Ant colony system-based algorithm for constrained load flow problem

This paper presents the ant colony system (ACS) method for network-constrained optimization problems. The developed ACS algorithm formulates the constrained load flow (CLF) problem as a combinatorial optimization problem. It is a distributed algorithm composed of a set of cooperating artificial agen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 20; no. 3; pp. 1241 - 1249
Main Authors Vlachogiannis, J.G., Hatziargyriou, N.D., Lee, K.Y.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the ant colony system (ACS) method for network-constrained optimization problems. The developed ACS algorithm formulates the constrained load flow (CLF) problem as a combinatorial optimization problem. It is a distributed algorithm composed of a set of cooperating artificial agents, called ants, that cooperate among them to find an optimum solution of the CLF problem. A pheromone matrix that plays the role of global memory provides the cooperation between ants. The study consists of mapping the solution space, expressed by an objective function of the CLF on the space of control variables [ant system (AS)-graph], that ants walk. The ACS algorithm is applied to the IEEE 14-bus system and the IEEE 136-bus system. The results are compared with those given by the probabilistic CLF and the reinforcement learning (RL) methods, demonstrating the superiority and flexibility of the ACS algorithm. Moreover, the ACS algorithm is applied to the reactive power control problem for the IEEE 14-bus system in order to minimize real power losses subject to operating constraints over the whole planning period.
AbstractList The results are compared with those given by the probabilistic CLF and the reinforcement learning (RL) methods, demonstrating the superiority and flexibility of the ACS algorithm. [...] the ACS algorithm is applied to the reactive power control problem for the IEEE 14-bus system in order to minimize real power losses subject to operating constraints over the whole planning period.
This paper presents the ant colony system (ACS) method for network-constrained optimization problems. The developed ACS algorithm formulates the constrained load flow (CLF) problem as a combinatorial optimization problem. It is a distributed algorithm composed of a set of cooperating artificial agents, called ants, that cooperate among them to find an optimum solution of the CLF problem. A pheromone matrix that plays the role of global memory provides the cooperation between ants. The study consists of mapping the solution space, expressed by an objective function of the CLF on the space of control variables [ant system (AS)-graph], that ants walk. The ACS algorithm is applied to the IEEE 14-bus system and the IEEE 136-bus system. The results are compared with those given by the probabilistic CLF and the reinforcement learning (RL) methods, demonstrating the superiority and flexibility of the ACS algorithm. Moreover, the ACS algorithm is applied to the reactive power control problem for the IEEE 14-bus system in order to minimize real power losses subject to operating constraints over the whole planning period.
Author Lee, K.Y.
Vlachogiannis, J.G.
Hatziargyriou, N.D.
Author_xml – sequence: 1
  givenname: J.G.
  surname: Vlachogiannis
  fullname: Vlachogiannis, J.G.
  organization: Ind. & Energy Informatics, Ind. & Energy Informatics (IEI) Lab., Lamia, Greece
– sequence: 2
  givenname: N.D.
  surname: Hatziargyriou
  fullname: Hatziargyriou, N.D.
– sequence: 3
  givenname: K.Y.
  surname: Lee
  fullname: Lee, K.Y.
BookMark eNp9kMlKBDEQhoMoOC4PIF4aD-KlxyyT7spRBjcQFBc8hiSdaEs60aQHmbc34wiCB09FUd9fRX07aDPEYBE6IHhKCBanj3fP9w9TijGfAieiERtoQjiHGjet2EQTDMBrEBxvo52c3zDGTRlM0PwsjJWJPoZllZd5tEOtVbZdpfxLTP34OlQupkKEPCbVhzLxUXWV8_Gzek9RezvsoS2nfLb7P3UXPV2cP86v6pvby-v52U1tmBBjLYQBasAxRVumCQUtnNWNa4XThndAFZQGjO4wBw3OKi1murOs08w52rBddLzeW-5-LGwe5dBnY71XwcZFlhQwBSAr8ORfkDQtoWJGSFvQoz_oW1ykUN6Q0AgMnDJWILKGTIo5J-vke-oHlZaSYLnSL7_1y5V-udZfMu2fjOlHNfYxrDz6f5OH62Rvrf29NBOYtzP2BZuKlbc
CODEN ITPSEG
CitedBy_id crossref_primary_10_3390_app122312426
crossref_primary_10_3390_en16062549
crossref_primary_10_7763_IJIET_2012_V2_127
crossref_primary_10_1007_s12667_012_0057_x
crossref_primary_10_1016_j_simpat_2009_07_006
crossref_primary_10_1016_j_heliyon_2025_e41915
crossref_primary_10_1016_j_rser_2016_10_071
crossref_primary_10_1016_j_sigpro_2014_01_013
crossref_primary_10_1109_TPWRS_2007_894861
crossref_primary_10_1109_TSG_2021_3064046
crossref_primary_10_1007_s10916_010_9448_5
crossref_primary_10_1016_j_asoc_2009_02_005
crossref_primary_10_1088_1757_899X_1105_1_012015
crossref_primary_10_1109_TPWRS_2007_908471
crossref_primary_10_1016_j_ijepes_2010_06_003
crossref_primary_10_1007_s40565_014_0089_4
crossref_primary_10_1049_iet_gtd_20060430
crossref_primary_10_1063_1_4989828
crossref_primary_10_1109_TSMCC_2012_2218596
crossref_primary_10_1155_2010_906935
crossref_primary_10_1007_s11831_024_10191_7
crossref_primary_10_1016_j_sigpro_2009_10_020
crossref_primary_10_1109_TPWRS_2008_2002169
crossref_primary_10_1016_j_ijepes_2010_02_007
crossref_primary_10_1109_TPWRS_2009_2030420
crossref_primary_10_1002_er_4864
crossref_primary_10_1016_j_ijepes_2013_05_036
crossref_primary_10_1016_j_ijepes_2015_09_010
crossref_primary_10_1016_j_rser_2012_10_039
crossref_primary_10_3390_app10051806
crossref_primary_10_1016_j_rser_2016_10_036
crossref_primary_10_1016_j_rser_2014_10_057
crossref_primary_10_1016_j_egyr_2018_01_004
crossref_primary_10_1016_j_rser_2016_11_143
crossref_primary_10_1016_j_artmed_2024_102886
crossref_primary_10_1016_j_energy_2014_02_025
crossref_primary_10_1109_TPEL_2008_2006175
crossref_primary_10_1016_j_simpat_2016_02_014
crossref_primary_10_1016_j_compbiomed_2024_108439
crossref_primary_10_1515_ijeeps_2019_0243
crossref_primary_10_1016_j_ijepes_2009_11_019
crossref_primary_10_1007_s00202_011_0196_4
crossref_primary_10_1016_j_apor_2013_04_004
crossref_primary_10_1109_TSMCC_2008_2001573
crossref_primary_10_1016_j_camwa_2010_03_028
crossref_primary_10_1016_j_ijepes_2010_12_030
Cites_doi 10.1109/59.387894
10.1109/59.119256
10.1109/TPWRS.2003.821457
10.1109/59.744485
10.1109/59.867137
10.1007/BF00992698
10.1109/TPWRS.2004.831259
10.1007/978-3-7091-6492-1_54
10.1109/60.937211
10.1049/ip-gtd:20000437
10.1109/CEC.2000.870793
10.1109/59.898095
10.1109/ICPST.1998.729025
10.1109/59.331441
10.1109/TPWRS.2002.807038
10.1109/3477.484436
10.1109/CEC.1999.782657
10.1613/jair.301
10.1049/piee.1977.0027
10.1016/0378-7796(94)90078-7
10.1016/S0378-7796(02)00093-7
10.1109/4235.585892
10.1109/CEC.1999.785529
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
F28
DOI 10.1109/TPWRS.2005.851969
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

Technology Research Database
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 1249
ExternalDocumentID 2361359511
10_1109_TPWRS_2005_851969
1490574
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
F28
ID FETCH-LOGICAL-c399t-99c82c8f3a273b128b9feb6f79fbc5d82a86f78cbd058b8feab94bde3db3ff263
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 11 00:38:07 EDT 2025
Fri Jul 11 01:22:36 EDT 2025
Mon Jun 30 07:05:49 EDT 2025
Tue Jul 01 03:31:20 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Tue Aug 26 16:40:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-99c82c8f3a273b128b9feb6f79fbc5d82a86f78cbd058b8feab94bde3db3ff263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1109/TPWRS.2005.851969
PQID 869085233
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671294117
proquest_journals_869085233
crossref_primary_10_1109_TPWRS_2005_851969
ieee_primary_1490574
proquest_miscellaneous_28028816
crossref_citationtrail_10_1109_TPWRS_2005_851969
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-08-01
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2005
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
jeon (ref22) 2003
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ernst (ref26) 2002
ref23
ref20
kaelbling (ref11) 1996; 4
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
sutton (ref12) 1998
kenney (ref25) 1962
dorigo (ref14) 1992
References_xml – start-page: 266
  year: 2003
  ident: ref22
  article-title: application of ant colony algorithm for network reconfiguration in distribution systems
  publication-title: Proc IFAC Symp Power Plants Power Syst Control
– ident: ref5
  doi: 10.1109/59.387894
– year: 1992
  ident: ref14
  publication-title: Optimization learning and natural algorithms
– ident: ref1
  doi: 10.1109/59.119256
– ident: ref27
  doi: 10.1109/TPWRS.2003.821457
– ident: ref6
  doi: 10.1109/59.744485
– ident: ref7
  doi: 10.1109/59.867137
– ident: ref10
  doi: 10.1007/BF00992698
– ident: ref13
  doi: 10.1109/TPWRS.2004.831259
– ident: ref23
  doi: 10.1007/978-3-7091-6492-1_54
– ident: ref20
  doi: 10.1109/60.937211
– ident: ref8
  doi: 10.1049/ip-gtd:20000437
– ident: ref28
  doi: 10.1109/CEC.2000.870793
– ident: ref3
  doi: 10.1109/59.898095
– ident: ref19
  doi: 10.1109/ICPST.1998.729025
– ident: ref9
  doi: 10.1109/59.331441
– ident: ref21
  doi: 10.1109/TPWRS.2002.807038
– ident: ref15
  doi: 10.1109/3477.484436
– ident: ref17
  doi: 10.1109/CEC.1999.782657
– year: 2002
  ident: ref26
  article-title: facts devices controlled by means of reinforcement learning algorithms
  publication-title: Proc PSCC
– volume: 4
  start-page: 237
  year: 1996
  ident: ref11
  article-title: reinforcement learning: a survey
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.301
– year: 1998
  ident: ref12
  publication-title: Reinforcement Learning An Introduction Adaptive Computations and Machine Learning
– ident: ref24
  doi: 10.1049/piee.1977.0027
– ident: ref2
  doi: 10.1016/0378-7796(94)90078-7
– ident: ref4
  doi: 10.1016/S0378-7796(02)00093-7
– ident: ref16
  doi: 10.1109/4235.585892
– year: 1962
  ident: ref25
  publication-title: Mathematics of Statistics
– ident: ref18
  doi: 10.1109/CEC.1999.785529
SSID ssj0006679
Score 2.1564014
Snippet This paper presents the ant colony system (ACS) method for network-constrained optimization problems. The developed ACS algorithm formulates the constrained...
The results are compared with those given by the probabilistic CLF and the reinforcement learning (RL) methods, demonstrating the superiority and flexibility...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1241
SubjectTerms Algorithms
Ant colony optimization
Ant colony system (ACS)
Ants
Colonies
Combinatorial analysis
combinatorial optimization
constrained load flow (CLF)
Constraint optimization
Constraints
Control systems
Distributed algorithms
Flexibility
Learning
Load flow
Optimal control
Optimization
Power system planning
Reactive power control
reinforcement learning (RL)
Studies
Switches
Title Ant colony system-based algorithm for constrained load flow problem
URI https://ieeexplore.ieee.org/document/1490574
https://www.proquest.com/docview/869085233
https://www.proquest.com/docview/1671294117
https://www.proquest.com/docview/28028816
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3roA1o1hVJX4lQ1Sxwn3vERIRBCAlUFVG5R_GqrbpMKsqraX8_Yzm5RX-IWx-PE8mu-scffAOwaLg2NA5GTsRx2q7TIsfSKkpy33BbKmeggeyaPL6uTq_pqBd4u78I456LzmZuEx3iWb3szD1tle4TmCV5Uq7BKhlu6q7VcdaVMvHqIdY6qXpxg8kLtXbz78P48bZ8QvlDBt_mODopBVf5YiaN6OXoEp4uKJa-SL5P5oCfm52-cjfet-WN4OOJMtp8GxhNYcd0GPLjDPrgJB_vdwAJpdfeDJULnPOg0y9rZx_768_DpKyNESxKBZLalcpbN-tYyP-u_szEQzVO4PDq8ODjOx5gKuSEoMuRKGSwNetESbtGknLTyTks_VV6b2mLZIiXQaFvUqNG7VqtKWyesFt6XUjyDta7v3HNg9NYJdNpLU1ZoHdb0aalUbYSgrCKDYtHKjRkJx0N1Z000PArVxI4JgTDrJnVMBm-WRb4lto3_CW-Ghv4lmNo4g61FVzbjfLxpQtwtJJtbZPB6mUsTKZyOtJ3r5zcNl1PCPhXn0wxe_UOmRIJjyOWLv_96C9Yjs2v0D9yGteF67l4SZhn0Thyst1Oc6ew
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOUCiI0NK6Uk-IbOM49trHqqJaoK2qshW9RfELEEuC2qwQ_PqO7exS8RK3OB4nll_zjT3-BmDXUGFwHLAcjeWwW6VZLkuvMElpQ22hnIkOsidicl69ueAXK_ByeRfGORedz9woPMazfNuZedgq20M0j_CiugW3Ue_zMt3WWq67QiRmPSl5LhVfnGHSQu1NT9-fvUsbKIgwVPBuvqGFYliV39biqGAOH8DxomrJr-TzaN7rkfnxC2vj_9Z9De4PSJPsp6HxEFZc-wju3eAfXIeD_bYngba6_U4SpXMetJolzexDd_mp__iFIKZFiUAz22A5S2ZdY4mfdd_IEIrmMZwfvpoeTPIhqkJuEIz0uVJGlkZ61iBy0aietPJOCz9WXhtuZdlITEijbcGllt41WlXaOmY1874U7Amstl3rngLBt45Jp70wZSWtkxw_LZTihjHMKjIoFq1cm4FyPFR3VkfTo1B17JgQCpPXqWMyeLEs8jXxbfxLeD009E_B1MYZbCy6sh5m5FUdIm9JtLpZBjvLXJxK4XykaV03v6qpGCP6qSgdZ7D9F5lSIiCTVDz786-34c5kenxUH70-ebsBdyPPa_QW3ITV_nLuniOC6fVWHLjXrDntNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ant+Colony+System-Based+Algorithm+for+Constrained+Load+Flow+Problem&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Vlachogiannis%2C+J.G&rft.au=Hatziargyriou%2C+N.D&rft.au=Lee%2C+K.Y&rft.date=2005-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=20&rft.issue=3&rft.spage=1241&rft_id=info:doi/10.1109%2FTPWRS.2005.851969&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2361359511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon