Complex diffraction and dispersion effects in femtosecond laser writing of fiber Bragg gratings using the phase mask technique
The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask...
Saved in:
Published in | Optics express Vol. 27; no. 22; p. 32536 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Optical Society of America
28.10.2019
|
Online Access | Get full text |
ISSN | 1094-4087 1094-4087 |
DOI | 10.1364/OE.27.032536 |
Cover
Loading…
Abstract | The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask and the observation point grows, chromatic dispersion and conical diffraction introduced by the mask gradually decrease the peak intensity inside the line-shaped focal volume of the cylindrical lens that is used to focus the femtosecond pulses inside the fiber. We also show that at a certain distance from the mask spherical aberration introduced by the plane-parallel mask substrate is cancelled out by conical diffraction and, at a different distance, chromatic aberration of the cylindrical lens is cancelled out by chromatic dispersion of the mask. These two independent cancellation effects lead to sharpening of the line-shaped focus and the consequent growth of peak light intensity inside it. The above phenomena become especially pronounced for tightly focused femtosecond laser beams and small-pitch phase masks, which, in turn, allows one to choose experimental conditions to inscribe Bragg gratings in polymer-coated non-sensitized 50 µm fibers. NRC publication: Yes |
---|---|
AbstractList | The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask and the observation point grows, chromatic dispersion and conical diffraction introduced by the mask gradually decrease the peak intensity inside the line-shaped focal volume of the cylindrical lens that is used to focus the femtosecond pulses inside the fiber. We also show that at a certain distance from the mask spherical aberration introduced by the plane-parallel mask substrate is cancelled out by conical diffraction and, at a different distance, chromatic aberration of the cylindrical lens is cancelled out by chromatic dispersion of the mask. These two independent cancellation effects lead to sharpening of the line-shaped focus and the consequent growth of peak light intensity inside it. The above phenomena become especially pronounced for tightly focused femtosecond laser beams and small-pitch phase masks, which, in turn, allows one to choose experimental conditions to inscribe Bragg gratings in polymer-coated non-sensitized 50 µm fibers.The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask and the observation point grows, chromatic dispersion and conical diffraction introduced by the mask gradually decrease the peak intensity inside the line-shaped focal volume of the cylindrical lens that is used to focus the femtosecond pulses inside the fiber. We also show that at a certain distance from the mask spherical aberration introduced by the plane-parallel mask substrate is cancelled out by conical diffraction and, at a different distance, chromatic aberration of the cylindrical lens is cancelled out by chromatic dispersion of the mask. These two independent cancellation effects lead to sharpening of the line-shaped focus and the consequent growth of peak light intensity inside it. The above phenomena become especially pronounced for tightly focused femtosecond laser beams and small-pitch phase masks, which, in turn, allows one to choose experimental conditions to inscribe Bragg gratings in polymer-coated non-sensitized 50 µm fibers. The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask and the observation point grows, chromatic dispersion and conical diffraction introduced by the mask gradually decrease the peak intensity inside the line-shaped focal volume of the cylindrical lens that is used to focus the femtosecond pulses inside the fiber. We also show that at a certain distance from the mask spherical aberration introduced by the plane-parallel mask substrate is cancelled out by conical diffraction and, at a different distance, chromatic aberration of the cylindrical lens is cancelled out by chromatic dispersion of the mask. These two independent cancellation effects lead to sharpening of the line-shaped focus and the consequent growth of peak light intensity inside it. The above phenomena become especially pronounced for tightly focused femtosecond laser beams and small-pitch phase masks, which, in turn, allows one to choose experimental conditions to inscribe Bragg gratings in polymer-coated non-sensitized 50 µm fibers. |
Author | Abdukerim, Nurmemet Grobnic, Dan Mihailov, Stephen J Lausten, Rune Hnatovsky, Cyril |
Author_xml | – sequence: 1 fullname: Abdukerim, Nurmemet – sequence: 2 fullname: Grobnic, Dan – sequence: 3 fullname: Lausten, Rune – sequence: 4 fullname: Hnatovsky, Cyril – sequence: 5 fullname: Mihailov, Stephen J |
BookMark | eNp1kE2P1DAMhiu0SOwu3PgBOXJgZvPVaXOE0SystNJc4Bw5qTMTaJOSZARc-O2kFCGExCW23zx-bfmmuQoxYNO8ZHTLxE7eHQ9b3m2p4K3YPWmuGVVyI2nfXf2VP2tucv5EKZOd6q6bH_s4zSN-I4N3LoEtPgYCYah1njHlpUTn0JZMfCAOpxIz2liJETIm8jX54sOJREecN1V4m-B0IqcEi5zJJS-_5YxkPtcGMkH-TArac_BfLvi8eepgzPjid7xtPt4fPuzfbx6P7x72bx43VihVNv2gkO74oETf9TVRg1KdEkKYge4kdYa3rqcASmIPYFpuJSjXo-yptWBA3DavVt85xTo2Fz35bHEcIWC8ZM0F47w6yrair1fUpphzQqfn5CdI3zWjejmzPh407_R65orzf3DrCyxnLAn8-L-mYW0Kqe4XYIA_QyL46pCL134JuhLa_npg1cMMteKGGWBG6pb1rZatstoo4Jo5LtDQOoMb8ROjL6fR |
CitedBy_id | crossref_primary_10_1109_JLT_2020_3046008 crossref_primary_10_3390_s21041447 crossref_primary_10_1364_OE_476872 crossref_primary_10_1364_OE_520723 crossref_primary_10_1016_j_optlastec_2025_112810 crossref_primary_10_1364_OE_521493 crossref_primary_10_1364_OE_538476 crossref_primary_10_1364_OL_381111 crossref_primary_10_1364_OE_27_038259 crossref_primary_10_3390_s20247004 crossref_primary_10_3390_photonics10060625 |
Cites_doi | 10.1364/AO.42.001167 10.1364/OE.20.001825 10.1364/OL.42.000399 10.1364/OPEX.13.005377 10.1016/j.apsusc.2009.02.043 10.1364/OE.21.031830 10.1364/OL.31.001603 10.1016/0030-4018(92)90022-J 10.1063/1.2965451 10.1364/JOSAA.14.001482 10.1063/1.1522481 10.1364/OL.31.001705 10.1364/OL.31.002631 10.1063/1.1992668 10.1364/OL.27.000969 10.1063/1.1148392 10.1364/OL.32.001453 10.1103/PhysRevA.48.4721 10.1364/JOSAA.12.000325 10.1364/OL.40.002766 10.1049/el:20070114 10.1364/JOSAA.22.000767 10.1364/AOP.1.000308 10.1109/LPT.2017.2752128 10.3390/s17112519 10.1364/OE.25.023809 10.1007/s00339-004-3108-x 10.1364/JOSAB.9.001158 10.1117/12.145386 10.1364/OL.23.001378 10.1364/OE.26.023550 10.1364/OL.28.000995 10.1364/OE.25.014247 10.1016/0030-4018(93)90328-3 10.1016/0030-4018(86)90290-7 10.1007/s00339-010-6065-6 10.1364/AO.36.002305 10.1364/OL.36.002302 10.1016/j.apsusc.2008.07.091 10.1364/OL.39.000478 10.1063/1.1855404 10.1364/OE.18.017193 10.1364/OE.15.000278 10.1364/OE.11.000079 10.1088/0963-9659/7/5/029 10.1364/OE.18.021090 10.1364/AO.37.008158 10.1117/12.145393 10.1364/OL.29.001730 10.1364/AO.39.006128 10.1364/OE.25.025435 10.1364/OL.29.001458 |
ContentType | Journal Article |
DBID | -LJ GXV AAYXX CITATION 7X8 |
DOI | 10.1364/OE.27.032536 |
DatabaseName | National Research Council Canada Archive CISTI Source CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 10_1364_OE_27_032536 oai_cisti_icist_nrc_cnrc_ca_cistinparc_2b1ba1b4_5185_459c_b9a2_1f23eb03632b |
GroupedDBID | --- -LJ 123 29N 2WC 8SL AAFWJ AAWJZ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV C1A CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 GXV KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c399t-8d9e062d938780629d9979333bd0640fb25f80aa94e8aab52c4a9f8e480ccaba3 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 01:10:23 EDT 2025 Tue Jul 01 04:04:46 EDT 2025 Thu Apr 24 22:58:27 EDT 2025 Tue Sep 02 20:28:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c399t-8d9e062d938780629d9979333bd0640fb25f80aa94e8aab52c4a9f8e480ccaba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6144-0937 0000-0001-8051-3532 |
OpenAccessLink | https://doi.org/10.1364/oe.27.032536 |
PQID | 2312279345 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2312279345 crossref_primary_10_1364_OE_27_032536 crossref_citationtrail_10_1364_OE_27_032536 nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_2b1ba1b4_5185_459c_b9a2_1f23eb03632b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-28 |
PublicationDateYYYYMMDD | 2019-10-28 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-28 day: 28 |
PublicationDecade | 2010 |
PublicationTitle | Optics express |
PublicationYear | 2019 |
Publisher | Optical Society of America |
Publisher_xml | – name: Optical Society of America |
References | Amako (oe-27-22-32536-R11) 2002; 27 Braig (oe-27-22-32536-R46) 2012; 20 Othonos (oe-27-22-32536-R50) 1997; 68 Mihailov (oe-27-22-32536-R25) 2007; 43 Jesacher (oe-27-22-32536-R15) 2010; 18 Hnatovsky (oe-27-22-32536-R39) 2017; 25 Smelser (oe-27-22-32536-R58) 2007; 32 Zhao (oe-27-22-32536-R42) 2017; 25 Yamaji (oe-27-22-32536-R7) 2008; 93 Torres-Peiro (oe-27-22-32536-R16) 2013; 21 Habel (oe-27-22-32536-R26) 2017; 17 Bor (oe-27-22-32536-R56) 1992; 94 Hasegawa (oe-27-22-32536-R6) 2006; 31 Walmsley (oe-27-22-32536-R41) 2009; 1 Mínguez-Vega (oe-27-22-32536-R13) 2006; 31 Kato (oe-27-22-32536-R2) 2005; 86 Martinez (oe-27-22-32536-R24) 2006; 31 Harvey (oe-27-22-32536-R32) 2003; 42 Wiersma (oe-27-22-32536-R44) 1997; 14 Obata (oe-27-22-32536-R10) 2010; 18 Kempe (oe-27-22-32536-R53) 1992; 9 Maznev (oe-27-22-32536-R35) 1998; 23 Bor (oe-27-22-32536-R34) 1993; 32 Kempe (oe-27-22-32536-R54) 1993; 48 Mínguez-Vega (oe-27-22-32536-R14) 2007; 15 Hnatovsky (oe-27-22-32536-R28) 2017; 25 Hnatovsky (oe-27-22-32536-R47) 2018; 26 Martinez (oe-27-22-32536-R33) 1986; 59 Smelser (oe-27-22-32536-R37) 2004; 29 Hnatovsky (oe-27-22-32536-R52) 2017; 42 Hayasaki (oe-27-22-32536-R5) 2005; 87 Richter (oe-27-22-32536-R20) 2015; 40 Smelser (oe-27-22-32536-R38) 2004; 29 Hasegawa (oe-27-22-32536-R17) 2014; 39 Salter (oe-27-22-32536-R3) 2011; 36 Li (oe-27-22-32536-R12) 2005; 22 Matsuo (oe-27-22-32536-R1) 2005; 80 Voigtländer (oe-27-22-32536-R19) 2011; 102 Horváth (oe-27-22-32536-R55) 1993; 32 Török (oe-27-22-32536-R23) 1997; 36 Kuang (oe-27-22-32536-R8) 2008; 255 Török (oe-27-22-32536-R22) 1995; 12 Dorrer (oe-27-22-32536-R40) 2003; 11 Xie (oe-27-22-32536-R57) 1993; 101 Nakata (oe-27-22-32536-R4) 2002; 81 Smelser (oe-27-22-32536-R51) 2005; 13 Mills (oe-27-22-32536-R36) 2000; 39 Harvey (oe-27-22-32536-R31) 1998; 37 Wiersma (oe-27-22-32536-R45) 1998; 7 Mihailov (oe-27-22-32536-R18) 2003; 28 Grobnic (oe-27-22-32536-R27) 2017; 29 Kuang (oe-27-22-32536-R9) 2009; 255 |
References_xml | – volume: 42 start-page: 1167 year: 2003 ident: oe-27-22-32536-R32 publication-title: Appl. Opt. doi: 10.1364/AO.42.001167 – volume: 20 start-page: 1825 year: 2012 ident: oe-27-22-32536-R46 publication-title: Opt. Express doi: 10.1364/OE.20.001825 – volume: 42 start-page: 399 year: 2017 ident: oe-27-22-32536-R52 publication-title: Opt. Lett. doi: 10.1364/OL.42.000399 – volume: 13 start-page: 5377 year: 2005 ident: oe-27-22-32536-R51 publication-title: Opt. Express doi: 10.1364/OPEX.13.005377 – volume: 255 start-page: 6582 year: 2009 ident: oe-27-22-32536-R9 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.02.043 – volume: 21 start-page: 31830 year: 2013 ident: oe-27-22-32536-R16 publication-title: Opt. Express doi: 10.1364/OE.21.031830 – volume: 31 start-page: 1603 year: 2006 ident: oe-27-22-32536-R24 publication-title: Opt. Lett. doi: 10.1364/OL.31.001603 – volume: 94 start-page: 249 year: 1992 ident: oe-27-22-32536-R56 publication-title: Opt. Commun. doi: 10.1016/0030-4018(92)90022-J – volume: 93 start-page: 041116 year: 2008 ident: oe-27-22-32536-R7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2965451 – volume: 14 start-page: 1482 year: 1997 ident: oe-27-22-32536-R44 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.14.001482 – volume: 81 start-page: 4239 year: 2002 ident: oe-27-22-32536-R4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1522481 – volume: 31 start-page: 1705 year: 2006 ident: oe-27-22-32536-R6 publication-title: Opt. Lett. doi: 10.1364/OL.31.001705 – volume: 31 start-page: 2631 year: 2006 ident: oe-27-22-32536-R13 publication-title: Opt. Lett. doi: 10.1364/OL.31.002631 – volume: 87 start-page: 031101 year: 2005 ident: oe-27-22-32536-R5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1992668 – volume: 27 start-page: 969 year: 2002 ident: oe-27-22-32536-R11 publication-title: Opt. Lett. doi: 10.1364/OL.27.000969 – volume: 68 start-page: 4309 year: 1997 ident: oe-27-22-32536-R50 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148392 – volume: 32 start-page: 1453 year: 2007 ident: oe-27-22-32536-R58 publication-title: Opt. Lett. doi: 10.1364/OL.32.001453 – volume: 48 start-page: 4721 year: 1993 ident: oe-27-22-32536-R54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevA.48.4721 – volume: 12 start-page: 325 year: 1995 ident: oe-27-22-32536-R22 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.12.000325 – volume: 40 start-page: 2766 year: 2015 ident: oe-27-22-32536-R20 publication-title: Opt. Lett. doi: 10.1364/OL.40.002766 – volume: 43 start-page: 442 year: 2007 ident: oe-27-22-32536-R25 publication-title: Electron. Lett. doi: 10.1049/el:20070114 – volume: 22 start-page: 767 year: 2005 ident: oe-27-22-32536-R12 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.22.000767 – volume: 1 start-page: 308 year: 2009 ident: oe-27-22-32536-R41 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.1.000308 – volume: 29 start-page: 1780 year: 2017 ident: oe-27-22-32536-R27 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2017.2752128 – volume: 17 start-page: 2519 year: 2017 ident: oe-27-22-32536-R26 publication-title: Sensors doi: 10.3390/s17112519 – volume: 25 start-page: 23809 year: 2017 ident: oe-27-22-32536-R42 publication-title: Opt. Express doi: 10.1364/OE.25.023809 – volume: 80 start-page: 683 year: 2005 ident: oe-27-22-32536-R1 publication-title: Appl. Phys. A doi: 10.1007/s00339-004-3108-x – volume: 9 start-page: 1158 year: 1992 ident: oe-27-22-32536-R53 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.9.001158 – volume: 32 start-page: 2491 year: 1993 ident: oe-27-22-32536-R55 publication-title: Opt. Eng. doi: 10.1117/12.145386 – volume: 23 start-page: 1378 year: 1998 ident: oe-27-22-32536-R35 publication-title: Opt. Lett. doi: 10.1364/OL.23.001378 – volume: 26 start-page: 23550 year: 2018 ident: oe-27-22-32536-R47 publication-title: Opt. Express doi: 10.1364/OE.26.023550 – volume: 28 start-page: 995 year: 2003 ident: oe-27-22-32536-R18 publication-title: Opt. Lett. doi: 10.1364/OL.28.000995 – volume: 25 start-page: 14247 year: 2017 ident: oe-27-22-32536-R39 publication-title: Opt. Express doi: 10.1364/OE.25.014247 – volume: 101 start-page: 85 year: 1993 ident: oe-27-22-32536-R57 publication-title: Opt. Commun. doi: 10.1016/0030-4018(93)90328-3 – volume: 59 start-page: 229 year: 1986 ident: oe-27-22-32536-R33 publication-title: Opt. Commun. doi: 10.1016/0030-4018(86)90290-7 – volume: 102 start-page: 35 year: 2011 ident: oe-27-22-32536-R19 publication-title: Appl. Phys. A doi: 10.1007/s00339-010-6065-6 – volume: 36 start-page: 2305 year: 1997 ident: oe-27-22-32536-R23 publication-title: Appl. Opt. doi: 10.1364/AO.36.002305 – volume: 36 start-page: 2302 year: 2011 ident: oe-27-22-32536-R3 publication-title: Opt. Lett. doi: 10.1364/OL.36.002302 – volume: 255 start-page: 2284 year: 2008 ident: oe-27-22-32536-R8 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.07.091 – volume: 39 start-page: 478 year: 2014 ident: oe-27-22-32536-R17 publication-title: Opt. Lett. doi: 10.1364/OL.39.000478 – volume: 86 start-page: 044102 year: 2005 ident: oe-27-22-32536-R2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1855404 – volume: 18 start-page: 17193 year: 2010 ident: oe-27-22-32536-R10 publication-title: Opt. Express doi: 10.1364/OE.18.017193 – volume: 15 start-page: 278 year: 2007 ident: oe-27-22-32536-R14 publication-title: Opt. Express doi: 10.1364/OE.15.000278 – volume: 11 start-page: 79 year: 2003 ident: oe-27-22-32536-R40 publication-title: Opt. Express doi: 10.1364/OE.11.000079 – volume: 7 start-page: 1237 year: 1998 ident: oe-27-22-32536-R45 publication-title: Pure Appl. Opt. doi: 10.1088/0963-9659/7/5/029 – volume: 18 start-page: 21090 year: 2010 ident: oe-27-22-32536-R15 publication-title: Opt. Express doi: 10.1364/OE.18.021090 – volume: 37 start-page: 8158 year: 1998 ident: oe-27-22-32536-R31 publication-title: Appl. Opt. doi: 10.1364/AO.37.008158 – volume: 32 start-page: 2501 year: 1993 ident: oe-27-22-32536-R34 publication-title: Opt. Eng. doi: 10.1117/12.145393 – volume: 29 start-page: 1730 year: 2004 ident: oe-27-22-32536-R38 publication-title: Opt. Lett. doi: 10.1364/OL.29.001730 – volume: 39 start-page: 6128 year: 2000 ident: oe-27-22-32536-R36 publication-title: Appl. Opt. doi: 10.1364/AO.39.006128 – volume: 25 start-page: 25435 year: 2017 ident: oe-27-22-32536-R28 publication-title: Opt. Express doi: 10.1364/OE.25.025435 – volume: 29 start-page: 1458 year: 2004 ident: oe-27-22-32536-R37 publication-title: Opt. Lett. doi: 10.1364/OL.29.001458 |
SSID | ssj0014797 |
Score | 2.3798888 |
Snippet | The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings... |
SourceID | proquest crossref nrccanada |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 32536 |
Title | Complex diffraction and dispersion effects in femtosecond laser writing of fiber Bragg gratings using the phase mask technique |
URI | https://nrc-publications.canada.ca/eng/view/object/?id=2b1ba1b4-5185-459c-b9a2-1f23eb03632b https://www.proquest.com/docview/2312279345 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx9hexj5Z9lE02J6Mu1iSP_Q4Srow2gRGAnkZQrLlNqyxg2N33R76t-8kK05KO-j2ohhxEUb38-lO94XQB5KEKuA59wOdSZ8lygQBEOYHkZacahpl1CQnn4yj0Yx9nYfzXu9iJ2qpqdVB-vvWvJL_4SrMAV9Nluw_cLZbFCbgGfgLI3AYxjvx2HzM5_rSdjmpNk2_i8x4XVbtPVgXr7EovFwv63JtDODMA51ZV95PU9GojXrOTeQIcFqennqmfITt5tmsu2SqM_iDt5TrH15X9XVXr52sbLlnfbnqQjqsT8kEjVdtw-ZxUy31cptv_aUqVbFIXZ57Fxhk6hC1ovBbs3X5jwpZlxfuovfwV-UCQ9x1RcCNnCe7EhbsSTBa3Smrb5lzYrktGeDg1-YuOyFLSdgWTbkh_mnEgGeT4QGJDwYd2fUq2-OJOJodH4vpcD69h-4TMC-MQD-5GnbeJxa3TXk2r-USJmD1T7trX1NlHhZVauP05I1T3aoq0yfosbMx8OcWME9RTxfP0AMb65uun6MrBxu8AxsMsMFb2GAHG7wo8A5ssIUNdrDBZY4tbLCFDd7ABlvYYIANtrDBBja4g80LNDsaTg9HvmvD4aegvdZ-knE9iEjGaRIn8MAzzkGqU6oy4wbOFQnzZCAlZzqRUoUkZZLniWbJAHZESfoS7RVloV8hzHMWcFAhczLIGehOiWJZTFXM0oBqPaB95G12VKSuRr1plXIurOM1YmIyFCQW7f730ceOetXWZvkL3feOOR2hKauemmNULMyPAAqR2kG288UKThpBVKBkoJgIQbEVLOSpUFwSEeSEamWiIIjqo_cbhgsQzsbjJgtdNmsBxpOp0ElZ-PoONG_Qo-0X8xbt1VWj34HKW6t9e1W0b1H6ByHhtE8 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+diffraction+and+dispersion+effects+in+femtosecond+laser+writing+of+fiber+Bragg+gratings+using+the+phase+mask+technique&rft.jtitle=Optics+express&rft.au=Abdukerim%2C+Nurmemet&rft.au=Grobnic%2C+Dan&rft.au=Lausten%2C+Rune&rft.au=Hnatovsky%2C+Cyril&rft.date=2019-10-28&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=27&rft.issue=22&rft.spage=32536&rft_id=info:doi/10.1364%2FOE.27.032536&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |