SAR-driven flood inventory and multi-factor ensemble susceptibility modelling using machine learning frameworks
Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to human populations and economic infrastructure. The present research employed novel ML models-LR, SVM, RF, XGBoost, DNN, and Stacking Ensemble...
Saved in:
Published in | Geomatics, natural hazards and risk Vol. 15; no. 1 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2024
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to human populations and economic infrastructure. The present research employed novel ML models-LR, SVM, RF, XGBoost, DNN, and Stacking Ensemble-developed in the Python environment and leveraged 18 flood-influencing factors to delineate flood-prone areas with precision. A comprehensive flood inventory, obtained from Sentinel-1 Synthetic Aperture Radar (SAR) data using the Google Earth Engine (GEE) platform, provided empirical data for entire model training and validation. Model performance was assessed using precision, recall, F1-score, accuracy, and ROC-AUC metrics. The results highlighted Stacking Ensemble's superior predictive ability (0.965), followed closely by, XGBoost (0.934), DNN (0.929), RF (0.925), LR (0.921), and SVM (0.920) respectively, establishing the feasibility of ML applications in disaster management. The maps depicting susceptibility to flooding generated by the current research provide actionable insights for decision-makers, city planners, and authorities responsible for disaster management, guiding infrastructural and community resilience enhancements against flood risks. |
---|---|
AbstractList | Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to human populations and economic infrastructure. The present research employed novel ML models—LR, SVM, RF, XGBoost, DNN, and Stacking Ensemble—developed in the Python environment and leveraged 18 flood-influencing factors to delineate flood-prone areas with precision. A comprehensive flood inventory, obtained from Sentinel-1 Synthetic Aperture Radar (SAR) data using the Google Earth Engine (GEE) platform, provided empirical data for entire model training and validation. Model performance was assessed using precision, recall, F1-score, accuracy, and ROC-AUC metrics. The results highlighted Stacking Ensemble’s superior predictive ability (0.965), followed closely by, XGBoost (0.934), DNN (0.929), RF (0.925), LR (0.921), and SVM (0.920) respectively, establishing the feasibility of ML applications in disaster management. The maps depicting susceptibility to flooding generated by the current research provide actionable insights for decision-makers, city planners, and authorities responsible for disaster management, guiding infrastructural and community resilience enhancements against flood risks. |
Author | Ewert, Frank Halder, Krishnagopal Bisai, Dipak Islam, Abu Reza Md. Towfiqul Chatterjee, Uday Alam, Edris Ghosh, Anitabha Srivastava, Amit Kumar Pal, Subodh Chandra Gaiser, Thomas Islam, Md Kamrul |
Author_xml | – sequence: 1 givenname: Krishnagopal surname: Halder fullname: Halder, Krishnagopal organization: Centre of Excellence in Disaster Mitigation and Management (CoEDMM), Indian Institute of Technology Roorkee – sequence: 2 givenname: Anitabha surname: Ghosh fullname: Ghosh, Anitabha organization: Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University) – sequence: 3 givenname: Amit Kumar surname: Srivastava fullname: Srivastava, Amit Kumar organization: Leibniz Centre for Agricultural Landscape Research (ZALF) – sequence: 4 givenname: Subodh Chandra surname: Pal fullname: Pal, Subodh Chandra organization: Department of Geography, The University of Burdwan – sequence: 5 givenname: Uday surname: Chatterjee fullname: Chatterjee, Uday organization: Department of Geography, Bhatter College – sequence: 6 givenname: Dipak surname: Bisai fullname: Bisai, Dipak organization: Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University) – sequence: 7 givenname: Frank surname: Ewert fullname: Ewert, Frank organization: Leibniz Centre for Agricultural Landscape Research (ZALF) – sequence: 8 givenname: Thomas surname: Gaiser fullname: Gaiser, Thomas organization: Institute of Crop Science and Resource Conservation, University of Bonn – sequence: 9 givenname: Abu Reza Md. Towfiqul surname: Islam fullname: Islam, Abu Reza Md. Towfiqul organization: Department of Development Studies, Daffodil International University – sequence: 10 givenname: Edris surname: Alam fullname: Alam, Edris organization: Department of Geography and Environmental Studies, University of Chittagong – sequence: 11 givenname: Md Kamrul surname: Islam fullname: Islam, Md Kamrul organization: Department of Civil and Environmental Engineering College of Engineering, King Faisal University |
BookMark | eNp9UV1rHCEUlZBC0jQ_ITDQ59n6Ma761hDaNBAotM2zqHNN3Tq61ZmG_fd1umkecx_0cDj33Ms9b9FpygkQuiJ4Q7DEH4gaBBeYbyimw4YOWDVwgs5XvueCsNMXjPkZuqx1h1sxKgUezlH-fv2tH0v4A6nzMeexC6nhOZdDZ9LYTUucQ--Na0wHqcJkI3R1qQ72c7AhhvnQTXmEGEN67Ja6vpNxP0OCLoIpaSV8MRM85fKrvkNvvIkVLp__C_Tw-dOPmy_9_dfbu5vr-94xpeZeeUkckwQLI1t5QwWwrfXCgZBi8ALLkQ6UMWadN0JYDsIqLBWzI7Zg2AW6O_qO2ez0voTJlIPOJuh_RC6P2pQ5uAgalB_wiKlSRg7cUjlQuiWCObpVW85983p_9NqX_HuBOutdXkpq62tGeJO3BHBT8aPKlVxrAf8ylWC9RqX_R6XXqPRzVK3v47EvJJ_LZNqZ4qhnc4i5tLslF9Yxr1r8BZ30nNY |
Cites_doi | 10.3390/rs14020309 10.1016/j.jhydrol.2023.129121 10.1016/j.jhydrol.2023.129100 10.5194/hess-26-4345-2022 10.3390/rs16050858 10.1080/71702626667909491834.718 10.3390/ecws-7-14301 10.5194/isprs-archives-XLVI-4-W3-2021-305-2022 10.1016/j.jenvman.2022.116450 10.1007/s40808-022-01384-9 10.1007/s00477-022-02195-1 10.1016/j.nhres.2024.01.001 10.3390/rs16040656 10.1007/s11069-022-05584-5 10.1016/j.rse.2021.112668 10.1007/s40808-023-01912-1 10.1016/j.nhres.2022.06.003 10.1016/j.scs.2023.104744 10.1007/s12665-024-11696-x 10.1016/j.jhydrol.2022.128072 10.1016/j.jhydrol.2024.130936 10.1007/s11069-021-05098-6 10.2166/wcc.2022.435 10.1007/s41064-024-00275-1 10.1016/B978-0-12-823457-0.00001-X 10.1007/s12524-022-01560-5 10.1016/j.scs.2024.105508 10.1016/j.earscirev.2020.103225 10.1080/10106049.2022.2096702 10.1007/s11069-024-06609-x 10.3390/w11071402 10.1016/j.rsase.2021.100686 10.5194/isprs-annals-V-3-2022-549-2022 10.1016/j.jafrearsci.2022.104788 10.3390/rs15092447 10.1109/IHMSC.2015.236 10.1016/j.ejrs.2022.11.003 10.3390/w15142511 10.1007/s11269-024-03770-7 10.1080/10106049.2021.1920636 10.1016/j.pdisas.2024.100346 10.1109/LGRS.2021.3110132 10.3390/rs16020320 10.1007/s12524-023-01777-y 10.1155/2020/8821627 10.1038/s41598-019-48773-2 10.1016/j.gsf.2021.101206 10.1007/s11356-022-22924-x 10.1038/s41598-023-27447-0 10.1007/s11356-024-32163-x 10.1016/j.geomorph.2019.106861 10.3390/w14071140 10.1016/j.ejrh.2024.101892 10.3390/w13020241 10.3390/su14063251 10.1016/j.ijdrr.2024.104503 10.1080/10106049.2023.2285355 10.1155/2021/8821329 10.1016/j.wsee.2022.11.011 10.1007/978-3-031-21086-0_3 10.1007/978-3-030-37393-1_7 10.1080/19475705.2023.2203798 10.1080/10106049.2022.2046866 10.1007/s11356-022-23168-5 10.1016/j.gsf.2023.101625 10.46717/igj.55.2C.10ms-2022-08-23 10.1007/s12665-023-11324-0 10.1007/s11069-024-06629-7 10.3390/rs14215523 10.1016/j.scitotenv.2020.137320 10.1007/s10346-019-01286-5 10.1016/j.scitotenv.2021.151585 10.1007/s11069-022-05503-8 10.1080/10106049.2022.2112982 10.1080/19475705.2022.2112094 10.1108/ACI-09-2021-0264 10.1016/j.hydres.2023.02.004 10.1016/j.nhres.2023.05.004 10.1007/s11356-022-20213-1 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 7ST 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 H97 HCIFZ KL. KR7 L.G L6V L7M LK8 M7P M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
DOI | 10.1080/19475705.2024.2409202 |
DatabaseName | Taylor & Francis Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environment Abstracts |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1947-5713 |
ExternalDocumentID | oai_doaj_org_article_e9f40d0299a845b284226173c269655f 10_1080_19475705_2024_2409202 2409202 |
Genre | Research Article |
GrantInformation_xml | – fundername: King Faisal University, Saudi Arabia grantid: 5823 – fundername: German Federal Ministry of Education and Research (BMBF) grantid: 031B0151A – fundername: Germany's Excellence Strategy-EXC – fundername: Germany's Excellence Strategy-EXC grantid: 01LL2204C – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) |
GroupedDBID | .7F 0YH 4.4 5VS 7XC 8FE 8FG 8FH ABJCF ACGFS ACIWK ACPRK ADBBV ADCVX ADMSI AEUYN AFKRA AFPKN AFRAH AHDSZ ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BBNVY BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CE4 EBS ECGQY GROUPED_DOAJ GTTXZ H13 HCIFZ HZ~ IPNFZ J~4 L6V LK5 LK8 M7P M7R M7S OK1 P2P P62 PATMY PCBAR PTHSS PYCSY RDKPK RIG TDBHL TFL TFW UU3 AAFWJ AAYXX CITATION M4Z PHGZM PHGZT 7ST 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H8D H96 H97 KL. KR7 L.G L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c399t-9f81c38107a8888fa27e36bf7ce7874f708d242333bcfa77b5e7b90893bd0bea3 |
IEDL.DBID | 0YH |
ISSN | 1947-5705 |
IngestDate | Wed Aug 27 01:29:03 EDT 2025 Fri Jul 25 12:21:47 EDT 2025 Tue Jul 01 01:26:05 EDT 2025 Wed Dec 25 09:03:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-9f81c38107a8888fa27e36bf7ce7874f708d242333bcfa77b5e7b90893bd0bea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/19475705.2024.2409202 |
PQID | 3158424750 |
PQPubID | 436431 |
ParticipantIDs | crossref_primary_10_1080_19475705_2024_2409202 doaj_primary_oai_doaj_org_article_e9f40d0299a845b284226173c269655f proquest_journals_3158424750 informaworld_taylorfrancis_310_1080_19475705_2024_2409202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-31 |
PublicationDateYYYYMMDD | 2024-12-31 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Geomatics, natural hazards and risk |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_77_1 e_1_3_3_71_1 e_1_3_3_79_1 Jenness J (e_1_3_3_32_1) 2013 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_73_1 e_1_3_3_40_1 e_1_3_3_63_1 e_1_3_3_61_1 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_80_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_82_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_84_1 e_1_3_3_30_1 e_1_3_3_51_1 e_1_3_3_76_1 e_1_3_3_78_1 [NIH] National Institute of Hydrology. (e_1_3_3_50_1) 2000 e_1_3_3_70_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_59_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_55_1 e_1_3_3_72_1 e_1_3_3_11_1 e_1_3_3_53_1 e_1_3_3_74_1 e_1_3_3_41_1 e_1_3_3_62_1 e_1_3_3_60_1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_68_1 e_1_3_3_81_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_66_1 e_1_3_3_83_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 e_1_3_3_64_1 |
References_xml | – volume-title: Dam break study of Gogahoda project, Orissa year: 2000 ident: e_1_3_3_50_1 – ident: e_1_3_3_82_1 doi: 10.3390/rs14020309 – ident: e_1_3_3_22_1 doi: 10.1016/j.jhydrol.2023.129121 – ident: e_1_3_3_41_1 doi: 10.1016/j.jhydrol.2023.129100 – ident: e_1_3_3_6_1 doi: 10.5194/hess-26-4345-2022 – ident: e_1_3_3_30_1 doi: 10.3390/rs16050858 – ident: e_1_3_3_8_1 doi: 10.1080/71702626667909491834.718 – ident: e_1_3_3_29_1 doi: 10.3390/ecws-7-14301 – ident: e_1_3_3_69_1 doi: 10.5194/isprs-archives-XLVI-4-W3-2021-305-2022 – ident: e_1_3_3_36_1 doi: 10.1016/j.jenvman.2022.116450 – ident: e_1_3_3_28_1 doi: 10.1007/s40808-022-01384-9 – ident: e_1_3_3_62_1 doi: 10.1007/s00477-022-02195-1 – ident: e_1_3_3_39_1 doi: 10.1016/j.nhres.2024.01.001 – ident: e_1_3_3_4_1 doi: 10.3390/rs16040656 – ident: e_1_3_3_78_1 doi: 10.1007/s11069-022-05584-5 – ident: e_1_3_3_83_1 doi: 10.1016/j.rse.2021.112668 – ident: e_1_3_3_13_1 doi: 10.1007/s40808-023-01912-1 – ident: e_1_3_3_27_1 doi: 10.1016/j.nhres.2022.06.003 – ident: e_1_3_3_38_1 doi: 10.1016/j.scs.2023.104744 – ident: e_1_3_3_75_1 doi: 10.1007/s12665-024-11696-x – ident: e_1_3_3_48_1 doi: 10.1016/j.jhydrol.2022.128072 – ident: e_1_3_3_3_1 doi: 10.1016/j.jhydrol.2024.130936 – ident: e_1_3_3_68_1 doi: 10.1007/s11069-021-05098-6 – ident: e_1_3_3_19_1 doi: 10.2166/wcc.2022.435 – ident: e_1_3_3_26_1 doi: 10.1007/s41064-024-00275-1 – volume-title: Land facet corridor designer year: 2013 ident: e_1_3_3_32_1 – ident: e_1_3_3_52_1 doi: 10.1016/B978-0-12-823457-0.00001-X – ident: e_1_3_3_25_1 doi: 10.1007/s12524-022-01560-5 – ident: e_1_3_3_84_1 doi: 10.1016/j.scs.2024.105508 – ident: e_1_3_3_43_1 doi: 10.1016/j.earscirev.2020.103225 – ident: e_1_3_3_66_1 doi: 10.1080/10106049.2022.2096702 – ident: e_1_3_3_14_1 doi: 10.1007/s11069-024-06609-x – ident: e_1_3_3_51_1 doi: 10.3390/w11071402 – ident: e_1_3_3_7_1 doi: 10.1016/j.rsase.2021.100686 – ident: e_1_3_3_73_1 doi: 10.5194/isprs-annals-V-3-2022-549-2022 – ident: e_1_3_3_79_1 doi: 10.1016/j.jafrearsci.2022.104788 – ident: e_1_3_3_11_1 – ident: e_1_3_3_37_1 doi: 10.3390/rs15092447 – ident: e_1_3_3_77_1 doi: 10.1109/IHMSC.2015.236 – ident: e_1_3_3_57_1 doi: 10.1016/j.ejrs.2022.11.003 – ident: e_1_3_3_21_1 doi: 10.3390/w15142511 – ident: e_1_3_3_23_1 doi: 10.1007/s11269-024-03770-7 – ident: e_1_3_3_2_1 doi: 10.1080/10106049.2021.1920636 – ident: e_1_3_3_9_1 doi: 10.1016/j.pdisas.2024.100346 – ident: e_1_3_3_54_1 doi: 10.1109/LGRS.2021.3110132 – ident: e_1_3_3_58_1 doi: 10.3390/rs16020320 – ident: e_1_3_3_67_1 doi: 10.1007/s12524-023-01777-y – ident: e_1_3_3_33_1 doi: 10.1155/2020/8821627 – ident: e_1_3_3_10_1 doi: 10.1038/s41598-019-48773-2 – ident: e_1_3_3_12_1 doi: 10.1016/j.gsf.2021.101206 – ident: e_1_3_3_55_1 doi: 10.1007/s11356-022-22924-x – ident: e_1_3_3_76_1 doi: 10.1038/s41598-023-27447-0 – ident: e_1_3_3_49_1 doi: 10.1007/s11356-024-32163-x – ident: e_1_3_3_45_1 doi: 10.1016/j.geomorph.2019.106861 – ident: e_1_3_3_72_1 doi: 10.3390/w14071140 – ident: e_1_3_3_15_1 doi: 10.1016/j.ejrh.2024.101892 – ident: e_1_3_3_61_1 doi: 10.3390/w13020241 – ident: e_1_3_3_5_1 doi: 10.3390/su14063251 – ident: e_1_3_3_70_1 doi: 10.1016/j.ijdrr.2024.104503 – ident: e_1_3_3_24_1 doi: 10.1080/10106049.2023.2285355 – ident: e_1_3_3_34_1 doi: 10.1155/2021/8821329 – ident: e_1_3_3_71_1 doi: 10.1016/j.wsee.2022.11.011 – ident: e_1_3_3_63_1 doi: 10.1007/978-3-031-21086-0_3 – ident: e_1_3_3_65_1 doi: 10.1007/978-3-030-37393-1_7 – ident: e_1_3_3_60_1 doi: 10.1080/19475705.2023.2203798 – ident: e_1_3_3_81_1 doi: 10.1080/10106049.2022.2046866 – ident: e_1_3_3_46_1 doi: 10.1007/s11356-022-23168-5 – ident: e_1_3_3_56_1 doi: 10.1016/j.gsf.2023.101625 – ident: e_1_3_3_20_1 doi: 10.46717/igj.55.2C.10ms-2022-08-23 – ident: e_1_3_3_31_1 – ident: e_1_3_3_40_1 doi: 10.1007/s12665-023-11324-0 – ident: e_1_3_3_59_1 doi: 10.1007/s11069-024-06629-7 – ident: e_1_3_3_35_1 doi: 10.3390/rs14215523 – ident: e_1_3_3_17_1 doi: 10.1016/j.scitotenv.2020.137320 – ident: e_1_3_3_16_1 doi: 10.1007/s10346-019-01286-5 – ident: e_1_3_3_74_1 doi: 10.1016/j.scitotenv.2021.151585 – ident: e_1_3_3_53_1 doi: 10.1007/s11069-022-05503-8 – ident: e_1_3_3_44_1 doi: 10.1080/10106049.2022.2112982 – ident: e_1_3_3_47_1 doi: 10.1080/19475705.2022.2112094 – ident: e_1_3_3_42_1 doi: 10.1108/ACI-09-2021-0264 – ident: e_1_3_3_18_1 doi: 10.1016/j.hydres.2023.02.004 – ident: e_1_3_3_64_1 doi: 10.1016/j.nhres.2023.05.004 – ident: e_1_3_3_80_1 doi: 10.1007/s11356-022-20213-1 |
SSID | ssj0000328704 |
Score | 2.3421595 |
Snippet | Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Climate change Climate models Disaster management Disasters Emergency preparedness Environmental risk Flood management Flood predictions Flood risk Flood susceptibility Floods Google Earth Engine Human populations Machine learning Python Radar data SAR (radar) Support vector machines Synthetic aperture radar |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxwhFCbGi16a_tC4rW04eEWZgYHhaBuNaVIPbU28EWAetkndbXbXw_73fY9hzKYevHglTIY8Ht97wMf3GDsxjekTptECU-EktOuDCIBg2MRButCB6gd67_zt2lzd6K-33e1WqS_ihI3ywKPhzsBlLQeJqBl63UVE05ZExFVqjTNdlwl9MeZtbaYKBiu6wBuvlLUVnZXd9Hynl2fURk24PWz1KcY019ZjlSkwFf3-_9RLn6B1CUGXr9mrmjvy83HMb9gOzN-yvVrG_NfmHVv8OP8uhiUBGM_ESOe_C6d8sdzwMB94YQ-KscQOx_0r3Mc_wFcPq8JtKTTZDS-1ceiROidO_B2_L3RL4LW-xB3PE59rdcBuLi9-frkStaKCSJiIrIXLfZNI08sG3Pn2ObQWlInZJsCFq7OV_UAJllIx5WBt7MBGuhlUOHURgjpku_PFHI4YN7lJWYFTWoJ2GSFfWhMxX4AmJONgxk4nc_q_o3CGb6oe6WR_T_b31f4z9pmM_tiZdK9LA3qDr97gn_OGGXPbU-bX5dgjjzVKvHpmAMfT_Pq6kOkTzNBa7C3fv8T4PrB9-uWoFHnMdtfLB_iIWc06fioO_A_rxe32 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagPcAFtTzE0lL5wNWtEzt-nKq2alUhUaFCpd4s27EXJLopu9vD_ntmHKdCIMHVeSiaiWfG48_fR8gH1SgToYxmUApHJq3xzCcIhk3oufVdEqbH886frtTljfx4293WhtuqwiqnmFgCdT9E7JEfiQZSZSshwR3f_2SoGoW7q1VC4ynZhhBsYPG1fXp-9fn6scuCbHGaj1vLUrNO8246xmP4EY7hECwTW3kIuc22tb0yJajC4_8Hi-lfUbukoosd8qLWkPRkdPoueZIWL8mzKmf-bfOKDF9Orlm_xEBGMyLT6feCLR-WG-oXPS0oQjZK7VBYx6a78CPR1cOqYFwKXHZDi0YOHlaniI2f07sCu0y06kzMaZ5wXavX5Obi_OvZJavKCixCQbJmNpsmIreX9rACNtm3OgkVso4JJrDMmpseCy0hQsxe69AlHXCHUIALQ_LiDdlaDIv0llCVm5hFskLyJG2G0M-1ClA3pMZHZdOMHE7mdPcjgYZrKi_pZH-H9nfV_jNyikZ_vBn5r8vAsJy7Op1cslnynkMu9UZ2AXJsi9TyIrbKqq7LM2J_d5lbl_ZHHrVKnPjPB-xP_nV1QuMj0-_37t-X98hzfNnIBblPttbLh_Qe6pZ1OKg_5y_cguh_ priority: 102 providerName: ProQuest |
Title | SAR-driven flood inventory and multi-factor ensemble susceptibility modelling using machine learning frameworks |
URI | https://www.tandfonline.com/doi/abs/10.1080/19475705.2024.2409202 https://www.proquest.com/docview/3158424750 https://doaj.org/article/e9f40d0299a845b284226173c269655f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhOaSX0lfoJumiQ69KZUuWrGNSsl0KDSUPaE5CkqVtodkN681h_31nZDn0QemhF4ONZOyR5iV9-oaQt6pSbYAwmkEoHJg0rWMugjGsfMeNa6JoOzzv_OlCzW_kxy_NiCbsC6wSc-g0EEVkW43K7Xw_IuLeQd6tG80byO5qeQIuydRIJ7lX42yFKc1v54_LLEgXp_mwtyw1w27jOZ6_vekXD5WJ_H-jMf3DbGdfNHtGnpYgkp4Oo_6c7MTlC7Jf6pl_3b4kq6vTS9at0ZLRhNB0-i2Dy1frLYXfphlGyIZaOxQS2Xjnv0faP_QZ5JLxsluai-TgaXWK4PgFvcu4y0hLoYkFTSOwq39Fbmbn1-_nrJRWYAEikg0zqa0CkntpBylwm1yto1A-6RBBg2XSvO0w0hLCh-S09k3UHrcIBYyhj04ckN3lahlfE6pSFZKIRkgepUlg-7lWHgKHWLmgTJyQk1Gc9n5g0LBVISYd5W9R_rbIf0LOUOiPjZEAOz9YrRe26JONJknecXCmrpWNBydbI7e8CLUyqmnShJifh8xu8vpHGoqVWPGPDzgex9cWjcYuEKrV0Jof_serj8gTvB2YIo_J7mb9EN9AVLPx0zxv4drOPkzJ3tn5xefLaV4h-AFRSe_h |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4imWFvABjm6d2InjA0LlsWzp4wCt1JuxHXuLRDft7lZo_xS_kRknrhBIcOrVSaxoPJ5vbH-ej5CXdVE3HtJoBqmwZ1I3ltkAwbBwLde2CqJp8b7z4VE9OZGfTqvTNfIz34VBWmWOiSlQt53HPfIdUQBUlhIA7s3FJUPVKDxdzRIavVvsh9UPWLItXu-9h_F9VZbjD8fvJmxQFWAewHjJdGwKj3WtlIXVXxNtqYKoXVQ-gPPKqHjTYpIhhPPRKuWqoByejgn4fResgH5vkdtSCI0zqhl_vN7Twdp0ivcH2VKxSvEqXxpq-A62YRMsSku5DUiqy2EzJ8NhUg34o2bqXxiRgG98j9wdMla627vYfbIWZg_IxiCefrZ6SLovu59ZO8ewSSPy4Om3xGTv5itqZy1NnEXWC_tQWDWHc_c90MXVIjFqEjl3RZMiD16Np8jEn9LzRPIMdFC1mNKYWWSLR-TkRiz-mKzPull4QmgdCx9F0ELyIHUEoOGqdpClhML6WocR2c7mNBd9uQ5TDFVQs_0N2t8M9h-Rt2j065ex2nZq6OZTM0xeE3SUvOWA3LaRlQNEL7GQvfBlreuqiiOifx8ys0ybLbFXRjHiPz-wlcfXDOEDP8nO_vTfj1-Qjcnx4YE52Dva3yR3sOO-CuUWWV_Or8IzyJiW7nlyU0q-3vS8-AVxyyQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQKwGXqmxiaAEfuLo48RYfS8to2CoEVIKTZTv2gERnqpnpYf497zlOxSLEgWtiW8mz32Z__h4hz3SjuwhhNINQODJpO898AmPYhJ5br5Loerzv_O5Mz87l689qRBOuK6wSc-g8EEUUW43KfdnnERH3HPJuowxXkN218ghckm2RTnJXdeDrYUnzL7PrbRakizN8OFuWhmG38R7P30b6xUMVIv_faEz_MNvFF033yV4NIunxMOt3yI20uEtu1XrmX7f3yPLj8QfWr9CS0YzQdPqtgMuXqy2F36YFRsiGWjsUEtl0Eb4nur5aF5BLwctuaSmSg7fVKYLj5_Si4C4TrYUm5jSPwK71fXI-ffnpZMZqaQUWISLZMJu7JiK5l_GQAnfZtyYJHbKJCTRYZsO7HiMtIULM3pigkgl4RChgDkPy4gHZWSwX6SGhOjcxi2SF5EnaDLafGx0gcEiNj9qmCTkaxekuBwYN11Ri0lH-DuXvqvwn5AUK_boxEmCXB8vV3FV9cslmyXsOztR3UgVwsi1yy4vYaquVyhNif54ytyn7H3koVuLEPz7gcJxfVzUau0Co1kJr_ug_hn5Kbr4_nbq3r87eHJDb-GYgjTwkO5vVVXoMAc4mPClL-Ac9ne8S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAR-driven+flood+inventory+and+multi-factor+ensemble+susceptibility+modelling+using+machine+learning+frameworks&rft.jtitle=Geomatics%2C+natural+hazards+and+risk&rft.au=Halder%2C+Krishnagopal&rft.au=Ghosh%2C+Anitabha&rft.au=Srivastava%2C+Amit+Kumar&rft.au=Pal%2C+Subodh+Chandra&rft.date=2024-12-31&rft.issn=1947-5705&rft.eissn=1947-5713&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1080%2F19475705.2024.2409202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_19475705_2024_2409202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5705&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5705&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5705&client=summon |