Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions

[Display omitted] •Electrolyte additives drive the propagation of etch fronts in high melting alloys during dealloying.•Free standing np-Ir electrodes exhibit a significant enhancement in OER activity and stability.•HCD performance is a consequence of reduced electrode resistivity for np-Ir. The dea...

Full description

Saved in:
Bibliographic Details
Published inJournal of catalysis Vol. 393; pp. 303 - 312
Main Authors Chatterjee, Swarnendu, Intikhab, Saad, Profitt, Lauren, Li, Yawei, Natu, Varun, Gawas, Ramchandra, Snyder, Joshua
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Electrolyte additives drive the propagation of etch fronts in high melting alloys during dealloying.•Free standing np-Ir electrodes exhibit a significant enhancement in OER activity and stability.•HCD performance is a consequence of reduced electrode resistivity for np-Ir. The dearth of appropriate electrocatalysts for stable anodic water splitting, oxygen evolution reaction (OER), in acid has given rise to concerted efforts toward making iridium-based high aspect ratio nanomaterials, as iridium and its higher valent oxides have been shown time and again to exhibit the most optimal balance between activity and durability. Here, we show a dealloying strategy to synthesize free-standing 3D, oxide skinned nanoporous Ir electrocatalysts (np-Ir) with demonstrated enhanced activity and durability in comparison to more traditional IrOx nanoparticulate catalysts. The metallic core and absence of any binder/support result in low electrode and charge transfer resistance, ultimately giving rise to lower OER overpotentials and improved activity.
AbstractList The dearth of appropriate electrocatalysts for stable anodic water splitting, oxygen evolution reaction (OER), in acid has given rise to concerted efforts toward making iridium-based high aspect ratio nanomaterials, as iridium and its higher valent oxides have been shown time and again to exhibit the most optimal balance between activity and durability. Here, we show a dealloying strategy to synthesize free-standing 3D, oxide skinned nanoporous Ir electrocatalysts (np-Ir) with demonstrated enhanced activity and durability in comparison to more traditional IrOₓ nanoparticulate catalysts. The metallic core and absence of any binder/support result in low electrode and charge transfer resistance, ultimately giving rise to lower OER overpotentials and improved activity.
[Display omitted] •Electrolyte additives drive the propagation of etch fronts in high melting alloys during dealloying.•Free standing np-Ir electrodes exhibit a significant enhancement in OER activity and stability.•HCD performance is a consequence of reduced electrode resistivity for np-Ir. The dearth of appropriate electrocatalysts for stable anodic water splitting, oxygen evolution reaction (OER), in acid has given rise to concerted efforts toward making iridium-based high aspect ratio nanomaterials, as iridium and its higher valent oxides have been shown time and again to exhibit the most optimal balance between activity and durability. Here, we show a dealloying strategy to synthesize free-standing 3D, oxide skinned nanoporous Ir electrocatalysts (np-Ir) with demonstrated enhanced activity and durability in comparison to more traditional IrOx nanoparticulate catalysts. The metallic core and absence of any binder/support result in low electrode and charge transfer resistance, ultimately giving rise to lower OER overpotentials and improved activity.
Author Profitt, Lauren
Gawas, Ramchandra
Snyder, Joshua
Intikhab, Saad
Chatterjee, Swarnendu
Natu, Varun
Li, Yawei
Author_xml – sequence: 1
  givenname: Swarnendu
  surname: Chatterjee
  fullname: Chatterjee, Swarnendu
  organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States
– sequence: 2
  givenname: Saad
  orcidid: 0000-0003-1769-6975
  surname: Intikhab
  fullname: Intikhab, Saad
  organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States
– sequence: 3
  givenname: Lauren
  surname: Profitt
  fullname: Profitt, Lauren
  organization: Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
– sequence: 4
  givenname: Yawei
  orcidid: 0000-0002-1793-9730
  surname: Li
  fullname: Li, Yawei
  organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States
– sequence: 5
  givenname: Varun
  surname: Natu
  fullname: Natu, Varun
  organization: Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States
– sequence: 6
  givenname: Ramchandra
  orcidid: 0000-0002-3641-1253
  surname: Gawas
  fullname: Gawas, Ramchandra
  organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States
– sequence: 7
  givenname: Joshua
  orcidid: 0000-0003-3162-4126
  surname: Snyder
  fullname: Snyder, Joshua
  email: jds43@drexel.edu
  organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States
BookMark eNp9kLFuGzEMhoUiAeqkeYFMGrucS57kswR0KYI2DRA0SzoLtMwLZMgnR5KD-u2rgzt1yESC4Efi_67ExZQmFuIWYYmAw5fdcuepLnvo2wCXoMwHsUCw0PWD1RdiAdBjZ1e4_iiuStkBIK5WZiFef9GUDimnY5H7Y6xhz5ViDF4-ZNmadCqSiuRxDD7wVCVNW1kqbSJLjuxrTu0xxVOpRY6pMT5sG53-nF54kvyW4rGGNMnM5OemfBKXI8XCN__qtfj94_vz3c_u8en-4e7bY-eVtbUzw2ZUBhSjJlwrDd6vDaMHUIPt10Yb4zXBYBAtaKUHre1qM6KnYaNJe3UtPp_vHnJ6PXKpbh-K5xhp4pbW9dqaXmkDtq3251WfUymZR3fIYU_55BDc7Nft3OzXzX4domt-G2T-g3yoNEesmUJ8H_16RrnlfwucXZnlet6G3JS6bQrv4X8BUkKZ8Q
CitedBy_id crossref_primary_10_1126_sciadv_adp8911
crossref_primary_10_11648_j_ajpst_20241003_11
crossref_primary_10_1039_D2TA02193E
crossref_primary_10_1021_acs_chemmater_2c02697
crossref_primary_10_1021_acsaem_4c01866
crossref_primary_10_1039_D4QM00842A
crossref_primary_10_1002_aenm_202101438
crossref_primary_10_1002_adem_202301538
crossref_primary_10_1016_j_enchem_2022_100069
crossref_primary_10_1016_j_jpowsour_2023_232990
crossref_primary_10_1039_D3NH00156C
crossref_primary_10_1016_j_joule_2024_01_002
crossref_primary_10_1016_j_enchem_2023_100104
crossref_primary_10_1021_acsaenm_3c00713
crossref_primary_10_1002_adfm_202301999
crossref_primary_10_1002_adma_202210565
crossref_primary_10_1007_s10800_021_01555_z
crossref_primary_10_1021_acs_energyfuels_2c00951
crossref_primary_10_1039_D3SE01238G
crossref_primary_10_1063_5_0200438
crossref_primary_10_26599_NRE_2023_9120056
Cites_doi 10.1039/C6CS00328A
10.1021/acscatal.9b00330
10.1021/acsaem.9b01965
10.1149/1.2940319
10.1016/j.electacta.2006.11.005
10.1007/s11244-019-01164-3
10.1016/j.jpowsour.2010.07.047
10.1021/acsnano.8b04023
10.1021/jacs.6b07199
10.1021/jacs.5b07788
10.1021/acs.chemmater.6b02796
10.1039/c3cp51213d
10.1021/acsenergylett.8b01338
10.1038/ncomms13237
10.1021/jacs.6b11932
10.1016/j.jcat.2019.01.018
10.1038/s41560-020-0576-y
10.1021/cm4021518
10.1016/j.apcatb.2015.09.013
10.1021/acscatal.9b00280
10.1002/adfm.201700886
10.1016/j.jcat.2018.07.030
10.1002/adfm.201101227
10.1002/adma.201806296
10.1016/j.ijhydene.2010.06.105
10.1021/acsami.9b13697
10.1016/j.elecom.2007.03.001
10.1038/nmat4876
10.1016/j.jcat.2019.01.037
10.1002/advs.201600380
10.1021/acscatal.7b04410
10.1002/cctc.201000397
10.1016/j.snb.2012.07.071
10.1021/acscatal.7b02398
10.1039/C4CS00470A
10.1149/1.2131426
10.1016/j.solener.2004.09.003
10.1149/2.0151611jes
10.1038/s41570-016-0003
10.1021/ja205649z
10.1016/j.ijhydene.2007.04.036
10.1038/35068529
10.1038/s41467-017-01734-7
10.1039/C4FD00134F
10.1149/1.1784820
10.1039/C8CS00848E
10.1039/c2ra20087b
10.1039/C5TA07586F
10.1149/1.2048140
10.1002/adma.201703798
10.1149/1.2113583
10.1039/C8TA01288A
10.1002/adfm.201704796
10.1016/j.ijhydene.2014.02.114
10.1016/j.ijhydene.2013.12.186
10.1016/j.chemphys.2005.05.038
10.1016/j.ijhydene.2012.11.025
10.1016/j.elecom.2017.12.008
10.1038/nmat4738
10.1016/j.electacta.2012.08.059
10.1126/science.aaf5050
10.1039/C7TA08982A
10.1149/1.3454753
10.1021/acs.jpcc.8b12174
10.1016/j.ijhydene.2019.07.152
10.1039/C8TA04886J
10.1002/adma.200702760
10.1021/acs.chemmater.6b02625
10.1016/j.scriptamat.2010.10.023
10.1016/j.nanoen.2017.07.041
10.1016/j.ijhydene.2010.12.044
10.1002/cssc.201501581
10.1021/jacs.7b10966
10.1016/j.jelechem.2006.11.008
10.1016/j.electacta.2015.01.005
10.1016/j.nanoen.2019.02.020
10.1021/jp811445a
10.1016/j.apcatb.2018.07.064
10.1021/ja407115p
10.1126/science.aaf9050
10.1016/j.actamat.2019.11.018
10.1021/acscatal.8b02901
10.1021/jp025868l
10.1016/j.apsusc.2015.10.082
10.1016/j.ijhydene.2009.09.015
10.1002/sia.6225
10.1021/cs3003098
10.1016/j.electacta.2011.10.044
10.1016/S0022-0728(81)80459-7
10.1002/smll.201901518
10.1021/acsnano.7b00233
10.1002/anie.201402311
10.1021/cr1002326
10.1016/j.nanoen.2017.10.033
10.1016/j.apcatb.2011.10.020
10.1021/acscentsci.8b00426
10.1021/jz501061n
10.1021/acsami.8b08717
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jcat.2020.11.038
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 312
ExternalDocumentID 10_1016_j_jcat_2020_11_038
S0021951720304929
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c399t-86bf3803e14a17340cc78e1c00369278488c4a068119043464495bf1ca6b4a4c3
IEDL.DBID .~1
ISSN 0021-9517
IngestDate Thu Jul 10 22:07:31 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Tue Jul 01 03:14:12 EDT 2025
Fri Feb 23 02:46:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PEM electrolysis
Nanoporous metals
Oxygen evolution reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-86bf3803e14a17340cc78e1c00369278488c4a068119043464495bf1ca6b4a4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3641-1253
0000-0003-1769-6975
0000-0003-3162-4126
0000-0002-1793-9730
PQID 2498234809
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2498234809
crossref_primary_10_1016_j_jcat_2020_11_038
crossref_citationtrail_10_1016_j_jcat_2020_11_038
elsevier_sciencedirect_doi_10_1016_j_jcat_2020_11_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Journal of catalysis
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Rozain, Mayousse, Guillet, Millet (b0480) 2016; 182
Zhang, Zhang, Sun, Kou (b0380) 2012; 2
Stamenkovic, Strmcnik, Lopes, Markovic (b0080) 2017; 16
Fu, Zeng, Cheng, Luo (b0190) 2018; 10
Oh, Nong, Reier, Bergmann, Gliech, Ferreira de Araújo, Willinger, Schlögl, Teschner, Strasser (b0465) 2016; 138
Chang, Connell, Danilovic, Subbaraman, Chang, Stamenkovic, Markovic (b0120) 2014; 176
Shi, Zhu, Zhong, Su, Li, Engelhard, Xia, Zhang, Feng, Beckman, Du, Lin (b0215) 2018; 3
Lim, Park, Jeon, Roh, Choi, Yoon, Park, Jung, Lee (b0180) 2018; 28
Strickler, Flores, King, Nørskov, Bajdich, Jaramillo (b0240) 2019; 11
Tackett, Sheng, Kattel, Yao, Yan, Kuttiyiel, Wu, Chen (b0455) 2018; 8
Li, Zhao, Cheng, Fortunelli, Chen, Yu, Zhang, Gu, Merinov, Lin, Zhu, Yu, Jia, Guo, Zhang, Goddard, Huang, Duan (b0295) 2016; 354
Jiao, Zheng, Jaroniec, Qiao (b0075) 2015; 44
Lv, Feng, Wang, Dou, Zhang, Zhou, Yang, Luo, Yang, Li, Gao, Guo (b0235) 2018; 4
Pérez-Alonso, Adán, Rojas, Peña, Fierro (b0110) 2014; 39
Chatterjee, Griego, Hart, Li, Taheri, Keith, Snyder (b0260) 2019; 9
Xiong, Ji, Xie, You, Yang, Liu, Asiri, Sun (b0105) 2018; 86
Du, Wang, Saxner, Deskins, Su, Krzanowski, Frenkel, Teng (b0405) 2011; 133
Landman, Dotan, Shter, Wullenkord, Houaijia, Maljusch, Grader, Rothschild (b0035) 2017; 16
Mani, Srivastava, Strasser (b0340) 2011; 196
Xu, Yin, Hou, Liu, Hu (b0305) 2012; 173
Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (b0025) 2010; 110
Tan, Shen, Semagina, Secanell (b0290) 2019; 371
Freakley, Ruiz-Esquius, Morgan (b0345) 2017; 49
Li, Hart, Taheri, Snyder (b0300) 2017; 7
Stevens, Enman, Batchellor, Cosby, Vise, Trang, Boettcher (b0445) 2017; 29
Man, Su, Calle‐Vallejo, Hansen, Martínez, Inoglu, Kitchin, Jaramillo, Nørskov, Rossmeisl (b0145) 2011; 3
Xu, Liu, Li, Wang (b0205) 2012; 59
Danilovic, Subbaraman, Chang, Chang, Kang, Snyder, Paulikas, Strmcnik, Kim, Myers, Stamenkovic, Markovic (b0115) 2014; 5
Li, Zheng (b0090) 2017; 4
Doyle, Godwin, Brandon, Lyons (b0435) 2013; 15
Rossmeisl, Qu, Zhu, Kroes, Nørskov (b0130) 2007; 607
Liu, Bliznakov, Dimitrov (b0320) 2010; 157
Park, Sa, Baik, Kwon, Joo, Lee (b0275) 2017; 11
Claudel, Dubau, Berthomé, Sola-Hernandez, Beauger, Piccolo, Maillard (b0500) 2019; 9
Seitz, Dickens, Nishio, Hikita, Montoya, Doyle, Kirk, Vojvodic, Hwang, Norskov, Jaramillo (b0285) 2016; 353
Wei, Rao, Peng, Huang, Stephens, Risch, Xu, Shao‐Horn (b0420) 2019; 31
McCrory, Jung, Peters, Jaramillo (b0450) 2013; 135
Chung, Lopes, Farinazzo Bergamo Dias Martins, He, Kawaguchi, Zapol, You, Tripkovic, Strmcnik, Zhu, Seifert, Lee, Stamenkovic, Markovic (b0125) 2020; 5
Chen, Fan, Hu, Wang, Huang, Fu, Lee, Tang (b0100) 2019; 15
Suen, Hung, Quan, Zhang, Xu, Chen (b0070) 2017; 46
Abbott, Lebedev, Waltar, Povia, Nachtegaal, Fabbri, Copéret, Schmidt (b0470) 2016; 28
Kim, Choi, Kim, Hwang, Kim, Ahn, Kim (b0160) 2015; 359
Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (b0310) 2001; 410
Renner, Stierle, Dosch, Kolb, Zegenhagen (b0365) 2007; 9
Snyder, Livi, Erlebacher (b0325) 2008; 155
Chen, Guo, Fujita, Hirata, Zhang, Inoue, Chen (b0400) 2011; 21
Slavcheva, Radev, Bliznakov, Topalov, Andreev, Budevski (b0010) 2007; 52
Bredar, Chown, Burton, Farnum (b0485) 2020; 3
Jin, Hong, Yoon, Oh, Chaudhari, Baik, Joo, Lee (b0280) 2017; 42
Rossmeisl, Logadottir, Nørskov (b0135) 2005; 319
Zhao, Luo, Chu, Peng, Liu, Wu, Liu, de Groot, Tan (b0220) 2019; 59
Ankah, Pareek, Cherevko, Topalov, Rohwerder, Renner (b0370) 2012; 85
Feng, Lv, Zhang, Li, Wang, Yang, Wang, Yang, Zhou, Lin, Wang, Guo (b0230) 2017; 29
Dionigi, Reier, Pawolek, Gliech, Strasser (b0065) 2016; 9
Pattadar, Zamborini (b0375) 2019; 123
Barbir (b0055) 2005; 78
Siracusano, Di Blasi, Baglio, Brunaccini, Briguglio, Stassi, Ornelas, Trifoni, Antonucci, Aricò (b0020) 2011; 36
Kim, Lopes, Park, Lee, Lim, Lee, Back, Jung, Danilovic, Stamenkovic, Erlebacher, Snyder, Markovic (b0225) 2017; 8
Millet, Ngameni, Grigoriev, Mbemba, Brisset, Ranjbari, Etiévant (b0005) 2010; 35
McKone, Lewis, Gray (b0030) 2014; 26
Ghadge, Velikokhatnyi, Datta, Shanthi, Tan, Damodaran, Kumta (b0185) 2019; 9
Erlebacher (b0350) 2004; 151
Millet, Mbemba, Grigoriev, Fateev, Aukauloo, Etiévant (b0015) 2011; 36
Snyder, Asanithi, Dalton, Erlebacher (b0315) 2008; 20
Sanchez Casalongue, Ng, Kaya, Friebel, Ogasawara, Nilsson (b0410) 2014; 53
Jung, McCrory, Ferrer, Peters, Jaramillo (b0415) 2016; 4
Hepel (b0460) 1985; 132
Kuo, Kawasaki, Nelson, Kloppenburg, Hautier, Shen, Schlom, Suntivich (b0140) 2017; 139
Chatterjee, Anikin, Ghoshal, Hart, Li, Intikhab, Chareev, Volkova, Vasiliev, Taheri, Koratkar, Karapetrov, Snyder (b0330) 2020; 184
Intikhab, Natu, Li, Li, Tao, Rosen, Barsoum, Snyder (b0060) 2019; 371
Shi, Zhu, Du, Wang, Xia, Engelhard, Feng, Lin (b0245) 2018; 6
Peharz, Dimroth, Wittstadt (b0050) 2007; 32
Reier, Pawolek, Cherevko, Bruns, Jones, Teschner, Selve, Bergmann, Nong, Schlögl, Mayrhofer, Strasser (b0165) 2015; 137
Jia, Seitz, Benck, Huo, Chen, Ng, Bilir, Harris, Jaramillo (b0040) 2016; 7
Solà-Hernández, Claudel, Maillard, Beauger (b0210) 2019; 44
Yoon, Yan, Surendranath (b0425) 2018; 140
Pi, Shao, Zhu, Huang (b0270) 2018; 12
Detsi, van de Schootbrugge, Punzhin, Onck, De Hosson (b0355) 2011; 64
Joo, Jin, Oh, Kim, Lee, Baik, Joo, Lee (b0250) 2018; 6
Ahmadi, Dincer, Rosen (b0045) 2013; 38
Muntean, Pascal, Rost, Holtkotte, Näther, Köster, Underberg, Hülser, Brodmann (b0200) 2019; 62
Sun, Wang, Tay, Li, Huang, Zhang (b0360) 2002; 106
Yan, Zhao, Zhang, Li, Li, Wang, Feng, Tang, Yuan, Zhang, Du (b0495) 2015; 157
Li, Polakovic, Curtis, Shumlas, Chatterjee, Intikhab, Chareev, Volkova, Vasiliev, Karapetrov, Snyder (b0265) 2018; 366
Alia, Rasimick, Ngo, Neyerlin, Kocha, Pylypenko, Xu, Pivovar (b0490) 2016; 163
Mamaca, Mayousse, Arrii-Clacens, Napporn, Servat, Guillet, Kokoh (b0155) 2012; 111-112
Fu, Cheng, Luo (b0170) 2017; 5
Pi, Shao, Wang, Guo, Huang (b0175) 2017; 27
Roger, Shipman, Symes (b0085) 2017; 1
Reier, Oezaslan, Strasser (b0150) 2012; 2
Yu, Danilovic, Wang, Willis, Poozhikunnath, Bonville, Capuano, Ayers, Maric (b0475) 2018; 239
Burke, O'Sullivan (b0430) 1981; 117
Pugh, Dursun, Corcoran (b0385) 2005; 152
Wei, Sun, Mandler, Wang, Qiao, Xu (b0440) 2019; 48
Hu, Chen, Xia (b0195) 2014; 39
Chen, Cao, Du, Kuang, Huang, Xie, Zheng (b0395) 2017; 39
A.S.M. Handbook, Alloy Phase Diagram, vol. 3, 1992.
Lu, Srinivasan (b0095) 1978; 125
Zhang, Wang, Qi, Zhang, Qin, Frenzel (b0335) 2009; 113
Rozain (10.1016/j.jcat.2020.11.038_b0480) 2016; 182
Pattadar (10.1016/j.jcat.2020.11.038_b0375) 2019; 123
Yoon (10.1016/j.jcat.2020.11.038_b0425) 2018; 140
Hepel (10.1016/j.jcat.2020.11.038_b0460) 1985; 132
Xu (10.1016/j.jcat.2020.11.038_b0305) 2012; 173
Zhang (10.1016/j.jcat.2020.11.038_b0380) 2012; 2
Li (10.1016/j.jcat.2020.11.038_b0295) 2016; 354
Danilovic (10.1016/j.jcat.2020.11.038_b0115) 2014; 5
Fu (10.1016/j.jcat.2020.11.038_b0170) 2017; 5
Pérez-Alonso (10.1016/j.jcat.2020.11.038_b0110) 2014; 39
Erlebacher (10.1016/j.jcat.2020.11.038_b0350) 2004; 151
Jung (10.1016/j.jcat.2020.11.038_b0415) 2016; 4
Zhao (10.1016/j.jcat.2020.11.038_b0220) 2019; 59
Landman (10.1016/j.jcat.2020.11.038_b0035) 2017; 16
Joo (10.1016/j.jcat.2020.11.038_b0250) 2018; 6
Erlebacher (10.1016/j.jcat.2020.11.038_b0310) 2001; 410
Alia (10.1016/j.jcat.2020.11.038_b0490) 2016; 163
Snyder (10.1016/j.jcat.2020.11.038_b0325) 2008; 155
Jiao (10.1016/j.jcat.2020.11.038_b0075) 2015; 44
Kim (10.1016/j.jcat.2020.11.038_b0160) 2015; 359
McKone (10.1016/j.jcat.2020.11.038_b0030) 2014; 26
Chen (10.1016/j.jcat.2020.11.038_b0100) 2019; 15
Seitz (10.1016/j.jcat.2020.11.038_b0285) 2016; 353
Tackett (10.1016/j.jcat.2020.11.038_b0455) 2018; 8
Solà-Hernández (10.1016/j.jcat.2020.11.038_b0210) 2019; 44
Shi (10.1016/j.jcat.2020.11.038_b0215) 2018; 3
Zhang (10.1016/j.jcat.2020.11.038_b0335) 2009; 113
Man (10.1016/j.jcat.2020.11.038_b0145) 2011; 3
Lim (10.1016/j.jcat.2020.11.038_b0180) 2018; 28
Kim (10.1016/j.jcat.2020.11.038_b0225) 2017; 8
Li (10.1016/j.jcat.2020.11.038_b0300) 2017; 7
Intikhab (10.1016/j.jcat.2020.11.038_b0060) 2019; 371
Chang (10.1016/j.jcat.2020.11.038_b0120) 2014; 176
Slavcheva (10.1016/j.jcat.2020.11.038_b0010) 2007; 52
Kuo (10.1016/j.jcat.2020.11.038_b0140) 2017; 139
Du (10.1016/j.jcat.2020.11.038_b0405) 2011; 133
Detsi (10.1016/j.jcat.2020.11.038_b0355) 2011; 64
Shi (10.1016/j.jcat.2020.11.038_b0245) 2018; 6
Yan (10.1016/j.jcat.2020.11.038_b0495) 2015; 157
Xu (10.1016/j.jcat.2020.11.038_b0205) 2012; 59
Chatterjee (10.1016/j.jcat.2020.11.038_b0330) 2020; 184
Wei (10.1016/j.jcat.2020.11.038_b0440) 2019; 48
Hu (10.1016/j.jcat.2020.11.038_b0195) 2014; 39
Xiong (10.1016/j.jcat.2020.11.038_b0105) 2018; 86
Li (10.1016/j.jcat.2020.11.038_b0265) 2018; 366
Jia (10.1016/j.jcat.2020.11.038_b0040) 2016; 7
Pi (10.1016/j.jcat.2020.11.038_b0270) 2018; 12
Millet (10.1016/j.jcat.2020.11.038_b0015) 2011; 36
Pi (10.1016/j.jcat.2020.11.038_b0175) 2017; 27
Lv (10.1016/j.jcat.2020.11.038_b0235) 2018; 4
Sun (10.1016/j.jcat.2020.11.038_b0360) 2002; 106
Peharz (10.1016/j.jcat.2020.11.038_b0050) 2007; 32
Sanchez Casalongue (10.1016/j.jcat.2020.11.038_b0410) 2014; 53
Chen (10.1016/j.jcat.2020.11.038_b0400) 2011; 21
Rossmeisl (10.1016/j.jcat.2020.11.038_b0130) 2007; 607
Wei (10.1016/j.jcat.2020.11.038_b0420) 2019; 31
Burke (10.1016/j.jcat.2020.11.038_b0430) 1981; 117
Ankah (10.1016/j.jcat.2020.11.038_b0370) 2012; 85
Feng (10.1016/j.jcat.2020.11.038_b0230) 2017; 29
Stevens (10.1016/j.jcat.2020.11.038_b0445) 2017; 29
Stamenkovic (10.1016/j.jcat.2020.11.038_b0080) 2017; 16
Pugh (10.1016/j.jcat.2020.11.038_b0385) 2005; 152
Barbir (10.1016/j.jcat.2020.11.038_b0055) 2005; 78
Chung (10.1016/j.jcat.2020.11.038_b0125) 2020; 5
Freakley (10.1016/j.jcat.2020.11.038_b0345) 2017; 49
McCrory (10.1016/j.jcat.2020.11.038_b0450) 2013; 135
Reier (10.1016/j.jcat.2020.11.038_b0165) 2015; 137
Ghadge (10.1016/j.jcat.2020.11.038_b0185) 2019; 9
Snyder (10.1016/j.jcat.2020.11.038_b0315) 2008; 20
Strickler (10.1016/j.jcat.2020.11.038_b0240) 2019; 11
Siracusano (10.1016/j.jcat.2020.11.038_b0020) 2011; 36
Dionigi (10.1016/j.jcat.2020.11.038_b0065) 2016; 9
Chen (10.1016/j.jcat.2020.11.038_b0395) 2017; 39
Millet (10.1016/j.jcat.2020.11.038_b0005) 2010; 35
10.1016/j.jcat.2020.11.038_b0390
Ahmadi (10.1016/j.jcat.2020.11.038_b0045) 2013; 38
Renner (10.1016/j.jcat.2020.11.038_b0365) 2007; 9
Roger (10.1016/j.jcat.2020.11.038_b0085) 2017; 1
Doyle (10.1016/j.jcat.2020.11.038_b0435) 2013; 15
Liu (10.1016/j.jcat.2020.11.038_b0320) 2010; 157
Claudel (10.1016/j.jcat.2020.11.038_b0500) 2019; 9
Yu (10.1016/j.jcat.2020.11.038_b0475) 2018; 239
Muntean (10.1016/j.jcat.2020.11.038_b0200) 2019; 62
Reier (10.1016/j.jcat.2020.11.038_b0150) 2012; 2
Rossmeisl (10.1016/j.jcat.2020.11.038_b0135) 2005; 319
Li (10.1016/j.jcat.2020.11.038_b0090) 2017; 4
Mamaca (10.1016/j.jcat.2020.11.038_b0155) 2012; 111-112
Chatterjee (10.1016/j.jcat.2020.11.038_b0260) 2019; 9
Oh (10.1016/j.jcat.2020.11.038_b0465) 2016; 138
Abbott (10.1016/j.jcat.2020.11.038_b0470) 2016; 28
Jin (10.1016/j.jcat.2020.11.038_b0280) 2017; 42
Tan (10.1016/j.jcat.2020.11.038_b0290) 2019; 371
Walter (10.1016/j.jcat.2020.11.038_b0025) 2010; 110
Park (10.1016/j.jcat.2020.11.038_b0275) 2017; 11
Suen (10.1016/j.jcat.2020.11.038_b0070) 2017; 46
Mani (10.1016/j.jcat.2020.11.038_b0340) 2011; 196
Lu (10.1016/j.jcat.2020.11.038_b0095) 1978; 125
Bredar (10.1016/j.jcat.2020.11.038_b0485) 2020; 3
Fu (10.1016/j.jcat.2020.11.038_b0190) 2018; 10
References_xml – volume: 39
  start-page: 5204
  year: 2014
  end-page: 5212
  ident: b0110
  article-title: Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium
  publication-title: Int. J. Hydrogen Energy
– volume: 32
  start-page: 3248
  year: 2007
  end-page: 3252
  ident: b0050
  article-title: Solar hydrogen production by water splitting with a conversion efficiency of 18%
  publication-title: Int. J. Hydrogen Energy
– volume: 38
  start-page: 1795
  year: 2013
  end-page: 1805
  ident: b0045
  article-title: Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis
  publication-title: Int. J. Hydrogen Energy
– volume: 173
  start-page: 716
  year: 2012
  end-page: 723
  ident: b0305
  article-title: Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing
  publication-title: Sens. Actuators, B
– volume: 9
  start-page: 5290
  year: 2019
  end-page: 5301
  ident: b0260
  article-title: Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO 2 to Formate
  publication-title: ACS Catal.
– volume: 371
  start-page: 325
  year: 2019
  end-page: 332
  ident: b0060
  article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes
  publication-title: J. Catal.
– volume: 184
  start-page: 79
  year: 2020
  end-page: 85
  ident: b0330
  article-title: Nanoporous metals from thermal decomposition of transition metal dichalcogenides
  publication-title: Acta Mater.
– volume: 4
  start-page: 3068
  year: 2016
  end-page: 3076
  ident: b0415
  article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2016
  ident: b0040
  article-title: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
  publication-title: Nat. Commun.
– volume: 35
  start-page: 5043
  year: 2010
  end-page: 5052
  ident: b0005
  article-title: PEM water electrolyzers: From electrocatalysis to stack development
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 2615
  year: 2018
  end-page: 2621
  ident: b0455
  article-title: Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores
  publication-title: ACS Catal.
– volume: 4
  start-page: 1244
  year: 2018
  end-page: 1252
  ident: b0235
  article-title: Iridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts
  publication-title: ACS Cent. Sci.
– volume: 123
  start-page: 9496
  year: 2019
  end-page: 9505
  ident: b0375
  article-title: Halide-Dependent Dealloying of Cu x /Au y Core/Shell Nanoparticles for Composition Analysis by Anodic Stripping Voltammetry
  publication-title: J. Phys. Chem. C
– volume: 139
  start-page: 3473
  year: 2017
  end-page: 3479
  ident: b0140
  article-title: Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO 2 (110)
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 3889
  year: 2007
  end-page: 3894
  ident: b0010
  article-title: Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 962
  year: 2016
  end-page: 972
  ident: b0065
  article-title: Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis
  publication-title: ChemSusChem
– volume: 85
  start-page: 384
  year: 2012
  end-page: 392
  ident: b0370
  article-title: The influence of halides on the initial selective dissolution of Cu3Au (111)
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 4688
  year: 2019
  end-page: 4698
  ident: b0500
  article-title: Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study
  publication-title: ACS Catal.
– volume: 26
  start-page: 407
  year: 2014
  end-page: 414
  ident: b0030
  article-title: Will Solar-Driven Water-Splitting Devices See the Light of Day?
  publication-title: Chem. Mater.
– volume: 155
  start-page: C464
  year: 2008
  ident: b0325
  article-title: Dealloying Silver/Gold Alloys in Neutral Silver Nitrate Solution: Porosity Evolution, Surface Composition, and Surface Oxides
  publication-title: J. Electrochem. Soc.
– volume: 59
  start-page: 146
  year: 2019
  end-page: 153
  ident: b0220
  article-title: 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media
  publication-title: Nano Energy
– volume: 5
  start-page: 24836
  year: 2017
  end-page: 24841
  ident: b0170
  article-title: Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 410
  start-page: 450
  year: 2001
  end-page: 453
  ident: b0310
  article-title: Evolution of nanoporosity in dealloying
  publication-title: Nature
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: b0025
  article-title: Solar Water Splitting Cells
  publication-title: Chem. Rev.
– volume: 359
  start-page: 227
  year: 2015
  end-page: 235
  ident: b0160
  article-title: Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides
  publication-title: Appl. Surf. Sci.
– volume: 140
  start-page: 2397
  year: 2018
  end-page: 2400
  ident: b0425
  article-title: Suppressing Ion Transfer Enables Versatile Measurements of Electrochemical Surface Area for Intrinsic Activity Comparisons
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 13737
  year: 2013
  ident: b0435
  article-title: Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes
  publication-title: PCCP
– volume: 4
  start-page: 1600380
  year: 2017
  ident: b0090
  article-title: One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts
  publication-title: Adv. Sci.
– volume: 86
  start-page: 161
  year: 2018
  end-page: 165
  ident: b0105
  article-title: MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity
  publication-title: Electrochem. Commun.
– volume: 157
  start-page: 345
  year: 2015
  end-page: 350
  ident: b0495
  article-title: A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates
  publication-title: Electrochim. Acta
– volume: 39
  start-page: 582
  year: 2017
  end-page: 589
  ident: b0395
  article-title: Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications
  publication-title: Nano Energy
– volume: 36
  start-page: 4134
  year: 2011
  end-page: 4142
  ident: b0015
  article-title: Electrochemical performances of PEM water electrolysis cells and perspectives
  publication-title: Int. J. Hydrogen Energy
– volume: 111-112
  start-page: 376
  year: 2012
  end-page: 380
  ident: b0155
  article-title: Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction
  publication-title: Appl. Catal. B
– volume: 9
  start-page: 2134
  year: 2019
  end-page: 2157
  ident: b0185
  article-title: Experimental and Theoretical Validation of High Efficiency and Robust Electrocatalytic Response of One-Dimensional (1D) (Mn, Ir)O 2:10F Nanorods for the Oxygen Evolution Reaction in PEM-Based Water Electrolysis
  publication-title: ACS Catal.
– volume: 182
  start-page: 153
  year: 2016
  end-page: 160
  ident: b0480
  article-title: Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO 2 -based anodes
  publication-title: Appl. Catal. B
– volume: 11
  start-page: 34059
  year: 2019
  end-page: 34066
  ident: b0240
  article-title: Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 1806296
  year: 2019
  ident: b0420
  article-title: Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells
  publication-title: Adv. Mater.
– volume: 64
  start-page: 319
  year: 2011
  end-page: 322
  ident: b0355
  article-title: On tuning the morphology of nanoporous gold
  publication-title: Scr. Mater.
– volume: 353
  start-page: 1011
  year: 2016
  end-page: 1014
  ident: b0285
  article-title: A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction
  publication-title: Science
– volume: 132
  start-page: 2385
  year: 1985
  ident: b0460
  article-title: Irreversible Voltammetric Behavior of the (100) IrO[sub 2] Single-Crystal Electrodes in Sulfuric Acid Medium
  publication-title: J. Electrochem. Soc.
– volume: 106
  start-page: 10701
  year: 2002
  end-page: 10705
  ident: b0360
  article-title: Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom
  publication-title: J. Phys. Chem. B
– volume: 163
  start-page: F3105
  year: 2016
  end-page: F3112
  ident: b0490
  article-title: Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 7371
  year: 2018
  end-page: 7379
  ident: b0270
  article-title: Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis
  publication-title: ACS Nano
– volume: 113
  start-page: 12629
  year: 2009
  end-page: 12636
  ident: b0335
  article-title: Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying
  publication-title: J. Phys. Chem. C
– volume: 117
  start-page: 155
  year: 1981
  end-page: 160
  ident: b0430
  article-title: Oxygen gas evolution on hydrous oxides — An example of three-dimensional electrocatalysis?
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 196
  start-page: 666
  year: 2011
  end-page: 673
  ident: b0340
  article-title: Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells
  publication-title: J. Power Sources
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: b0075
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 7169
  year: 2014
  end-page: 7172
  ident: b0410
  article-title: In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction
  publication-title: Angew. Chemie Int. Ed.
– volume: 29
  start-page: 120
  year: 2017
  end-page: 140
  ident: b0445
  article-title: Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts
  publication-title: Chem. Mater.
– volume: 366
  start-page: 50
  year: 2018
  end-page: 60
  ident: b0265
  article-title: Tuning the activity/stability balance of anion doped CoS Se2− dichalcogenides
  publication-title: J. Catal.
– reference: A.S.M. Handbook, Alloy Phase Diagram, vol. 3, 1992.
– volume: 354
  start-page: 1414
  year: 2016
  end-page: 1419
  ident: b0295
  article-title: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction
  publication-title: Science
– volume: 16
  start-page: 646
  year: 2017
  end-page: 651
  ident: b0035
  article-title: Photoelectrochemical water splitting in separate oxygen and hydrogen cells
  publication-title: Nature Mater
– volume: 28
  start-page: 6591
  year: 2016
  end-page: 6604
  ident: b0470
  article-title: Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS
  publication-title: Chem. Mater.
– volume: 10
  start-page: 24993
  year: 2018
  end-page: 24998
  ident: b0190
  article-title: IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 794
  year: 2017
  end-page: 799
  ident: b0345
  article-title: The X-ray photoelectron spectra of Ir, IrO 2 and IrCl 3 revisited : The X-ray photoelectron spectra of Ir, IrO 2 and IrCl 3 revisited
  publication-title: Surf. Interface Anal.
– volume: 2
  start-page: 1765
  year: 2012
  end-page: 1772
  ident: b0150
  article-title: Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials
  publication-title: ACS Catal.
– volume: 6
  start-page: 8855
  year: 2018
  end-page: 8859
  ident: b0245
  article-title: Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 1704796
  year: 2018
  ident: b0180
  article-title: Ultrathin IrO 2 Nanoneedles for Electrochemical Water Oxidation
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2017
  ident: b0225
  article-title: Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1901518
  year: 2019
  ident: b0100
  article-title: Hierarchically Porous Co/Co x M y (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries
  publication-title: Small
– volume: 27
  start-page: 1700886
  year: 2017
  ident: b0175
  article-title: General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 4481
  year: 2012
  ident: b0380
  article-title: Influence of anion species on electrochemical dealloying of single-phase Al2Au alloy in sodium halide solutions
  publication-title: RSC Adv.
– volume: 137
  start-page: 13031
  year: 2015
  end-page: 13040
  ident: b0165
  article-title: Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER)
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 222
  year: 2020
  end-page: 230
  ident: b0125
  article-title: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction
  publication-title: Nat. Energy
– volume: 319
  start-page: 178
  year: 2005
  end-page: 184
  ident: b0135
  article-title: Electrolysis of water on (oxidized) metal surfaces
  publication-title: Chem. Phys.
– volume: 44
  start-page: 24331
  year: 2019
  end-page: 24341
  ident: b0210
  article-title: Doped tin oxide aerogels as oxygen evolution reaction catalyst supports
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 16130
  year: 2018
  end-page: 16138
  ident: b0250
  article-title: An IrRu alloy nanocactus on Cu 2−x S@IrS y as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes
  publication-title: J. Mater. Chem. A
– volume: 39
  start-page: 6967
  year: 2014
  end-page: 6976
  ident: b0195
  article-title: IrO2/Nb–TiO2 electrocatalyst for oxygen evolution reaction in acidic medium
  publication-title: Int. J. Hydrogen Energy
– volume: 29
  start-page: 1703798
  year: 2017
  ident: b0230
  article-title: Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2474
  year: 2014
  end-page: 2478
  ident: b0115
  article-title: Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
  publication-title: J. Phys. Chem. Lett.
– volume: 152
  start-page: B455
  year: 2005
  ident: b0385
  article-title: Electrochemical and Morphological Characterization of Pt–Cu Dealloying
  publication-title: J. Electrochem. Soc.
– volume: 59
  start-page: 105
  year: 2012
  end-page: 112
  ident: b0205
  article-title: The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction
  publication-title: Electrochim. Acta
– volume: 157
  start-page: K168
  year: 2010
  ident: b0320
  article-title: Factors Controlling the Less Noble Metal Retention in Nanoporous Structures Processed by Electrochemical Dealloying
  publication-title: J. Electrochem. Soc.
– volume: 135
  start-page: 16977
  year: 2013
  end-page: 16987
  ident: b0450
  article-title: Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2038
  year: 2018
  end-page: 2044
  ident: b0215
  article-title: Nanovoid Incorporated Ir x Cu Metallic Aerogels for Oxygen Evolution Reaction Catalysis
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 57
  year: 2017
  end-page: 69
  ident: b0080
  article-title: Energy and fuels from electrochemical interfaces
  publication-title: Nature Mater
– volume: 48
  start-page: 2518
  year: 2019
  end-page: 2534
  ident: b0440
  article-title: Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 5500
  year: 2017
  end-page: 5509
  ident: b0275
  article-title: Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction
  publication-title: ACS Nano
– volume: 42
  start-page: 17
  year: 2017
  end-page: 25
  ident: b0280
  article-title: Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis
  publication-title: Nano Energy
– volume: 20
  start-page: 4883
  year: 2008
  end-page: 4886
  ident: b0315
  article-title: Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors
  publication-title: Adv. Mater.
– volume: 78
  start-page: 661
  year: 2005
  end-page: 669
  ident: b0055
  article-title: PEM electrolysis for production of hydrogen from renewable energy sources
  publication-title: Sol. Energy
– volume: 133
  start-page: 15172
  year: 2011
  end-page: 15183
  ident: b0405
  article-title: Highly Active Iridium/Iridium–Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction
  publication-title: J. Am. Chem. Soc.
– volume: 371
  start-page: 57
  year: 2019
  end-page: 70
  ident: b0290
  article-title: Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction
  publication-title: J. Catal.
– volume: 125
  start-page: 265
  year: 1978
  end-page: 270
  ident: b0095
  article-title: Nickel‐Based Alloys as Electrocatalysts for Oxygen Evolution from Alkaline Solutions
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 7995
  year: 2017
  end-page: 8005
  ident: b0300
  article-title: Morphological Instability in Topologically Complex, Three-Dimensional Electrocatalytic Nanostructures
  publication-title: ACS Catal.
– volume: 239
  start-page: 133
  year: 2018
  end-page: 146
  ident: b0475
  article-title: Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading
  publication-title: Appl. Catal. B
– volume: 176
  start-page: 125
  year: 2014
  end-page: 133
  ident: b0120
  article-title: Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction
  publication-title: Faraday Discuss.
– volume: 151
  start-page: C614
  year: 2004
  ident: b0350
  article-title: An Atomistic Description of Dealloying
  publication-title: J. Electrochem. Soc.
– volume: 1
  year: 2017
  ident: b0085
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
– volume: 36
  start-page: 3333
  year: 2011
  end-page: 3339
  ident: b0020
  article-title: Optimization of components and assembling in a PEM electrolyzer stack
  publication-title: Int. J. Hydrogen Energy
– volume: 21
  start-page: 4364
  year: 2011
  end-page: 4370
  ident: b0400
  article-title: Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 66
  year: 2020
  end-page: 98
  ident: b0485
  article-title: Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications
  publication-title: ACS Appl. Energy Mater.
– volume: 62
  start-page: 429
  year: 2019
  end-page: 438
  ident: b0200
  article-title: Investigation of Iridium Nanoparticles Supported on Sub-stoichiometric Titanium Oxides as Anodic Electrocatalysts in PEM Electrolysis. Part I.: Synthesis and Characterization
  publication-title: Top. Catal.
– volume: 138
  start-page: 12552
  year: 2016
  end-page: 12563
  ident: b0465
  article-title: Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO x Nanoparticle Catalysts during the Oxygen Evolution Reaction
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: b0070
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1639
  year: 2007
  end-page: 1642
  ident: b0365
  article-title: The influence of chloride on the initial anodic dissolution of Cu3Au(111)
  publication-title: Electrochem. Commun.
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: b0130
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
– volume: 3
  start-page: 1159
  year: 2011
  end-page: 1165
  ident: b0145
  article-title: Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
  publication-title: ChemCatChem
– volume: 46
  start-page: 337
  issue: 2
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0070
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 9
  start-page: 5290
  issue: 6
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0260
  article-title: Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO 2 to Formate
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00330
– volume: 3
  start-page: 66
  issue: 1
  year: 2020
  ident: 10.1016/j.jcat.2020.11.038_b0485
  article-title: Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01965
– volume: 155
  start-page: C464
  issue: 8
  year: 2008
  ident: 10.1016/j.jcat.2020.11.038_b0325
  article-title: Dealloying Silver/Gold Alloys in Neutral Silver Nitrate Solution: Porosity Evolution, Surface Composition, and Surface Oxides
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2940319
– volume: 52
  start-page: 3889
  issue: 12
  year: 2007
  ident: 10.1016/j.jcat.2020.11.038_b0010
  article-title: Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.11.005
– volume: 62
  start-page: 429
  issue: 5-6
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0200
  article-title: Investigation of Iridium Nanoparticles Supported on Sub-stoichiometric Titanium Oxides as Anodic Electrocatalysts in PEM Electrolysis. Part I.: Synthesis and Characterization
  publication-title: Top. Catal.
  doi: 10.1007/s11244-019-01164-3
– volume: 196
  start-page: 666
  issue: 2
  year: 2011
  ident: 10.1016/j.jcat.2020.11.038_b0340
  article-title: Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.07.047
– volume: 12
  start-page: 7371
  issue: 7
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0270
  article-title: Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04023
– volume: 138
  start-page: 12552
  issue: 38
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0465
  article-title: Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO x Nanoparticle Catalysts during the Oxygen Evolution Reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07199
– volume: 137
  start-page: 13031
  issue: 40
  year: 2015
  ident: 10.1016/j.jcat.2020.11.038_b0165
  article-title: Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07788
– volume: 29
  start-page: 120
  issue: 1
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0445
  article-title: Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02796
– volume: 15
  start-page: 13737
  issue: 33
  year: 2013
  ident: 10.1016/j.jcat.2020.11.038_b0435
  article-title: Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes
  publication-title: PCCP
  doi: 10.1039/c3cp51213d
– volume: 3
  start-page: 2038
  issue: 9
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0215
  article-title: Nanovoid Incorporated Ir x Cu Metallic Aerogels for Oxygen Evolution Reaction Catalysis
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01338
– volume: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0040
  article-title: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13237
– volume: 139
  start-page: 3473
  issue: 9
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0140
  article-title: Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO 2 (110)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11932
– volume: 371
  start-page: 57
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0290
  article-title: Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.01.018
– volume: 5
  start-page: 222
  issue: 3
  year: 2020
  ident: 10.1016/j.jcat.2020.11.038_b0125
  article-title: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0576-y
– volume: 26
  start-page: 407
  issue: 1
  year: 2014
  ident: 10.1016/j.jcat.2020.11.038_b0030
  article-title: Will Solar-Driven Water-Splitting Devices See the Light of Day?
  publication-title: Chem. Mater.
  doi: 10.1021/cm4021518
– volume: 182
  start-page: 153
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0480
  article-title: Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO 2 -based anodes
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.09.013
– volume: 9
  start-page: 4688
  issue: 5
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0500
  article-title: Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00280
– volume: 27
  start-page: 1700886
  issue: 27
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0175
  article-title: General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700886
– volume: 366
  start-page: 50
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0265
  article-title: Tuning the activity/stability balance of anion doped CoS Se2− dichalcogenides
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.07.030
– volume: 21
  start-page: 4364
  issue: 22
  year: 2011
  ident: 10.1016/j.jcat.2020.11.038_b0400
  article-title: Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101227
– volume: 31
  start-page: 1806296
  issue: 31
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0420
  article-title: Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806296
– volume: 36
  start-page: 4134
  issue: 6
  year: 2011
  ident: 10.1016/j.jcat.2020.11.038_b0015
  article-title: Electrochemical performances of PEM water electrolysis cells and perspectives
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.06.105
– volume: 11
  start-page: 34059
  issue: 37
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0240
  article-title: Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13697
– volume: 9
  start-page: 1639
  issue: 7
  year: 2007
  ident: 10.1016/j.jcat.2020.11.038_b0365
  article-title: The influence of chloride on the initial anodic dissolution of Cu3Au(111)
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.03.001
– volume: 16
  start-page: 646
  issue: 6
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0035
  article-title: Photoelectrochemical water splitting in separate oxygen and hydrogen cells
  publication-title: Nature Mater
  doi: 10.1038/nmat4876
– volume: 371
  start-page: 325
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0060
  article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.01.037
– volume: 4
  start-page: 1600380
  issue: 3
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0090
  article-title: One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600380
– volume: 8
  start-page: 2615
  issue: 3
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0455
  article-title: Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04410
– volume: 3
  start-page: 1159
  issue: 7
  year: 2011
  ident: 10.1016/j.jcat.2020.11.038_b0145
  article-title: Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000397
– volume: 173
  start-page: 716
  year: 2012
  ident: 10.1016/j.jcat.2020.11.038_b0305
  article-title: Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2012.07.071
– volume: 7
  start-page: 7995
  issue: 11
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0300
  article-title: Morphological Instability in Topologically Complex, Three-Dimensional Electrocatalytic Nanostructures
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02398
– volume: 44
  start-page: 2060
  issue: 8
  year: 2015
  ident: 10.1016/j.jcat.2020.11.038_b0075
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 125
  start-page: 265
  issue: 2
  year: 1978
  ident: 10.1016/j.jcat.2020.11.038_b0095
  article-title: Nickel‐Based Alloys as Electrocatalysts for Oxygen Evolution from Alkaline Solutions
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2131426
– volume: 78
  start-page: 661
  issue: 5
  year: 2005
  ident: 10.1016/j.jcat.2020.11.038_b0055
  article-title: PEM electrolysis for production of hydrogen from renewable energy sources
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2004.09.003
– volume: 163
  start-page: F3105
  issue: 11
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0490
  article-title: Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0151611jes
– volume: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0085
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– ident: 10.1016/j.jcat.2020.11.038_b0390
– volume: 133
  start-page: 15172
  issue: 38
  year: 2011
  ident: 10.1016/j.jcat.2020.11.038_b0405
  article-title: Highly Active Iridium/Iridium–Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205649z
– volume: 32
  start-page: 3248
  issue: 15
  year: 2007
  ident: 10.1016/j.jcat.2020.11.038_b0050
  article-title: Solar hydrogen production by water splitting with a conversion efficiency of 18%
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.04.036
– volume: 410
  start-page: 450
  issue: 6827
  year: 2001
  ident: 10.1016/j.jcat.2020.11.038_b0310
  article-title: Evolution of nanoporosity in dealloying
  publication-title: Nature
  doi: 10.1038/35068529
– volume: 8
  issue: 1
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0225
  article-title: Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01734-7
– volume: 176
  start-page: 125
  year: 2014
  ident: 10.1016/j.jcat.2020.11.038_b0120
  article-title: Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction
  publication-title: Faraday Discuss.
  doi: 10.1039/C4FD00134F
– volume: 151
  start-page: C614
  issue: 10
  year: 2004
  ident: 10.1016/j.jcat.2020.11.038_b0350
  article-title: An Atomistic Description of Dealloying
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1784820
– volume: 48
  start-page: 2518
  issue: 9
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0440
  article-title: Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00848E
– volume: 2
  start-page: 4481
  issue: 10
  year: 2012
  ident: 10.1016/j.jcat.2020.11.038_b0380
  article-title: Influence of anion species on electrochemical dealloying of single-phase Al2Au alloy in sodium halide solutions
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20087b
– volume: 4
  start-page: 3068
  issue: 8
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0415
  article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07586F
– volume: 152
  start-page: B455
  issue: 11
  year: 2005
  ident: 10.1016/j.jcat.2020.11.038_b0385
  article-title: Electrochemical and Morphological Characterization of Pt–Cu Dealloying
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2048140
– volume: 29
  start-page: 1703798
  issue: 47
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0230
  article-title: Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703798
– volume: 132
  start-page: 2385
  year: 1985
  ident: 10.1016/j.jcat.2020.11.038_b0460
  article-title: Irreversible Voltammetric Behavior of the (100) IrO[sub 2] Single-Crystal Electrodes in Sulfuric Acid Medium
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2113583
– volume: 6
  start-page: 8855
  issue: 19
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0245
  article-title: Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01288A
– volume: 28
  start-page: 1704796
  issue: 4
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0180
  article-title: Ultrathin IrO 2 Nanoneedles for Electrochemical Water Oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704796
– volume: 39
  start-page: 6967
  issue: 13
  year: 2014
  ident: 10.1016/j.jcat.2020.11.038_b0195
  article-title: IrO2/Nb–TiO2 electrocatalyst for oxygen evolution reaction in acidic medium
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.114
– volume: 39
  start-page: 5204
  issue: 10
  year: 2014
  ident: 10.1016/j.jcat.2020.11.038_b0110
  article-title: Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.186
– volume: 319
  start-page: 178
  issue: 1-3
  year: 2005
  ident: 10.1016/j.jcat.2020.11.038_b0135
  article-title: Electrolysis of water on (oxidized) metal surfaces
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.05.038
– volume: 38
  start-page: 1795
  issue: 4
  year: 2013
  ident: 10.1016/j.jcat.2020.11.038_b0045
  article-title: Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.11.025
– volume: 86
  start-page: 161
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0105
  article-title: MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.12.008
– volume: 16
  start-page: 57
  issue: 1
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0080
  article-title: Energy and fuels from electrochemical interfaces
  publication-title: Nature Mater
  doi: 10.1038/nmat4738
– volume: 85
  start-page: 384
  year: 2012
  ident: 10.1016/j.jcat.2020.11.038_b0370
  article-title: The influence of halides on the initial selective dissolution of Cu3Au (111)
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.08.059
– volume: 353
  start-page: 1011
  issue: 6303
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0285
  article-title: A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction
  publication-title: Science
  doi: 10.1126/science.aaf5050
– volume: 5
  start-page: 24836
  issue: 47
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0170
  article-title: Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08982A
– volume: 157
  start-page: K168
  issue: 8
  year: 2010
  ident: 10.1016/j.jcat.2020.11.038_b0320
  article-title: Factors Controlling the Less Noble Metal Retention in Nanoporous Structures Processed by Electrochemical Dealloying
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3454753
– volume: 123
  start-page: 9496
  issue: 14
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0375
  article-title: Halide-Dependent Dealloying of Cu x /Au y Core/Shell Nanoparticles for Composition Analysis by Anodic Stripping Voltammetry
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b12174
– volume: 44
  start-page: 24331
  issue: 45
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0210
  article-title: Doped tin oxide aerogels as oxygen evolution reaction catalyst supports
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.07.152
– volume: 6
  start-page: 16130
  issue: 33
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0250
  article-title: An IrRu alloy nanocactus on Cu 2−x S@IrS y as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04886J
– volume: 20
  start-page: 4883
  issue: 24
  year: 2008
  ident: 10.1016/j.jcat.2020.11.038_b0315
  article-title: Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702760
– volume: 28
  start-page: 6591
  issue: 18
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0470
  article-title: Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02625
– volume: 64
  start-page: 319
  issue: 4
  year: 2011
  ident: 10.1016/j.jcat.2020.11.038_b0355
  article-title: On tuning the morphology of nanoporous gold
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.10.023
– volume: 39
  start-page: 582
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0395
  article-title: Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.041
– volume: 36
  start-page: 3333
  issue: 5
  year: 2011
  ident: 10.1016/j.jcat.2020.11.038_b0020
  article-title: Optimization of components and assembling in a PEM electrolyzer stack
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.044
– volume: 9
  start-page: 962
  issue: 9
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0065
  article-title: Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501581
– volume: 140
  start-page: 2397
  issue: 7
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0425
  article-title: Suppressing Ion Transfer Enables Versatile Measurements of Electrochemical Surface Area for Intrinsic Activity Comparisons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10966
– volume: 607
  start-page: 83
  issue: 1-2
  year: 2007
  ident: 10.1016/j.jcat.2020.11.038_b0130
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 157
  start-page: 345
  year: 2015
  ident: 10.1016/j.jcat.2020.11.038_b0495
  article-title: A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.005
– volume: 59
  start-page: 146
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0220
  article-title: 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.020
– volume: 113
  start-page: 12629
  issue: 29
  year: 2009
  ident: 10.1016/j.jcat.2020.11.038_b0335
  article-title: Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp811445a
– volume: 239
  start-page: 133
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0475
  article-title: Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.07.064
– volume: 135
  start-page: 16977
  issue: 45
  year: 2013
  ident: 10.1016/j.jcat.2020.11.038_b0450
  article-title: Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 354
  start-page: 1414
  issue: 6318
  year: 2016
  ident: 10.1016/j.jcat.2020.11.038_b0295
  article-title: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction
  publication-title: Science
  doi: 10.1126/science.aaf9050
– volume: 184
  start-page: 79
  year: 2020
  ident: 10.1016/j.jcat.2020.11.038_b0330
  article-title: Nanoporous metals from thermal decomposition of transition metal dichalcogenides
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.11.018
– volume: 9
  start-page: 2134
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0185
  article-title: Experimental and Theoretical Validation of High Efficiency and Robust Electrocatalytic Response of One-Dimensional (1D) (Mn, Ir)O 2:10F Nanorods for the Oxygen Evolution Reaction in PEM-Based Water Electrolysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02901
– volume: 106
  start-page: 10701
  issue: 41
  year: 2002
  ident: 10.1016/j.jcat.2020.11.038_b0360
  article-title: Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp025868l
– volume: 359
  start-page: 227
  year: 2015
  ident: 10.1016/j.jcat.2020.11.038_b0160
  article-title: Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.10.082
– volume: 35
  start-page: 5043
  issue: 10
  year: 2010
  ident: 10.1016/j.jcat.2020.11.038_b0005
  article-title: PEM water electrolyzers: From electrocatalysis to stack development
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.015
– volume: 49
  start-page: 794
  issue: 8
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0345
  article-title: The X-ray photoelectron spectra of Ir, IrO 2 and IrCl 3 revisited : The X-ray photoelectron spectra of Ir, IrO 2 and IrCl 3 revisited
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.6225
– volume: 2
  start-page: 1765
  issue: 8
  year: 2012
  ident: 10.1016/j.jcat.2020.11.038_b0150
  article-title: Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials
  publication-title: ACS Catal.
  doi: 10.1021/cs3003098
– volume: 59
  start-page: 105
  year: 2012
  ident: 10.1016/j.jcat.2020.11.038_b0205
  article-title: The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.10.044
– volume: 117
  start-page: 155
  issue: 1
  year: 1981
  ident: 10.1016/j.jcat.2020.11.038_b0430
  article-title: Oxygen gas evolution on hydrous oxides — An example of three-dimensional electrocatalysis?
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/S0022-0728(81)80459-7
– volume: 15
  start-page: 1901518
  issue: 28
  year: 2019
  ident: 10.1016/j.jcat.2020.11.038_b0100
  article-title: Hierarchically Porous Co/Co x M y (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries
  publication-title: Small
  doi: 10.1002/smll.201901518
– volume: 11
  start-page: 5500
  issue: 6
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0275
  article-title: Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00233
– volume: 53
  start-page: 7169
  year: 2014
  ident: 10.1016/j.jcat.2020.11.038_b0410
  article-title: In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.201402311
– volume: 110
  start-page: 6446
  issue: 11
  year: 2010
  ident: 10.1016/j.jcat.2020.11.038_b0025
  article-title: Solar Water Splitting Cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 42
  start-page: 17
  year: 2017
  ident: 10.1016/j.jcat.2020.11.038_b0280
  article-title: Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.033
– volume: 111-112
  start-page: 376
  year: 2012
  ident: 10.1016/j.jcat.2020.11.038_b0155
  article-title: Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2011.10.020
– volume: 4
  start-page: 1244
  issue: 9
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0235
  article-title: Iridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00426
– volume: 5
  start-page: 2474
  issue: 14
  year: 2014
  ident: 10.1016/j.jcat.2020.11.038_b0115
  article-title: Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501061n
– volume: 10
  start-page: 24993
  issue: 30
  year: 2018
  ident: 10.1016/j.jcat.2020.11.038_b0190
  article-title: IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b08717
SSID ssj0011558
Score 2.4672365
Snippet [Display omitted] •Electrolyte additives drive the propagation of etch fronts in high melting alloys during dealloying.•Free standing np-Ir electrodes exhibit...
The dearth of appropriate electrocatalysts for stable anodic water splitting, oxygen evolution reaction (OER), in acid has given rise to concerted efforts...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 303
SubjectTerms alloys
catalysts
catalytic activity
durability
electrodes
iridium
nanopores
Nanoporous metals
oxides
Oxygen evolution reaction
oxygen production
PEM electrolysis
water
Title Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions
URI https://dx.doi.org/10.1016/j.jcat.2020.11.038
https://www.proquest.com/docview/2498234809
Volume 393
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_EgPvFNBG9Sbdokmx5lUXYVPCl4C0mahZW1q9tV3Iu_3Zk0XVTEg9BTSUrpN5355hlCTpjqeM64Tcpi4BKepTwpHMuSMpfCCjYQzIVqi1vZu-fXD-JhgXTbXhgsq4y6v9HpQVvHO-fxa54_D4fY4wt_m2CYRwSam2ETH-cdlPKzj3mZBxAe0WhjLEWA1bFxpqnxesToHrj_qDnOUuxR-d04_VDTwfZcrZHVSBrpRfNe62TBVxtkudue1bZBVr6MFdwkL6Ayx8CrwamnoWDwyQPFHg0d7U8oJtpnNTU19WF6BBgdaqqSAku0I0_jsTghqjOrpzUFUkuNG5awe_w-A3Gj_i2KKwXCGdoi6i1yf3V51-0l8WiFxAEjmSZK2kGu0twzblgn56lzHeUBFzBoBeYilXLcpFIxIAw858CaCmEHzBlpueEu3yaL1bjyO4QyW0ivSpsZnO2njDLGSJ9ZJiUXSqa7hLXfVLs4dxyPvxjptsDsUSMOGnEAh0QDDrvkdL7nuZm68edq0UKlv8mOBrPw577jFlcNeGGmxFQesNHgk6os5yot9v757H0MAIRIDVwHZHE6efWHQF-m9ijI5xFZuujf9G4_AWx47xA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YlvI3iTatMm2fQoi7LrY08K3kKSZmFl7apdxf33TtpUVMSD19IpJd9k5kvmBXBEZdsxykyUZwMbsSRmUWZpEuWp4IbTAae2yrboi-4du7zn9zPQaWphfFplsP21Ta-sdXhyGlbz9Gk49DW-uNs49XFEpLlJNgtzvjsVb8HcWe-q2_8MJqDLrA2yz0ZAgVA7U6d5PfgLvgRJ04lv5unLVH73Tz8sdeV-LpZhKfBGclb_2grMuGIV5jvNuLZVWPzSWXANntFqjpFa47meVDmDjw5Z9mhoSe-F-Fj7tCS6JK5qIIF-h-giJ0gUzciRMBmnutiZlpOSIK8l2g5zlB6_T1HjiHsLGkuQc1aVEeU63F2c33a6UZiuEFkkJZNICjNIZZw6yjRtpyy2ti0dQoM-LfPhSCkt07GQFDkDSxkSp4ybAbVaGKaZTTegVYwLtwmEmkw4mZtE-_Z-UkuttXCJoUIwLkW8BbRZU2VD63E_AWOkmhyzB-VxUB4HPJMoxGELjj9lnurGG3--zRuo1Df1UegZ_pQ7bHBViJcPlujCITYKj6UySZmMs-1_fvsA5ru3N9fqute_2oGFxKtfdXezC63Jy6vbQzYzMftBWz8AoEHxxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+multimetallic+Ir+alloys+as+efficient+and+stable+electrocatalysts+for+acidic+oxygen+evolution+reactions&rft.jtitle=Journal+of+catalysis&rft.au=Chatterjee%2C+Swarnendu&rft.au=Intikhab%2C+Saad&rft.au=Profitt%2C+Lauren&rft.au=Li%2C+Yawei&rft.date=2021-01-01&rft.issn=0021-9517&rft.volume=393+p.303-312&rft.spage=303&rft.epage=312&rft_id=info:doi/10.1016%2Fj.jcat.2020.11.038&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon