Stress relaxation in a nickel-base superalloy at elevated temperatures with in situ neutron diffraction characterization: Application to additive manufacturing
The complex thermal histories in additive manufacturing (AM) of metals result in the presence of residual stresses in the fabricated components. The amount of residual stress accumulated during AM depends on the high temperature constitutive behavior of the material. The rapid solidification and rep...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 714; no. C; pp. 75 - 83 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
31.01.2018
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The complex thermal histories in additive manufacturing (AM) of metals result in the presence of residual stresses in the fabricated components. The amount of residual stress accumulated during AM depends on the high temperature constitutive behavior of the material. The rapid solidification and repeated thermal cycles with each laser pass result in material contraction, and subject the surrounding, constrained material to both elevated temperatures and internal stresses, providing driving forces for stress relaxation. In this study, the stress relaxation behavior and mechanisms of conventionally processed and additively manufactured Inconel 625 (CP-IN625 and AM-IN625) at 600°C and 700°C were investigated via compression tests up to an engineering strain of 9% with in situ neutron diffraction characterization. The stress decayed to a plateau stress equivalent to 18% of the peak stress in CP-IN625 and 16% in AM-IN625 at 600°C, and 39% in CP-IN625 and 44% in AM-IN625 at 700°C. At the same temperature, the stress relaxation rate in AM-IN625 was twice as high as that in CP-IN625, and the magnitude of the plateau stress in AM-IN625 was slightly lower than that in CP-IN625, as the textured AM-IN625 had much larger grains than the texture-free CP-IN625. The stress relaxation in CP- and AM-IN625 was deduced to be controlled by dislocation glide and climb, where dislocations interact with grain boundaries, solute atoms, and secondary phases. The stress relaxation constitutive behavior reported here is a necessary input for the development of accurate thermomechanical models used to predict and minimize residual stresses and distortion in AM, as well as to predict the stress relaxation behavior of Inconel 625 in high temperature structural applications. |
---|---|
AbstractList | The complex thermal histories in additive manufacturing (AM) of metals result in the presence of residual stresses in the fabricated components. The amount of residual stress accumulated during AM depends on the high temperature constitutive behavior of the material. The rapid solidification and repeated thermal cycles with each laser pass result in material contraction, and subject the surrounding, constrained material to both elevated temperatures and internal stresses, providing driving forces for stress relaxation. In this study, the stress relaxation behavior and mechanisms of conventionally processed and additively manufactured Inconel 625 (CP-IN625 and AM-IN625) at 600 °C and 700 °C were investigated via compression tests up to an engineering strain of 9% with in situ neutron diffraction characterization. The stress decayed to a plateau stress equivalent to 18% of the peak stress in CP-IN625 and 16% in AM-IN625 at 600 °C, and 39% in CP-IN625 and 44% in AM-IN625 at 700 °C. At the same temperature, the stress relaxation rate in AM-IN625 was twice as high as that in CP-IN625, and the magnitude of the plateau stress in AM-IN625 was slightly lower than that in CP-IN625, as the textured AM-IN625 had much larger grains than the texture-free CP-IN625. The stress relaxation in CP- and AM-IN625 was deduced to be controlled by dislocation glide and climb, where dislocations interact with grain boundaries, solute atoms, and secondary phases. The stress relaxation constitutive behavior reported here is a necessary input for the development of accurate thermomechanical models used to predict and minimize residual stresses and distortion in AM, as well as to predict the stress relaxation behavior of Inconel 625 in high temperature structural applications. The complex thermal histories in additive manufacturing (AM) of metals result in the presence of residual stresses in the fabricated components. The amount of residual stress accumulated during AM depends on the high temperature constitutive behavior of the material. The rapid solidification and repeated thermal cycles with each laser pass result in material contraction, and subject the surrounding, constrained material to both elevated temperatures and internal stresses, providing driving forces for stress relaxation. In this study, the stress relaxation behavior and mechanisms of conventionally processed and additively manufactured Inconel 625 (CP-IN625 and AM-IN625) at 600°C and 700°C were investigated via compression tests up to an engineering strain of 9% with in situ neutron diffraction characterization. The stress decayed to a plateau stress equivalent to 18% of the peak stress in CP-IN625 and 16% in AM-IN625 at 600°C, and 39% in CP-IN625 and 44% in AM-IN625 at 700°C. At the same temperature, the stress relaxation rate in AM-IN625 was twice as high as that in CP-IN625, and the magnitude of the plateau stress in AM-IN625 was slightly lower than that in CP-IN625, as the textured AM-IN625 had much larger grains than the texture-free CP-IN625. The stress relaxation in CP- and AM-IN625 was deduced to be controlled by dislocation glide and climb, where dislocations interact with grain boundaries, solute atoms, and secondary phases. The stress relaxation constitutive behavior reported here is a necessary input for the development of accurate thermomechanical models used to predict and minimize residual stresses and distortion in AM, as well as to predict the stress relaxation behavior of Inconel 625 in high temperature structural applications. |
Author | Stoica, Alexandru D. Ma, Dong Wang, Zhuqing Beese, Allison M. |
Author_xml | – sequence: 1 givenname: Zhuqing surname: Wang fullname: Wang, Zhuqing organization: Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA – sequence: 2 givenname: Alexandru D. surname: Stoica fullname: Stoica, Alexandru D. organization: Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 3 givenname: Dong surname: Ma fullname: Ma, Dong organization: Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 4 givenname: Allison M. surname: Beese fullname: Beese, Allison M. email: amb961@psu.edu organization: Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA |
BackLink | https://www.osti.gov/biblio/1548945$$D View this record in Osti.gov |
BookMark | eNp9kUFv1DAQhS1UJLaFP8DJgnNSO4mTGHGpKqBIlTgAZ2vijFkvWTvYzkL5M_xVnA0nDj15ZL3vzdO8S3LhvENCXnJWcsbb60N5jAhlxXhX8qpkon9Cdrzv6qKRdXtBdkxWvBBM1s_IZYwHxhhvmNiRP59TwBhpwAl-QbLeUesoUGf1d5yKASLSuMwYYJr8A4VEccITJBxpwuP6n5ZsQH_atF_JaNNCHS4pZKfRGhNAn131HtYRg_19XvOG3szzZPW2M3kK42iTPSE9gltMli7Bum_PyVMDU8QX_94r8vX9uy-3d8X9pw8fb2_uC11LmQrguoVBS6xkO7ARRT20puXDMFTt2IiedaaWGhvBjNECzAiD7KEDlLwzlTT1FXm1-fqYrIraJtR77Z1DnRQXTS8bkUWvN9Ec_I8FY1IHvwSXc6mKNbxr2q6ts6raVDr4GAMaNQd7hPCgOFNrW-qg1rbU2pbilcptZaj_D8oRzrdJAez0OPp2QzHf52QxrPHRaRxtWNOP3j6G_wVcRLgY |
CitedBy_id | crossref_primary_10_1016_j_msea_2018_05_016 crossref_primary_10_1016_j_msea_2018_11_028 crossref_primary_10_1016_j_pmatsci_2019_100590 crossref_primary_10_1007_s11661_019_05454_z crossref_primary_10_1016_j_msea_2023_144845 crossref_primary_10_1002_adem_202000728 crossref_primary_10_1016_j_matdes_2020_108762 crossref_primary_10_1016_j_ijpvp_2025_105442 crossref_primary_10_1016_j_msea_2018_11_091 crossref_primary_10_1080_02670836_2019_1651475 crossref_primary_10_1088_1757_899X_1310_1_012035 crossref_primary_10_1007_s40964_024_00890_9 crossref_primary_10_1007_s11661_021_06496_y crossref_primary_10_3390_ma15124093 crossref_primary_10_1016_j_mattod_2021_03_020 crossref_primary_10_1016_j_jmst_2020_09_001 crossref_primary_10_1016_j_matdes_2022_111030 crossref_primary_10_1107_S1600576720015344 crossref_primary_10_1002_adem_202100895 crossref_primary_10_1016_j_surfcoat_2022_129130 crossref_primary_10_1016_j_matdes_2020_108571 crossref_primary_10_1515_htmp_2022_0036 crossref_primary_10_1016_j_jallcom_2021_160330 crossref_primary_10_1016_j_nima_2024_169709 crossref_primary_10_1515_htmp_2022_0254 crossref_primary_10_1007_s11837_019_03913_x crossref_primary_10_1080_17452759_2018_1532799 crossref_primary_10_3390_aerospace9100534 crossref_primary_10_1016_j_msea_2018_11_094 crossref_primary_10_1016_j_msea_2018_12_078 crossref_primary_10_1080_02670836_2022_2068759 crossref_primary_10_3390_met13010086 crossref_primary_10_1016_j_jallcom_2019_01_213 crossref_primary_10_1021_acs_est_4c12539 crossref_primary_10_1016_j_addlet_2022_100053 crossref_primary_10_1177_09544062251319158 crossref_primary_10_1016_j_addma_2022_103378 crossref_primary_10_1016_j_msea_2020_140368 crossref_primary_10_1063_1_5134881 |
Cites_doi | 10.3923/jas.2012.870.875 10.1007/s11661-014-2244-y 10.1016/S0022-3115(00)00723-6 10.1016/j.jmst.2013.02.010 10.1016/j.msea.2005.02.029 10.1016/j.msea.2004.01.042 10.1007/s11661-010-0495-9 10.1038/ncomms6178 10.1016/S1359-6454(03)00324-0 10.1179/1743280411Y.0000000014 10.1088/0022-3727/40/18/037 10.1016/S0924-0136(02)00237-6 10.1179/1743284714Y.0000000701 10.1179/174328407X179593 10.7449/1991/Superalloys_1991_217_228 10.1108/13552540610707013 10.1016/j.msea.2016.08.010 10.1016/j.matchar.2007.03.007 10.1016/j.actamat.2016.03.019 10.7449/1994/Superalloys_1994_13_37 10.1016/j.matdes.2016.10.003 10.1016/j.matdes.2010.07.040 10.1080/10426914.2014.930963 10.1016/j.jmrt.2013.02.008 10.1016/j.msea.2010.12.010 10.1016/j.msea.2017.09.071 10.1016/j.ijimpeng.2011.02.006 10.1016/j.msea.2008.08.017 10.1016/j.actamat.2017.04.022 10.2351/1.4757717 10.1016/j.jmatprotec.2006.04.072 10.1016/S1359-6454(02)00494-9 10.1016/j.jmatprotec.2014.07.030 10.1038/s41467-018-04473-5 10.1016/j.msea.2016.12.028 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Jan 31, 2018 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Jan 31, 2018 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 OTOTI |
DOI | 10.1016/j.msea.2017.12.058 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
EndPage | 83 |
ExternalDocumentID | 1548945 10_1016_j_msea_2017_12_058 S0921509317316556 |
Genre | Feature |
GrantInformation_xml | – fundername: DOE funderid: http://dx.doi.org/10.13039/100000015 – fundername: U.S. Department of Energy grantid: DE-AC05-00OR22725 funderid: http://dx.doi.org/10.13039/100000015 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SSH WUQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 OTOTI |
ID | FETCH-LOGICAL-c399t-a1c6abc9e296b0de53b6f61bbb26d45807f39ce450ffc5afdab98a7ae917f29f3 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Mon Apr 15 04:52:57 EDT 2024 Thu Aug 07 15:27:53 EDT 2025 Tue Jul 01 03:29:38 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Fri Feb 23 02:28:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Stress relaxation Inconel 625 Additive manufacturing Neutron diffraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-a1c6abc9e296b0de53b6f61bbb26d45807f39ce450ffc5afdab98a7ae917f29f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 USDOE Office of Science (SC), Basic Energy Sciences (BES) AC05-00OR22725 |
OpenAccessLink | https://www.osti.gov/biblio/1548945 |
PQID | 2041746763 |
PQPubID | 2045432 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1548945 proquest_journals_2041746763 crossref_primary_10_1016_j_msea_2017_12_058 crossref_citationtrail_10_1016_j_msea_2017_12_058 elsevier_sciencedirect_doi_10_1016_j_msea_2017_12_058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-31 |
PublicationDateYYYYMMDD | 2018-01-31 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne – name: Netherlands |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | Dawson, Boyce, Rogge (bib39) 2005; 399 Zhou, Gill, Qian, Mannava, Langer, Wen, Vasudevan (bib14) 2011; 38 L. Ferrer, B. Pieraggi, J.F. Uginet, Microstructural evolution during thermomechanical processing of alloy 625, in: Superalloys 718, 625 Various Derivatives, 1991, pp. 217–228. INCONEL ® Alloy 625, Spec. Met. Corp. SMC-020, 2006. ASTM B443 (bib26) 2014 Evans, Maziasz, Shingledecker, Yamamoto (bib19) 2008; 498 Moat, Pinkerton, Li, Withers, Preuss (bib10) 2011; 528 Manvatkar, De, DebRoy (bib34) 2015; 31 Lazan (bib38) 1968 Chin, Mammel (bib45) 1967; 239 Stoica, Stoica, Miller, Ma (bib29) 2014; 5 (Accessed 25 April 2017). Ma, Stoica, Wang, Beese (bib1) 2017; 684 Mathew, Rao, Mannan (bib18) 2004; 372 Makiewicz (bib32) 2013 Wasilkowska, Bartsch, Messerschmidt, Herzog, Czyrska-Filemonowicz (bib41) 2003; 133 Thomas, El-Wahabi, Cabrera, Prado (bib3) 2006; 177 Kamara, Marimuthu, Li (bib33) 2014; 29 Gu, Meiners, Wissenbach, Poprawe (bib7) 2012; 57 Wang, Denlinger, Michaleris, Stoica, Ma, Beese (bib12) 2017; 113 Rodriguez, Hayes, Berbon, Lavernia (bib17) 2003; 51 Benz, Carroll, Wright, Wright, Lillo (bib43) 2014; 45A Diehl, Messler (bib16) 1995; 74 Zener (bib37) 1948 An, Skorpenske, Stoica, Ma, Wang, Cakmak (bib28) 2011; 42 Rai, Elmer, Palmer, DebRoy (bib35) 2007; 40 Wang, Palmer, Beese (bib44) 2016; 110 Wang, Stoica, Ma, Beese (bib36) 2016; 674 Shankar, Rao, Mannan (bib21) 2001; 288 Frost, Ashby (bib31) 1973 Rombouts, Maes, Mertens, Hendrix (bib6) 2012; 24 Mathew, Parameswaran, Sankara Rao (bib20) 2008; 59 Pešička, Kužel, Dronhofer, Eggeler (bib40) 2003; 51 S. Floreen, G.E. Fuchs, W.J. Yang, The metallurgy of alloy 625, in: Superalloys 718, 625, 706 Various Derivatives Mineral Metal Materials Society, 1994, pp. 13–37. Wu (bib8) 2007; 23 Wang, Beese (bib9) 2017; 131 . H.J. Frost, M. Ashby, Rate-equations, in: Deform. Maps, Plast. Creep Met. Ceram., 1st ed., Pergamon Press, 1982. Wang, Stoica, Ma, Beese (bib13) 2017; 707 Bapokutty, Sajuri, Syarif (bib15) 2012; 12 Silva, De Miranda, Motta, Farias, Afonso, Ramirez (bib4) 2013; 2 Mercelis, Kruth (bib11) 2006; 12 Denlinger, Heigel, Michaleris, Palmer (bib27) 2015; 215 INCONEL Alloy 625, Spec. Met. Corp., 2013. A.M. Beese, Z. Wang, A.D. Stoica, D. Ma, Absence of Dynamic Strain Aging in an Additively Manufactured Nickel-base Superalloy. , 2017 (Submitted for publication). Xu, Lv, Liu, Shu, He, Xu (bib5) 2013; 29 Li, Guo, Guo, Peng, Wu (bib2) 2011; 32 Rai (10.1016/j.msea.2017.12.058_bib35) 2007; 40 10.1016/j.msea.2017.12.058_bib25 Thomas (10.1016/j.msea.2017.12.058_bib3) 2006; 177 Xu (10.1016/j.msea.2017.12.058_bib5) 2013; 29 10.1016/j.msea.2017.12.058_bib24 10.1016/j.msea.2017.12.058_bib23 Mercelis (10.1016/j.msea.2017.12.058_bib11) 2006; 12 Bapokutty (10.1016/j.msea.2017.12.058_bib15) 2012; 12 10.1016/j.msea.2017.12.058_bib22 Frost (10.1016/j.msea.2017.12.058_bib31) 1973 Zener (10.1016/j.msea.2017.12.058_bib37) 1948 Silva (10.1016/j.msea.2017.12.058_bib4) 2013; 2 Kamara (10.1016/j.msea.2017.12.058_bib33) 2014; 29 Shankar (10.1016/j.msea.2017.12.058_bib21) 2001; 288 ASTM B443 (10.1016/j.msea.2017.12.058_bib26) 2014 Diehl (10.1016/j.msea.2017.12.058_bib16) 1995; 74 Dawson (10.1016/j.msea.2017.12.058_bib39) 2005; 399 Wang (10.1016/j.msea.2017.12.058_bib36) 2016; 674 Zhou (10.1016/j.msea.2017.12.058_bib14) 2011; 38 10.1016/j.msea.2017.12.058_bib30 Li (10.1016/j.msea.2017.12.058_bib2) 2011; 32 Lazan (10.1016/j.msea.2017.12.058_bib38) 1968 Rombouts (10.1016/j.msea.2017.12.058_bib6) 2012; 24 Wang (10.1016/j.msea.2017.12.058_bib12) 2017; 113 Stoica (10.1016/j.msea.2017.12.058_bib29) 2014; 5 Wu (10.1016/j.msea.2017.12.058_bib8) 2007; 23 Wang (10.1016/j.msea.2017.12.058_bib13) 2017; 707 An (10.1016/j.msea.2017.12.058_bib28) 2011; 42 Manvatkar (10.1016/j.msea.2017.12.058_bib34) 2015; 31 Pešička (10.1016/j.msea.2017.12.058_bib40) 2003; 51 Wang (10.1016/j.msea.2017.12.058_bib9) 2017; 131 Evans (10.1016/j.msea.2017.12.058_bib19) 2008; 498 Moat (10.1016/j.msea.2017.12.058_bib10) 2011; 528 Rodriguez (10.1016/j.msea.2017.12.058_bib17) 2003; 51 Mathew (10.1016/j.msea.2017.12.058_bib20) 2008; 59 Denlinger (10.1016/j.msea.2017.12.058_bib27) 2015; 215 Chin (10.1016/j.msea.2017.12.058_bib45) 1967; 239 Makiewicz (10.1016/j.msea.2017.12.058_bib32) 2013 Wang (10.1016/j.msea.2017.12.058_bib44) 2016; 110 Wasilkowska (10.1016/j.msea.2017.12.058_bib41) 2003; 133 Benz (10.1016/j.msea.2017.12.058_bib43) 2014; 45A 10.1016/j.msea.2017.12.058_bib42 Gu (10.1016/j.msea.2017.12.058_bib7) 2012; 57 Mathew (10.1016/j.msea.2017.12.058_bib18) 2004; 372 Ma (10.1016/j.msea.2017.12.058_bib1) 2017; 684 |
References_xml | – reference: INCONEL Alloy 625, Spec. Met. Corp., 2013. 〈 – volume: 59 start-page: 508 year: 2008 end-page: 513 ident: bib20 article-title: Microstructural changes in alloy 625 during high temperature creep publication-title: Mater. Charact. – volume: 38 start-page: 590 year: 2011 end-page: 596 ident: bib14 article-title: A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy publication-title: Int. J. Impact Eng. – year: 1948 ident: bib37 article-title: Elasticity and Anelasticity of Metals – volume: 45A start-page: 3010 year: 2014 end-page: 3022 ident: bib43 article-title: Threshold stress creep behavior of alloy 617 at intermediate temperatures publication-title: Metall. Mater. Trans. A – volume: 215 start-page: 123 year: 2015 end-page: 131 ident: bib27 article-title: Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys publication-title: J. Mater. Process. Technol. – volume: 31 start-page: 924 year: 2015 end-page: 930 ident: bib34 article-title: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process publication-title: Mater. Sci. Technol. – volume: 24 start-page: 1 year: 2012 end-page: 6 ident: bib6 article-title: Laser metal deposition of Inconel 625: microstructure and mechanical properties publication-title: J. Laser Appl. – volume: 674 start-page: 406 year: 2016 end-page: 412 ident: bib36 article-title: Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction publication-title: Mater. Sci. Eng. A – reference: L. Ferrer, B. Pieraggi, J.F. Uginet, Microstructural evolution during thermomechanical processing of alloy 625, in: Superalloys 718, 625 Various Derivatives, 1991, pp. 217–228. – volume: 32 start-page: 696 year: 2011 end-page: 705 ident: bib2 article-title: The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy publication-title: Mater. Des. – volume: 51 start-page: 911 year: 2003 end-page: 929 ident: bib17 article-title: Tensile and creep behavior of cryomilled Inco 625 publication-title: Acta Mater. – year: 1973 ident: bib31 article-title: A Second Report on Deformation Mechanism Maps – volume: 177 start-page: 469 year: 2006 end-page: 472 ident: bib3 article-title: High temperature deformation of Inconel 718 publication-title: J. Mater. Process. Technol. – year: 1968 ident: bib38 article-title: Damping of Materials and Members in Structural Mechanics – volume: 57 start-page: 133 year: 2012 end-page: 164 ident: bib7 article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms publication-title: Int. Mater. Rev. – reference: S. Floreen, G.E. Fuchs, W.J. Yang, The metallurgy of alloy 625, in: Superalloys 718, 625, 706 Various Derivatives Mineral Metal Materials Society, 1994, pp. 13–37. 〈 – volume: 110 start-page: 226 year: 2016 end-page: 235 ident: bib44 article-title: Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing publication-title: Acta Mater. – volume: 51 start-page: 4847 year: 2003 end-page: 4862 ident: bib40 article-title: The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels publication-title: Acta Mater. – reference: 〉. (Accessed 25 April 2017). – volume: 12 start-page: 870 year: 2012 end-page: 875 ident: bib15 article-title: Stress relaxation behavior of heat treated inconel 718 publication-title: J. Appl. Sci. – reference: A.M. Beese, Z. Wang, A.D. Stoica, D. Ma, Absence of Dynamic Strain Aging in an Additively Manufactured Nickel-base Superalloy. , 2017 (Submitted for publication). – volume: 2 start-page: 228 year: 2013 end-page: 237 ident: bib4 article-title: New insight on the solidification path of an alloy 625 weld overlay publication-title: J. Mater. Res. Technol. – volume: 12 start-page: 254 year: 2006 end-page: 265 ident: bib11 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. – reference: 〉. – volume: 498 start-page: 412 year: 2008 end-page: 420 ident: bib19 article-title: Microstructure evolution of alloy 625 foil and sheet during creep at 750 publication-title: Mater. Sci. Eng. A – reference: H.J. Frost, M. Ashby, Rate-equations, in: Deform. Maps, Plast. Creep Met. Ceram., 1st ed., Pergamon Press, 1982. – volume: 113 start-page: 169 year: 2017 end-page: 177 ident: bib12 article-title: Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions publication-title: Mater. Des. – start-page: 1 year: 2014 end-page: 7 ident: bib26 article-title: Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy – volume: 528 start-page: 2288 year: 2011 end-page: 2298 ident: bib10 article-title: Residual stresses in laser direct metal deposited Waspaloy publication-title: Mater. Sci. Eng. A – volume: 133 start-page: 218 year: 2003 end-page: 224 ident: bib41 article-title: Creep mechanisms of ferritic oxide dispersion strengthened alloys publication-title: J. Mater. Process. Technol. – volume: 29 start-page: 1245 year: 2014 end-page: 1252 ident: bib33 article-title: Finite element modeling of microstructure in laser-deposited multiple layer inconel 718 parts publication-title: Mater. Manuf. Process. – reference: INCONEL ® Alloy 625, Spec. Met. Corp. SMC-020, 2006. – year: 2013 ident: bib32 article-title: Development of Simultaneous Transformation Kinetics Microstructure Model with Application to Laser Metal Deposited Ti-6Al-4V and Alloy 718 – volume: 684 start-page: 47 year: 2017 end-page: 53 ident: bib1 article-title: Crystallographic texture in an additively manufactured nickel-base superalloy publication-title: Mater. Sci. Eng. A – volume: 5 start-page: 1 year: 2014 end-page: 8 ident: bib29 article-title: Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy publication-title: Nat. Commun. – volume: 399 start-page: 13 year: 2005 end-page: 25 ident: bib39 article-title: Correlation of diffraction peak broadening to crystal strengthening in finite element simulations publication-title: Mater. Sci. Eng. A – volume: 42 start-page: 95 year: 2011 end-page: 99 ident: bib28 article-title: First in situ lattice strains measurements under load at VULCAN publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. – volume: 707 start-page: 585 year: 2017 end-page: 592 ident: bib13 article-title: Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: application to additive manufacturing publication-title: Mater. Sci. Eng. A – volume: 288 start-page: 222 year: 2001 end-page: 232 ident: bib21 article-title: Microstructure and mechanical properties of Inconel 625 superalloy publication-title: J. Nucl. Mater. – volume: 74 start-page: 109 year: 1995 end-page: 114 ident: bib16 article-title: Using stress relaxation tests for evaluating and optimizing postweld heat treatments of alloy 625 welds publication-title: Weld. J. – volume: 29 start-page: 480 year: 2013 end-page: 488 ident: bib5 article-title: Microstructural evolution and mechanical properties of inconel 625 alloy during pulsed plasma arc deposition process publication-title: J. Mater. Sci. Technol. – volume: 239 start-page: 1400 year: 1967 end-page: 1405 ident: bib45 article-title: Computer solutions of taylor analysis for axisymmetric flow publication-title: Trans. Metall. Soc. AIME – volume: 23 start-page: 631 year: 2007 end-page: 640 ident: bib8 article-title: A review of laser fabrication of metallic engineering components and of materials publication-title: Mater. Sci. Technol. – volume: 131 start-page: 410 year: 2017 end-page: 422 ident: bib9 article-title: Effect of chemistry on martensitic phase transformation kinetics and resulting properties of additively manufactured stainless steel publication-title: Acta Mater. – volume: 372 start-page: 327 year: 2004 end-page: 333 ident: bib18 article-title: Creep properties of service-exposed Alloy 625 after re-solution annealing treatment publication-title: Mater. Sci. Eng. A – volume: 40 start-page: 5753 year: 2007 end-page: 5766 ident: bib35 article-title: Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium publication-title: J. Phys. D. Appl. Phys. – volume: 12 start-page: 870 year: 2012 ident: 10.1016/j.msea.2017.12.058_bib15 article-title: Stress relaxation behavior of heat treated inconel 718 publication-title: J. Appl. Sci. doi: 10.3923/jas.2012.870.875 – volume: 45A start-page: 3010 year: 2014 ident: 10.1016/j.msea.2017.12.058_bib43 article-title: Threshold stress creep behavior of alloy 617 at intermediate temperatures publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2244-y – volume: 288 start-page: 222 year: 2001 ident: 10.1016/j.msea.2017.12.058_bib21 article-title: Microstructure and mechanical properties of Inconel 625 superalloy publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(00)00723-6 – volume: 29 start-page: 480 year: 2013 ident: 10.1016/j.msea.2017.12.058_bib5 article-title: Microstructural evolution and mechanical properties of inconel 625 alloy during pulsed plasma arc deposition process publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2013.02.010 – year: 1948 ident: 10.1016/j.msea.2017.12.058_bib37 – volume: 399 start-page: 13 year: 2005 ident: 10.1016/j.msea.2017.12.058_bib39 article-title: Correlation of diffraction peak broadening to crystal strengthening in finite element simulations publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.02.029 – volume: 372 start-page: 327 year: 2004 ident: 10.1016/j.msea.2017.12.058_bib18 article-title: Creep properties of service-exposed Alloy 625 after re-solution annealing treatment publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.01.042 – year: 2013 ident: 10.1016/j.msea.2017.12.058_bib32 – volume: 74 start-page: 109 year: 1995 ident: 10.1016/j.msea.2017.12.058_bib16 article-title: Using stress relaxation tests for evaluating and optimizing postweld heat treatments of alloy 625 welds publication-title: Weld. J. – volume: 42 start-page: 95 year: 2011 ident: 10.1016/j.msea.2017.12.058_bib28 article-title: First in situ lattice strains measurements under load at VULCAN publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. doi: 10.1007/s11661-010-0495-9 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.msea.2017.12.058_bib29 article-title: Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy publication-title: Nat. Commun. doi: 10.1038/ncomms6178 – volume: 51 start-page: 4847 year: 2003 ident: 10.1016/j.msea.2017.12.058_bib40 article-title: The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00324-0 – volume: 57 start-page: 133 year: 2012 ident: 10.1016/j.msea.2017.12.058_bib7 article-title: Laser additive manufacturing of metallic components: materials, processes and mechanisms publication-title: Int. Mater. Rev. doi: 10.1179/1743280411Y.0000000014 – volume: 40 start-page: 5753 year: 2007 ident: 10.1016/j.msea.2017.12.058_bib35 article-title: Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/40/18/037 – volume: 133 start-page: 218 year: 2003 ident: 10.1016/j.msea.2017.12.058_bib41 article-title: Creep mechanisms of ferritic oxide dispersion strengthened alloys publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(02)00237-6 – volume: 31 start-page: 924 year: 2015 ident: 10.1016/j.msea.2017.12.058_bib34 article-title: Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000701 – volume: 23 start-page: 631 year: 2007 ident: 10.1016/j.msea.2017.12.058_bib8 article-title: A review of laser fabrication of metallic engineering components and of materials publication-title: Mater. Sci. Technol. doi: 10.1179/174328407X179593 – year: 1973 ident: 10.1016/j.msea.2017.12.058_bib31 – ident: 10.1016/j.msea.2017.12.058_bib23 doi: 10.7449/1991/Superalloys_1991_217_228 – year: 1968 ident: 10.1016/j.msea.2017.12.058_bib38 – ident: 10.1016/j.msea.2017.12.058_bib25 – ident: 10.1016/j.msea.2017.12.058_bib42 – volume: 12 start-page: 254 year: 2006 ident: 10.1016/j.msea.2017.12.058_bib11 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. doi: 10.1108/13552540610707013 – ident: 10.1016/j.msea.2017.12.058_bib30 – volume: 674 start-page: 406 year: 2016 ident: 10.1016/j.msea.2017.12.058_bib36 article-title: Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.08.010 – volume: 59 start-page: 508 year: 2008 ident: 10.1016/j.msea.2017.12.058_bib20 article-title: Microstructural changes in alloy 625 during high temperature creep publication-title: Mater. Charact. doi: 10.1016/j.matchar.2007.03.007 – volume: 110 start-page: 226 year: 2016 ident: 10.1016/j.msea.2017.12.058_bib44 article-title: Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.019 – ident: 10.1016/j.msea.2017.12.058_bib24 doi: 10.7449/1994/Superalloys_1994_13_37 – volume: 113 start-page: 169 year: 2017 ident: 10.1016/j.msea.2017.12.058_bib12 article-title: Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.10.003 – volume: 32 start-page: 696 year: 2011 ident: 10.1016/j.msea.2017.12.058_bib2 article-title: The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.07.040 – volume: 29 start-page: 1245 year: 2014 ident: 10.1016/j.msea.2017.12.058_bib33 article-title: Finite element modeling of microstructure in laser-deposited multiple layer inconel 718 parts publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2014.930963 – volume: 2 start-page: 228 year: 2013 ident: 10.1016/j.msea.2017.12.058_bib4 article-title: New insight on the solidification path of an alloy 625 weld overlay publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2013.02.008 – volume: 528 start-page: 2288 year: 2011 ident: 10.1016/j.msea.2017.12.058_bib10 article-title: Residual stresses in laser direct metal deposited Waspaloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.12.010 – volume: 707 start-page: 585 year: 2017 ident: 10.1016/j.msea.2017.12.058_bib13 article-title: Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: application to additive manufacturing publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.09.071 – volume: 38 start-page: 590 year: 2011 ident: 10.1016/j.msea.2017.12.058_bib14 article-title: A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2011.02.006 – volume: 498 start-page: 412 year: 2008 ident: 10.1016/j.msea.2017.12.058_bib19 article-title: Microstructure evolution of alloy 625 foil and sheet during creep at 750C publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.08.017 – volume: 239 start-page: 1400 year: 1967 ident: 10.1016/j.msea.2017.12.058_bib45 article-title: Computer solutions of taylor analysis for axisymmetric flow publication-title: Trans. Metall. Soc. AIME – volume: 131 start-page: 410 year: 2017 ident: 10.1016/j.msea.2017.12.058_bib9 article-title: Effect of chemistry on martensitic phase transformation kinetics and resulting properties of additively manufactured stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.04.022 – start-page: 1 year: 2014 ident: 10.1016/j.msea.2017.12.058_bib26 – volume: 24 start-page: 1 year: 2012 ident: 10.1016/j.msea.2017.12.058_bib6 article-title: Laser metal deposition of Inconel 625: microstructure and mechanical properties publication-title: J. Laser Appl. doi: 10.2351/1.4757717 – volume: 177 start-page: 469 year: 2006 ident: 10.1016/j.msea.2017.12.058_bib3 article-title: High temperature deformation of Inconel 718 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.04.072 – volume: 51 start-page: 911 year: 2003 ident: 10.1016/j.msea.2017.12.058_bib17 article-title: Tensile and creep behavior of cryomilled Inco 625 publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00494-9 – volume: 215 start-page: 123 year: 2015 ident: 10.1016/j.msea.2017.12.058_bib27 article-title: Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.07.030 – ident: 10.1016/j.msea.2017.12.058_bib22 doi: 10.1038/s41467-018-04473-5 – volume: 684 start-page: 47 year: 2017 ident: 10.1016/j.msea.2017.12.058_bib1 article-title: Crystallographic texture in an additively manufactured nickel-base superalloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.12.028 |
SSID | ssj0001405 |
Score | 2.4393256 |
Snippet | The complex thermal histories in additive manufacturing (AM) of metals result in the presence of residual stresses in the fabricated components. The amount of... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 75 |
SubjectTerms | Additive manufacturing Compression tests Dislocation mobility Grain boundaries High temperature Inconel 625 Neutron diffraction Nickel base alloys Rapid solidification Residual stress Solidification Stress relaxation Superalloys Thermomechanical analysis |
Title | Stress relaxation in a nickel-base superalloy at elevated temperatures with in situ neutron diffraction characterization: Application to additive manufacturing |
URI | https://dx.doi.org/10.1016/j.msea.2017.12.058 https://www.proquest.com/docview/2041746763 https://www.osti.gov/biblio/1548945 |
Volume | 714 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2kPpemDbvNgDr0Fdf2Q5FVvS0jYtiSXJJCbkGQZXDbeJWtDe-lf6V_tjC0nDS059GijwUYznof8fTOMfVBoA87qhGuMvVzMk5LbTFiuKNcQNvVlRgTn8wu1vBZfbuTNDjsZuTAEq4y-f_DpvbeOd2ZxN2ebup5dJhrDFRbkKQ1fkpLabgtRkJV__PkA88ACoocx4mJOqyNxZsB43aI5Ebyr6I8Eaez7v4PTZI3f21_eug9BZy_Zi5g7wmJ4vT22E5pX7PkfHQVfs1-XPfcDiKLyvd90qBuw0NT4ta44xSzYdhs6iFqtf4BtgfjlmG-WQE2qYoflLdDxLElu67aDJnR0YA40TOVuIEKAv2_0PPA4P8Hi4Vc4tGsgoBK5Uri1TUf0iZ4P-YZdn51enSx5nMHAPaYuLUdtKeu8DplWLimDzJ2qVOqcy1Qp5Dwpqlz7IGRSVV7aqrROz21hA5aBVaar_C2bNOsmvGOgC-9cmkvlRCKslHOvrUiDdqXPMS2qpiwdN9_42KCc5mSszIhE-2ZIYYYUZtLMoMKm7PheZjO053hytRx1ah4ZmcH48aTcPhkAyVBnXU8QJBSiak8LOWUHo12Y6AC2KC1SmuSi8vf_-dB99gyvCGmIcfKATdq7LhxiAtS6o97Cj9ju4vPX5cVvsDkJtw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEE-xbYE5cEPW5mF719xWFdWWtntpK_Vm2Y4jBW2zq24iwa_pX2UmcRYQqAeuSUaJPON5ON83w9hHhTbgrE64xtjLxSwpuM2E5YpyDWFTX2REcL5YqsW1-Hojb_bY8cCFIVhl9P29T--8dbwyias52VTV5DLRGK6wIE9p-JKU6hHbp-5UcsT256dni-XOIWMN0SEZ8XlOApE708O8btGiCOE17U4FafL7v-PTaI1b7i-H3UWhk-fsWUwfYd5_4Qu2F-qX7OlvTQVfsfvLjv4BxFL53q07VDVYqCvcsCtOYQu27YbOolbrH2AbIIo5ppwFUJ-q2GR5C3RCS5LbqmmhDi2dmQPNU7nruRDgd72eeyrnZ5j_-hsOzRoIq0TeFG5t3RKDoqNEvmbXJ1-ujhc8jmHgHrOXhqPClHVeh0wrlxRB5k6VKnXOZaoQcpZMy1z7IGRSll7asrBOz-zUBqwEy0yX-Rs2qtd1eMtAT71zaS6VE4mwUs68tiIN2hU-x8yoHLN0WHzjY49yGpWxMgMY7ZshhRlSmEkzgwobs087mU3foePBp-WgU_OHnRkMIQ_KHZIBkAw11_WEQkIhKvi0kGN2NNiFiT5gi9IipWEuKj_4z5d-YI8XVxfn5vx0eXbInuAdAh5i2Dxio-auDe8wH2rc-2jvPwG1Hgxo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+relaxation+in+a+nickel-base+superalloy+at+elevated+temperatures+with+in+situ+neutron+diffraction+characterization%3A+Application+to+additive+manufacturing&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Wang%2C+Zhuqing&rft.au=Stoica%2C+Alexandru+D.&rft.au=Ma%2C+Dong&rft.au=Beese%2C+Allison+M.&rft.date=2018-01-31&rft.pub=Elsevier&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=714&rft.issue=C&rft_id=info:doi/10.1016%2Fj.msea.2017.12.058&rft.externalDocID=1548945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |