High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition
In this article, we study the following general Kirchhoff type equation: where and is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.
Saved in:
Published in | Advances in nonlinear analysis Vol. 12; no. 1; pp. 18 - 34 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2191-950X 2191-950X |
DOI | 10.1515/anona-2022-0311 |
Cover
Loading…
Abstract | In this article, we study the following general Kirchhoff type equation:
where
and
is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition. |
---|---|
AbstractList | In this article, we study the following general Kirchhoff type equation: −M∫R3∣∇u∣2dxΔu+u=a(x)f(u)inR3,-M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where infR+M>0{\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and ff is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition. In this article, we study the following general Kirchhoff type equation: where and is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition. In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where inf R + M > 0 {\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and f f is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition. |
Author | Liu, Huize Zhang, Jian Zuo, Jiabin |
Author_xml | – sequence: 1 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: College of Science, China University of Petroleum, Qingdao 266580, Shandong, P. R. China – sequence: 2 givenname: Huize surname: Liu fullname: Liu, Huize organization: College of Science, China University of Petroleum, Qingdao 266580, Shandong, P. R. China – sequence: 3 givenname: Jiabin surname: Zuo fullname: Zuo, Jiabin email: zuojiabin88@163.com organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China |
BookMark | eNp1kF9r1jAUh4NMcM5de5svUJeTNE3j3RjqhgNBFLwL-XPa5qVrZpoyXj-97VsFEZabnJzk-ZHzvCZnU5qQkLfA3oEEeWXXs60447xiAuAFOeegodKS_Tj7p35FLuf5wNbVSlCKnZPDbewHihPm_kjnNC4lpmmmqaP91rQj_RyzH4bUdbQcH5Hiz8Xub55iGdJSaBmQXj-4nGYsJVZfrYtTWi9_7YBPU4gb8Ya87Ow44-Wf_YJ8__jh281tdf_l093N9X3lhdalcuBUjUJ42crOYguoOAjQQQfAVsuO6VpphqGpkdXOWQsKA-8aJurWiUZckLs9NyR7MI85Pth8NMlGc2qk3BubS_QjGu5DKzxXygdbg1aOBS50I50ABW3D1yy5Z_l1vDljZ3wsp_lLtnE0wMzm35z8m82_2fyv3NV_3N9_PE-834knOxbMAfu8HNfCHNKSp9XXcySsdn4DhAWgVQ |
CitedBy_id | crossref_primary_10_1186_s13661_023_01746_x crossref_primary_10_1080_17476933_2023_2246901 crossref_primary_10_1007_s12346_024_01209_3 crossref_primary_10_1007_s12220_024_01827_y crossref_primary_10_1007_s12220_024_01840_1 |
Cites_doi | 10.1016/0022-1236(90)90120-A 10.1142/S0219199714500394 10.1016/j.nonrwa.2010.09.023 10.1007/s00205-014-0747-8 10.1017/S0308210500013147 10.1016/j.jde.2022.11.033 10.1512/iumj.2000.49.1893 10.1007/s00526-015-0883-5 10.1016/j.na.2011.11.017 10.1007/s12220-021-00849-0 10.7153/dea-02-25 10.1007/s00209-022-03052-1 10.1016/s0294-1449(97)80142-4 10.3934/cpaa.2013.12.2773 10.1016/j.jde.2012.05.017 10.1016/j.jde.2016.03.028 10.1016/j.jde.2005.03.006 10.1007/s00526-002-0169-6 10.1016/j.na.2008.02.021 10.1016/j.na.2019.02.022 10.1007/978-1-4612-4146-1 10.1007/s002050050162 10.1016/j.jfa.2013.09.002 10.1016/j.jmaa.2015.01.044 10.1007/s00526-017-1214-9 10.1016/j.jde.2014.05.002 10.1016/j.jmaa.2021.125796 10.1016/j.na.2014.04.011 10.1007/s00033-019-1096-0 10.1007/s00032-006-0059-z 10.1016/j.jde.2016.04.032 10.1512/iumj.2005.54.2502 10.1007/s12220-022-00870-x 10.1007/978-3-662-03212-1 10.1007/s12220-022-00983-3 10.1016/j.jmaa.2012.12.053 10.1088/0951-7715/29/10/3103 10.1016/0022-1236(73)90051-7 10.3934/dcds.2015.35.943 10.1007/s00030-014-0299-5 10.1016/j.jde.2009.06.017 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/anona-2022-0311 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-950X |
EndPage | 34 |
ExternalDocumentID | oai_doaj_org_article_2cd83c277cda4197b0d23965b3171862 10_1515_anona_2022_0311 10_1515_anona_2022_0311121 |
GroupedDBID | 0R~ 0~D 4.4 AAFPC AAFWJ AAQCX AASOL AASQH ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACXLN ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AENEX AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM BAKPI BBCWN CFGNV EBS GROUPED_DOAJ HZ~ IY9 J9A O9- OK1 QD8 SA. AAYXX CITATION |
ID | FETCH-LOGICAL-c399t-b1b74e33c585fae81e721319d9d1e895f094790ed64e04bbaa17ed2f60348b363 |
IEDL.DBID | DOA |
ISSN | 2191-950X |
IngestDate | Wed Aug 27 01:31:52 EDT 2025 Tue Jul 01 00:37:49 EDT 2025 Thu Apr 24 22:49:58 EDT 2025 Sat Sep 06 16:58:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-b1b74e33c585fae81e721319d9d1e895f094790ed64e04bbaa17ed2f60348b363 |
OpenAccessLink | https://doaj.org/article/2cd83c277cda4197b0d23965b3171862 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2cd83c277cda4197b0d23965b3171862 crossref_citationtrail_10_1515_anona_2022_0311 crossref_primary_10_1515_anona_2022_0311 walterdegruyter_journals_10_1515_anona_2022_0311121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advances in nonlinear analysis |
PublicationYear | 2023 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2023040112224771766_j_anona-2022-0311_ref_019 2023040112224771766_j_anona-2022-0311_ref_012 2023040112224771766_j_anona-2022-0311_ref_034 2023040112224771766_j_anona-2022-0311_ref_011 2023040112224771766_j_anona-2022-0311_ref_033 2023040112224771766_j_anona-2022-0311_ref_014 2023040112224771766_j_anona-2022-0311_ref_036 2023040112224771766_j_anona-2022-0311_ref_013 2023040112224771766_j_anona-2022-0311_ref_035 2023040112224771766_j_anona-2022-0311_ref_016 2023040112224771766_j_anona-2022-0311_ref_038 2023040112224771766_j_anona-2022-0311_ref_015 2023040112224771766_j_anona-2022-0311_ref_037 2023040112224771766_j_anona-2022-0311_ref_018 2023040112224771766_j_anona-2022-0311_ref_017 2023040112224771766_j_anona-2022-0311_ref_039 2023040112224771766_j_anona-2022-0311_ref_041 2023040112224771766_j_anona-2022-0311_ref_040 2023040112224771766_j_anona-2022-0311_ref_021 2023040112224771766_j_anona-2022-0311_ref_043 2023040112224771766_j_anona-2022-0311_ref_020 2023040112224771766_j_anona-2022-0311_ref_042 2023040112224771766_j_anona-2022-0311_ref_009 2023040112224771766_j_anona-2022-0311_ref_008 2023040112224771766_j_anona-2022-0311_ref_001 2023040112224771766_j_anona-2022-0311_ref_023 2023040112224771766_j_anona-2022-0311_ref_022 2023040112224771766_j_anona-2022-0311_ref_003 2023040112224771766_j_anona-2022-0311_ref_025 2023040112224771766_j_anona-2022-0311_ref_002 2023040112224771766_j_anona-2022-0311_ref_024 2023040112224771766_j_anona-2022-0311_ref_005 2023040112224771766_j_anona-2022-0311_ref_027 2023040112224771766_j_anona-2022-0311_ref_004 2023040112224771766_j_anona-2022-0311_ref_026 2023040112224771766_j_anona-2022-0311_ref_007 2023040112224771766_j_anona-2022-0311_ref_029 2023040112224771766_j_anona-2022-0311_ref_006 2023040112224771766_j_anona-2022-0311_ref_028 2023040112224771766_j_anona-2022-0311_ref_030 2023040112224771766_j_anona-2022-0311_ref_010 2023040112224771766_j_anona-2022-0311_ref_032 2023040112224771766_j_anona-2022-0311_ref_031 |
References_xml | – ident: 2023040112224771766_j_anona-2022-0311_ref_007 doi: 10.1016/0022-1236(90)90120-A – ident: 2023040112224771766_j_anona-2022-0311_ref_005 doi: 10.1142/S0219199714500394 – ident: 2023040112224771766_j_anona-2022-0311_ref_035 doi: 10.1016/j.nonrwa.2010.09.023 – ident: 2023040112224771766_j_anona-2022-0311_ref_014 doi: 10.1007/s00205-014-0747-8 – ident: 2023040112224771766_j_anona-2022-0311_ref_017 doi: 10.1017/S0308210500013147 – ident: 2023040112224771766_j_anona-2022-0311_ref_042 doi: 10.1016/j.jde.2022.11.033 – ident: 2023040112224771766_j_anona-2022-0311_ref_024 – ident: 2023040112224771766_j_anona-2022-0311_ref_030 doi: 10.1512/iumj.2000.49.1893 – ident: 2023040112224771766_j_anona-2022-0311_ref_029 doi: 10.1007/s00526-015-0883-5 – ident: 2023040112224771766_j_anona-2022-0311_ref_003 doi: 10.1016/j.na.2011.11.017 – ident: 2023040112224771766_j_anona-2022-0311_ref_025 doi: 10.1007/s12220-021-00849-0 – ident: 2023040112224771766_j_anona-2022-0311_ref_002 doi: 10.7153/dea-02-25 – ident: 2023040112224771766_j_anona-2022-0311_ref_041 doi: 10.1007/s00209-022-03052-1 – ident: 2023040112224771766_j_anona-2022-0311_ref_006 doi: 10.1016/s0294-1449(97)80142-4 – ident: 2023040112224771766_j_anona-2022-0311_ref_038 doi: 10.3934/cpaa.2013.12.2773 – ident: 2023040112224771766_j_anona-2022-0311_ref_022 doi: 10.1016/j.jde.2012.05.017 – ident: 2023040112224771766_j_anona-2022-0311_ref_037 doi: 10.1016/j.jde.2016.03.028 – ident: 2023040112224771766_j_anona-2022-0311_ref_027 doi: 10.1016/j.jde.2005.03.006 – ident: 2023040112224771766_j_anona-2022-0311_ref_010 doi: 10.1007/s00526-002-0169-6 – ident: 2023040112224771766_j_anona-2022-0311_ref_015 doi: 10.1016/j.na.2008.02.021 – ident: 2023040112224771766_j_anona-2022-0311_ref_028 doi: 10.1016/j.na.2019.02.022 – ident: 2023040112224771766_j_anona-2022-0311_ref_036 doi: 10.1007/978-1-4612-4146-1 – ident: 2023040112224771766_j_anona-2022-0311_ref_031 doi: 10.1007/s002050050162 – ident: 2023040112224771766_j_anona-2022-0311_ref_020 doi: 10.1016/j.jfa.2013.09.002 – ident: 2023040112224771766_j_anona-2022-0311_ref_023 doi: 10.1016/j.jmaa.2015.01.044 – ident: 2023040112224771766_j_anona-2022-0311_ref_034 doi: 10.1007/s00526-017-1214-9 – ident: 2023040112224771766_j_anona-2022-0311_ref_019 – ident: 2023040112224771766_j_anona-2022-0311_ref_026 doi: 10.1016/j.jde.2014.05.002 – ident: 2023040112224771766_j_anona-2022-0311_ref_039 doi: 10.1016/j.jmaa.2021.125796 – ident: 2023040112224771766_j_anona-2022-0311_ref_001 doi: 10.1016/j.na.2014.04.011 – ident: 2023040112224771766_j_anona-2022-0311_ref_012 doi: 10.1007/s00033-019-1096-0 – ident: 2023040112224771766_j_anona-2022-0311_ref_008 doi: 10.1007/s00032-006-0059-z – ident: 2023040112224771766_j_anona-2022-0311_ref_033 doi: 10.1016/j.jde.2016.04.032 – ident: 2023040112224771766_j_anona-2022-0311_ref_018 doi: 10.1512/iumj.2005.54.2502 – ident: 2023040112224771766_j_anona-2022-0311_ref_040 doi: 10.1007/s12220-022-00870-x – ident: 2023040112224771766_j_anona-2022-0311_ref_032 doi: 10.1007/978-3-662-03212-1 – ident: 2023040112224771766_j_anona-2022-0311_ref_043 doi: 10.1007/s12220-022-00983-3 – ident: 2023040112224771766_j_anona-2022-0311_ref_013 doi: 10.1016/j.jmaa.2012.12.053 – ident: 2023040112224771766_j_anona-2022-0311_ref_009 doi: 10.1088/0951-7715/29/10/3103 – ident: 2023040112224771766_j_anona-2022-0311_ref_004 doi: 10.1016/0022-1236(73)90051-7 – ident: 2023040112224771766_j_anona-2022-0311_ref_016 doi: 10.3934/dcds.2015.35.943 – ident: 2023040112224771766_j_anona-2022-0311_ref_021 doi: 10.1007/s00030-014-0299-5 – ident: 2023040112224771766_j_anona-2022-0311_ref_011 doi: 10.1016/j.jde.2009.06.017 |
SSID | ssj0000851770 |
Score | 2.3059945 |
Snippet | In this article, we study the following general Kirchhoff type equation:
where
and
is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain... In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\left(\mathop{\int... In this article, we study the following general Kirchhoff type equation: −M∫R3∣∇u∣2dxΔu+u=a(x)f(u)inR3,-M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}|... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 18 |
SubjectTerms | 35J60 35R11 35S15 47G20 high energy solution Kirchhoff type equation Pohozǎev manifold variational method |
Title | High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition |
URI | https://www.degruyter.com/doi/10.1515/anona-2022-0311 https://doaj.org/article/2cd83c277cda4197b0d23965b3171862 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sDAEmrHTpyMgEAVCAYEUrfIT6ACAm0qBL-es51WBQmxsCaxbJ0_5-6zz98hdMCVzqlTMuE6tQkHF5KAF6SJzF0qlLSOhHJvV9d5_45fDLLBXKkvnxMW5YGj4XqpNgXTqRDaSE5LoYhJWZlnChwfLeLfl5RkjkwNY_YVFYK0Wj7gs3sS2LQETAD3AhzTb24oqPUvoeX3cEJt7P1o8tFMT0SDozlfQctthIiP48hW0YJ9WUNLc7qB62joszOwDdf28Aw8uHb4PqpI48tHwO9D7Rz2e6zYvkVF7zH2-671pMEQ9-HjZwWDs03zmNxIYMg1vPyMDYAlm5DMtYHuzs9uT_tJWzQh0RBrNImiSnDLmAYe4KQtqAWOB-vMlIbaoswc8DlREmtybglXSkoqrEldThgvFMvZJuqAqewWwpkU_pICg4iCceGEKokGOggzoJQ2Ge-io6kNK90qivvCFk-VZxZg9CoYvfJGr7zRu-hw1uA1imn8_umJn5TZZ14FOzwAbFQtNqq_sNFF7MeUVu0KHf_WL03p9n90vYMWfWH6mOOzizrNaGL3IHxp1H5A6hdMk-4l |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLbY4bDLAcE-xPDMYQ9cutM0aTM9DggY3tIuSNyiPAcQUBg6QvDrcdpSsQguXNtYjWxH9uc6nwF-c20y6rWKuElcxDGERBgFaaQynwitnI-rcW-HR9nwlO-dpWdTsPlyFya0VVo3Gk8ey5ohtWcLMwmFspZrACNwTyE2VmhhRFLolbR3Xl5ffYHpDNP_pAPTg-HOv-O21BKyCiHihtjnHfH_YlJF3T8Dsw_V7-p2L6-izvYczDbpIhnU9p2HKXfzHWZekQj-gMvQqkFcdYePtJ5ECk9GNaU02b9AZz4vvCeh4ErcXU3vfU9CEbaYlASTQDK41rg5V5YX0V-FcLnAl0-1AEJmW3V2_YTT7a2TzWHUTFCIDCYeZaSpFtwxZhAUeOX61CHgw0Nnc0tdP089gjuRx85m3MVca6WocDbxWcx4X7OM_YIOqsotAEmVCDcWGKYXjAsvdB4bxIY6tlobm_Iu_HnRoTQNvXiYcnElA8xApctK6TIoXQald2G9FbitmTU-XroRjNIuC5TY1YNiPJLNCZOJsX1mEiGMVZzmAneWsDxLNWZIFHFbF9gbk8rmuN5_9F2a0MVPSa3B1-HJ4YE82D3aX4JvYUR93e2zDJ1yPHErmMiUerVx1GegBfK_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ_okRh5ICoaDr_2wQdfynW729328QSPExSJQMLbZj9PDFA8ejH61zPb1uY08MJru5NuZmYz85vO_gbgHTdW0GB0wm3mE44hJMEoSBMtQiaN9iFtxr19ORDTE753mp8u3YWJbZXOz-aL33XLkDpylV3EQlnPNYAReKQRG2u0MCIp9Eo6unLhIawIUWbFAFbG092jr32lJSYVUqYdr88t0v-EpIa5fxXWfjV_q_utLAWdyRNY67JFMm7N-xQe-MtnsLrEIbgOP2KnBvHNFT7SOxKpApm1jNJk_wx9-XsVAon1VuJ_tuze1yTWYKtFTTAHJOMLg5vzdX2WfNOIlit8-acVQMTsmsau53Ay-Xi8PU26AQqJxbyjTgw1knvGLGKCoH1BPeI9PHOudNQXZR4Q28ky9U5wn3JjtKbSuyyIlPHCMMFewABV5TeA5FrGCwsMswvGZZCmTC1CQ5M6Y6zL-RC2_upQ2Y5dPA65OFcRZaDSVaN0FZWuotKH8L4XuGqJNe5e-iEapV8WGbGbB9V8proDpjLrCmYzKa3TnJYSd5axUuQGEySKsG0I7D-Tqu60Xt_1XZrRzXtJvYVHhzsT9fnTwf5LeBwH1Le9Pq9gUM8X_jWmMbV50_npDUXg8e4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+energy+solutions+of+general+Kirchhoff+type+equations+without+the+Ambrosetti-Rabinowitz+type+condition&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Zhang%2C+Jian&rft.au=Liu%2C+Huize&rft.au=Zuo%2C+Jiabin&rft.date=2023-04-01&rft.pub=De+Gruyter&rft.eissn=2191-950X&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1515%2Fanona-2022-0311&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anona_2022_0311121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon |