SAR-driven flood inventory and multi-factor ensemble susceptibility modelling using machine learning frameworks

Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to human populations and economic infrastructure. The present research employed novel ML models-LR, SVM, RF, XGBoost, DNN, and Stacking Ensemble...

Full description

Saved in:
Bibliographic Details
Published inGeomatics, natural hazards and risk Vol. 15; no. 1
Main Authors Halder, Krishnagopal, Ghosh, Anitabha, Srivastava, Amit Kumar, Pal, Subodh Chandra, Chatterjee, Uday, Bisai, Dipak, Ewert, Frank, Gaiser, Thomas, Islam, Abu Reza Md. Towfiqul, Alam, Edris, Islam, Md Kamrul
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2024
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to human populations and economic infrastructure. The present research employed novel ML models-LR, SVM, RF, XGBoost, DNN, and Stacking Ensemble-developed in the Python environment and leveraged 18 flood-influencing factors to delineate flood-prone areas with precision. A comprehensive flood inventory, obtained from Sentinel-1 Synthetic Aperture Radar (SAR) data using the Google Earth Engine (GEE) platform, provided empirical data for entire model training and validation. Model performance was assessed using precision, recall, F1-score, accuracy, and ROC-AUC metrics. The results highlighted Stacking Ensemble's superior predictive ability (0.965), followed closely by, XGBoost (0.934), DNN (0.929), RF (0.925), LR (0.921), and SVM (0.920) respectively, establishing the feasibility of ML applications in disaster management. The maps depicting susceptibility to flooding generated by the current research provide actionable insights for decision-makers, city planners, and authorities responsible for disaster management, guiding infrastructural and community resilience enhancements against flood risks.
AbstractList Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to human populations and economic infrastructure. The present research employed novel ML models—LR, SVM, RF, XGBoost, DNN, and Stacking Ensemble—developed in the Python environment and leveraged 18 flood-influencing factors to delineate flood-prone areas with precision. A comprehensive flood inventory, obtained from Sentinel-1 Synthetic Aperture Radar (SAR) data using the Google Earth Engine (GEE) platform, provided empirical data for entire model training and validation. Model performance was assessed using precision, recall, F1-score, accuracy, and ROC-AUC metrics. The results highlighted Stacking Ensemble’s superior predictive ability (0.965), followed closely by, XGBoost (0.934), DNN (0.929), RF (0.925), LR (0.921), and SVM (0.920) respectively, establishing the feasibility of ML applications in disaster management. The maps depicting susceptibility to flooding generated by the current research provide actionable insights for decision-makers, city planners, and authorities responsible for disaster management, guiding infrastructural and community resilience enhancements against flood risks.
Author Ewert, Frank
Halder, Krishnagopal
Bisai, Dipak
Islam, Abu Reza Md. Towfiqul
Chatterjee, Uday
Alam, Edris
Ghosh, Anitabha
Srivastava, Amit Kumar
Pal, Subodh Chandra
Gaiser, Thomas
Islam, Md Kamrul
Author_xml – sequence: 1
  givenname: Krishnagopal
  surname: Halder
  fullname: Halder, Krishnagopal
  organization: Centre of Excellence in Disaster Mitigation and Management (CoEDMM), Indian Institute of Technology Roorkee
– sequence: 2
  givenname: Anitabha
  surname: Ghosh
  fullname: Ghosh, Anitabha
  organization: Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University)
– sequence: 3
  givenname: Amit Kumar
  surname: Srivastava
  fullname: Srivastava, Amit Kumar
  organization: Leibniz Centre for Agricultural Landscape Research (ZALF)
– sequence: 4
  givenname: Subodh Chandra
  surname: Pal
  fullname: Pal, Subodh Chandra
  organization: Department of Geography, The University of Burdwan
– sequence: 5
  givenname: Uday
  surname: Chatterjee
  fullname: Chatterjee, Uday
  organization: Department of Geography, Bhatter College
– sequence: 6
  givenname: Dipak
  surname: Bisai
  fullname: Bisai, Dipak
  organization: Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University)
– sequence: 7
  givenname: Frank
  surname: Ewert
  fullname: Ewert, Frank
  organization: Leibniz Centre for Agricultural Landscape Research (ZALF)
– sequence: 8
  givenname: Thomas
  surname: Gaiser
  fullname: Gaiser, Thomas
  organization: Institute of Crop Science and Resource Conservation, University of Bonn
– sequence: 9
  givenname: Abu Reza Md. Towfiqul
  surname: Islam
  fullname: Islam, Abu Reza Md. Towfiqul
  organization: Department of Development Studies, Daffodil International University
– sequence: 10
  givenname: Edris
  surname: Alam
  fullname: Alam, Edris
  organization: Department of Geography and Environmental Studies, University of Chittagong
– sequence: 11
  givenname: Md Kamrul
  surname: Islam
  fullname: Islam, Md Kamrul
  organization: Department of Civil and Environmental Engineering College of Engineering, King Faisal University
BookMark eNp9UV1rHCEUlZBC0jQ_ITDQ59n6Ma761hDaNBAotM2zqHNN3Tq61ZmG_fd1umkecx_0cDj33Ms9b9FpygkQuiJ4Q7DEH4gaBBeYbyimw4YOWDVwgs5XvueCsNMXjPkZuqx1h1sxKgUezlH-fv2tH0v4A6nzMeexC6nhOZdDZ9LYTUucQ--Na0wHqcJkI3R1qQ72c7AhhvnQTXmEGEN67Ja6vpNxP0OCLoIpaSV8MRM85fKrvkNvvIkVLp__C_Tw-dOPmy_9_dfbu5vr-94xpeZeeUkckwQLI1t5QwWwrfXCgZBi8ALLkQ6UMWadN0JYDsIqLBWzI7Zg2AW6O_qO2ez0voTJlIPOJuh_RC6P2pQ5uAgalB_wiKlSRg7cUjlQuiWCObpVW85983p_9NqX_HuBOutdXkpq62tGeJO3BHBT8aPKlVxrAf8ylWC9RqX_R6XXqPRzVK3v47EvJJ_LZNqZ4qhnc4i5tLslF9Yxr1r8BZ30nNY
Cites_doi 10.3390/rs14020309
10.1016/j.jhydrol.2023.129121
10.1016/j.jhydrol.2023.129100
10.5194/hess-26-4345-2022
10.3390/rs16050858
10.1080/71702626667909491834.718
10.3390/ecws-7-14301
10.5194/isprs-archives-XLVI-4-W3-2021-305-2022
10.1016/j.jenvman.2022.116450
10.1007/s40808-022-01384-9
10.1007/s00477-022-02195-1
10.1016/j.nhres.2024.01.001
10.3390/rs16040656
10.1007/s11069-022-05584-5
10.1016/j.rse.2021.112668
10.1007/s40808-023-01912-1
10.1016/j.nhres.2022.06.003
10.1016/j.scs.2023.104744
10.1007/s12665-024-11696-x
10.1016/j.jhydrol.2022.128072
10.1016/j.jhydrol.2024.130936
10.1007/s11069-021-05098-6
10.2166/wcc.2022.435
10.1007/s41064-024-00275-1
10.1016/B978-0-12-823457-0.00001-X
10.1007/s12524-022-01560-5
10.1016/j.scs.2024.105508
10.1016/j.earscirev.2020.103225
10.1080/10106049.2022.2096702
10.1007/s11069-024-06609-x
10.3390/w11071402
10.1016/j.rsase.2021.100686
10.5194/isprs-annals-V-3-2022-549-2022
10.1016/j.jafrearsci.2022.104788
10.3390/rs15092447
10.1109/IHMSC.2015.236
10.1016/j.ejrs.2022.11.003
10.3390/w15142511
10.1007/s11269-024-03770-7
10.1080/10106049.2021.1920636
10.1016/j.pdisas.2024.100346
10.1109/LGRS.2021.3110132
10.3390/rs16020320
10.1007/s12524-023-01777-y
10.1155/2020/8821627
10.1038/s41598-019-48773-2
10.1016/j.gsf.2021.101206
10.1007/s11356-022-22924-x
10.1038/s41598-023-27447-0
10.1007/s11356-024-32163-x
10.1016/j.geomorph.2019.106861
10.3390/w14071140
10.1016/j.ejrh.2024.101892
10.3390/w13020241
10.3390/su14063251
10.1016/j.ijdrr.2024.104503
10.1080/10106049.2023.2285355
10.1155/2021/8821329
10.1016/j.wsee.2022.11.011
10.1007/978-3-031-21086-0_3
10.1007/978-3-030-37393-1_7
10.1080/19475705.2023.2203798
10.1080/10106049.2022.2046866
10.1007/s11356-022-23168-5
10.1016/j.gsf.2023.101625
10.46717/igj.55.2C.10ms-2022-08-23
10.1007/s12665-023-11324-0
10.1007/s11069-024-06629-7
10.3390/rs14215523
10.1016/j.scitotenv.2020.137320
10.1007/s10346-019-01286-5
10.1016/j.scitotenv.2021.151585
10.1007/s11069-022-05503-8
10.1080/10106049.2022.2112982
10.1080/19475705.2022.2112094
10.1108/ACI-09-2021-0264
10.1016/j.hydres.2023.02.004
10.1016/j.nhres.2023.05.004
10.1007/s11356-022-20213-1
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
– notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7ST
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
HCIFZ
KL.
KR7
L.G
L6V
L7M
LK8
M7P
M7S
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.1080/19475705.2024.2409202
DatabaseName Taylor & Francis Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environment Abstracts
DatabaseTitleList ProQuest Central Student


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1947-5713
ExternalDocumentID oai_doaj_org_article_e9f40d0299a845b284226173c269655f
10_1080_19475705_2024_2409202
2409202
Genre Research Article
GrantInformation_xml – fundername: King Faisal University, Saudi Arabia
  grantid: 5823
– fundername: German Federal Ministry of Education and Research (BMBF)
  grantid: 031B0151A
– fundername: Germany's Excellence Strategy-EXC
– fundername: Germany's Excellence Strategy-EXC
  grantid: 01LL2204C
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
GroupedDBID .7F
0YH
4.4
5VS
7XC
8FE
8FG
8FH
ABJCF
ACGFS
ACIWK
ACPRK
ADBBV
ADCVX
ADMSI
AEUYN
AFKRA
AFPKN
AFRAH
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CE4
EBS
ECGQY
GROUPED_DOAJ
GTTXZ
H13
HCIFZ
HZ~
IPNFZ
J~4
L6V
LK5
LK8
M7P
M7R
M7S
OK1
P2P
P62
PATMY
PCBAR
PTHSS
PYCSY
RDKPK
RIG
TDBHL
TFL
TFW
UU3
AAFWJ
AAYXX
CITATION
M4Z
PHGZM
PHGZT
7ST
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H8D
H96
H97
KL.
KR7
L.G
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c399t-9f81c38107a8888fa27e36bf7ce7874f708d242333bcfa77b5e7b90893bd0bea3
IEDL.DBID 0YH
ISSN 1947-5705
IngestDate Wed Aug 27 01:29:03 EDT 2025
Fri Jul 25 12:21:47 EDT 2025
Tue Jul 01 01:26:05 EDT 2025
Wed Dec 25 09:03:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-9f81c38107a8888fa27e36bf7ce7874f708d242333bcfa77b5e7b90893bd0bea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/19475705.2024.2409202
PQID 3158424750
PQPubID 436431
ParticipantIDs crossref_primary_10_1080_19475705_2024_2409202
doaj_primary_oai_doaj_org_article_e9f40d0299a845b284226173c269655f
proquest_journals_3158424750
informaworld_taylorfrancis_310_1080_19475705_2024_2409202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Geomatics, natural hazards and risk
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_77_1
e_1_3_3_71_1
e_1_3_3_79_1
Jenness J (e_1_3_3_32_1) 2013
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_73_1
e_1_3_3_40_1
e_1_3_3_63_1
e_1_3_3_61_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_80_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_82_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_84_1
e_1_3_3_30_1
e_1_3_3_51_1
e_1_3_3_76_1
e_1_3_3_78_1
[NIH] National Institute of Hydrology. (e_1_3_3_50_1) 2000
e_1_3_3_70_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_59_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_72_1
e_1_3_3_11_1
e_1_3_3_53_1
e_1_3_3_74_1
e_1_3_3_41_1
e_1_3_3_62_1
e_1_3_3_60_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_68_1
e_1_3_3_81_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_66_1
e_1_3_3_83_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
e_1_3_3_64_1
References_xml – volume-title: Dam break study of Gogahoda project, Orissa
  year: 2000
  ident: e_1_3_3_50_1
– ident: e_1_3_3_82_1
  doi: 10.3390/rs14020309
– ident: e_1_3_3_22_1
  doi: 10.1016/j.jhydrol.2023.129121
– ident: e_1_3_3_41_1
  doi: 10.1016/j.jhydrol.2023.129100
– ident: e_1_3_3_6_1
  doi: 10.5194/hess-26-4345-2022
– ident: e_1_3_3_30_1
  doi: 10.3390/rs16050858
– ident: e_1_3_3_8_1
  doi: 10.1080/71702626667909491834.718
– ident: e_1_3_3_29_1
  doi: 10.3390/ecws-7-14301
– ident: e_1_3_3_69_1
  doi: 10.5194/isprs-archives-XLVI-4-W3-2021-305-2022
– ident: e_1_3_3_36_1
  doi: 10.1016/j.jenvman.2022.116450
– ident: e_1_3_3_28_1
  doi: 10.1007/s40808-022-01384-9
– ident: e_1_3_3_62_1
  doi: 10.1007/s00477-022-02195-1
– ident: e_1_3_3_39_1
  doi: 10.1016/j.nhres.2024.01.001
– ident: e_1_3_3_4_1
  doi: 10.3390/rs16040656
– ident: e_1_3_3_78_1
  doi: 10.1007/s11069-022-05584-5
– ident: e_1_3_3_83_1
  doi: 10.1016/j.rse.2021.112668
– ident: e_1_3_3_13_1
  doi: 10.1007/s40808-023-01912-1
– ident: e_1_3_3_27_1
  doi: 10.1016/j.nhres.2022.06.003
– ident: e_1_3_3_38_1
  doi: 10.1016/j.scs.2023.104744
– ident: e_1_3_3_75_1
  doi: 10.1007/s12665-024-11696-x
– ident: e_1_3_3_48_1
  doi: 10.1016/j.jhydrol.2022.128072
– ident: e_1_3_3_3_1
  doi: 10.1016/j.jhydrol.2024.130936
– ident: e_1_3_3_68_1
  doi: 10.1007/s11069-021-05098-6
– ident: e_1_3_3_19_1
  doi: 10.2166/wcc.2022.435
– ident: e_1_3_3_26_1
  doi: 10.1007/s41064-024-00275-1
– volume-title: Land facet corridor designer
  year: 2013
  ident: e_1_3_3_32_1
– ident: e_1_3_3_52_1
  doi: 10.1016/B978-0-12-823457-0.00001-X
– ident: e_1_3_3_25_1
  doi: 10.1007/s12524-022-01560-5
– ident: e_1_3_3_84_1
  doi: 10.1016/j.scs.2024.105508
– ident: e_1_3_3_43_1
  doi: 10.1016/j.earscirev.2020.103225
– ident: e_1_3_3_66_1
  doi: 10.1080/10106049.2022.2096702
– ident: e_1_3_3_14_1
  doi: 10.1007/s11069-024-06609-x
– ident: e_1_3_3_51_1
  doi: 10.3390/w11071402
– ident: e_1_3_3_7_1
  doi: 10.1016/j.rsase.2021.100686
– ident: e_1_3_3_73_1
  doi: 10.5194/isprs-annals-V-3-2022-549-2022
– ident: e_1_3_3_79_1
  doi: 10.1016/j.jafrearsci.2022.104788
– ident: e_1_3_3_11_1
– ident: e_1_3_3_37_1
  doi: 10.3390/rs15092447
– ident: e_1_3_3_77_1
  doi: 10.1109/IHMSC.2015.236
– ident: e_1_3_3_57_1
  doi: 10.1016/j.ejrs.2022.11.003
– ident: e_1_3_3_21_1
  doi: 10.3390/w15142511
– ident: e_1_3_3_23_1
  doi: 10.1007/s11269-024-03770-7
– ident: e_1_3_3_2_1
  doi: 10.1080/10106049.2021.1920636
– ident: e_1_3_3_9_1
  doi: 10.1016/j.pdisas.2024.100346
– ident: e_1_3_3_54_1
  doi: 10.1109/LGRS.2021.3110132
– ident: e_1_3_3_58_1
  doi: 10.3390/rs16020320
– ident: e_1_3_3_67_1
  doi: 10.1007/s12524-023-01777-y
– ident: e_1_3_3_33_1
  doi: 10.1155/2020/8821627
– ident: e_1_3_3_10_1
  doi: 10.1038/s41598-019-48773-2
– ident: e_1_3_3_12_1
  doi: 10.1016/j.gsf.2021.101206
– ident: e_1_3_3_55_1
  doi: 10.1007/s11356-022-22924-x
– ident: e_1_3_3_76_1
  doi: 10.1038/s41598-023-27447-0
– ident: e_1_3_3_49_1
  doi: 10.1007/s11356-024-32163-x
– ident: e_1_3_3_45_1
  doi: 10.1016/j.geomorph.2019.106861
– ident: e_1_3_3_72_1
  doi: 10.3390/w14071140
– ident: e_1_3_3_15_1
  doi: 10.1016/j.ejrh.2024.101892
– ident: e_1_3_3_61_1
  doi: 10.3390/w13020241
– ident: e_1_3_3_5_1
  doi: 10.3390/su14063251
– ident: e_1_3_3_70_1
  doi: 10.1016/j.ijdrr.2024.104503
– ident: e_1_3_3_24_1
  doi: 10.1080/10106049.2023.2285355
– ident: e_1_3_3_34_1
  doi: 10.1155/2021/8821329
– ident: e_1_3_3_71_1
  doi: 10.1016/j.wsee.2022.11.011
– ident: e_1_3_3_63_1
  doi: 10.1007/978-3-031-21086-0_3
– ident: e_1_3_3_65_1
  doi: 10.1007/978-3-030-37393-1_7
– ident: e_1_3_3_60_1
  doi: 10.1080/19475705.2023.2203798
– ident: e_1_3_3_81_1
  doi: 10.1080/10106049.2022.2046866
– ident: e_1_3_3_46_1
  doi: 10.1007/s11356-022-23168-5
– ident: e_1_3_3_56_1
  doi: 10.1016/j.gsf.2023.101625
– ident: e_1_3_3_20_1
  doi: 10.46717/igj.55.2C.10ms-2022-08-23
– ident: e_1_3_3_31_1
– ident: e_1_3_3_40_1
  doi: 10.1007/s12665-023-11324-0
– ident: e_1_3_3_59_1
  doi: 10.1007/s11069-024-06629-7
– ident: e_1_3_3_35_1
  doi: 10.3390/rs14215523
– ident: e_1_3_3_17_1
  doi: 10.1016/j.scitotenv.2020.137320
– ident: e_1_3_3_16_1
  doi: 10.1007/s10346-019-01286-5
– ident: e_1_3_3_74_1
  doi: 10.1016/j.scitotenv.2021.151585
– ident: e_1_3_3_53_1
  doi: 10.1007/s11069-022-05503-8
– ident: e_1_3_3_44_1
  doi: 10.1080/10106049.2022.2112982
– ident: e_1_3_3_47_1
  doi: 10.1080/19475705.2022.2112094
– ident: e_1_3_3_42_1
  doi: 10.1108/ACI-09-2021-0264
– ident: e_1_3_3_18_1
  doi: 10.1016/j.hydres.2023.02.004
– ident: e_1_3_3_64_1
  doi: 10.1016/j.nhres.2023.05.004
– ident: e_1_3_3_80_1
  doi: 10.1007/s11356-022-20213-1
SSID ssj0000328704
Score 2.3421595
Snippet Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Climate change
Climate models
Disaster management
Disasters
Emergency preparedness
Environmental risk
Flood management
Flood predictions
Flood risk
Flood susceptibility
Floods
Google Earth Engine
Human populations
Machine learning
Python
Radar data
SAR (radar)
Support vector machines
Synthetic aperture radar
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxwhFCbGi16a_tC4rW04eEWZgYHhaBuNaVIPbU28EWAetkndbXbXw_73fY9hzKYevHglTIY8Ht97wMf3GDsxjekTptECU-EktOuDCIBg2MRButCB6gd67_zt2lzd6K-33e1WqS_ihI3ywKPhzsBlLQeJqBl63UVE05ZExFVqjTNdlwl9MeZtbaYKBiu6wBuvlLUVnZXd9Hynl2fURk24PWz1KcY019ZjlSkwFf3-_9RLn6B1CUGXr9mrmjvy83HMb9gOzN-yvVrG_NfmHVv8OP8uhiUBGM_ESOe_C6d8sdzwMB94YQ-KscQOx_0r3Mc_wFcPq8JtKTTZDS-1ceiROidO_B2_L3RL4LW-xB3PE59rdcBuLi9-frkStaKCSJiIrIXLfZNI08sG3Pn2ObQWlInZJsCFq7OV_UAJllIx5WBt7MBGuhlUOHURgjpku_PFHI4YN7lJWYFTWoJ2GSFfWhMxX4AmJONgxk4nc_q_o3CGb6oe6WR_T_b31f4z9pmM_tiZdK9LA3qDr97gn_OGGXPbU-bX5dgjjzVKvHpmAMfT_Pq6kOkTzNBa7C3fv8T4PrB9-uWoFHnMdtfLB_iIWc06fioO_A_rxe32
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagPcAFtTzE0lL5wNWtEzt-nKq2alUhUaFCpd4s27EXJLopu9vD_ntmHKdCIMHVeSiaiWfG48_fR8gH1SgToYxmUApHJq3xzCcIhk3oufVdEqbH886frtTljfx4293WhtuqwiqnmFgCdT9E7JEfiQZSZSshwR3f_2SoGoW7q1VC4ynZhhBsYPG1fXp-9fn6scuCbHGaj1vLUrNO8246xmP4EY7hECwTW3kIuc22tb0yJajC4_8Hi-lfUbukoosd8qLWkPRkdPoueZIWL8mzKmf-bfOKDF9Orlm_xEBGMyLT6feCLR-WG-oXPS0oQjZK7VBYx6a78CPR1cOqYFwKXHZDi0YOHlaniI2f07sCu0y06kzMaZ5wXavX5Obi_OvZJavKCixCQbJmNpsmIreX9rACNtm3OgkVso4JJrDMmpseCy0hQsxe69AlHXCHUIALQ_LiDdlaDIv0llCVm5hFskLyJG2G0M-1ClA3pMZHZdOMHE7mdPcjgYZrKi_pZH-H9nfV_jNyikZ_vBn5r8vAsJy7Op1cslnynkMu9UZ2AXJsi9TyIrbKqq7LM2J_d5lbl_ZHHrVKnPjPB-xP_nV1QuMj0-_37t-X98hzfNnIBblPttbLh_Qe6pZ1OKg_5y_cguh_
  priority: 102
  providerName: ProQuest
Title SAR-driven flood inventory and multi-factor ensemble susceptibility modelling using machine learning frameworks
URI https://www.tandfonline.com/doi/abs/10.1080/19475705.2024.2409202
https://www.proquest.com/docview/3158424750
https://doaj.org/article/e9f40d0299a845b284226173c269655f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhOaSX0lfoJumiQ69KZUuWrGNSsl0KDSUPaE5CkqVtodkN681h_31nZDn0QemhF4ONZOyR5iV9-oaQt6pSbYAwmkEoHJg0rWMugjGsfMeNa6JoOzzv_OlCzW_kxy_NiCbsC6wSc-g0EEVkW43K7Xw_IuLeQd6tG80byO5qeQIuydRIJ7lX42yFKc1v54_LLEgXp_mwtyw1w27jOZ6_vekXD5WJ_H-jMf3DbGdfNHtGnpYgkp4Oo_6c7MTlC7Jf6pl_3b4kq6vTS9at0ZLRhNB0-i2Dy1frLYXfphlGyIZaOxQS2Xjnv0faP_QZ5JLxsluai-TgaXWK4PgFvcu4y0hLoYkFTSOwq39Fbmbn1-_nrJRWYAEikg0zqa0CkntpBylwm1yto1A-6RBBg2XSvO0w0hLCh-S09k3UHrcIBYyhj04ckN3lahlfE6pSFZKIRkgepUlg-7lWHgKHWLmgTJyQk1Gc9n5g0LBVISYd5W9R_rbIf0LOUOiPjZEAOz9YrRe26JONJknecXCmrpWNBydbI7e8CLUyqmnShJifh8xu8vpHGoqVWPGPDzgex9cWjcYuEKrV0Jof_serj8gTvB2YIo_J7mb9EN9AVLPx0zxv4drOPkzJ3tn5xefLaV4h-AFRSe_h
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4imWFvABjm6d2InjA0LlsWzp4wCt1JuxHXuLRDft7lZo_xS_kRknrhBIcOrVSaxoPJ5vbH-ej5CXdVE3HtJoBqmwZ1I3ltkAwbBwLde2CqJp8b7z4VE9OZGfTqvTNfIz34VBWmWOiSlQt53HPfIdUQBUlhIA7s3FJUPVKDxdzRIavVvsh9UPWLItXu-9h_F9VZbjD8fvJmxQFWAewHjJdGwKj3WtlIXVXxNtqYKoXVQ-gPPKqHjTYpIhhPPRKuWqoByejgn4fResgH5vkdtSCI0zqhl_vN7Twdp0ivcH2VKxSvEqXxpq-A62YRMsSku5DUiqy2EzJ8NhUg34o2bqXxiRgG98j9wdMla627vYfbIWZg_IxiCefrZ6SLovu59ZO8ewSSPy4Om3xGTv5itqZy1NnEXWC_tQWDWHc_c90MXVIjFqEjl3RZMiD16Np8jEn9LzRPIMdFC1mNKYWWSLR-TkRiz-mKzPull4QmgdCx9F0ELyIHUEoOGqdpClhML6WocR2c7mNBd9uQ5TDFVQs_0N2t8M9h-Rt2j065ex2nZq6OZTM0xeE3SUvOWA3LaRlQNEL7GQvfBlreuqiiOifx8ys0ybLbFXRjHiPz-wlcfXDOEDP8nO_vTfj1-Qjcnx4YE52Dva3yR3sOO-CuUWWV_Or8IzyJiW7nlyU0q-3vS8-AVxyyQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQKwGXqmxiaAEfuLo48RYfS8to2CoEVIKTZTv2gERnqpnpYf497zlOxSLEgWtiW8mz32Z__h4hz3SjuwhhNINQODJpO898AmPYhJ5br5Loerzv_O5Mz87l689qRBOuK6wSc-g8EEUUW43KfdnnERH3HPJuowxXkN218ghckm2RTnJXdeDrYUnzL7PrbRakizN8OFuWhmG38R7P30b6xUMVIv_faEz_MNvFF033yV4NIunxMOt3yI20uEtu1XrmX7f3yPLj8QfWr9CS0YzQdPqtgMuXqy2F36YFRsiGWjsUEtl0Eb4nur5aF5BLwctuaSmSg7fVKYLj5_Si4C4TrYUm5jSPwK71fXI-ffnpZMZqaQUWISLZMJu7JiK5l_GQAnfZtyYJHbKJCTRYZsO7HiMtIULM3pigkgl4RChgDkPy4gHZWSwX6SGhOjcxi2SF5EnaDLafGx0gcEiNj9qmCTkaxekuBwYN11Ri0lH-DuXvqvwn5AUK_boxEmCXB8vV3FV9cslmyXsOztR3UgVwsi1yy4vYaquVyhNif54ytyn7H3koVuLEPz7gcJxfVzUau0Co1kJr_ug_hn5Kbr4_nbq3r87eHJDb-GYgjTwkO5vVVXoMAc4mPClL-Ac9ne8S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAR-driven+flood+inventory+and+multi-factor+ensemble+susceptibility+modelling+using+machine+learning+frameworks&rft.jtitle=Geomatics%2C+natural+hazards+and+risk&rft.au=Halder%2C+Krishnagopal&rft.au=Ghosh%2C+Anitabha&rft.au=Srivastava%2C+Amit+Kumar&rft.au=Pal%2C+Subodh+Chandra&rft.date=2024-12-31&rft.issn=1947-5705&rft.eissn=1947-5713&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1080%2F19475705.2024.2409202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_19475705_2024_2409202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5705&client=summon