116767_bib64
  article-title: RNAstructure: web servers for RNA secondary structure prediction and analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt290
– volume: 42
  start-page: 1209
  year: 2014
  ident: 10.1016/j.trac.2022.116767_bib72
  article-title: New scoring system to identify RNA G-quadruplex folding
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt904
– volume: 2012
  year: 2012
  ident: 10.1016/j.trac.2022.116767_bib41
  article-title: Aptamer Base: a collaborative knowledge base to describe aptamers and SELEX experiments
  publication-title: Database
  doi: 10.1093/database/bas006
– volume: 32
  start-page: 1929
  year: 2011
  ident: 10.1016/j.trac.2022.116767_bib94
  article-title: Impact of 2'-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21777
– volume: 497
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib9
  article-title: Computational predictive approaches for interaction and structure of aptamers
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2020.110268
– volume: 596
  start-page: 583
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib119
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– start-page: 16
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib48
  article-title: Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach
  publication-title: PLoS One
– volume: 6
  start-page: 26
  year: 2011
  ident: 10.1016/j.trac.2022.116767_bib67
  article-title: ViennaRNA package 2.0
  publication-title: Algorithm Mol. Biol.
  doi: 10.1186/1748-7188-6-26
– volume: 60
  start-page: 10266
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib108
  article-title: Aptamer blocking strategy inhibits SARS-CoV-2 virus infection
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202100225
– volume: 18
  year: 2017
  ident: 10.1016/j.trac.2022.116767_bib5
  article-title: Aptamer bioinformatics
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18122516
– volume: 60
  start-page: 16800
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib15
  article-title: Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202008663
– volume: 3
  start-page: 62
  year: 2016
  ident: 10.1016/j.trac.2022.116767_bib26
  article-title: AptaTRACE elucidates RNA sequence-structure motifs from selection trends in HT-SELEX experiments
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.07.003
– volume: 48
  start-page: 1
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib69
  article-title: A guide to computational methods for G-quadruplex prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz1097
– volume: 2015
  year: 2015
  ident: 10.1016/j.trac.2022.116767_bib52
  article-title: A review of feature selection and feature extraction methods applied on microarray data
  publication-title: Adv Bioinformatics
  doi: 10.1155/2015/198363
– volume: 61
  start-page: 139
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib98
  article-title: Machine learning approaches for analyzing and enhancing molecular dynamics simulations
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2019.12.016
– volume: 16
  start-page: 287
  year: 2019
  ident: 10.1016/j.trac.2022.116767_bib62
  article-title: Prediction of the secondary structure of short DNA aptamers
  publication-title: Biophys Physicobiol
  doi: 10.2142/biophysico.16.0_287
– start-page: 17
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib82
  article-title: Review of machine learning methods for RNA secondary structure prediction
  publication-title: PLoS Comput. Biol.
– volume: 373
  start-page: 1047
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib84
  article-title: Geometric deep learning of RNA structure
  publication-title: Science
  doi: 10.1126/science.abe5650
– volume: 61
  start-page: 4139
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib99
  article-title: E2EDNA: simulation protocol for DNA aptamers with ligands
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00696
– volume: 40
  start-page: e112
  year: 2012
  ident: 10.1016/j.trac.2022.116767_bib80
  article-title: Automated 3D structure composition for large RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks339
– volume: 143
  start-page: 21541
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib109
  article-title: Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08226
– start-page: 1
  year: 2022
  ident: 10.1016/j.trac.2022.116767_bib22
  article-title: FASTAptameR 2.0: a web tool for combinatorial sequence selections
  publication-title: bioRxiv
– volume: 15
  start-page: R16
  year: 2014
  ident: 10.1016/j.trac.2022.116767_bib37
  article-title: CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2014-15-1-r16
– volume: 30
  start-page: 2665
  year: 2014
  ident: 10.1016/j.trac.2022.116767_bib25
  article-title: A Meta-motif-based statistical framework and pipeline to Predict Binding potential of SELEX-derived aptamers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu348
– volume: 13
  start-page: 559
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib34
  article-title: CRISPR-mediated isogenic cell-SELEX approach for generating highly specific aptamers against native membrane proteins
  publication-title: Cell. Mol. Bioeng.
  doi: 10.1007/s12195-020-00651-y
– volume: 31
  start-page: 3429
  year: 2003
  ident: 10.1016/j.trac.2022.116767_bib63
  article-title: Vienna RNA secondary structure server
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg599
– volume: 17
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib45
  article-title: A novel artificial intelligence-based approach for identification of deoxynucleotide aptamers
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009247
– volume: 9
  start-page: 1514
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib10
  article-title: Biosystems design by machine learning
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.0c00129
– volume: 11
  start-page: 515
  year: 2018
  ident: 10.1016/j.trac.2022.116767_bib20
  article-title: AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2018.04.006
– volume: 10
  start-page: 4941
  year: 2019
  ident: 10.1016/j.trac.2022.116767_bib54
  article-title: A deep learning framework to predict binding preference of RNA constituents on protein surface
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12920-0
– volume: 180
  start-page: 54
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib12
  article-title: In silico molecular docking in DNA aptamer development
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2020.10.005
– volume: 4
  year: 2015
  ident: 10.1016/j.trac.2022.116767_bib17
  article-title: FASTAptamer: a bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2015.4
– volume: 429
  start-page: 2438
  year: 2017
  ident: 10.1016/j.trac.2022.116767_bib79
  article-title: 3D-NuS: a web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.06.013
– volume: 24
  year: 2019
  ident: 10.1016/j.trac.2022.116767_bib68
  article-title: G-Quadruplex-Forming aptamers-characteristics, applications, and perspectives
  publication-title: Molecules
  doi: 10.3390/molecules24203781
– year: 2021
  ident: 10.1016/j.trac.2022.116767_bib93
– volume: 13
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib115
  article-title: Xeno-nucleic acid (XNA) 2'-fluoro-arabino nucleic acid (FANA) aptamers to the receptor-binding domain of SARS-CoV-2 S protein block ACE2 binding
  publication-title: Viruses-Basel
– volume: 34
  start-page: 4573
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib31
  article-title: DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD
  publication-title: Faseb. J.
  doi: 10.1096/fj.201902696
– volume: 143
  start-page: 5317
  year: 2018
  ident: 10.1016/j.trac.2022.116767_bib59
  article-title: Investigations on the interface of nucleic acid aptamers and binding targets
  publication-title: Analyst
  doi: 10.1039/C8AN01467A
– volume: 8394
  start-page: 115
  year: 2014
  ident: 10.1016/j.trac.2022.116767_bib19
  article-title: AptaCluster - a method to cluster HT-SELEX aptamer pools and lessons from its application
  publication-title: Res Comput Mol Biol
  doi: 10.1007/978-3-319-05269-4_9
– volume: 38
  start-page: W445
  year: 2010
  ident: 10.1016/j.trac.2022.116767_bib85
  article-title: HexServer: an FFT-based protein docking server powered by graphics processors
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq311
– volume: 14
  start-page: 2084
  year: 2018
  ident: 10.1016/j.trac.2022.116767_bib101
  article-title: AMOEBA polarizable atomic multipole force field for nucleic acids
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/acs.jctc.7b01169
– volume: 107
  start-page: 15373
  year: 2010
  ident: 10.1016/j.trac.2022.116767_bib16
  article-title: Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1009331107
– volume: 37
  start-page: W277
  year: 2009
  ident: 10.1016/j.trac.2022.116767_bib66
  article-title: CENTROIDFOLD: a web server for RNA secondary structure prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp367
– start-page: 1
  year: 2022
  ident: 10.1016/j.trac.2022.116767_bib55
  article-title: Generative aptamer discovery using RaptGen
  publication-title: Nature Computational Science
– volume: 36
  start-page: 2905
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib29
  article-title: AptCompare: optimized de novo motif discovery of RNA aptamers via HTS-SELEX
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa054
– volume: 26
  start-page: 321
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib111
  article-title: A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2021.06.014
– volume: 60
  start-page: 21211
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib123
  article-title: Discovery and characterization of spike N-terminal domain-binding aptamers for rapid SARS-CoV-2 detection
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202107730
– volume: 32
  start-page: 170
  year: 2011
  ident: 10.1016/j.trac.2022.116767_bib100
  article-title: NUPACK: analysis and design of nucleic acid systems
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21596
– volume: 10
  year: 2014
  ident: 10.1016/j.trac.2022.116767_bib104
  article-title: rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003571
– volume: 11
  start-page: 2976
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib61
  article-title: Specific inhibition of FGF5-induced cell proliferation by RNA aptamers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82350-w
– volume: 11
  start-page: 6074
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib46
  article-title: AptaNet as a deep learning approach for aptamer-protein interaction prediction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85629-0
– volume: 60
  start-page: 10273
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib114
  article-title: Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202100345
– start-page: 21
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib4
  article-title: Implementation of high-throughput sequencing (HTS) in aptamer selection technology
  publication-title: Int. J. Mol. Sci.
– volume: 103
  start-page: 120
  year: 2016
  ident: 10.1016/j.trac.2022.116767_bib75
  article-title: RNAComposer and RNA 3D structure prediction for nanotechnology
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.03.010
– volume: 44
  year: 2022
  ident: 10.1016/j.trac.2022.116767_bib110
  article-title: Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2022.101499
– volume: 92
  start-page: 3307
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib18
  article-title: A sequential multidimensional analysis algorithm for aptamer identification based on structure analysis and machine learning
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05203
– volume: 49
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib118
  article-title: Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1157
– volume: 19
  start-page: 3198
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib50
  article-title: Representation learning applications in biological sequence analysis
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.05.039
– start-page: 118
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib116
– volume: 43
  start-page: 5699
  year: 2015
  ident: 10.1016/j.trac.2022.116767_bib14
  article-title: Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv308
– volume: 18
  start-page: 2416
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib76
  article-title: 3dRNA: building RNA 3D structure with improved template library
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.08.017
– volume: 60
  start-page: 10279
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib117
  article-title: A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism∗∗
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202100316
– volume: 12
  start-page: 2366
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib7
  article-title: Machine learning guided aptamer refinement and discovery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22555-9
– volume: 17
  start-page: 1476
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib122
  article-title: Constructive prediction of potential RNA aptamers for a protein target
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
  doi: 10.1109/TCBB.2019.2951114
– start-page: 28
  year: 2022
  ident: 10.1016/j.trac.2022.116767_bib112
  article-title: A universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern
  publication-title: Chem.--Eur. J.
– volume: 9
  year: 2014
  ident: 10.1016/j.trac.2022.116767_bib120
  article-title: Prediction of aptamer-target interacting pairs with pseudo-amino acid composition
  publication-title: PLoS One
– volume: 112
  start-page: 2623
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib42
  article-title: RPINBASE: an online toolbox to extract features for predicting RNA-protein interactions
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.02.013
– volume: 21
  start-page: 236
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib44
  article-title: PPAI: a web server for predicting protein-aptamer interactions
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-020-03574-7
– volume: 35
  start-page: 3493
  year: 2019
  ident: 10.1016/j.trac.2022.116767_bib71
  article-title: G4Hunter web application: a web server for G-quadruplex prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz087
– volume: 143
  start-page: 5317
  year: 2018
  ident: 10.1016/j.trac.2022.116767_bib2
  article-title: Investigations on the interface of nucleic acid aptamers and binding targets
  publication-title: Analyst
  doi: 10.1039/C8AN01467A
– volume: 26
  start-page: 1668
  year: 2005
  ident: 10.1016/j.trac.2022.116767_bib95
  article-title: The Amber biomolecular simulation programs
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20290
– start-page: 105
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib11
  article-title: In silico approach for Post-SELEX DNA aptamers: a mini-review
  publication-title: J. Mol. Graph. Model.
– volume: 14
  start-page: 106
  year: 2013
  ident: 10.1016/j.trac.2022.116767_bib43
  article-title: SMOTE for high-dimensional class-imbalanced data
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-106
– volume: 1654
  start-page: 3
  year: 2017
  ident: 10.1016/j.trac.2022.116767_bib65
  article-title: Predicting RNA structure with Vfold
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7231-9_1
– start-page: 1
  year: 2022
  ident: 10.1016/j.trac.2022.116767_bib57
  article-title: Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection
  publication-title: bioRxiv
– volume: 12
  start-page: 878
  year: 2016
  ident: 10.1016/j.trac.2022.116767_bib49
  article-title: Deep learning for computational biology
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20156651
– volume: 21
  start-page: 263
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib21
  article-title: FSBC: fast string-based clustering for HT-SELEX data
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-020-03607-1
– volume: 7
  year: 2017
  ident: 10.1016/j.trac.2022.116767_bib81
  article-title: Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01348-5
– volume: 131
  start-page: 1138
  year: 2012
  ident: 10.1016/j.trac.2022.116767_bib102
  article-title: Automation of AMOEBA polarizable force field parameterization for small molecules
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-012-1138-6
– volume: 170
  start-page: 32
  year: 2017
  ident: 10.1016/j.trac.2022.116767_bib53
  article-title: A novel nucleic acid sequence encoding strategy for high-performance aptamer identification and the aid of sequence design and optimization
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.09.010
– volume: 8
  start-page: 8
  year: 2014
  ident: 10.1016/j.trac.2022.116767_bib40
  article-title: A computational method for discovering evolutionarily conserved G-quadruplex motifs
  publication-title: Hum. Genom.
  doi: 10.1186/1479-7364-8-8
– volume: 34
  start-page: W310
  year: 2006
  ident: 10.1016/j.trac.2022.116767_bib86
  article-title: GRAMM-X public web server for protein–protein docking
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl206
– volume: 13
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib35
  article-title: Hybrid-type SELEX for the selection of artificial nucleic acid aptamers exhibiting cell internalization activity
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13060888
– volume: 12
  start-page: 401
  year: 2017
  ident: 10.1016/j.trac.2022.116767_bib88
  article-title: Modeling and docking of antibody structures with Rosetta
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.180
– volume: 5
  start-page: 597
  year: 2010
  ident: 10.1016/j.trac.2022.116767_bib91
  article-title: Virtual screening with AutoDock: theory and practice
  publication-title: Expet Opin. Drug Discov.
  doi: 10.1517/17460441.2010.484460
– volume: 7
  start-page: 2965
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib97
  article-title: Computer-aided design of RNA-targeted small molecules: a growing need in drug discovery
  publication-title: Chem
  doi: 10.1016/j.chempr.2021.05.021
– volume: 34
  start-page: W676
  year: 2006
  ident: 10.1016/j.trac.2022.116767_bib70
  article-title: A web-based server for predicting G-quadruplexes in nucleotide sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl253
– volume: 5
  start-page: 883
  year: 2010
  ident: 10.1016/j.trac.2022.116767_bib89
  article-title: The HADDOCK web server for data-driven biomolecular docking
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.32
– volume: 37
  start-page: W235
  year: 2009
  ident: 10.1016/j.trac.2022.116767_bib78
  article-title: 3D-DART: a DNA structure modelling server
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp287
– volume: 8
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib113
  article-title: DNA aptamers block the receptor binding domain at the spike protein of SARS-CoV-2
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.713003
– volume: 31
  start-page: 455
  year: 2010
  ident: 10.1016/j.trac.2022.116767_bib92
  article-title: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– volume: 9
  start-page: 133
  year: 1981
  ident: 10.1016/j.trac.2022.116767_bib39
  article-title: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/9.1.133
– volume: 52
  start-page: 80
  year: 2003
  ident: 10.1016/j.trac.2022.116767_bib87
  article-title: ZDOCK: an initial-stage protein-docking algorithm
  publication-title: Proteins
  doi: 10.1002/prot.10389
– volume: 5
  year: 2010
  ident: 10.1016/j.trac.2022.116767_bib103
  article-title: Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011955
– ident: 10.1016/j.trac.2022.116767_bib6
  doi: 10.3390/ijms22073605
– volume: 151
  start-page: 115
  year: 2018
  ident: 10.1016/j.trac.2022.116767_bib73
  article-title: G4RNA screener web server: user focused interface for RNA G-quadruplex prediction
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2018.06.002
– volume: 40
  start-page: 798
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib105
  article-title: In silico strategies for modeling RNA aptamers and predicting binding sites of their molecular targets
  publication-title: Nucleos Nucleot. Nucleic Acids
  doi: 10.1080/15257770.2021.1951754
– start-page: 50
  year: 2022
  ident: 10.1016/j.trac.2022.116767_bib83
  article-title: UFold: fast and accurate RNA secondary structure prediction with deep learning
  publication-title: Nucleic Acids Res.
– start-page: 21
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib1
  article-title: Methods and applications of in silico aptamer design and modeling
  publication-title: Int. J. Mol. Sci.
– volume: 9
  year: 2016
  ident: 10.1016/j.trac.2022.116767_bib8
  article-title: Applications of high-throughput sequencing for in vitro selection and characterization of aptamers
  publication-title: Pharmaceuticals
  doi: 10.3390/ph9040076
– volume: 12
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib27
  article-title: Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aav9760
– volume: 23
  start-page: 440
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib33
  article-title: Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2020.11.016
– start-page: 1
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib56
  article-title: A variational autoencoder with profile hidden Markov model for generative aptamer discovery
  publication-title: bioRxiv
– volume: 311
  start-page: 103
  year: 2019
  ident: 10.1016/j.trac.2022.116767_bib47
  article-title: Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2019.01.009
– volume: 48
  start-page: e82
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib36
  article-title: RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa484
– volume: 25
  start-page: 1395
  year: 2021
  ident: 10.1016/j.trac.2022.116767_bib51
  article-title: In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm
  publication-title: Mol. Divers.
  doi: 10.1007/s11030-021-10192-9
– volume: 17
  year: 2016
  ident: 10.1016/j.trac.2022.116767_bib121
  article-title: Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-016-1087-5
– start-page: 11
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib124
  article-title: 3D-printed integrative probeheads for magnetic resonance
  publication-title: Nat. Commun.
– volume: 31
  start-page: 3406
  year: 2003
  ident: 10.1016/j.trac.2022.116767_bib38
  article-title: Mfold web server for nucleic acid folding and hybridization prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg595
– volume: 44
  start-page: e63
  year: 2016
  ident: 10.1016/j.trac.2022.116767_bib77
  article-title: SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1479
– volume: 92
  start-page: 9895
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib107
  article-title: Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c01394
– volume: 16
  year: 2020
  ident: 10.1016/j.trac.2022.116767_bib106
  article-title: Microfluidic single-cell omics analysis
  publication-title: Small
– volume: 43
  start-page: W425
  year: 2015
  ident: 10.1016/j.trac.2022.116767_bib90
  article-title: NPDock: a web server for protein-nucleic acid docking
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv493
– volume: 6
  year: 2016
  ident: 10.1016/j.trac.2022.116767_bib23
  article-title: High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency
  publication-title: Sci. Rep.
  doi: 10.1038/srep33697
– volume: 106
  start-page: 82
  year: 2016
  ident: 10.1016/j.trac.2022.116767_bib30
  article-title: AptaPLEX - a dedicated, multithreaded demultiplexer for HT-SELEX data
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.04.011
SSID ssj0006009
Score 2.5488563
SecondaryResourceType review_article
Snippet Aptamers are single-stranded DNA or RNA oligonucleotides that can selectively bind to a specific target. They are generally obtained by SELEX, but the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116767
SubjectTerms analytical chemistry
Aptamer identification
Aptamer optimization
Bioinformatics
case studies
COVID-19
Deep learning
Machine learning
oligonucleotides
RNA
Severe acute respiratory syndrome coronavirus 2
single-stranded DNA
systematic evolution of ligands by exponential enrichment
Title Computational tools for aptamer identification and optimization
URI https://dx.doi.org/10.1016/j.trac.2022.116767
https://www.proquest.com/docview/2723105888
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHvQiPrE-ygreJH0ku3mcpBRLVexFC70tu5sNVNqktOnV3-5MdqMo0oPHhN0Qvt35ZpKd-YaQ20hlcRRxYD_GlMe4CcDmNANz5704M3FXKqxGfhmHowl7mvJpgwzqWhhMq3Tcbzm9Ymt3p-PQ7Cxns84rFuKAdw19v3LkqPjJWIS7vP3xneYBDj2x-t7cw9GucMbmeJUriTKGvt_G44iq1_yfzukXTVe-Z3hIDlzQSPv2vY5Iw-THZG9Q92o7Ife2OYP7sUfLopivKYSjVC5LuTArOktdVlA1hMo8pQWQxcJVYZ6SyfDhbTDyXGsET0NEUXpadyVqr_vwARtJlkmTyFj5AYvBpLjpKiMD2COoNKMkOOkMv_uSLlMp1yGHEO-M7ORFbs4JjVRq0pBJDa6aZTpUgUpClioGph4madwkvRoToZ1uOLavmIs6QexdII4CcRQWxya5-5qztKoZW0fzGmrxY-0F0PrWeTf1ugjAG086ZG6KzVr4EYatHMC5-OezL8k-XtnElSuyU6425hrCj1K1qv3VIrv9x-fR-BM729jG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja8JAFH5YPdhL6UrtmkJvJTUmM1lORaQS63KpgrdhJpmARRPR-P_7JpkILcVDr0kmhG_mfd-bzFsAnj2R-J5Hkf0IESah0kGbiwiaO-34ifQtLlQ28njihjPyMafzGvSqXBgVVqm5v-T0gq31lbZGs71eLNqfKhEH1dW17ULInSNoqOpUtA6N7mAYTvaEjJoelCW-qakG6NyZMswr33BVydC2X9WJRNFu_k99-sXUhfz0T-FE-41Gt_y0M6jJ9Byavapd2wW8lf0Z9L89I8-y5dZAj9Tg65yv5MZYxDowqHjE4GlsZMgXK52IeQmz_vu0F5q6O4IZoVORm1FkcVV-3cY9rMdJwmXAfWE7xEerotISkju4TFSxGcFRpxO19QssImIauRS9vCuop1kqr8HwRCxjl_AI1ZokkSscEbgkFgSt3Q1ivwWdChMW6dLhqoPFklUxYl9M4cgUjqzEsQUv-zHrsnDGwadpBTX7Mf0Mmf3guKdqXhjirQ47eCqz3ZbZnvJcKYJz8893P0IznI5HbDSYDG_hWN0p41juoJ5vdvIevZFcPOjV9g24Htt3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+tools+for+aptamer+identification+and+optimization&rft.jtitle=TrAC%2C+Trends+in+analytical+chemistry+%28Regular+ed.%29&rft.au=Sun%2C+Di&rft.au=Sun%2C+Miao&rft.au=Zhang%2C+Jialu&rft.au=Lin%2C+Xin&rft.date=2022-12-01&rft.issn=0165-9936&rft.volume=157&rft.spage=116767&rft_id=info:doi/10.1016%2Fj.trac.2022.116767&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trac_2022_116767
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-9936&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-9936&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-9936&client=summon