Study on TPD Phasemeter to Suppress Low-Frequency Amplitude Fluctuation and Improve Fast-Acquiring Range for GW Detection

A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but also insensitivity to amplitude fluctuations and a large fast-acquiring range. The traditional sinusoidal characteristic phase detector (SPD)...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 11; p. 3434
Main Authors Ming, Min, Zhang, Jingyi, Duan, Huizong, Li, Zhu, Huang, Xiangqing, Tu, Liangcheng, Yeh, Hsien-Chi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.05.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but also insensitivity to amplitude fluctuations and a large fast-acquiring range. The traditional sinusoidal characteristic phase detector (SPD) phasemeter has the advantages of a simple structure and easy realization. However, the output of an SPD is coupled to the amplitude of the input signal and has only a limited phase-detection range due to the boundedness of the sinusoidal function. This leads to the performance deterioration of amplitude noise suppression, fast-acquiring range, and loop stability. To overcome the above shortcomings, we propose a phasemeter based on a tangent phase detector (TPD). The characteristics of the SPD and TPD phasemeters are theoretically analyzed, and a fixed-point simulation is further carried out for verification. The simulation results show that the TPD phasemeter tracks the phase information well and, at the same time, suppresses the amplitude fluctuation to the noise floor of 1 μrad/Hz , which meets the requirements of GW detection. In addition, the maximum lockable step frequency of the TPD phasemeter is almost three times larger than the SPD phasemeter, indicating a greater fast-acquiring range.
AbstractList A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but also insensitivity to amplitude fluctuations and a large fast-acquiring range. The traditional sinusoidal characteristic phase detector (SPD) phasemeter has the advantages of a simple structure and easy realization. However, the output of an SPD is coupled to the amplitude of the input signal and has only a limited phase-detection range due to the boundedness of the sinusoidal function. This leads to the performance deterioration of amplitude noise suppression, fast-acquiring range, and loop stability. To overcome the above shortcomings, we propose a phasemeter based on a tangent phase detector (TPD). The characteristics of the SPD and TPD phasemeters are theoretically analyzed, and a fixed-point simulation is further carried out for verification. The simulation results show that the TPD phasemeter tracks the phase information well and, at the same time, suppresses the amplitude fluctuation to the noise floor of 1 μrad/Hz1/2, which meets the requirements of GW detection. In addition, the maximum lockable step frequency of the TPD phasemeter is almost three times larger than the SPD phasemeter, indicating a greater fast-acquiring range.
A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but also insensitivity to amplitude fluctuations and a large fast-acquiring range. The traditional sinusoidal characteristic phase detector (SPD) phasemeter has the advantages of a simple structure and easy realization. However, the output of an SPD is coupled to the amplitude of the input signal and has only a limited phase-detection range due to the boundedness of the sinusoidal function. This leads to the performance deterioration of amplitude noise suppression, fast-acquiring range, and loop stability. To overcome the above shortcomings, we propose a phasemeter based on a tangent phase detector (TPD). The characteristics of the SPD and TPD phasemeters are theoretically analyzed, and a fixed-point simulation is further carried out for verification. The simulation results show that the TPD phasemeter tracks the phase information well and, at the same time, suppresses the amplitude fluctuation to the noise floor of 1 μrad/Hz1/2, which meets the requirements of GW detection. In addition, the maximum lockable step frequency of the TPD phasemeter is almost three times larger than the SPD phasemeter, indicating a greater fast-acquiring range.A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but also insensitivity to amplitude fluctuations and a large fast-acquiring range. The traditional sinusoidal characteristic phase detector (SPD) phasemeter has the advantages of a simple structure and easy realization. However, the output of an SPD is coupled to the amplitude of the input signal and has only a limited phase-detection range due to the boundedness of the sinusoidal function. This leads to the performance deterioration of amplitude noise suppression, fast-acquiring range, and loop stability. To overcome the above shortcomings, we propose a phasemeter based on a tangent phase detector (TPD). The characteristics of the SPD and TPD phasemeters are theoretically analyzed, and a fixed-point simulation is further carried out for verification. The simulation results show that the TPD phasemeter tracks the phase information well and, at the same time, suppresses the amplitude fluctuation to the noise floor of 1 μrad/Hz1/2, which meets the requirements of GW detection. In addition, the maximum lockable step frequency of the TPD phasemeter is almost three times larger than the SPD phasemeter, indicating a greater fast-acquiring range.
A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but also insensitivity to amplitude fluctuations and a large fast-acquiring range. The traditional sinusoidal characteristic phase detector (SPD) phasemeter has the advantages of a simple structure and easy realization. However, the output of an SPD is coupled to the amplitude of the input signal and has only a limited phase-detection range due to the boundedness of the sinusoidal function. This leads to the performance deterioration of amplitude noise suppression, fast-acquiring range, and loop stability. To overcome the above shortcomings, we propose a phasemeter based on a tangent phase detector (TPD). The characteristics of the SPD and TPD phasemeters are theoretically analyzed, and a fixed-point simulation is further carried out for verification. The simulation results show that the TPD phasemeter tracks the phase information well and, at the same time, suppresses the amplitude fluctuation to the noise floor of 1 μrad/Hz , which meets the requirements of GW detection. In addition, the maximum lockable step frequency of the TPD phasemeter is almost three times larger than the SPD phasemeter, indicating a greater fast-acquiring range.
A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but also insensitivity to amplitude fluctuations and a large fast-acquiring range. The traditional sinusoidal characteristic phase detector (SPD) phasemeter has the advantages of a simple structure and easy realization. However, the output of an SPD is coupled to the amplitude of the input signal and has only a limited phase-detection range due to the boundedness of the sinusoidal function. This leads to the performance deterioration of amplitude noise suppression, fast-acquiring range, and loop stability. To overcome the above shortcomings, we propose a phasemeter based on a tangent phase detector (TPD). The characteristics of the SPD and TPD phasemeters are theoretically analyzed, and a fixed-point simulation is further carried out for verification. The simulation results show that the TPD phasemeter tracks the phase information well and, at the same time, suppresses the amplitude fluctuation to the noise floor of 1 μrad/Hz 1/2 , which meets the requirements of GW detection. In addition, the maximum lockable step frequency of the TPD phasemeter is almost three times larger than the SPD phasemeter, indicating a greater fast-acquiring range.
A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but also insensitivity to amplitude fluctuations and a large fast-acquiring range. The traditional sinusoidal characteristic phase detector (SPD) phasemeter has the advantages of a simple structure and easy realization. However, the output of an SPD is coupled to the amplitude of the input signal and has only a limited phase-detection range due to the boundedness of the sinusoidal function. This leads to the performance deterioration of amplitude noise suppression, fast-acquiring range, and loop stability. To overcome the above shortcomings, we propose a phasemeter based on a tangent phase detector (TPD). The characteristics of the SPD and TPD phasemeters are theoretically analyzed, and a fixed-point simulation is further carried out for verification. The simulation results show that the TPD phasemeter tracks the phase information well and, at the same time, suppresses the amplitude fluctuation to the noise floor of 1 μrad/Hz[sup.1/2], which meets the requirements of GW detection. In addition, the maximum lockable step frequency of the TPD phasemeter is almost three times larger than the SPD phasemeter, indicating a greater fast-acquiring range.
Audience Academic
Author Ming, Min
Li, Zhu
Huang, Xiangqing
Yeh, Hsien-Chi
Duan, Huizong
Tu, Liangcheng
Zhang, Jingyi
AuthorAffiliation TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China; mingm3@mail.sysu.edu.cn (M.M.)
AuthorAffiliation_xml – name: TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China; mingm3@mail.sysu.edu.cn (M.M.)
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0009-0000-6315-6799
  surname: Ming
  fullname: Ming, Min
  organization: TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
– sequence: 2
  givenname: Jingyi
  surname: Zhang
  fullname: Zhang, Jingyi
  organization: TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
– sequence: 3
  givenname: Huizong
  orcidid: 0000-0003-3125-0048
  surname: Duan
  fullname: Duan, Huizong
  organization: TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
– sequence: 4
  givenname: Zhu
  orcidid: 0000-0002-9934-1272
  surname: Li
  fullname: Li, Zhu
  organization: TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
– sequence: 5
  givenname: Xiangqing
  surname: Huang
  fullname: Huang, Xiangqing
  organization: TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
– sequence: 6
  givenname: Liangcheng
  orcidid: 0000-0003-1014-9784
  surname: Tu
  fullname: Tu, Liangcheng
  organization: TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
– sequence: 7
  givenname: Hsien-Chi
  surname: Yeh
  fullname: Yeh, Hsien-Chi
  organization: TianQin Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38894224$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhiNURD_gwB9AlriUQ4o_Jol9QquWLSutREWLOEZeZ7L1KrFTOynaf4-XLasW-eDRzPs-9ozmNDty3mGWvWf0QghFP0cOjAkQ8Co7YcAhl5zTo2fxcXYa44ZSLoSQb7JjIaUCzuEk296OU7Ml3pG7mytyc68j9jhiIKMnt9MwBIyRLP3vfB7wYUJntmTWD51NLiTzbjLjpEeb7No1ZNEPwT-mvI5jPjMPkw3WrckP7dZIWh_I9S9ylehm53ibvW51F_Hd032W_Zx_vbv8li-_Xy8uZ8vcCKXGXMsSoQBEKCEFq4pXK2gbpUTDKo7SsJUABlDItqFtqpeFbFAyzo3BSjBxli323MbrTT0E2-uwrb229d-ED-tah9GaDmsBUpUGWgG6ACaULJsKsWAllLIomlVifdmzhmnVY2PQjUF3L6AvK87e12v_WDPGKki8RDh_IgSf5hnHurfRYNdph36KtaAVlVRQJZL043_SjZ-CS7NKqrICoEWxa-9ir1rr1IF1rU8Pm3Qa7K1Je9LalJ9VqlJUcCaT4dPeYIKPMWB7-D6j9W6d6sM6Je2H5_0elP_2R_wBe0bFeA
Cites_doi 10.1007/s12217-018-9625-6
10.1088/0264-9381/23/8/S17
10.1093/ptep/ptaa114
10.1088/0264-9381/30/23/235029
10.1088/0264-9381/33/3/035010
10.3390/s23146253
10.1088/0264-9381/23/12/014
10.1088/2631-7990/ab8864
10.3390/s23135887
10.1103/PhysRevApplied.14.054013
10.1063/1.4751867
10.1364/OE.424968
10.1016/j.optlastec.2023.109185
10.1088/0264-9381/29/12/124016
10.1088/1742-6596/154/1/012025
10.1088/0264-9381/20/10/322
10.1093/nsr/nwx115
10.1364/OL.35.004202
10.1109/TCOM.1982.1095407
10.1109/TCOM.1968.1089915
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24113434
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: ProQuest - Health & Medical Complete保健、医学与药学数据库
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_34896c4f34a5413986d7ee51646855db
A797903218
10_3390_s24113434
38894224
Genre Journal Article
GrantInformation_xml – fundername: The National Key R&D Program of China
  grantid: 2022YFC2204004,2022YFC2203901
– fundername: The National Key R&D Program of China
  grantid: 2022YFC2204004; 2022YFC2203901
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c399t-a86e454ee464e45b727b4fd993d172e8c1b3414458fd0f5b7658de8122cce7313
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Sun Sep 29 07:17:50 EDT 2024
Tue Sep 17 21:28:43 EDT 2024
Wed Jul 17 04:15:57 EDT 2024
Tue Sep 24 21:28:01 EDT 2024
Tue Jun 25 19:22:11 EDT 2024
Thu Sep 26 16:16:12 EDT 2024
Wed Oct 02 05:23:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords phasemeter
tangent phase detector
cycle slip
amplitude noise suppression
laser interferometer
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-a86e454ee464e45b727b4fd993d172e8c1b3414458fd0f5b7658de8122cce7313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0000-6315-6799
0000-0003-3125-0048
0000-0002-9934-1272
0000-0003-1014-9784
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174986/
PMID 38894224
PQID 3067440551
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_34896c4f34a5413986d7ee51646855db
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11174986
proquest_miscellaneous_3070803093
proquest_journals_3067440551
gale_infotracacademiconefile_A797903218
crossref_primary_10_3390_s24113434
pubmed_primary_38894224
PublicationCentury 2000
PublicationDate 20240526
PublicationDateYYYYMMDD 2024-05-26
PublicationDate_xml – month: 5
  year: 2024
  text: 20240526
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Heinzel (ref_16) 2020; 14
Pollack (ref_12) 2006; 23
Gerberding (ref_15) 2013; 30
ref_11
Huang (ref_20) 2023; 161
ref_10
ref_21
Uhran (ref_23) 1968; 16
Mei (ref_7) 2021; 2021
Liang (ref_18) 2012; 83
ref_1
Luo (ref_5) 2016; 33
Hu (ref_6) 2017; 4
Ming (ref_8) 2020; 2
Jiang (ref_17) 2021; 29
Hsu (ref_14) 2010; 35
Liu (ref_19) 2018; 30
Lee (ref_22) 2003; 30
Pollack (ref_13) 2003; 20
Liu (ref_4) 2018; 57
Kawamura (ref_3) 2006; 23
Esteban (ref_9) 2009; 154
Aoudia (ref_2) 2012; 29
References_xml – volume: 30
  start-page: 775
  year: 2018
  ident: ref_19
  article-title: The Development of Phasemeter for Taiji Space Gravitational Wave Detection
  publication-title: Microgravity Sci. Technol.
  doi: 10.1007/s12217-018-9625-6
  contributor:
    fullname: Liu
– volume: 23
  start-page: S125
  year: 2006
  ident: ref_3
  article-title: The Japanese Space Gravitational Wave Antenna—DECIGO
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/23/8/S17
  contributor:
    fullname: Kawamura
– volume: 2021
  start-page: 05A107
  year: 2021
  ident: ref_7
  article-title: The TianQin Project: Current Progress on Science and Technology
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptaa114
  contributor:
    fullname: Mei
– volume: 30
  start-page: 235029
  year: 2013
  ident: ref_15
  article-title: Phasemeter Core for Intersatellite Laser Heterodyne Interferometry: Modelling, Simulations and Experiments
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/30/23/235029
  contributor:
    fullname: Gerberding
– volume: 33
  start-page: 035010
  year: 2016
  ident: ref_5
  article-title: TianQin: A Space-Borne Gravitational Wave Detector
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/33/3/035010
  contributor:
    fullname: Luo
– ident: ref_11
  doi: 10.3390/s23146253
– volume: 57
  start-page: 054113
  year: 2018
  ident: ref_4
  article-title: Principle Demonstration of the Phase Locking Based on the Electro-Optic Modulator for Taiji Space Gravitational Wave Detection Pathfinder Mission
  publication-title: Opt. Eng.
  contributor:
    fullname: Liu
– volume: 23
  start-page: 4189
  year: 2006
  ident: ref_12
  article-title: Demonstration of the Zero-Crossing Phasemeter with a LISA Test-Bed Interferometer
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/23/12/014
  contributor:
    fullname: Pollack
– volume: 2
  start-page: 022003
  year: 2020
  ident: ref_8
  article-title: Ultraprecision Intersatellite Laser Interferometry
  publication-title: Int. J. Extrem. Manuf.
  doi: 10.1088/2631-7990/ab8864
  contributor:
    fullname: Ming
– ident: ref_10
  doi: 10.3390/s23135887
– volume: 14
  start-page: 054013
  year: 2020
  ident: ref_16
  article-title: Tracking Length and Differential-Wavefront-Sensing Signals from Quadrant Photodiodes in Heterodyne Interferometers with Digital Phase-Locked-Loop Readout
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.054013
  contributor:
    fullname: Heinzel
– volume: 83
  start-page: 095110
  year: 2012
  ident: ref_18
  article-title: Fundamental Limits on the Digital Phase Measurement Method Based on Cross-Correlation Analysis
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4751867
  contributor:
    fullname: Liang
– volume: 29
  start-page: 18336
  year: 2021
  ident: ref_17
  article-title: Shot-Noise-Limit Performance of a Weak-Light Phase Readout System for Intersatellite Heterodyne Interferometry
  publication-title: Opt. Express
  doi: 10.1364/OE.424968
  contributor:
    fullname: Jiang
– volume: 161
  start-page: 109185
  year: 2023
  ident: ref_20
  article-title: Study on Picometer-Level Laser Interferometer Readout System in TianQin Project
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2023.109185
  contributor:
    fullname: Huang
– volume: 29
  start-page: 124016
  year: 2012
  ident: ref_2
  article-title: Low-Frequency Gravitational-Wave Science with eLISA/NGO
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/29/12/124016
  contributor:
    fullname: Aoudia
– ident: ref_1
– volume: 154
  start-page: 012025
  year: 2009
  ident: ref_9
  article-title: Optical Ranging and Data Transfer Development for LISA
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/154/1/012025
  contributor:
    fullname: Esteban
– volume: 20
  start-page: S193
  year: 2003
  ident: ref_13
  article-title: Status of LISA Phase Measurement Work in the US
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/20/10/322
  contributor:
    fullname: Pollack
– ident: ref_21
– volume: 4
  start-page: 683
  year: 2017
  ident: ref_6
  article-title: Science Prospects for Space-Borne Gravitational-Wave Missions
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx115
  contributor:
    fullname: Hu
– volume: 35
  start-page: 4202
  year: 2010
  ident: ref_14
  article-title: Subpicometer Length Measurement Using Heterodyne Laser Interferometry and All-Digital Rf Phase Meters
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.004202
  contributor:
    fullname: Hsu
– volume: 30
  start-page: 2398
  year: 2003
  ident: ref_22
  article-title: Performance Analysis of Digital Tanlock Loop
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1982.1095407
  contributor:
    fullname: Lee
– volume: 16
  start-page: 787
  year: 1968
  ident: ref_23
  article-title: Experimental Results for Phase-Lock Loop Systems Having a Modified Nth-Order Tanlock Phase Detector
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1968.1089915
  contributor:
    fullname: Uhran
SSID ssj0023338
Score 2.4559393
Snippet A phasemeter as a readout system for the inter-satellite laser interferometer in a space-borne gravitational wave detector requires not only high accuracy but...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3434
SubjectTerms Accuracy
amplitude noise suppression
Communication
Controllers
cycle slip
Field programmable gate arrays
Gravitational waves
laser interferometer
Lasers
Observatories
phasemeter
Satellites
Sensors
tangent phase detector
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-hBRmExMlqEo8T57hQlgoBqlAreoscf6iVIEHdrND-e2aS7GojDly4RXGkOJ4Zz5v4-RngjU-z2KRWSxdtLjGoXFosSxl1VehovM2Gswi-fC3OLvHTlb7aO-qLOWGjPPA4cCcKTVU4jAqtpgm3MoUvQ9Asi2W09s0w-2Z6W0xNpZaiymvUEVJU1J-sKE9lChXOss8g0v_3VLyXi-Y8yb3Es3wA9yfEKBZjTw_hTmgfwr09HcFHsGE24EZ0rbg4PxXn15SZfjLNRfSd4GM7uaQWn7vfcnk7Mqc3YsFMcta1FMsfa95EwgYStvVi_M1A9-2qlwvHTGF6ifjGuxAEQVzx8bs4Df1A4Wofw-Xyw8X7MzmdqSAdQZFeWlME1BgCFkgXDcGXBqMnlOIJygTjsobyGqI20aeR2gmh-EAoIHculCpTT-Cg7drwDAQhBU8xG3XII1IhaZWtsojOu9ykTWMTeL0d6_rXKJ1RU8nBBql3BkngHVth9wCrXQ83yAfqyQfqf_lAAm_ZhjXHJBnK2WlrAfWT1a3qRVmVVaoIzSRwvDVzPQXrquaqCQm46iyBV7tmCjNeO7Ft6Nb8TEnYmpeNE3g6esWuz8qYCgkKJWBm_jL7qHlLe3M9SHlTpimRvuf5_xiGI7ibE-RibkNeHMNBf7sOLwgy9c3LITr-AF8wE9Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGeIGHiW8CAxmExJPVJD4nzhMqjFIhQBPaRN8ixx8bEiRbmwr1v-cuSbtGSLxFcZTYuTvf7-yf7xh74-IkVLFRwgaTCvAyFQbyXARVZCpoZ5KuFsHXb9n8HD4v1OKAzbdnYYhWuZ0Tu4naNZbWyCcEbQHRhUompqJVANtO3l1dC6ofRfusQzGNW-w2vl2TxueLm9BLYiTW5xWSGORPVui3EgkSRt6oS9r_79S855vGvMk9RzS7x44GBMmnvcjvswNfP2B39_IKPmQbYgdueFPzs9MTfnqJnuo30V5423Aq40khNv_S_BGzZc-k3vApMcspzyWf_VrToRISGDe14_2yA943q1ZMLTGH8SP8O51K4Ah5-acf_MS3HaWrfsTOZx_PPszFUGNBWIQmrTA686DAe8gALyqEMxUEh6jFIbTx2iYV-jkApYOLA7YjYnEeUUFqrc9lIh-zw7qp_VPGETk4tOGgfBoAA0sjTZEEsM6mOq4qE7HX239dXvWpNEoMQUgg5U4gEXtPUtg9QNmvuxvN8qIcjKmUoIvMQpBgFDrhQmcu915RqjStlKsi9pZkWJKNkqaY4agB9pOyXZXTvMiLWCK6idjxVszlYLyr8kbVIvZq14xmR3sppvbNmp7JEWvTNnLEnvRaseuz1LoAhEYR0yN9GQ1q3FL_vOxSe6PnyQHH8-z__XrO7qQIrojFkGbH7LBdrv0LBEdt9bLT-7-9hBA2
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fb9MwED6NIaHxgPg5MgYyCImnQGOfE-cBocIoE2JoQqvYW-TENkMaCWtTQf977pK2agQ8JbKtxPadc9_F5-8AnrtREsqR1XEVrIzRKxlbzLI46DzVwTibdLkITj6nx1P8eK7Pd2CdY3M1gfN_unacT2o6u3z5-2r5hhb8a_Y4yWV_NScrlChUeA2uS7qwop_gZjNBKnLDelKhYfM9uKGMyVFKHFiljrz_70_0lo0axk9uGaTJbbi1QpJi3Iv-Duz4-i7c3OIXvAdLjhJciqYWZ6dH4vSCLNYPDn8RbSM4nSe72uJT8yuezPqI6qUYc4Q5812KyeWCD5ew4IStneh_P1C5nbfxuOIIYnqJ-MKnEwRBX_HhqzjybRfaVd-H6eT92bvjeJVrIa4IorSxNalHjd5jinRTEqwpMThCL44gjjdVUpK9Q9QmuFGgekIuzhM6kFXlM5WoB7BbN7V_CIIQhKO1HLSXAcnBtMrmScDKVdKMytJG8Gw918XPnlKjIFeEZVNsZBPBW5bCpgGzYHcFzexbsVpUhUKTpxUGhVaTMc5N6jLvNVOmGa1dGcELlmHB2kOCquzqyAH1k1mvinGWZ_lIEcqJ4HAt5mKtgwV7U0iAVicRPN1U0_LjPRVb-2bBbTLC3LydHMF-rxWbPq-VKwIz0JfBoIY19feLjuKbLFCGNJ6D_z70EexJwlccyCDTQ9htZwv_mPBRWz7ptP8PJQwN2A
  priority: 102
  providerName: Scholars Portal
Title Study on TPD Phasemeter to Suppress Low-Frequency Amplitude Fluctuation and Improve Fast-Acquiring Range for GW Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/38894224
https://www.proquest.com/docview/3067440551/abstract/
https://www.proquest.com/docview/3070803093/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC11174986
https://doaj.org/article/34896c4f34a5413986d7ee51646855db
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6S9NIeSt9Vm5ptKfSk2NLOSquj83BCqYMJCc1NrPaRBGIp2DLF_74zehib3noRQiuhlWZG883q228Z-25HkS9GWobG6zgEJ-JQQ5qGXmaJ9MrqqFmLYHqZXNzAz1t5u8eSfi5MQ9o3xcNR-Tg_Kh_uG27l09wMe57YcDY9wfhMIVPJcJ_tp0L0NXpXZgmsuloNIYEF_XCJOSoSIGgFHqFUBnEMO0mo0er_94u8lZJ26ZJb-Wfyir3sgCMftx18zfZc-Ya92JITfMvWRApc86rk17NTPrvHBDUntguvK06rd1JlzX9Vf8LJoiVQr_mYCOUkb8knjyuaS0J24rq0vB1twON6WYdjQ4RhvAm_oskIHJEuP__NT13dMLnKd-xmcnZ9chF2SyuEBhFJHWqVOJDgHCSAOwWimAK8RbBiEdE4ZaIC0xuAVN6OPLYjULEOwUBsjEtFJN6zg7Iq3UfGETBYDF0vXewB60ktdBZ5MNbEalQUOmDf-nedP7UKGjlWHmSbfGObgB2TFTYnkOh1c6Ba3OWd6XMBKksMeAFaYu5FB7Cpc5IU0pSUtgjYD7JhTqGJhjK6m2GA_SSRq3ycZmk2EghqAnbYmznvYnaZU_EEiF9lFLCvm2aMNvqFoktXreicFCE2_T0O2IfWKzZ97p0rYGrHX3YearcFHbxR9O4d-tP_X_qZPY8RbxGxIU4O2UG9WLkviJfqYoBBcpviVk3OB-zZ8dnl7GrQjD3gdgpq0ITPX0CmGy0
link.rule.ids 230,315,733,786,790,870,891,2115,2236,12083,12792,21416,24346,27957,27958,31754,31755,33408,33409,33779,33780,43345,43635,43840,53827,53829,74102,74392,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgPAAPiJ8jMMAgJJ6iJfE5cZ5QYZQC3TShTvQtcvyDIW3JaFOh_vfcJWnXCIm3KI4UJ-fzfWd__o6xtzaKfRlpGRqvkxCcSEINWRZ6mafSK6vjthbB8Uk6OYOvcznvF9yWPa1yMye2E7WtDa2RHxK0BUQXMn5_9TukqlG0u9qX0LjJboEQQJS-bH6dcAnMvzo1IYGp_eESo1UsQMAgBrVS_f9OyDsRaciW3Ak_4_vsXo8b-agz9AN2w1UP2d0dNcFHbE2cwDWvKz47PeKn5xifLonswpuaU_FOSqz5tP4Tjhcdf3rNR8QnJ3VLPr5Y0VESMhPXleXdYgPe18smHBniC-NL-Hc6i8AR6PLPP_iRa1oiV_WYnY0_zT5Owr6yQmgQkDShVqkDCc5BCnhRIogpwVvEKhYBjVMmLjG6AUjlbeSxHXGKdYgFEmNcJmLxhO1VdeWeMo54waLneukSD5hOaqHz2IOxJlFRWeqAvdn86-KqE9AoMPEggxRbgwTsA1lh-wBpXrc36sXPonehQoDKUwNegJYYenOV2sw5SQJpSkpbBuwd2bAgz0RDGd0fMMB-ksZVMcryLI8EYpqAHWzMXPQuuyyuB1jAXm-b0dloB0VXrl7RMxkibNo8Dth-Nyq2fRZK5YCAKGBqMF4GHzVsqX6dt4LeGG8ywO959v9-vWK3J7PjaTH9cvLtObuTILwiHkOSHrC9ZrFyLxAeNeXL1gf-AskID2k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxA8IH6OwACDkHiK2sTnxHlCHV0YMKpq2sTeIsc_GBIko02F-t9zl6ShFRJvURwpTs7n-87-_B1jb-w48uVYy9B4HYfgRBxqSNPQyyyRXlkdtbUIvsySkwv4dCkve_7TsqdVbubEdqK2taE18hFBW0B0IaOR72kR82n-7vpXSBWkaKe1L6dxk-2nkEgc4ftHx7P52ZB-CczGOm0hgYn-aImxKxIgYCcitcL9_07PW_Fplzu5FYzye-xujyL5pDP7fXbDVQ_YnS1twYdsTQzBNa8rfj6f8vkVRqufRH3hTc2plCel2fy0_h3mi45NveYTYpeT1iXPf6zoYAkZjevK8m7pAe_rZRNODLGH8SX8jE4mcIS9_MNXPnVNS-uqHrGL_Pj8_UnY11kIDcKTJtQqcSDBOUgAL0qENCV4i8jFIrxxykQlxjoAqbwde2xH1GIdIoPYGJeKSDxme1VduSeMI3qw6MdeutgDJpda6CzyYKyJ1bgsdcBeb_51cd3JaRSYhpBBisEgATsiKwwPkAJ2e6NefCt6hyoEqCwx4AVoiYE4U4lNnZMkl6aktGXA3pINC_JTNJTR_XED7CcpXhWTNEuzsUCEE7DDjZmL3oGXxd_hFrBXQzO6Hu2n6MrVK3omRbxNW8kBO-hGxdBnoVQGCI8CpnbGy85H7bZU369aeW-MPing9zz9f79eslvoAMXpx9nnZ-x2jFiLSA1xcsj2msXKPUes1JQveif4AyfJFQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+TPD+Phasemeter+to+Suppress+Low-Frequency+Amplitude+Fluctuation+and+Improve+Fast-Acquiring+Range+for+GW+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ming%2C+Min&rft.au=Zhang%2C+Jingyi&rft.au=Duan%2C+Huizong&rft.au=Li%2C+Zhu&rft.date=2024-05-26&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft_id=info:doi/10.3390%2Fs24113434&rft_id=info%3Apmid%2F38894224&rft.externalDocID=38894224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon