Graph Neural Network and LSTM Integration for Enhanced Multi-Label Style Classification of Piano Sonatas

In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. T...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 3; p. 666
Main Authors Zhang, Sibo, Liu, Yang, Zhou, Mengjie
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. This paper addresses the limitations of traditional neural networks in piano sonata style classification and feature extraction by proposing a novel integration of graph convolutional neural networks (GCNs), graph attention networks (GATs), and Long Short-Term Memory (LSTM) networks to conduct the automatic multi-label classification of piano sonatas. Specifically, the method combines the graph convolution operations of GCNs, the attention mechanism of GATs, and the gating mechanism of LSTMs to perform the graph structure representation, feature extraction, allocation weighting, and coding of time-dependent features of music data layer by layer. The aim is to optimize the representation of the structural and temporal features of musical elements, as well as the dependence between discovery features, so as to improve classification performance. In addition, we utilize MIDI files of several piano sonatas to construct a dataset, spanning the 17th to the 19th centuries (i.e., the late Baroque, Classical, and Romantic periods). The experimental results demonstrate that the proposed method effectively improves the accuracy of style classification by 15% over baseline schemes.
AbstractList In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. This paper addresses the limitations of traditional neural networks in piano sonata style classification and feature extraction by proposing a novel integration of graph convolutional neural networks (GCNs), graph attention networks (GATs), and Long Short-Term Memory (LSTM) networks to conduct the automatic multi-label classification of piano sonatas. Specifically, the method combines the graph convolution operations of GCNs, the attention mechanism of GATs, and the gating mechanism of LSTMs to perform the graph structure representation, feature extraction, allocation weighting, and coding of time-dependent features of music data layer by layer. The aim is to optimize the representation of the structural and temporal features of musical elements, as well as the dependence between discovery features, so as to improve classification performance. In addition, we utilize MIDI files of several piano sonatas to construct a dataset, spanning the 17th to the 19th centuries (i.e., the late Baroque, Classical, and Romantic periods). The experimental results demonstrate that the proposed method effectively improves the accuracy of style classification by 15% over baseline schemes.
In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. This paper addresses the limitations of traditional neural networks in piano sonata style classification and feature extraction by proposing a novel integration of graph convolutional neural networks (GCNs), graph attention networks (GATs), and Long Short-Term Memory (LSTM) networks to conduct the automatic multi-label classification of piano sonatas. Specifically, the method combines the graph convolution operations of GCNs, the attention mechanism of GATs, and the gating mechanism of LSTMs to perform the graph structure representation, feature extraction, allocation weighting, and coding of time-dependent features of music data layer by layer. The aim is to optimize the representation of the structural and temporal features of musical elements, as well as the dependence between discovery features, so as to improve classification performance. In addition, we utilize MIDI files of several piano sonatas to construct a dataset, spanning the 17th to the 19th centuries (i.e., the late Baroque, Classical, and Romantic periods). The experimental results demonstrate that the proposed method effectively improves the accuracy of style classification by 15% over baseline schemes.In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. This paper addresses the limitations of traditional neural networks in piano sonata style classification and feature extraction by proposing a novel integration of graph convolutional neural networks (GCNs), graph attention networks (GATs), and Long Short-Term Memory (LSTM) networks to conduct the automatic multi-label classification of piano sonatas. Specifically, the method combines the graph convolution operations of GCNs, the attention mechanism of GATs, and the gating mechanism of LSTMs to perform the graph structure representation, feature extraction, allocation weighting, and coding of time-dependent features of music data layer by layer. The aim is to optimize the representation of the structural and temporal features of musical elements, as well as the dependence between discovery features, so as to improve classification performance. In addition, we utilize MIDI files of several piano sonatas to construct a dataset, spanning the 17th to the 19th centuries (i.e., the late Baroque, Classical, and Romantic periods). The experimental results demonstrate that the proposed method effectively improves the accuracy of style classification by 15% over baseline schemes.
Audience Academic
Author Liu, Yang
Zhang, Sibo
Zhou, Mengjie
AuthorAffiliation 2 Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; harryliu@ieee.org
1 School of Arts, Shandong University, Jinan 250100, China; sibozhang_sdu@ieee.org
3 Department of Computer Science, University of Bristol, Bristol BS8 1QU, UK
AuthorAffiliation_xml – name: 1 School of Arts, Shandong University, Jinan 250100, China; sibozhang_sdu@ieee.org
– name: 2 Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; harryliu@ieee.org
– name: 3 Department of Computer Science, University of Bristol, Bristol BS8 1QU, UK
Author_xml – sequence: 1
  givenname: Sibo
  surname: Zhang
  fullname: Zhang, Sibo
– sequence: 2
  givenname: Yang
  orcidid: 0009-0008-5087-8133
  surname: Liu
  fullname: Liu, Yang
– sequence: 3
  givenname: Mengjie
  surname: Zhou
  fullname: Zhou, Mengjie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39943305$$D View this record in MEDLINE/PubMed
BookMark eNpdkstuEzEUhkeoiF5gwQsgS2xgMcWXGY-9QlVUSqQUkFLWozOe48RhYgd7BtS3xyElapEXxzr-_J-L_vPixAePRfGa0UshNP2QeE0FlVI-K85YxatScU5PHt1Pi_OUNpRyIYR6UZwKrSshaH1WrG8i7NbkC04RhhzG3yH-IOB7slje3ZK5H3EVYXTBExsiufZr8AZ7cjsNoysX0OFAluP9gGQ2QErOOnOggyXfHPhAlsHDCOll8dzCkPDVQ7wovn-6vpt9Lhdfb-azq0VpclNjqQ3vEDSvpK454zXUWsq-b7SsGOuVpCAYpQ1lvRGKUawMA44NRS6s6pQWF8X8oNsH2LS76LYQ79sArv2bCHHVQhydGbC1PdjadE2FqCtGAbpG6Lqpuei0bThmrY8Hrd3UbbE36Me8pSeiT1-8W7er8KtlTDGt9L6bdw8KMfycMI3t1iWDwwAew5RawaTkUiqpMvr2P3QTpujzrvZUrZni9V7w8kCtIE_gvA25sMmnx60z2RbW5fyVElyqvKX9hzePZzg2_88CGXh_AEwMKUW0R4TRdm-v9mgv8QcAAb86
Cites_doi 10.1109/TMC.2024.3437745
10.1016/j.sysarc.2022.102740
10.1109/ICME52920.2022.9859944
10.17674/1997-0854.2019.4.090-101
10.1109/TNNLS.2020.2978386
10.1109/ICASSP.2017.7952585
10.1016/j.aej.2022.03.060
10.1109/ICDCS57875.2023.00051
10.3389/fpsyg.2022.762402
10.5335/hdtv.18n.1.7304
10.1080/17400201.2016.1234618
10.1109/JSAC.2021.3118424
10.3390/app8050716
10.1016/j.bspc.2023.105675
10.1109/ICPR56361.2022.9956712
10.1155/2022/2415857
10.3390/jimaging8020018
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s25030666
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_fdaf5cb74ee9410aab73957523b9f72e
PMC11819899
A832687019
39943305
10_3390_s25030666
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c399t-9c2bea9246952125a5966dd796411d860a3100701dc3810e4c1a2e70e23f8b893
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:30 EDT 2025
Thu Aug 21 18:29:13 EDT 2025
Fri Jul 11 07:52:51 EDT 2025
Fri Jul 25 22:07:13 EDT 2025
Tue Jun 10 21:01:06 EDT 2025
Sun Feb 16 01:21:08 EST 2025
Tue Jul 01 02:10:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords piano sonata analysis
big data
music analysis
neural networks
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-9c2bea9246952125a5966dd796411d860a3100701dc3810e4c1a2e70e23f8b893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0008-5087-8133
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25030666
PMID 39943305
PQID 3165918259
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_fdaf5cb74ee9410aab73957523b9f72e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11819899
proquest_miscellaneous_3166266868
proquest_journals_3165918259
gale_infotracacademiconefile_A832687019
pubmed_primary_39943305
crossref_primary_10_3390_s25030666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250123
PublicationDateYYYYMMDD 2025-01-23
PublicationDate_xml – month: 1
  year: 2025
  text: 20250123
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References (ref_5) 2018; 73
Volkova (ref_3) 2019; 4
ref_14
ref_12
ref_11
ref_10
Robertson (ref_1) 2016; 13
Yuan (ref_8) 2024; 24
ref_18
ref_17
ref_16
Eck (ref_21) 2002; 103
Liang (ref_15) 2022; 2022
Wu (ref_20) 2020; 32
Oramas (ref_19) 2018; 1
Wang (ref_25) 2019; 38
Lazo (ref_2) 2018; 18
ref_24
ref_23
ref_22
ref_29
ref_28
ref_27
Ghatas (ref_13) 2022; 61
Xu (ref_26) 2021; 40
ref_4
ref_7
ref_6
Yuan (ref_9) 2022; 133
References_xml – ident: ref_28
– ident: ref_24
– ident: ref_11
– ident: ref_16
– volume: 24
  start-page: 539
  year: 2024
  ident: ref_8
  article-title: Adaptive Incentive and Resource Allocation for Blockchain-Supported Edge Video Streaming Systems: A Cooperative Learning Approach
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2024.3437745
– volume: 1
  start-page: 4
  year: 2018
  ident: ref_19
  article-title: Multimodal deep learning for music genre classification
  publication-title: Trans. Int. Soc. Music. Inf. Retr.
– ident: ref_14
– volume: 103
  start-page: 48
  year: 2002
  ident: ref_21
  article-title: A first look at music composition using lstm recurrent neural networks
  publication-title: Ist. Dalle Molle Studi Sull Intell. Artif.
– ident: ref_18
– volume: 133
  start-page: 102740
  year: 2022
  ident: ref_9
  article-title: JORA: Blockchain-based efficient joint computing offloading and resource allocation for edge video streaming systems
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2022.102740
– ident: ref_23
– ident: ref_29
  doi: 10.1109/ICME52920.2022.9859944
– volume: 4
  start-page: 90
  year: 2019
  ident: ref_3
  article-title: The Musicological School of Liudmila Kazantseva: The Experience of a Decade
  publication-title: Problemy muzykal’noi nauki/Music. Scholarsh.
  doi: 10.17674/1997-0854.2019.4.090-101
– volume: 32
  start-page: 4
  year: 2020
  ident: ref_20
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref_17
  doi: 10.1109/ICASSP.2017.7952585
– volume: 61
  start-page: 10183
  year: 2022
  ident: ref_13
  article-title: A hybrid deep learning approach for musical difficulty estimation of piano symbolic music
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.03.060
– ident: ref_7
  doi: 10.1109/ICDCS57875.2023.00051
– ident: ref_12
  doi: 10.3389/fpsyg.2022.762402
– volume: 73
  start-page: 9
  year: 2018
  ident: ref_5
  article-title: Acoustical, Archaeometric and Musicological Study of Archaeological Musical Instruments: The Numantian Ceramic Trumpets (3rd-1st centuries bc)
  publication-title: Anu. Music.
– volume: 18
  start-page: 31
  year: 2018
  ident: ref_2
  article-title: A Discussion of the Power of Science to Complement Ethno+ musicological Studies: Insights from Interdisciplinary Musicology
  publication-title: Rev. História Debates Tendências
  doi: 10.5335/hdtv.18n.1.7304
– volume: 13
  start-page: 252
  year: 2016
  ident: ref_1
  article-title: Musicological ethnography and peacebuilding
  publication-title: J. Peace Educ.
  doi: 10.1080/17400201.2016.1234618
– volume: 40
  start-page: 515
  year: 2021
  ident: ref_26
  article-title: Decentralized machine learning through experience-driven method in edge networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2021.3118424
– ident: ref_4
  doi: 10.3390/app8050716
– ident: ref_10
– volume: 38
  start-page: 1
  year: 2019
  ident: ref_25
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: ACM Trans. Graph. (TOG)
– ident: ref_22
  doi: 10.1016/j.bspc.2023.105675
– ident: ref_27
  doi: 10.1109/ICPR56361.2022.9956712
– volume: 2022
  start-page: 2415857
  year: 2022
  ident: ref_15
  article-title: Music score recognition and composition application based on deep learning
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/2415857
– ident: ref_6
  doi: 10.3390/jimaging8020018
SSID ssj0023338
Score 2.4443703
Snippet In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 666
SubjectTerms 19th century
Algorithms
Analysis
big data
Classification
Collaboration
Composers
Deep learning
Harmony (Music)
Melody
music analysis
Music theory
Musical composition
Musical styles
Musicology
Neural networks
Piano
piano sonata analysis
Romantic music (Classical)
Sonatas
Technological change
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBASJ6vxM_GxoJaCSoW0rdSbZccTLVKVrdjtgX_PjJNdbcSBC9fYB2cenvnsmc-MffCpQTPRjQCvemGcbUSKoITsTVQJHOS-VPleuLMr8-3aXu899UU1YSM98Ci4oz7H3napMQDeyDrGVK6WED8l3zcKaPfFmLcFUxPU0oi8Rh4hjaD-aI2BXlOmPos-haT_7614LxbN6yT3As_pI_Zwyhj58bjSx-weDE_Ygz0ewads-YVopzkRbeDMi7Gym8ch8_PF5Xf-daKEQBVwzFH5ybAs9_68dN-K85jghi82v2-AlzcyqXponL3q-Q-0nxVf0CF7XD9jV6cnl5_PxPSEgugw89gI36HAI2Is56lJ10aL8CZn6j-VMreujnTA39Qyd0T1BaaTUUFTg9J9mzCXec4OhtUALxn3qgYXbUYfjkaD9aZBaJedkn2SWdUVe78VbbgdmTICIgySf9jJv2KfSOi7CURuXT6gysOk8vAvlVfsI6kskAuiXro4dRLgOonMKhzjLuVa4pmv2OFWq2HyzXXQ0lmPsMri8LvdMHoVXZXEAVZ3ZQ4iPde6tmIvRiPYrRkFazRukxVrZ-Yx-6n5yPBzWZi7qcvXI8J99T_E8JrdV_QYcS2F0ofsYPPrDt5ghrRJb4sz_AHHAw8Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABlXfaggxC4mQ1dmInPlUFdVtQqZC2lXqL7NjpIlVJ6W4P_fedcbJhIySusQ_OvMee-Qbgs3EFiklW8GBkw3OtCu5skFw0uZUu6OCbWOV7pk8u8h-X6nK4cFsOZZVrmxgNte9quiPfz4RWBoNhZQ5u_nCaGkWvq8MIjcfwRKCnoZKucnY8JlwZ5l89mlCGqf3-Et19RvH6xAdFqP5_DfKGR5pWS264n9k2PB_iRnbYM_oFPArtS3i2gSb4ChbHBD7NCG4Dd5719d3Mtp6dzs9_su8DMAQygmGkyo7aRXz9Z7EHl59aF67ZfHV_HViclEk1RP3urmG_UIo6Nqerdrt8DRezo_NvJ3wYpMBrjD9W3NRIdouZljbUqquswiTHe-pCFcKXOrV0zV-kwtcE-BXyWlgZijTIrCkdRjRvYKvt2vAOmJFp0FZ51GSbZ0GZvMAEz2spGie8TBP4tCZtddPjZVSYZxD9q5H-CXwloo8bCOI6fuhur6pBY6rG20bVrshDMLlIrXXxTRETZ2eaQoYEvhDLKlJE5Etth34CPCdBWlWHaKt0SWjzCeytuVoNGrqs_spTAh_HZdQtejCxbeju4h5NYqXLBN72QjCeGQmbZ2gsEygn4jH5qelK-3sR8bup19dgnrvz_3PtwlNJw4ZTwWW2B1ur27vwHiOglfsQxfwBqpoFtg
  priority: 102
  providerName: ProQuest
Title Graph Neural Network and LSTM Integration for Enhanced Multi-Label Style Classification of Piano Sonatas
URI https://www.ncbi.nlm.nih.gov/pubmed/39943305
https://www.proquest.com/docview/3165918259
https://www.proquest.com/docview/3166266868
https://pubmed.ncbi.nlm.nih.gov/PMC11819899
https://doaj.org/article/fdaf5cb74ee9410aab73957523b9f72e
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t4wUeEN_LGJVBSDwFYsexkweENtRuoK2a6Cr1LbIThyJVCWs7if333Dlp1QgeeMlD7UrJ3dl3P_vudwDvMqvRTGIdukxUoVSJDq1xIuSVNMI65crKZ_mO1cVUfpslsz3Y9NjsBLj6J7SjflLT5eLD79v7z7jgPxHiRMj-cYVuPKY4fB8O0SFpamRwJbeXCSKOfUNrqukK0R9GLcFQ_689t-TZ-__eo3ecVD-BcscjjR7Doy6UZKet7p_AnqufwsMdgsFnMD8nPmpGDBw4c9ymfDNTl-xycnPFvnZcEagbhsErG9ZznxDAfFlueGmsW7DJ-n7hmG-eSWlF7eymYtdoWA2b0Om7WT2H6Wh48-Ui7HorhAWGJOswK1ATBsGXyqh6NzEJ4p6ypMJUzstURYZO_nXEy4I4wJwsuBFOR07EVWoxyHkBB3VTuyNgmYicMkmJi9vI2CWZ1Ij5SiV4ZXkpogDebkSb_2opNHKEHiT_fCv_AM5I6NsJxHrtf2iWP_JuEeVVaaqksFo6l0keGWP9NSNiaZtVWrgA3pPKcrIW1EthuhIDfE9iucpPcftSKRHQB3Cy0Wq-sbk85irJEG8lOPxmO4zLje5QTO2aOz8HIaBKVRrAy9YItu-MgpUx7p8BpD3z6H1Uf6T-OfeU3lT-myH0Pf4fWb2CB4K6EEc8FPEJHKyXd-41hkZrO4B9PdP4TEfnAzg8G46vvw_8McPAL4k_wN4Osw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEG8CLRgE4hQ1cRInPqCqQLe7dLtC2q3Um3Fih0WqktLdCvVP8RuZcR5shMSt19gHZzyemc-e-QbgrcxTVJMo9a3kpR-LJPVzbbkflrHmuRXWlC7LdybGp_GXs-RsC353tTCUVtnZRGeoTV3QHfleFIpEYjCcyP2Lnz51jaLX1a6FRqMWx_b6F0K21YfJZ9zfd5yPDhefxn7bVcAv0BmvfVngGjTCDiGpbjXRCUb8xlBJZhiaTASa7rzTIDQFsV_ZuAg1t2lgeVRmeUbkS2jyb8URenKqTB8d9QAvQrzXsBfhYLC3wvAiInww8HmuNcC_DmDDAw6zMzfc3eg-3GvjVHbQKNYD2LLVQ7i7wV74CJZHRHbNiN4DZ86afHKmK8Om88UJm7REFLjxDCNjdlgtXbYBczW__lTn9pzN19fnlrnOnJSz1MyuS_YVtbZmc7ra16vHcHojIn4C21Vd2WfAJA-s0IlBy6HjyCYyThFQGsHDMg8NDzx404lWXTT8HApxDclf9fL34CMJvZ9AlNruQ335XbUnVJVGl0mRp7G1Mg4DrXP3holAPZdlyq0H72nLFB183JdCt_ULuE6i0FIHaBtFRuz2Hux0u6pai7BSf_XXg9f9MJ5leqDRla2v3BzElyITmQdPGyXo14yCRZULEg-ygXoMfmo4Uv1YOr5wqi2WiKuf_39dr-D2eHEyVdPJ7PgF3OHU6DgIfR7twPb68sruYvS1zl86lWfw7abP2B-D_kAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEmpYBBIE7RJk7ixAeEWrpLly6rFdtKvblO7LBIVdJ2t0L9a_w6ZvJiIyRuvcY-OOPxzHz2zDcA72Qao5oEsWslz91QRLGbastdPw81T62wJq-yfGfi8CT8ehqdbsHvthaG0ipbm1gZalNmdEc-DHwRSQyGIznMm7SI-cH408WlSx2k6KW1badRq8iRvfmF8G31cXKAe_2e8_Ho-POh23QYcDN0zGtXZrgejRBESKphjXSE0b8xVJ7p-yYRnqb779jzTUZMWDbMfM1t7Fke5EmaEBETmv_tmFDRALb3R7P59w7uBYj-ai6jIJDecIXBRkBooecBq0YB_7qDDX_Yz9XccH7jB3C_iVrZXq1mD2HLFo_g3gaX4WNYfiHqa0ZkHzhzVmeXM10YNl0cf2OThpYC1YBhnMxGxbLKPWBVBbA71ak9Z4v1zbllVZ9OymCqZ5c5m6MOl2xBF_169QRObkXIT2FQlIV9DkxyzwodGbQjOgxsJMMY4aUR3M9T33DPgbetaNVFzdahEOWQ_FUnfwf2SejdBCLYrj6UVz9Uc15VbnQeZWkcWitD39M6rV40EbanMo-5deADbZkiM4D7kummmgHXSYRaag8tpUiI696B3XZXVWMfVuqvNjvwphvGk03PNbqw5XU1B9GmSETiwLNaCbo1o2DDAE21A0lPPXo_1R8pfi4r9nCqNJaIsnf-v67XcAfPl5pOZkcv4C6nrsee7_JgFwbrq2v7EkOxdfqq0XkGZ7d9zP4A1QRFsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Neural+Network+and+LSTM+Integration+for+Enhanced+Multi-Label+Style+Classification+of+Piano+Sonatas&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Sibo&rft.au=Liu%2C+Yang&rft.au=Zhou%2C+Mengjie&rft.date=2025-01-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=3&rft.spage=666&rft_id=info:doi/10.3390%2Fs25030666&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25030666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon