Complex diffraction and dispersion effects in femtosecond laser writing of fiber Bragg gratings using the phase mask technique

The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 22; p. 32536
Main Authors Abdukerim, Nurmemet, Grobnic, Dan, Lausten, Rune, Hnatovsky, Cyril, Mihailov, Stephen J
Format Journal Article
LanguageEnglish
Published Optical Society of America 28.10.2019
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.27.032536

Cover

Loading…
Abstract The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask and the observation point grows, chromatic dispersion and conical diffraction introduced by the mask gradually decrease the peak intensity inside the line-shaped focal volume of the cylindrical lens that is used to focus the femtosecond pulses inside the fiber. We also show that at a certain distance from the mask spherical aberration introduced by the plane-parallel mask substrate is cancelled out by conical diffraction and, at a different distance, chromatic aberration of the cylindrical lens is cancelled out by chromatic dispersion of the mask. These two independent cancellation effects lead to sharpening of the line-shaped focus and the consequent growth of peak light intensity inside it. The above phenomena become especially pronounced for tightly focused femtosecond laser beams and small-pitch phase masks, which, in turn, allows one to choose experimental conditions to inscribe Bragg gratings in polymer-coated non-sensitized 50 µm fibers.
NRC publication: Yes
AbstractList The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask and the observation point grows, chromatic dispersion and conical diffraction introduced by the mask gradually decrease the peak intensity inside the line-shaped focal volume of the cylindrical lens that is used to focus the femtosecond pulses inside the fiber. We also show that at a certain distance from the mask spherical aberration introduced by the plane-parallel mask substrate is cancelled out by conical diffraction and, at a different distance, chromatic aberration of the cylindrical lens is cancelled out by chromatic dispersion of the mask. These two independent cancellation effects lead to sharpening of the line-shaped focus and the consequent growth of peak light intensity inside it. The above phenomena become especially pronounced for tightly focused femtosecond laser beams and small-pitch phase masks, which, in turn, allows one to choose experimental conditions to inscribe Bragg gratings in polymer-coated non-sensitized 50 µm fibers.The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask and the observation point grows, chromatic dispersion and conical diffraction introduced by the mask gradually decrease the peak intensity inside the line-shaped focal volume of the cylindrical lens that is used to focus the femtosecond pulses inside the fiber. We also show that at a certain distance from the mask spherical aberration introduced by the plane-parallel mask substrate is cancelled out by conical diffraction and, at a different distance, chromatic aberration of the cylindrical lens is cancelled out by chromatic dispersion of the mask. These two independent cancellation effects lead to sharpening of the line-shaped focus and the consequent growth of peak light intensity inside it. The above phenomena become especially pronounced for tightly focused femtosecond laser beams and small-pitch phase masks, which, in turn, allows one to choose experimental conditions to inscribe Bragg gratings in polymer-coated non-sensitized 50 µm fibers.
The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask. As the distance from the mask and the observation point grows, chromatic dispersion and conical diffraction introduced by the mask gradually decrease the peak intensity inside the line-shaped focal volume of the cylindrical lens that is used to focus the femtosecond pulses inside the fiber. We also show that at a certain distance from the mask spherical aberration introduced by the plane-parallel mask substrate is cancelled out by conical diffraction and, at a different distance, chromatic aberration of the cylindrical lens is cancelled out by chromatic dispersion of the mask. These two independent cancellation effects lead to sharpening of the line-shaped focus and the consequent growth of peak light intensity inside it. The above phenomena become especially pronounced for tightly focused femtosecond laser beams and small-pitch phase masks, which, in turn, allows one to choose experimental conditions to inscribe Bragg gratings in polymer-coated non-sensitized 50 µm fibers.
Author Abdukerim, Nurmemet
Grobnic, Dan
Mihailov, Stephen J
Lausten, Rune
Hnatovsky, Cyril
Author_xml – sequence: 1
  fullname: Abdukerim, Nurmemet
– sequence: 2
  fullname: Grobnic, Dan
– sequence: 3
  fullname: Lausten, Rune
– sequence: 4
  fullname: Hnatovsky, Cyril
– sequence: 5
  fullname: Mihailov, Stephen J
BookMark eNp1kE2P1DAMhiu0SOwu3PgBOXJgZvPVaXOE0SystNJc4Bw5qTMTaJOSZARc-O2kFCGExCW23zx-bfmmuQoxYNO8ZHTLxE7eHQ9b3m2p4K3YPWmuGVVyI2nfXf2VP2tucv5EKZOd6q6bH_s4zSN-I4N3LoEtPgYCYah1njHlpUTn0JZMfCAOpxIz2liJETIm8jX54sOJREecN1V4m-B0IqcEi5zJJS-_5YxkPtcGMkH-TArac_BfLvi8eepgzPjid7xtPt4fPuzfbx6P7x72bx43VihVNv2gkO74oETf9TVRg1KdEkKYge4kdYa3rqcASmIPYFpuJSjXo-yptWBA3DavVt85xTo2Fz35bHEcIWC8ZM0F47w6yrair1fUpphzQqfn5CdI3zWjejmzPh407_R65orzf3DrCyxnLAn8-L-mYW0Kqe4XYIA_QyL46pCL134JuhLa_npg1cMMteKGGWBG6pb1rZatstoo4Jo5LtDQOoMb8ROjL6fR
CitedBy_id crossref_primary_10_1109_JLT_2020_3046008
crossref_primary_10_3390_s21041447
crossref_primary_10_1364_OE_476872
crossref_primary_10_1364_OE_520723
crossref_primary_10_1016_j_optlastec_2025_112810
crossref_primary_10_1364_OE_521493
crossref_primary_10_1364_OE_538476
crossref_primary_10_1364_OL_381111
crossref_primary_10_1364_OE_27_038259
crossref_primary_10_3390_s20247004
crossref_primary_10_3390_photonics10060625
Cites_doi 10.1364/AO.42.001167
10.1364/OE.20.001825
10.1364/OL.42.000399
10.1364/OPEX.13.005377
10.1016/j.apsusc.2009.02.043
10.1364/OE.21.031830
10.1364/OL.31.001603
10.1016/0030-4018(92)90022-J
10.1063/1.2965451
10.1364/JOSAA.14.001482
10.1063/1.1522481
10.1364/OL.31.001705
10.1364/OL.31.002631
10.1063/1.1992668
10.1364/OL.27.000969
10.1063/1.1148392
10.1364/OL.32.001453
10.1103/PhysRevA.48.4721
10.1364/JOSAA.12.000325
10.1364/OL.40.002766
10.1049/el:20070114
10.1364/JOSAA.22.000767
10.1364/AOP.1.000308
10.1109/LPT.2017.2752128
10.3390/s17112519
10.1364/OE.25.023809
10.1007/s00339-004-3108-x
10.1364/JOSAB.9.001158
10.1117/12.145386
10.1364/OL.23.001378
10.1364/OE.26.023550
10.1364/OL.28.000995
10.1364/OE.25.014247
10.1016/0030-4018(93)90328-3
10.1016/0030-4018(86)90290-7
10.1007/s00339-010-6065-6
10.1364/AO.36.002305
10.1364/OL.36.002302
10.1016/j.apsusc.2008.07.091
10.1364/OL.39.000478
10.1063/1.1855404
10.1364/OE.18.017193
10.1364/OE.15.000278
10.1364/OE.11.000079
10.1088/0963-9659/7/5/029
10.1364/OE.18.021090
10.1364/AO.37.008158
10.1117/12.145393
10.1364/OL.29.001730
10.1364/AO.39.006128
10.1364/OE.25.025435
10.1364/OL.29.001458
ContentType Journal Article
DBID -LJ
GXV
AAYXX
CITATION
7X8
DOI 10.1364/OE.27.032536
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Sciences
Physics
EISSN 1094-4087
ExternalDocumentID 10_1364_OE_27_032536
oai_cisti_icist_nrc_cnrc_ca_cistinparc_2b1ba1b4_5185_459c_b9a2_1f23eb03632b
GroupedDBID ---
-LJ
123
29N
2WC
8SL
AAFWJ
AAWJZ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
C1A
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
GXV
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c399t-8d9e062d938780629d9979333bd0640fb25f80aa94e8aab52c4a9f8e480ccaba3
ISSN 1094-4087
IngestDate Fri Jul 11 01:10:23 EDT 2025
Tue Jul 01 04:04:46 EDT 2025
Thu Apr 24 22:58:27 EDT 2025
Tue Sep 02 20:28:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-8d9e062d938780629d9979333bd0640fb25f80aa94e8aab52c4a9f8e480ccaba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6144-0937
0000-0001-8051-3532
OpenAccessLink https://doi.org/10.1364/oe.27.032536
PQID 2312279345
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2312279345
crossref_primary_10_1364_OE_27_032536
crossref_citationtrail_10_1364_OE_27_032536
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_2b1ba1b4_5185_459c_b9a2_1f23eb03632b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-28
PublicationDateYYYYMMDD 2019-10-28
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-28
  day: 28
PublicationDecade 2010
PublicationTitle Optics express
PublicationYear 2019
Publisher Optical Society of America
Publisher_xml – name: Optical Society of America
References Amako (oe-27-22-32536-R11) 2002; 27
Braig (oe-27-22-32536-R46) 2012; 20
Othonos (oe-27-22-32536-R50) 1997; 68
Mihailov (oe-27-22-32536-R25) 2007; 43
Jesacher (oe-27-22-32536-R15) 2010; 18
Hnatovsky (oe-27-22-32536-R39) 2017; 25
Smelser (oe-27-22-32536-R58) 2007; 32
Zhao (oe-27-22-32536-R42) 2017; 25
Yamaji (oe-27-22-32536-R7) 2008; 93
Torres-Peiro (oe-27-22-32536-R16) 2013; 21
Habel (oe-27-22-32536-R26) 2017; 17
Bor (oe-27-22-32536-R56) 1992; 94
Hasegawa (oe-27-22-32536-R6) 2006; 31
Walmsley (oe-27-22-32536-R41) 2009; 1
Mínguez-Vega (oe-27-22-32536-R13) 2006; 31
Kato (oe-27-22-32536-R2) 2005; 86
Martinez (oe-27-22-32536-R24) 2006; 31
Harvey (oe-27-22-32536-R32) 2003; 42
Wiersma (oe-27-22-32536-R44) 1997; 14
Obata (oe-27-22-32536-R10) 2010; 18
Kempe (oe-27-22-32536-R53) 1992; 9
Maznev (oe-27-22-32536-R35) 1998; 23
Bor (oe-27-22-32536-R34) 1993; 32
Kempe (oe-27-22-32536-R54) 1993; 48
Mínguez-Vega (oe-27-22-32536-R14) 2007; 15
Hnatovsky (oe-27-22-32536-R28) 2017; 25
Hnatovsky (oe-27-22-32536-R47) 2018; 26
Martinez (oe-27-22-32536-R33) 1986; 59
Smelser (oe-27-22-32536-R37) 2004; 29
Hnatovsky (oe-27-22-32536-R52) 2017; 42
Hayasaki (oe-27-22-32536-R5) 2005; 87
Richter (oe-27-22-32536-R20) 2015; 40
Smelser (oe-27-22-32536-R38) 2004; 29
Hasegawa (oe-27-22-32536-R17) 2014; 39
Salter (oe-27-22-32536-R3) 2011; 36
Li (oe-27-22-32536-R12) 2005; 22
Matsuo (oe-27-22-32536-R1) 2005; 80
Voigtländer (oe-27-22-32536-R19) 2011; 102
Horváth (oe-27-22-32536-R55) 1993; 32
Török (oe-27-22-32536-R23) 1997; 36
Kuang (oe-27-22-32536-R8) 2008; 255
Török (oe-27-22-32536-R22) 1995; 12
Dorrer (oe-27-22-32536-R40) 2003; 11
Xie (oe-27-22-32536-R57) 1993; 101
Nakata (oe-27-22-32536-R4) 2002; 81
Smelser (oe-27-22-32536-R51) 2005; 13
Mills (oe-27-22-32536-R36) 2000; 39
Harvey (oe-27-22-32536-R31) 1998; 37
Wiersma (oe-27-22-32536-R45) 1998; 7
Mihailov (oe-27-22-32536-R18) 2003; 28
Grobnic (oe-27-22-32536-R27) 2017; 29
Kuang (oe-27-22-32536-R9) 2009; 255
References_xml – volume: 42
  start-page: 1167
  year: 2003
  ident: oe-27-22-32536-R32
  publication-title: Appl. Opt.
  doi: 10.1364/AO.42.001167
– volume: 20
  start-page: 1825
  year: 2012
  ident: oe-27-22-32536-R46
  publication-title: Opt. Express
  doi: 10.1364/OE.20.001825
– volume: 42
  start-page: 399
  year: 2017
  ident: oe-27-22-32536-R52
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000399
– volume: 13
  start-page: 5377
  year: 2005
  ident: oe-27-22-32536-R51
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.005377
– volume: 255
  start-page: 6582
  year: 2009
  ident: oe-27-22-32536-R9
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.02.043
– volume: 21
  start-page: 31830
  year: 2013
  ident: oe-27-22-32536-R16
  publication-title: Opt. Express
  doi: 10.1364/OE.21.031830
– volume: 31
  start-page: 1603
  year: 2006
  ident: oe-27-22-32536-R24
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.001603
– volume: 94
  start-page: 249
  year: 1992
  ident: oe-27-22-32536-R56
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(92)90022-J
– volume: 93
  start-page: 041116
  year: 2008
  ident: oe-27-22-32536-R7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2965451
– volume: 14
  start-page: 1482
  year: 1997
  ident: oe-27-22-32536-R44
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.14.001482
– volume: 81
  start-page: 4239
  year: 2002
  ident: oe-27-22-32536-R4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1522481
– volume: 31
  start-page: 1705
  year: 2006
  ident: oe-27-22-32536-R6
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.001705
– volume: 31
  start-page: 2631
  year: 2006
  ident: oe-27-22-32536-R13
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.002631
– volume: 87
  start-page: 031101
  year: 2005
  ident: oe-27-22-32536-R5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1992668
– volume: 27
  start-page: 969
  year: 2002
  ident: oe-27-22-32536-R11
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.000969
– volume: 68
  start-page: 4309
  year: 1997
  ident: oe-27-22-32536-R50
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1148392
– volume: 32
  start-page: 1453
  year: 2007
  ident: oe-27-22-32536-R58
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.001453
– volume: 48
  start-page: 4721
  year: 1993
  ident: oe-27-22-32536-R54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevA.48.4721
– volume: 12
  start-page: 325
  year: 1995
  ident: oe-27-22-32536-R22
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.12.000325
– volume: 40
  start-page: 2766
  year: 2015
  ident: oe-27-22-32536-R20
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002766
– volume: 43
  start-page: 442
  year: 2007
  ident: oe-27-22-32536-R25
  publication-title: Electron. Lett.
  doi: 10.1049/el:20070114
– volume: 22
  start-page: 767
  year: 2005
  ident: oe-27-22-32536-R12
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.22.000767
– volume: 1
  start-page: 308
  year: 2009
  ident: oe-27-22-32536-R41
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.1.000308
– volume: 29
  start-page: 1780
  year: 2017
  ident: oe-27-22-32536-R27
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2017.2752128
– volume: 17
  start-page: 2519
  year: 2017
  ident: oe-27-22-32536-R26
  publication-title: Sensors
  doi: 10.3390/s17112519
– volume: 25
  start-page: 23809
  year: 2017
  ident: oe-27-22-32536-R42
  publication-title: Opt. Express
  doi: 10.1364/OE.25.023809
– volume: 80
  start-page: 683
  year: 2005
  ident: oe-27-22-32536-R1
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-004-3108-x
– volume: 9
  start-page: 1158
  year: 1992
  ident: oe-27-22-32536-R53
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.9.001158
– volume: 32
  start-page: 2491
  year: 1993
  ident: oe-27-22-32536-R55
  publication-title: Opt. Eng.
  doi: 10.1117/12.145386
– volume: 23
  start-page: 1378
  year: 1998
  ident: oe-27-22-32536-R35
  publication-title: Opt. Lett.
  doi: 10.1364/OL.23.001378
– volume: 26
  start-page: 23550
  year: 2018
  ident: oe-27-22-32536-R47
  publication-title: Opt. Express
  doi: 10.1364/OE.26.023550
– volume: 28
  start-page: 995
  year: 2003
  ident: oe-27-22-32536-R18
  publication-title: Opt. Lett.
  doi: 10.1364/OL.28.000995
– volume: 25
  start-page: 14247
  year: 2017
  ident: oe-27-22-32536-R39
  publication-title: Opt. Express
  doi: 10.1364/OE.25.014247
– volume: 101
  start-page: 85
  year: 1993
  ident: oe-27-22-32536-R57
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(93)90328-3
– volume: 59
  start-page: 229
  year: 1986
  ident: oe-27-22-32536-R33
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(86)90290-7
– volume: 102
  start-page: 35
  year: 2011
  ident: oe-27-22-32536-R19
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-010-6065-6
– volume: 36
  start-page: 2305
  year: 1997
  ident: oe-27-22-32536-R23
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.002305
– volume: 36
  start-page: 2302
  year: 2011
  ident: oe-27-22-32536-R3
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.002302
– volume: 255
  start-page: 2284
  year: 2008
  ident: oe-27-22-32536-R8
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.07.091
– volume: 39
  start-page: 478
  year: 2014
  ident: oe-27-22-32536-R17
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.000478
– volume: 86
  start-page: 044102
  year: 2005
  ident: oe-27-22-32536-R2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1855404
– volume: 18
  start-page: 17193
  year: 2010
  ident: oe-27-22-32536-R10
  publication-title: Opt. Express
  doi: 10.1364/OE.18.017193
– volume: 15
  start-page: 278
  year: 2007
  ident: oe-27-22-32536-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.15.000278
– volume: 11
  start-page: 79
  year: 2003
  ident: oe-27-22-32536-R40
  publication-title: Opt. Express
  doi: 10.1364/OE.11.000079
– volume: 7
  start-page: 1237
  year: 1998
  ident: oe-27-22-32536-R45
  publication-title: Pure Appl. Opt.
  doi: 10.1088/0963-9659/7/5/029
– volume: 18
  start-page: 21090
  year: 2010
  ident: oe-27-22-32536-R15
  publication-title: Opt. Express
  doi: 10.1364/OE.18.021090
– volume: 37
  start-page: 8158
  year: 1998
  ident: oe-27-22-32536-R31
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.008158
– volume: 32
  start-page: 2501
  year: 1993
  ident: oe-27-22-32536-R34
  publication-title: Opt. Eng.
  doi: 10.1117/12.145393
– volume: 29
  start-page: 1730
  year: 2004
  ident: oe-27-22-32536-R38
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001730
– volume: 39
  start-page: 6128
  year: 2000
  ident: oe-27-22-32536-R36
  publication-title: Appl. Opt.
  doi: 10.1364/AO.39.006128
– volume: 25
  start-page: 25435
  year: 2017
  ident: oe-27-22-32536-R28
  publication-title: Opt. Express
  doi: 10.1364/OE.25.025435
– volume: 29
  start-page: 1458
  year: 2004
  ident: oe-27-22-32536-R37
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001458
SSID ssj0014797
Score 2.3798888
Snippet The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings...
SourceID proquest
crossref
nrccanada
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32536
Title Complex diffraction and dispersion effects in femtosecond laser writing of fiber Bragg gratings using the phase mask technique
URI https://nrc-publications.canada.ca/eng/view/object/?id=2b1ba1b4-5185-459c-b9a2-1f23eb03632b
https://www.proquest.com/docview/2312279345
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZx9hexj5Z9lE02J6Mu1iSP_Q4Srow2gRGAnkZQrLlNqyxg2N33R76t-8kK05KO-j2ohhxEUb38-lO94XQB5KEKuA59wOdSZ8lygQBEOYHkZacahpl1CQnn4yj0Yx9nYfzXu9iJ2qpqdVB-vvWvJL_4SrMAV9Nluw_cLZbFCbgGfgLI3AYxjvx2HzM5_rSdjmpNk2_i8x4XVbtPVgXr7EovFwv63JtDODMA51ZV95PU9GojXrOTeQIcFqennqmfITt5tmsu2SqM_iDt5TrH15X9XVXr52sbLlnfbnqQjqsT8kEjVdtw-ZxUy31cptv_aUqVbFIXZ57Fxhk6hC1ovBbs3X5jwpZlxfuovfwV-UCQ9x1RcCNnCe7EhbsSTBa3Smrb5lzYrktGeDg1-YuOyFLSdgWTbkh_mnEgGeT4QGJDwYd2fUq2-OJOJodH4vpcD69h-4TMC-MQD-5GnbeJxa3TXk2r-USJmD1T7trX1NlHhZVauP05I1T3aoq0yfosbMx8OcWME9RTxfP0AMb65uun6MrBxu8AxsMsMFb2GAHG7wo8A5ssIUNdrDBZY4tbLCFDd7ABlvYYIANtrDBBja4g80LNDsaTg9HvmvD4aegvdZ-knE9iEjGaRIn8MAzzkGqU6oy4wbOFQnzZCAlZzqRUoUkZZLniWbJAHZESfoS7RVloV8hzHMWcFAhczLIGehOiWJZTFXM0oBqPaB95G12VKSuRr1plXIurOM1YmIyFCQW7f730ceOetXWZvkL3feOOR2hKauemmNULMyPAAqR2kG288UKThpBVKBkoJgIQbEVLOSpUFwSEeSEamWiIIjqo_cbhgsQzsbjJgtdNmsBxpOp0ElZ-PoONG_Qo-0X8xbt1VWj34HKW6t9e1W0b1H6ByHhtE8
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+diffraction+and+dispersion+effects+in+femtosecond+laser+writing+of+fiber+Bragg+gratings+using+the+phase+mask+technique&rft.jtitle=Optics+express&rft.au=Abdukerim%2C+Nurmemet&rft.au=Grobnic%2C+Dan&rft.au=Lausten%2C+Rune&rft.au=Hnatovsky%2C+Cyril&rft.date=2019-10-28&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=27&rft.issue=22&rft.spage=32536&rft_id=info:doi/10.1364%2FOE.27.032536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon