High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition

In this article, we study the following general Kirchhoff type equation: where and is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.

Saved in:
Bibliographic Details
Published inAdvances in nonlinear analysis Vol. 12; no. 1; pp. 18 - 34
Main Authors Zhang, Jian, Liu, Huize, Zuo, Jiabin
Format Journal Article
LanguageEnglish
Published De Gruyter 01.04.2023
Subjects
Online AccessGet full text
ISSN2191-950X
2191-950X
DOI10.1515/anona-2022-0311

Cover

Loading…
Abstract In this article, we study the following general Kirchhoff type equation: where and is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.
AbstractList In this article, we study the following general Kirchhoff type equation: −M∫R3∣∇u∣2dxΔu+u=a(x)f(u)inR3,-M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where infR+M>0{\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and ff is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.
In this article, we study the following general Kirchhoff type equation: where and is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.
In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where inf R + M > 0 {\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and f f is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.
Author Liu, Huize
Zhang, Jian
Zuo, Jiabin
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: College of Science, China University of Petroleum, Qingdao 266580, Shandong, P. R. China
– sequence: 2
  givenname: Huize
  surname: Liu
  fullname: Liu, Huize
  organization: College of Science, China University of Petroleum, Qingdao 266580, Shandong, P. R. China
– sequence: 3
  givenname: Jiabin
  surname: Zuo
  fullname: Zuo, Jiabin
  email: zuojiabin88@163.com
  organization: School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China
BookMark eNp1kF9r1jAUh4NMcM5de5svUJeTNE3j3RjqhgNBFLwL-XPa5qVrZpoyXj-97VsFEZabnJzk-ZHzvCZnU5qQkLfA3oEEeWXXs60447xiAuAFOeegodKS_Tj7p35FLuf5wNbVSlCKnZPDbewHihPm_kjnNC4lpmmmqaP91rQj_RyzH4bUdbQcH5Hiz8Xub55iGdJSaBmQXj-4nGYsJVZfrYtTWi9_7YBPU4gb8Ya87Ow44-Wf_YJ8__jh281tdf_l093N9X3lhdalcuBUjUJ42crOYguoOAjQQQfAVsuO6VpphqGpkdXOWQsKA-8aJurWiUZckLs9NyR7MI85Pth8NMlGc2qk3BubS_QjGu5DKzxXygdbg1aOBS50I50ABW3D1yy5Z_l1vDljZ3wsp_lLtnE0wMzm35z8m82_2fyv3NV_3N9_PE-834knOxbMAfu8HNfCHNKSp9XXcySsdn4DhAWgVQ
CitedBy_id crossref_primary_10_1186_s13661_023_01746_x
crossref_primary_10_1080_17476933_2023_2246901
crossref_primary_10_1007_s12346_024_01209_3
crossref_primary_10_1007_s12220_024_01827_y
crossref_primary_10_1007_s12220_024_01840_1
Cites_doi 10.1016/0022-1236(90)90120-A
10.1142/S0219199714500394
10.1016/j.nonrwa.2010.09.023
10.1007/s00205-014-0747-8
10.1017/S0308210500013147
10.1016/j.jde.2022.11.033
10.1512/iumj.2000.49.1893
10.1007/s00526-015-0883-5
10.1016/j.na.2011.11.017
10.1007/s12220-021-00849-0
10.7153/dea-02-25
10.1007/s00209-022-03052-1
10.1016/s0294-1449(97)80142-4
10.3934/cpaa.2013.12.2773
10.1016/j.jde.2012.05.017
10.1016/j.jde.2016.03.028
10.1016/j.jde.2005.03.006
10.1007/s00526-002-0169-6
10.1016/j.na.2008.02.021
10.1016/j.na.2019.02.022
10.1007/978-1-4612-4146-1
10.1007/s002050050162
10.1016/j.jfa.2013.09.002
10.1016/j.jmaa.2015.01.044
10.1007/s00526-017-1214-9
10.1016/j.jde.2014.05.002
10.1016/j.jmaa.2021.125796
10.1016/j.na.2014.04.011
10.1007/s00033-019-1096-0
10.1007/s00032-006-0059-z
10.1016/j.jde.2016.04.032
10.1512/iumj.2005.54.2502
10.1007/s12220-022-00870-x
10.1007/978-3-662-03212-1
10.1007/s12220-022-00983-3
10.1016/j.jmaa.2012.12.053
10.1088/0951-7715/29/10/3103
10.1016/0022-1236(73)90051-7
10.3934/dcds.2015.35.943
10.1007/s00030-014-0299-5
10.1016/j.jde.2009.06.017
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/anona-2022-0311
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-950X
EndPage 34
ExternalDocumentID oai_doaj_org_article_2cd83c277cda4197b0d23965b3171862
10_1515_anona_2022_0311
10_1515_anona_2022_0311121
GroupedDBID 0R~
0~D
4.4
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
J9A
O9-
OK1
QD8
SA.
AAYXX
CITATION
ID FETCH-LOGICAL-c399t-b1b74e33c585fae81e721319d9d1e895f094790ed64e04bbaa17ed2f60348b363
IEDL.DBID DOA
ISSN 2191-950X
IngestDate Wed Aug 27 01:31:52 EDT 2025
Tue Jul 01 00:37:49 EDT 2025
Thu Apr 24 22:49:58 EDT 2025
Sat Sep 06 16:58:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-b1b74e33c585fae81e721319d9d1e895f094790ed64e04bbaa17ed2f60348b363
OpenAccessLink https://doaj.org/article/2cd83c277cda4197b0d23965b3171862
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_2cd83c277cda4197b0d23965b3171862
crossref_citationtrail_10_1515_anona_2022_0311
crossref_primary_10_1515_anona_2022_0311
walterdegruyter_journals_10_1515_anona_2022_0311121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in nonlinear analysis
PublicationYear 2023
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2023040112224771766_j_anona-2022-0311_ref_019
2023040112224771766_j_anona-2022-0311_ref_012
2023040112224771766_j_anona-2022-0311_ref_034
2023040112224771766_j_anona-2022-0311_ref_011
2023040112224771766_j_anona-2022-0311_ref_033
2023040112224771766_j_anona-2022-0311_ref_014
2023040112224771766_j_anona-2022-0311_ref_036
2023040112224771766_j_anona-2022-0311_ref_013
2023040112224771766_j_anona-2022-0311_ref_035
2023040112224771766_j_anona-2022-0311_ref_016
2023040112224771766_j_anona-2022-0311_ref_038
2023040112224771766_j_anona-2022-0311_ref_015
2023040112224771766_j_anona-2022-0311_ref_037
2023040112224771766_j_anona-2022-0311_ref_018
2023040112224771766_j_anona-2022-0311_ref_017
2023040112224771766_j_anona-2022-0311_ref_039
2023040112224771766_j_anona-2022-0311_ref_041
2023040112224771766_j_anona-2022-0311_ref_040
2023040112224771766_j_anona-2022-0311_ref_021
2023040112224771766_j_anona-2022-0311_ref_043
2023040112224771766_j_anona-2022-0311_ref_020
2023040112224771766_j_anona-2022-0311_ref_042
2023040112224771766_j_anona-2022-0311_ref_009
2023040112224771766_j_anona-2022-0311_ref_008
2023040112224771766_j_anona-2022-0311_ref_001
2023040112224771766_j_anona-2022-0311_ref_023
2023040112224771766_j_anona-2022-0311_ref_022
2023040112224771766_j_anona-2022-0311_ref_003
2023040112224771766_j_anona-2022-0311_ref_025
2023040112224771766_j_anona-2022-0311_ref_002
2023040112224771766_j_anona-2022-0311_ref_024
2023040112224771766_j_anona-2022-0311_ref_005
2023040112224771766_j_anona-2022-0311_ref_027
2023040112224771766_j_anona-2022-0311_ref_004
2023040112224771766_j_anona-2022-0311_ref_026
2023040112224771766_j_anona-2022-0311_ref_007
2023040112224771766_j_anona-2022-0311_ref_029
2023040112224771766_j_anona-2022-0311_ref_006
2023040112224771766_j_anona-2022-0311_ref_028
2023040112224771766_j_anona-2022-0311_ref_030
2023040112224771766_j_anona-2022-0311_ref_010
2023040112224771766_j_anona-2022-0311_ref_032
2023040112224771766_j_anona-2022-0311_ref_031
References_xml – ident: 2023040112224771766_j_anona-2022-0311_ref_007
  doi: 10.1016/0022-1236(90)90120-A
– ident: 2023040112224771766_j_anona-2022-0311_ref_005
  doi: 10.1142/S0219199714500394
– ident: 2023040112224771766_j_anona-2022-0311_ref_035
  doi: 10.1016/j.nonrwa.2010.09.023
– ident: 2023040112224771766_j_anona-2022-0311_ref_014
  doi: 10.1007/s00205-014-0747-8
– ident: 2023040112224771766_j_anona-2022-0311_ref_017
  doi: 10.1017/S0308210500013147
– ident: 2023040112224771766_j_anona-2022-0311_ref_042
  doi: 10.1016/j.jde.2022.11.033
– ident: 2023040112224771766_j_anona-2022-0311_ref_024
– ident: 2023040112224771766_j_anona-2022-0311_ref_030
  doi: 10.1512/iumj.2000.49.1893
– ident: 2023040112224771766_j_anona-2022-0311_ref_029
  doi: 10.1007/s00526-015-0883-5
– ident: 2023040112224771766_j_anona-2022-0311_ref_003
  doi: 10.1016/j.na.2011.11.017
– ident: 2023040112224771766_j_anona-2022-0311_ref_025
  doi: 10.1007/s12220-021-00849-0
– ident: 2023040112224771766_j_anona-2022-0311_ref_002
  doi: 10.7153/dea-02-25
– ident: 2023040112224771766_j_anona-2022-0311_ref_041
  doi: 10.1007/s00209-022-03052-1
– ident: 2023040112224771766_j_anona-2022-0311_ref_006
  doi: 10.1016/s0294-1449(97)80142-4
– ident: 2023040112224771766_j_anona-2022-0311_ref_038
  doi: 10.3934/cpaa.2013.12.2773
– ident: 2023040112224771766_j_anona-2022-0311_ref_022
  doi: 10.1016/j.jde.2012.05.017
– ident: 2023040112224771766_j_anona-2022-0311_ref_037
  doi: 10.1016/j.jde.2016.03.028
– ident: 2023040112224771766_j_anona-2022-0311_ref_027
  doi: 10.1016/j.jde.2005.03.006
– ident: 2023040112224771766_j_anona-2022-0311_ref_010
  doi: 10.1007/s00526-002-0169-6
– ident: 2023040112224771766_j_anona-2022-0311_ref_015
  doi: 10.1016/j.na.2008.02.021
– ident: 2023040112224771766_j_anona-2022-0311_ref_028
  doi: 10.1016/j.na.2019.02.022
– ident: 2023040112224771766_j_anona-2022-0311_ref_036
  doi: 10.1007/978-1-4612-4146-1
– ident: 2023040112224771766_j_anona-2022-0311_ref_031
  doi: 10.1007/s002050050162
– ident: 2023040112224771766_j_anona-2022-0311_ref_020
  doi: 10.1016/j.jfa.2013.09.002
– ident: 2023040112224771766_j_anona-2022-0311_ref_023
  doi: 10.1016/j.jmaa.2015.01.044
– ident: 2023040112224771766_j_anona-2022-0311_ref_034
  doi: 10.1007/s00526-017-1214-9
– ident: 2023040112224771766_j_anona-2022-0311_ref_019
– ident: 2023040112224771766_j_anona-2022-0311_ref_026
  doi: 10.1016/j.jde.2014.05.002
– ident: 2023040112224771766_j_anona-2022-0311_ref_039
  doi: 10.1016/j.jmaa.2021.125796
– ident: 2023040112224771766_j_anona-2022-0311_ref_001
  doi: 10.1016/j.na.2014.04.011
– ident: 2023040112224771766_j_anona-2022-0311_ref_012
  doi: 10.1007/s00033-019-1096-0
– ident: 2023040112224771766_j_anona-2022-0311_ref_008
  doi: 10.1007/s00032-006-0059-z
– ident: 2023040112224771766_j_anona-2022-0311_ref_033
  doi: 10.1016/j.jde.2016.04.032
– ident: 2023040112224771766_j_anona-2022-0311_ref_018
  doi: 10.1512/iumj.2005.54.2502
– ident: 2023040112224771766_j_anona-2022-0311_ref_040
  doi: 10.1007/s12220-022-00870-x
– ident: 2023040112224771766_j_anona-2022-0311_ref_032
  doi: 10.1007/978-3-662-03212-1
– ident: 2023040112224771766_j_anona-2022-0311_ref_043
  doi: 10.1007/s12220-022-00983-3
– ident: 2023040112224771766_j_anona-2022-0311_ref_013
  doi: 10.1016/j.jmaa.2012.12.053
– ident: 2023040112224771766_j_anona-2022-0311_ref_009
  doi: 10.1088/0951-7715/29/10/3103
– ident: 2023040112224771766_j_anona-2022-0311_ref_004
  doi: 10.1016/0022-1236(73)90051-7
– ident: 2023040112224771766_j_anona-2022-0311_ref_016
  doi: 10.3934/dcds.2015.35.943
– ident: 2023040112224771766_j_anona-2022-0311_ref_021
  doi: 10.1007/s00030-014-0299-5
– ident: 2023040112224771766_j_anona-2022-0311_ref_011
  doi: 10.1016/j.jde.2009.06.017
SSID ssj0000851770
Score 2.3059945
Snippet In this article, we study the following general Kirchhoff type equation: where and is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain...
In this article, we study the following general Kirchhoff type equation: − M ∫ R 3 ∣ ∇ u ∣ 2 d x Δ u + u = a ( x ) f ( u ) in R 3 , -M\left(\mathop{\int...
In this article, we study the following general Kirchhoff type equation: −M∫R3∣∇u∣2dxΔu+u=a(x)f(u)inR3,-M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}|...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms 35J60
35R11
35S15
47G20
high energy solution
Kirchhoff type equation
Pohozǎev manifold
variational method
Title High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition
URI https://www.degruyter.com/doi/10.1515/anona-2022-0311
https://doaj.org/article/2cd83c277cda4197b0d23965b3171862
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sDAEmrHTpyMgEAVCAYEUrfIT6ACAm0qBL-es51WBQmxsCaxbJ0_5-6zz98hdMCVzqlTMuE6tQkHF5KAF6SJzF0qlLSOhHJvV9d5_45fDLLBXKkvnxMW5YGj4XqpNgXTqRDaSE5LoYhJWZlnChwfLeLfl5RkjkwNY_YVFYK0Wj7gs3sS2LQETAD3AhzTb24oqPUvoeX3cEJt7P1o8tFMT0SDozlfQctthIiP48hW0YJ9WUNLc7qB62joszOwDdf28Aw8uHb4PqpI48tHwO9D7Rz2e6zYvkVF7zH2-671pMEQ9-HjZwWDs03zmNxIYMg1vPyMDYAlm5DMtYHuzs9uT_tJWzQh0RBrNImiSnDLmAYe4KQtqAWOB-vMlIbaoswc8DlREmtybglXSkoqrEldThgvFMvZJuqAqewWwpkU_pICg4iCceGEKokGOggzoJQ2Ge-io6kNK90qivvCFk-VZxZg9CoYvfJGr7zRu-hw1uA1imn8_umJn5TZZ14FOzwAbFQtNqq_sNFF7MeUVu0KHf_WL03p9n90vYMWfWH6mOOzizrNaGL3IHxp1H5A6hdMk-4l
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLbY4bDLAcE-xPDMYQ9cutM0aTM9DggY3tIuSNyiPAcQUBg6QvDrcdpSsQguXNtYjWxH9uc6nwF-c20y6rWKuElcxDGERBgFaaQynwitnI-rcW-HR9nwlO-dpWdTsPlyFya0VVo3Gk8ey5ohtWcLMwmFspZrACNwTyE2VmhhRFLolbR3Xl5ffYHpDNP_pAPTg-HOv-O21BKyCiHihtjnHfH_YlJF3T8Dsw_V7-p2L6-izvYczDbpIhnU9p2HKXfzHWZekQj-gMvQqkFcdYePtJ5ECk9GNaU02b9AZz4vvCeh4ErcXU3vfU9CEbaYlASTQDK41rg5V5YX0V-FcLnAl0-1AEJmW3V2_YTT7a2TzWHUTFCIDCYeZaSpFtwxZhAUeOX61CHgw0Nnc0tdP089gjuRx85m3MVca6WocDbxWcx4X7OM_YIOqsotAEmVCDcWGKYXjAsvdB4bxIY6tlobm_Iu_HnRoTQNvXiYcnElA8xApctK6TIoXQald2G9FbitmTU-XroRjNIuC5TY1YNiPJLNCZOJsX1mEiGMVZzmAneWsDxLNWZIFHFbF9gbk8rmuN5_9F2a0MVPSa3B1-HJ4YE82D3aX4JvYUR93e2zDJ1yPHErmMiUerVx1GegBfK_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ_okRh5ICoaDr_2wQdfynW729328QSPExSJQMLbZj9PDFA8ejH61zPb1uY08MJru5NuZmYz85vO_gbgHTdW0GB0wm3mE44hJMEoSBMtQiaN9iFtxr19ORDTE753mp8u3YWJbZXOz-aL33XLkDpylV3EQlnPNYAReKQRG2u0MCIp9Eo6unLhIawIUWbFAFbG092jr32lJSYVUqYdr88t0v-EpIa5fxXWfjV_q_utLAWdyRNY67JFMm7N-xQe-MtnsLrEIbgOP2KnBvHNFT7SOxKpApm1jNJk_wx9-XsVAon1VuJ_tuze1yTWYKtFTTAHJOMLg5vzdX2WfNOIlit8-acVQMTsmsau53Ay-Xi8PU26AQqJxbyjTgw1knvGLGKCoH1BPeI9PHOudNQXZR4Q28ky9U5wn3JjtKbSuyyIlPHCMMFewABV5TeA5FrGCwsMswvGZZCmTC1CQ5M6Y6zL-RC2_upQ2Y5dPA65OFcRZaDSVaN0FZWuotKH8L4XuGqJNe5e-iEapV8WGbGbB9V8proDpjLrCmYzKa3TnJYSd5axUuQGEySKsG0I7D-Tqu60Xt_1XZrRzXtJvYVHhzsT9fnTwf5LeBwH1Le9Pq9gUM8X_jWmMbV50_npDUXg8e4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+energy+solutions+of+general+Kirchhoff+type+equations+without+the+Ambrosetti-Rabinowitz+type+condition&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Zhang%2C+Jian&rft.au=Liu%2C+Huize&rft.au=Zuo%2C+Jiabin&rft.date=2023-04-01&rft.pub=De+Gruyter&rft.eissn=2191-950X&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1515%2Fanona-2022-0311&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anona_2022_0311121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon