Graph Neural Network and LSTM Integration for Enhanced Multi-Label Style Classification of Piano Sonatas
In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. T...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 3; p. 666 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. This paper addresses the limitations of traditional neural networks in piano sonata style classification and feature extraction by proposing a novel integration of graph convolutional neural networks (GCNs), graph attention networks (GATs), and Long Short-Term Memory (LSTM) networks to conduct the automatic multi-label classification of piano sonatas. Specifically, the method combines the graph convolution operations of GCNs, the attention mechanism of GATs, and the gating mechanism of LSTMs to perform the graph structure representation, feature extraction, allocation weighting, and coding of time-dependent features of music data layer by layer. The aim is to optimize the representation of the structural and temporal features of musical elements, as well as the dependence between discovery features, so as to improve classification performance. In addition, we utilize MIDI files of several piano sonatas to construct a dataset, spanning the 17th to the 19th centuries (i.e., the late Baroque, Classical, and Romantic periods). The experimental results demonstrate that the proposed method effectively improves the accuracy of style classification by 15% over baseline schemes. |
---|---|
AbstractList | In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. This paper addresses the limitations of traditional neural networks in piano sonata style classification and feature extraction by proposing a novel integration of graph convolutional neural networks (GCNs), graph attention networks (GATs), and Long Short-Term Memory (LSTM) networks to conduct the automatic multi-label classification of piano sonatas. Specifically, the method combines the graph convolution operations of GCNs, the attention mechanism of GATs, and the gating mechanism of LSTMs to perform the graph structure representation, feature extraction, allocation weighting, and coding of time-dependent features of music data layer by layer. The aim is to optimize the representation of the structural and temporal features of musical elements, as well as the dependence between discovery features, so as to improve classification performance. In addition, we utilize MIDI files of several piano sonatas to construct a dataset, spanning the 17th to the 19th centuries (i.e., the late Baroque, Classical, and Romantic periods). The experimental results demonstrate that the proposed method effectively improves the accuracy of style classification by 15% over baseline schemes. In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. This paper addresses the limitations of traditional neural networks in piano sonata style classification and feature extraction by proposing a novel integration of graph convolutional neural networks (GCNs), graph attention networks (GATs), and Long Short-Term Memory (LSTM) networks to conduct the automatic multi-label classification of piano sonatas. Specifically, the method combines the graph convolution operations of GCNs, the attention mechanism of GATs, and the gating mechanism of LSTMs to perform the graph structure representation, feature extraction, allocation weighting, and coding of time-dependent features of music data layer by layer. The aim is to optimize the representation of the structural and temporal features of musical elements, as well as the dependence between discovery features, so as to improve classification performance. In addition, we utilize MIDI files of several piano sonatas to construct a dataset, spanning the 17th to the 19th centuries (i.e., the late Baroque, Classical, and Romantic periods). The experimental results demonstrate that the proposed method effectively improves the accuracy of style classification by 15% over baseline schemes.In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate structural and temporal characteristics. Traditional approaches often fail to capture the nuanced relationships inherent in musical works. This paper addresses the limitations of traditional neural networks in piano sonata style classification and feature extraction by proposing a novel integration of graph convolutional neural networks (GCNs), graph attention networks (GATs), and Long Short-Term Memory (LSTM) networks to conduct the automatic multi-label classification of piano sonatas. Specifically, the method combines the graph convolution operations of GCNs, the attention mechanism of GATs, and the gating mechanism of LSTMs to perform the graph structure representation, feature extraction, allocation weighting, and coding of time-dependent features of music data layer by layer. The aim is to optimize the representation of the structural and temporal features of musical elements, as well as the dependence between discovery features, so as to improve classification performance. In addition, we utilize MIDI files of several piano sonatas to construct a dataset, spanning the 17th to the 19th centuries (i.e., the late Baroque, Classical, and Romantic periods). The experimental results demonstrate that the proposed method effectively improves the accuracy of style classification by 15% over baseline schemes. |
Audience | Academic |
Author | Liu, Yang Zhang, Sibo Zhou, Mengjie |
AuthorAffiliation | 2 Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; harryliu@ieee.org 1 School of Arts, Shandong University, Jinan 250100, China; sibozhang_sdu@ieee.org 3 Department of Computer Science, University of Bristol, Bristol BS8 1QU, UK |
AuthorAffiliation_xml | – name: 1 School of Arts, Shandong University, Jinan 250100, China; sibozhang_sdu@ieee.org – name: 2 Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, USA; harryliu@ieee.org – name: 3 Department of Computer Science, University of Bristol, Bristol BS8 1QU, UK |
Author_xml | – sequence: 1 givenname: Sibo surname: Zhang fullname: Zhang, Sibo – sequence: 2 givenname: Yang orcidid: 0009-0008-5087-8133 surname: Liu fullname: Liu, Yang – sequence: 3 givenname: Mengjie surname: Zhou fullname: Zhou, Mengjie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39943305$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkstuEzEUhkeoiF5gwQsgS2xgMcWXGY-9QlVUSqQUkFLWozOe48RhYgd7BtS3xyElapEXxzr-_J-L_vPixAePRfGa0UshNP2QeE0FlVI-K85YxatScU5PHt1Pi_OUNpRyIYR6UZwKrSshaH1WrG8i7NbkC04RhhzG3yH-IOB7slje3ZK5H3EVYXTBExsiufZr8AZ7cjsNoysX0OFAluP9gGQ2QErOOnOggyXfHPhAlsHDCOll8dzCkPDVQ7wovn-6vpt9Lhdfb-azq0VpclNjqQ3vEDSvpK454zXUWsq-b7SsGOuVpCAYpQ1lvRGKUawMA44NRS6s6pQWF8X8oNsH2LS76LYQ79sArv2bCHHVQhydGbC1PdjadE2FqCtGAbpG6Lqpuei0bThmrY8Hrd3UbbE36Me8pSeiT1-8W7er8KtlTDGt9L6bdw8KMfycMI3t1iWDwwAew5RawaTkUiqpMvr2P3QTpujzrvZUrZni9V7w8kCtIE_gvA25sMmnx60z2RbW5fyVElyqvKX9hzePZzg2_88CGXh_AEwMKUW0R4TRdm-v9mgv8QcAAb86 |
Cites_doi | 10.1109/TMC.2024.3437745 10.1016/j.sysarc.2022.102740 10.1109/ICME52920.2022.9859944 10.17674/1997-0854.2019.4.090-101 10.1109/TNNLS.2020.2978386 10.1109/ICASSP.2017.7952585 10.1016/j.aej.2022.03.060 10.1109/ICDCS57875.2023.00051 10.3389/fpsyg.2022.762402 10.5335/hdtv.18n.1.7304 10.1080/17400201.2016.1234618 10.1109/JSAC.2021.3118424 10.3390/app8050716 10.1016/j.bspc.2023.105675 10.1109/ICPR56361.2022.9956712 10.1155/2022/2415857 10.3390/jimaging8020018 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s25030666 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_fdaf5cb74ee9410aab73957523b9f72e PMC11819899 A832687019 39943305 10_3390_s25030666 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c399t-9c2bea9246952125a5966dd796411d860a3100701dc3810e4c1a2e70e23f8b893 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Thu Aug 21 18:29:13 EDT 2025 Fri Jul 11 07:52:51 EDT 2025 Fri Jul 25 22:07:13 EDT 2025 Tue Jun 10 21:01:06 EDT 2025 Sun Feb 16 01:21:08 EST 2025 Tue Jul 01 02:10:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | piano sonata analysis big data music analysis neural networks |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-9c2bea9246952125a5966dd796411d860a3100701dc3810e4c1a2e70e23f8b893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0008-5087-8133 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25030666 |
PMID | 39943305 |
PQID | 3165918259 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fdaf5cb74ee9410aab73957523b9f72e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11819899 proquest_miscellaneous_3166266868 proquest_journals_3165918259 gale_infotracacademiconefile_A832687019 pubmed_primary_39943305 crossref_primary_10_3390_s25030666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250123 |
PublicationDateYYYYMMDD | 2025-01-23 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | (ref_5) 2018; 73 Volkova (ref_3) 2019; 4 ref_14 ref_12 ref_11 ref_10 Robertson (ref_1) 2016; 13 Yuan (ref_8) 2024; 24 ref_18 ref_17 ref_16 Eck (ref_21) 2002; 103 Liang (ref_15) 2022; 2022 Wu (ref_20) 2020; 32 Oramas (ref_19) 2018; 1 Wang (ref_25) 2019; 38 Lazo (ref_2) 2018; 18 ref_24 ref_23 ref_22 ref_29 ref_28 ref_27 Ghatas (ref_13) 2022; 61 Xu (ref_26) 2021; 40 ref_4 ref_7 ref_6 Yuan (ref_9) 2022; 133 |
References_xml | – ident: ref_28 – ident: ref_24 – ident: ref_11 – ident: ref_16 – volume: 24 start-page: 539 year: 2024 ident: ref_8 article-title: Adaptive Incentive and Resource Allocation for Blockchain-Supported Edge Video Streaming Systems: A Cooperative Learning Approach publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2024.3437745 – volume: 1 start-page: 4 year: 2018 ident: ref_19 article-title: Multimodal deep learning for music genre classification publication-title: Trans. Int. Soc. Music. Inf. Retr. – ident: ref_14 – volume: 103 start-page: 48 year: 2002 ident: ref_21 article-title: A first look at music composition using lstm recurrent neural networks publication-title: Ist. Dalle Molle Studi Sull Intell. Artif. – ident: ref_18 – volume: 133 start-page: 102740 year: 2022 ident: ref_9 article-title: JORA: Blockchain-based efficient joint computing offloading and resource allocation for edge video streaming systems publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2022.102740 – ident: ref_23 – ident: ref_29 doi: 10.1109/ICME52920.2022.9859944 – volume: 4 start-page: 90 year: 2019 ident: ref_3 article-title: The Musicological School of Liudmila Kazantseva: The Experience of a Decade publication-title: Problemy muzykal’noi nauki/Music. Scholarsh. doi: 10.17674/1997-0854.2019.4.090-101 – volume: 32 start-page: 4 year: 2020 ident: ref_20 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – ident: ref_17 doi: 10.1109/ICASSP.2017.7952585 – volume: 61 start-page: 10183 year: 2022 ident: ref_13 article-title: A hybrid deep learning approach for musical difficulty estimation of piano symbolic music publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.03.060 – ident: ref_7 doi: 10.1109/ICDCS57875.2023.00051 – ident: ref_12 doi: 10.3389/fpsyg.2022.762402 – volume: 73 start-page: 9 year: 2018 ident: ref_5 article-title: Acoustical, Archaeometric and Musicological Study of Archaeological Musical Instruments: The Numantian Ceramic Trumpets (3rd-1st centuries bc) publication-title: Anu. Music. – volume: 18 start-page: 31 year: 2018 ident: ref_2 article-title: A Discussion of the Power of Science to Complement Ethno+ musicological Studies: Insights from Interdisciplinary Musicology publication-title: Rev. História Debates Tendências doi: 10.5335/hdtv.18n.1.7304 – volume: 13 start-page: 252 year: 2016 ident: ref_1 article-title: Musicological ethnography and peacebuilding publication-title: J. Peace Educ. doi: 10.1080/17400201.2016.1234618 – volume: 40 start-page: 515 year: 2021 ident: ref_26 article-title: Decentralized machine learning through experience-driven method in edge networks publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2021.3118424 – ident: ref_4 doi: 10.3390/app8050716 – ident: ref_10 – volume: 38 start-page: 1 year: 2019 ident: ref_25 article-title: Dynamic graph cnn for learning on point clouds publication-title: ACM Trans. Graph. (TOG) – ident: ref_22 doi: 10.1016/j.bspc.2023.105675 – ident: ref_27 doi: 10.1109/ICPR56361.2022.9956712 – volume: 2022 start-page: 2415857 year: 2022 ident: ref_15 article-title: Music score recognition and composition application based on deep learning publication-title: Math. Probl. Eng. doi: 10.1155/2022/2415857 – ident: ref_6 doi: 10.3390/jimaging8020018 |
SSID | ssj0023338 |
Score | 2.4443703 |
Snippet | In the field of musicology, the automatic style classification of compositions such as piano sonatas presents significant challenges because of their intricate... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 666 |
SubjectTerms | 19th century Algorithms Analysis big data Classification Collaboration Composers Deep learning Harmony (Music) Melody music analysis Music theory Musical composition Musical styles Musicology Neural networks Piano piano sonata analysis Romantic music (Classical) Sonatas Technological change |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkUZBASJ6vxM_GxoJaCSoW0rdSbZccTLVKVrdjtgX_PjJNdbcSBC9fYB2cenvnsmc-MffCpQTPRjQCvemGcbUSKoITsTVQJHOS-VPleuLMr8-3aXu899UU1YSM98Ci4oz7H3napMQDeyDrGVK6WED8l3zcKaPfFmLcFUxPU0oi8Rh4hjaD-aI2BXlOmPos-haT_7614LxbN6yT3As_pI_Zwyhj58bjSx-weDE_Ygz0ewads-YVopzkRbeDMi7Gym8ch8_PF5Xf-daKEQBVwzFH5ybAs9_68dN-K85jghi82v2-AlzcyqXponL3q-Q-0nxVf0CF7XD9jV6cnl5_PxPSEgugw89gI36HAI2Is56lJ10aL8CZn6j-VMreujnTA39Qyd0T1BaaTUUFTg9J9mzCXec4OhtUALxn3qgYXbUYfjkaD9aZBaJedkn2SWdUVe78VbbgdmTICIgySf9jJv2KfSOi7CURuXT6gysOk8vAvlVfsI6kskAuiXro4dRLgOonMKhzjLuVa4pmv2OFWq2HyzXXQ0lmPsMri8LvdMHoVXZXEAVZ3ZQ4iPde6tmIvRiPYrRkFazRukxVrZ-Yx-6n5yPBzWZi7qcvXI8J99T_E8JrdV_QYcS2F0ofsYPPrDt5ghrRJb4sz_AHHAw8Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABlXfaggxC4mQ1dmInPlUFdVtQqZC2lXqL7NjpIlVJ6W4P_fedcbJhIySusQ_OvMee-Qbgs3EFiklW8GBkw3OtCu5skFw0uZUu6OCbWOV7pk8u8h-X6nK4cFsOZZVrmxgNte9quiPfz4RWBoNhZQ5u_nCaGkWvq8MIjcfwRKCnoZKucnY8JlwZ5l89mlCGqf3-Et19RvH6xAdFqP5_DfKGR5pWS264n9k2PB_iRnbYM_oFPArtS3i2gSb4ChbHBD7NCG4Dd5719d3Mtp6dzs9_su8DMAQygmGkyo7aRXz9Z7EHl59aF67ZfHV_HViclEk1RP3urmG_UIo6Nqerdrt8DRezo_NvJ3wYpMBrjD9W3NRIdouZljbUqquswiTHe-pCFcKXOrV0zV-kwtcE-BXyWlgZijTIrCkdRjRvYKvt2vAOmJFp0FZ51GSbZ0GZvMAEz2spGie8TBP4tCZtddPjZVSYZxD9q5H-CXwloo8bCOI6fuhur6pBY6rG20bVrshDMLlIrXXxTRETZ2eaQoYEvhDLKlJE5Etth34CPCdBWlWHaKt0SWjzCeytuVoNGrqs_spTAh_HZdQtejCxbeju4h5NYqXLBN72QjCeGQmbZ2gsEygn4jH5qelK-3sR8bup19dgnrvz_3PtwlNJw4ZTwWW2B1ur27vwHiOglfsQxfwBqpoFtg priority: 102 providerName: ProQuest |
Title | Graph Neural Network and LSTM Integration for Enhanced Multi-Label Style Classification of Piano Sonatas |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39943305 https://www.proquest.com/docview/3165918259 https://www.proquest.com/docview/3166266868 https://pubmed.ncbi.nlm.nih.gov/PMC11819899 https://doaj.org/article/fdaf5cb74ee9410aab73957523b9f72e |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_t4wUeEN_LGJVBSDwFYsexkweENtRuoK2a6Cr1LbIThyJVCWs7if333Dlp1QgeeMlD7UrJ3dl3P_vudwDvMqvRTGIdukxUoVSJDq1xIuSVNMI65crKZ_mO1cVUfpslsz3Y9NjsBLj6J7SjflLT5eLD79v7z7jgPxHiRMj-cYVuPKY4fB8O0SFpamRwJbeXCSKOfUNrqukK0R9GLcFQ_689t-TZ-__eo3ecVD-BcscjjR7Doy6UZKet7p_AnqufwsMdgsFnMD8nPmpGDBw4c9ymfDNTl-xycnPFvnZcEagbhsErG9ZznxDAfFlueGmsW7DJ-n7hmG-eSWlF7eymYtdoWA2b0Om7WT2H6Wh48-Ui7HorhAWGJOswK1ATBsGXyqh6NzEJ4p6ypMJUzstURYZO_nXEy4I4wJwsuBFOR07EVWoxyHkBB3VTuyNgmYicMkmJi9vI2CWZ1Ij5SiV4ZXkpogDebkSb_2opNHKEHiT_fCv_AM5I6NsJxHrtf2iWP_JuEeVVaaqksFo6l0keGWP9NSNiaZtVWrgA3pPKcrIW1EthuhIDfE9iucpPcftSKRHQB3Cy0Wq-sbk85irJEG8lOPxmO4zLje5QTO2aOz8HIaBKVRrAy9YItu-MgpUx7p8BpD3z6H1Uf6T-OfeU3lT-myH0Pf4fWb2CB4K6EEc8FPEJHKyXd-41hkZrO4B9PdP4TEfnAzg8G46vvw_8McPAL4k_wN4Osw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEG8CLRgE4hQ1cRInPqCqQLe7dLtC2q3Um3Fih0WqktLdCvVP8RuZcR5shMSt19gHZzyemc-e-QbgrcxTVJMo9a3kpR-LJPVzbbkflrHmuRXWlC7LdybGp_GXs-RsC353tTCUVtnZRGeoTV3QHfleFIpEYjCcyP2Lnz51jaLX1a6FRqMWx_b6F0K21YfJZ9zfd5yPDhefxn7bVcAv0BmvfVngGjTCDiGpbjXRCUb8xlBJZhiaTASa7rzTIDQFsV_ZuAg1t2lgeVRmeUbkS2jyb8URenKqTB8d9QAvQrzXsBfhYLC3wvAiInww8HmuNcC_DmDDAw6zMzfc3eg-3GvjVHbQKNYD2LLVQ7i7wV74CJZHRHbNiN4DZ86afHKmK8Om88UJm7REFLjxDCNjdlgtXbYBczW__lTn9pzN19fnlrnOnJSz1MyuS_YVtbZmc7ra16vHcHojIn4C21Vd2WfAJA-s0IlBy6HjyCYyThFQGsHDMg8NDzx404lWXTT8HApxDclf9fL34CMJvZ9AlNruQ335XbUnVJVGl0mRp7G1Mg4DrXP3holAPZdlyq0H72nLFB183JdCt_ULuE6i0FIHaBtFRuz2Hux0u6pai7BSf_XXg9f9MJ5leqDRla2v3BzElyITmQdPGyXo14yCRZULEg-ygXoMfmo4Uv1YOr5wqi2WiKuf_39dr-D2eHEyVdPJ7PgF3OHU6DgIfR7twPb68sruYvS1zl86lWfw7abP2B-D_kAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAfEmpYBBIE7RJk7ixAeEWrpLly6rFdtKvblO7LBIVdJ2t0L9a_w6ZvJiIyRuvcY-OOPxzHz2zDcA72Qao5oEsWslz91QRLGbastdPw81T62wJq-yfGfi8CT8ehqdbsHvthaG0ipbm1gZalNmdEc-DHwRSQyGIznMm7SI-cH408WlSx2k6KW1badRq8iRvfmF8G31cXKAe_2e8_Ho-POh23QYcDN0zGtXZrgejRBESKphjXSE0b8xVJ7p-yYRnqb779jzTUZMWDbMfM1t7Fke5EmaEBETmv_tmFDRALb3R7P59w7uBYj-ai6jIJDecIXBRkBooecBq0YB_7qDDX_Yz9XccH7jB3C_iVrZXq1mD2HLFo_g3gaX4WNYfiHqa0ZkHzhzVmeXM10YNl0cf2OThpYC1YBhnMxGxbLKPWBVBbA71ak9Z4v1zbllVZ9OymCqZ5c5m6MOl2xBF_169QRObkXIT2FQlIV9DkxyzwodGbQjOgxsJMMY4aUR3M9T33DPgbetaNVFzdahEOWQ_FUnfwf2SejdBCLYrj6UVz9Uc15VbnQeZWkcWitD39M6rV40EbanMo-5deADbZkiM4D7kummmgHXSYRaag8tpUiI696B3XZXVWMfVuqvNjvwphvGk03PNbqw5XU1B9GmSETiwLNaCbo1o2DDAE21A0lPPXo_1R8pfi4r9nCqNJaIsnf-v67XcAfPl5pOZkcv4C6nrsee7_JgFwbrq2v7EkOxdfqq0XkGZ7d9zP4A1QRFsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Neural+Network+and+LSTM+Integration+for+Enhanced+Multi-Label+Style+Classification+of+Piano+Sonatas&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Sibo&rft.au=Liu%2C+Yang&rft.au=Zhou%2C+Mengjie&rft.date=2025-01-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=3&rft.spage=666&rft_id=info:doi/10.3390%2Fs25030666&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s25030666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |