Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions
[Display omitted] •Electrolyte additives drive the propagation of etch fronts in high melting alloys during dealloying.•Free standing np-Ir electrodes exhibit a significant enhancement in OER activity and stability.•HCD performance is a consequence of reduced electrode resistivity for np-Ir. The dea...
Saved in:
Published in | Journal of catalysis Vol. 393; pp. 303 - 312 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Electrolyte additives drive the propagation of etch fronts in high melting alloys during dealloying.•Free standing np-Ir electrodes exhibit a significant enhancement in OER activity and stability.•HCD performance is a consequence of reduced electrode resistivity for np-Ir.
The dearth of appropriate electrocatalysts for stable anodic water splitting, oxygen evolution reaction (OER), in acid has given rise to concerted efforts toward making iridium-based high aspect ratio nanomaterials, as iridium and its higher valent oxides have been shown time and again to exhibit the most optimal balance between activity and durability. Here, we show a dealloying strategy to synthesize free-standing 3D, oxide skinned nanoporous Ir electrocatalysts (np-Ir) with demonstrated enhanced activity and durability in comparison to more traditional IrOx nanoparticulate catalysts. The metallic core and absence of any binder/support result in low electrode and charge transfer resistance, ultimately giving rise to lower OER overpotentials and improved activity. |
---|---|
AbstractList | The dearth of appropriate electrocatalysts for stable anodic water splitting, oxygen evolution reaction (OER), in acid has given rise to concerted efforts toward making iridium-based high aspect ratio nanomaterials, as iridium and its higher valent oxides have been shown time and again to exhibit the most optimal balance between activity and durability. Here, we show a dealloying strategy to synthesize free-standing 3D, oxide skinned nanoporous Ir electrocatalysts (np-Ir) with demonstrated enhanced activity and durability in comparison to more traditional IrOₓ nanoparticulate catalysts. The metallic core and absence of any binder/support result in low electrode and charge transfer resistance, ultimately giving rise to lower OER overpotentials and improved activity. [Display omitted] •Electrolyte additives drive the propagation of etch fronts in high melting alloys during dealloying.•Free standing np-Ir electrodes exhibit a significant enhancement in OER activity and stability.•HCD performance is a consequence of reduced electrode resistivity for np-Ir. The dearth of appropriate electrocatalysts for stable anodic water splitting, oxygen evolution reaction (OER), in acid has given rise to concerted efforts toward making iridium-based high aspect ratio nanomaterials, as iridium and its higher valent oxides have been shown time and again to exhibit the most optimal balance between activity and durability. Here, we show a dealloying strategy to synthesize free-standing 3D, oxide skinned nanoporous Ir electrocatalysts (np-Ir) with demonstrated enhanced activity and durability in comparison to more traditional IrOx nanoparticulate catalysts. The metallic core and absence of any binder/support result in low electrode and charge transfer resistance, ultimately giving rise to lower OER overpotentials and improved activity. |
Author | Profitt, Lauren Gawas, Ramchandra Snyder, Joshua Intikhab, Saad Chatterjee, Swarnendu Natu, Varun Li, Yawei |
Author_xml | – sequence: 1 givenname: Swarnendu surname: Chatterjee fullname: Chatterjee, Swarnendu organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States – sequence: 2 givenname: Saad orcidid: 0000-0003-1769-6975 surname: Intikhab fullname: Intikhab, Saad organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States – sequence: 3 givenname: Lauren surname: Profitt fullname: Profitt, Lauren organization: Department of Chemistry, Temple University, Philadelphia, PA 19122, United States – sequence: 4 givenname: Yawei orcidid: 0000-0002-1793-9730 surname: Li fullname: Li, Yawei organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States – sequence: 5 givenname: Varun surname: Natu fullname: Natu, Varun organization: Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States – sequence: 6 givenname: Ramchandra orcidid: 0000-0002-3641-1253 surname: Gawas fullname: Gawas, Ramchandra organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States – sequence: 7 givenname: Joshua orcidid: 0000-0003-3162-4126 surname: Snyder fullname: Snyder, Joshua email: jds43@drexel.edu organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, United States |
BookMark | eNp9kLFuGzEMhoUiAeqkeYFMGrucS57kswR0KYI2DRA0SzoLtMwLZMgnR5KD-u2rgzt1yESC4Efi_67ExZQmFuIWYYmAw5fdcuepLnvo2wCXoMwHsUCw0PWD1RdiAdBjZ1e4_iiuStkBIK5WZiFef9GUDimnY5H7Y6xhz5ViDF4-ZNmadCqSiuRxDD7wVCVNW1kqbSJLjuxrTu0xxVOpRY6pMT5sG53-nF54kvyW4rGGNMnM5OemfBKXI8XCN__qtfj94_vz3c_u8en-4e7bY-eVtbUzw2ZUBhSjJlwrDd6vDaMHUIPt10Yb4zXBYBAtaKUHre1qM6KnYaNJe3UtPp_vHnJ6PXKpbh-K5xhp4pbW9dqaXmkDtq3251WfUymZR3fIYU_55BDc7Nft3OzXzX4domt-G2T-g3yoNEesmUJ8H_16RrnlfwucXZnlet6G3JS6bQrv4X8BUkKZ8Q |
CitedBy_id | crossref_primary_10_1126_sciadv_adp8911 crossref_primary_10_11648_j_ajpst_20241003_11 crossref_primary_10_1039_D2TA02193E crossref_primary_10_1021_acs_chemmater_2c02697 crossref_primary_10_1021_acsaem_4c01866 crossref_primary_10_1039_D4QM00842A crossref_primary_10_1002_aenm_202101438 crossref_primary_10_1002_adem_202301538 crossref_primary_10_1016_j_enchem_2022_100069 crossref_primary_10_1016_j_jpowsour_2023_232990 crossref_primary_10_1039_D3NH00156C crossref_primary_10_1016_j_joule_2024_01_002 crossref_primary_10_1016_j_enchem_2023_100104 crossref_primary_10_1021_acsaenm_3c00713 crossref_primary_10_1002_adfm_202301999 crossref_primary_10_1002_adma_202210565 crossref_primary_10_1007_s10800_021_01555_z crossref_primary_10_1021_acs_energyfuels_2c00951 crossref_primary_10_1039_D3SE01238G crossref_primary_10_1063_5_0200438 crossref_primary_10_26599_NRE_2023_9120056 |
Cites_doi | 10.1039/C6CS00328A 10.1021/acscatal.9b00330 10.1021/acsaem.9b01965 10.1149/1.2940319 10.1016/j.electacta.2006.11.005 10.1007/s11244-019-01164-3 10.1016/j.jpowsour.2010.07.047 10.1021/acsnano.8b04023 10.1021/jacs.6b07199 10.1021/jacs.5b07788 10.1021/acs.chemmater.6b02796 10.1039/c3cp51213d 10.1021/acsenergylett.8b01338 10.1038/ncomms13237 10.1021/jacs.6b11932 10.1016/j.jcat.2019.01.018 10.1038/s41560-020-0576-y 10.1021/cm4021518 10.1016/j.apcatb.2015.09.013 10.1021/acscatal.9b00280 10.1002/adfm.201700886 10.1016/j.jcat.2018.07.030 10.1002/adfm.201101227 10.1002/adma.201806296 10.1016/j.ijhydene.2010.06.105 10.1021/acsami.9b13697 10.1016/j.elecom.2007.03.001 10.1038/nmat4876 10.1016/j.jcat.2019.01.037 10.1002/advs.201600380 10.1021/acscatal.7b04410 10.1002/cctc.201000397 10.1016/j.snb.2012.07.071 10.1021/acscatal.7b02398 10.1039/C4CS00470A 10.1149/1.2131426 10.1016/j.solener.2004.09.003 10.1149/2.0151611jes 10.1038/s41570-016-0003 10.1021/ja205649z 10.1016/j.ijhydene.2007.04.036 10.1038/35068529 10.1038/s41467-017-01734-7 10.1039/C4FD00134F 10.1149/1.1784820 10.1039/C8CS00848E 10.1039/c2ra20087b 10.1039/C5TA07586F 10.1149/1.2048140 10.1002/adma.201703798 10.1149/1.2113583 10.1039/C8TA01288A 10.1002/adfm.201704796 10.1016/j.ijhydene.2014.02.114 10.1016/j.ijhydene.2013.12.186 10.1016/j.chemphys.2005.05.038 10.1016/j.ijhydene.2012.11.025 10.1016/j.elecom.2017.12.008 10.1038/nmat4738 10.1016/j.electacta.2012.08.059 10.1126/science.aaf5050 10.1039/C7TA08982A 10.1149/1.3454753 10.1021/acs.jpcc.8b12174 10.1016/j.ijhydene.2019.07.152 10.1039/C8TA04886J 10.1002/adma.200702760 10.1021/acs.chemmater.6b02625 10.1016/j.scriptamat.2010.10.023 10.1016/j.nanoen.2017.07.041 10.1016/j.ijhydene.2010.12.044 10.1002/cssc.201501581 10.1021/jacs.7b10966 10.1016/j.jelechem.2006.11.008 10.1016/j.electacta.2015.01.005 10.1016/j.nanoen.2019.02.020 10.1021/jp811445a 10.1016/j.apcatb.2018.07.064 10.1021/ja407115p 10.1126/science.aaf9050 10.1016/j.actamat.2019.11.018 10.1021/acscatal.8b02901 10.1021/jp025868l 10.1016/j.apsusc.2015.10.082 10.1016/j.ijhydene.2009.09.015 10.1002/sia.6225 10.1021/cs3003098 10.1016/j.electacta.2011.10.044 10.1016/S0022-0728(81)80459-7 10.1002/smll.201901518 10.1021/acsnano.7b00233 10.1002/anie.201402311 10.1021/cr1002326 10.1016/j.nanoen.2017.10.033 10.1016/j.apcatb.2011.10.020 10.1021/acscentsci.8b00426 10.1021/jz501061n 10.1021/acsami.8b08717 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jcat.2020.11.038 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1090-2694 |
EndPage | 312 |
ExternalDocumentID | 10_1016_j_jcat_2020_11_038 S0021951720304929 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c399t-86bf3803e14a17340cc78e1c00369278488c4a068119043464495bf1ca6b4a4c3 |
IEDL.DBID | .~1 |
ISSN | 0021-9517 |
IngestDate | Thu Jul 10 22:07:31 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 03:14:12 EDT 2025 Fri Feb 23 02:46:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PEM electrolysis Nanoporous metals Oxygen evolution reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-86bf3803e14a17340cc78e1c00369278488c4a068119043464495bf1ca6b4a4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3641-1253 0000-0003-1769-6975 0000-0003-3162-4126 0000-0002-1793-9730 |
PQID | 2498234809 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2498234809 crossref_primary_10_1016_j_jcat_2020_11_038 crossref_citationtrail_10_1016_j_jcat_2020_11_038 elsevier_sciencedirect_doi_10_1016_j_jcat_2020_11_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of catalysis |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Rozain, Mayousse, Guillet, Millet (b0480) 2016; 182 Zhang, Zhang, Sun, Kou (b0380) 2012; 2 Stamenkovic, Strmcnik, Lopes, Markovic (b0080) 2017; 16 Fu, Zeng, Cheng, Luo (b0190) 2018; 10 Oh, Nong, Reier, Bergmann, Gliech, Ferreira de Araújo, Willinger, Schlögl, Teschner, Strasser (b0465) 2016; 138 Chang, Connell, Danilovic, Subbaraman, Chang, Stamenkovic, Markovic (b0120) 2014; 176 Shi, Zhu, Zhong, Su, Li, Engelhard, Xia, Zhang, Feng, Beckman, Du, Lin (b0215) 2018; 3 Lim, Park, Jeon, Roh, Choi, Yoon, Park, Jung, Lee (b0180) 2018; 28 Strickler, Flores, King, Nørskov, Bajdich, Jaramillo (b0240) 2019; 11 Tackett, Sheng, Kattel, Yao, Yan, Kuttiyiel, Wu, Chen (b0455) 2018; 8 Li, Zhao, Cheng, Fortunelli, Chen, Yu, Zhang, Gu, Merinov, Lin, Zhu, Yu, Jia, Guo, Zhang, Goddard, Huang, Duan (b0295) 2016; 354 Jiao, Zheng, Jaroniec, Qiao (b0075) 2015; 44 Lv, Feng, Wang, Dou, Zhang, Zhou, Yang, Luo, Yang, Li, Gao, Guo (b0235) 2018; 4 Pérez-Alonso, Adán, Rojas, Peña, Fierro (b0110) 2014; 39 Chatterjee, Griego, Hart, Li, Taheri, Keith, Snyder (b0260) 2019; 9 Xiong, Ji, Xie, You, Yang, Liu, Asiri, Sun (b0105) 2018; 86 Du, Wang, Saxner, Deskins, Su, Krzanowski, Frenkel, Teng (b0405) 2011; 133 Landman, Dotan, Shter, Wullenkord, Houaijia, Maljusch, Grader, Rothschild (b0035) 2017; 16 Mani, Srivastava, Strasser (b0340) 2011; 196 Xu, Yin, Hou, Liu, Hu (b0305) 2012; 173 Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (b0025) 2010; 110 Tan, Shen, Semagina, Secanell (b0290) 2019; 371 Freakley, Ruiz-Esquius, Morgan (b0345) 2017; 49 Li, Hart, Taheri, Snyder (b0300) 2017; 7 Stevens, Enman, Batchellor, Cosby, Vise, Trang, Boettcher (b0445) 2017; 29 Man, Su, Calle‐Vallejo, Hansen, Martínez, Inoglu, Kitchin, Jaramillo, Nørskov, Rossmeisl (b0145) 2011; 3 Xu, Liu, Li, Wang (b0205) 2012; 59 Danilovic, Subbaraman, Chang, Chang, Kang, Snyder, Paulikas, Strmcnik, Kim, Myers, Stamenkovic, Markovic (b0115) 2014; 5 Li, Zheng (b0090) 2017; 4 Doyle, Godwin, Brandon, Lyons (b0435) 2013; 15 Rossmeisl, Qu, Zhu, Kroes, Nørskov (b0130) 2007; 607 Liu, Bliznakov, Dimitrov (b0320) 2010; 157 Park, Sa, Baik, Kwon, Joo, Lee (b0275) 2017; 11 Claudel, Dubau, Berthomé, Sola-Hernandez, Beauger, Piccolo, Maillard (b0500) 2019; 9 Seitz, Dickens, Nishio, Hikita, Montoya, Doyle, Kirk, Vojvodic, Hwang, Norskov, Jaramillo (b0285) 2016; 353 Wei, Rao, Peng, Huang, Stephens, Risch, Xu, Shao‐Horn (b0420) 2019; 31 McCrory, Jung, Peters, Jaramillo (b0450) 2013; 135 Chung, Lopes, Farinazzo Bergamo Dias Martins, He, Kawaguchi, Zapol, You, Tripkovic, Strmcnik, Zhu, Seifert, Lee, Stamenkovic, Markovic (b0125) 2020; 5 Chen, Fan, Hu, Wang, Huang, Fu, Lee, Tang (b0100) 2019; 15 Suen, Hung, Quan, Zhang, Xu, Chen (b0070) 2017; 46 Abbott, Lebedev, Waltar, Povia, Nachtegaal, Fabbri, Copéret, Schmidt (b0470) 2016; 28 Kim, Choi, Kim, Hwang, Kim, Ahn, Kim (b0160) 2015; 359 Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (b0310) 2001; 410 Renner, Stierle, Dosch, Kolb, Zegenhagen (b0365) 2007; 9 Snyder, Livi, Erlebacher (b0325) 2008; 155 Chen, Guo, Fujita, Hirata, Zhang, Inoue, Chen (b0400) 2011; 21 Slavcheva, Radev, Bliznakov, Topalov, Andreev, Budevski (b0010) 2007; 52 Bredar, Chown, Burton, Farnum (b0485) 2020; 3 Jin, Hong, Yoon, Oh, Chaudhari, Baik, Joo, Lee (b0280) 2017; 42 Rossmeisl, Logadottir, Nørskov (b0135) 2005; 319 Zhao, Luo, Chu, Peng, Liu, Wu, Liu, de Groot, Tan (b0220) 2019; 59 Ankah, Pareek, Cherevko, Topalov, Rohwerder, Renner (b0370) 2012; 85 Feng, Lv, Zhang, Li, Wang, Yang, Wang, Yang, Zhou, Lin, Wang, Guo (b0230) 2017; 29 Dionigi, Reier, Pawolek, Gliech, Strasser (b0065) 2016; 9 Pattadar, Zamborini (b0375) 2019; 123 Barbir (b0055) 2005; 78 Siracusano, Di Blasi, Baglio, Brunaccini, Briguglio, Stassi, Ornelas, Trifoni, Antonucci, Aricò (b0020) 2011; 36 Kim, Lopes, Park, Lee, Lim, Lee, Back, Jung, Danilovic, Stamenkovic, Erlebacher, Snyder, Markovic (b0225) 2017; 8 Millet, Ngameni, Grigoriev, Mbemba, Brisset, Ranjbari, Etiévant (b0005) 2010; 35 McKone, Lewis, Gray (b0030) 2014; 26 Ghadge, Velikokhatnyi, Datta, Shanthi, Tan, Damodaran, Kumta (b0185) 2019; 9 Erlebacher (b0350) 2004; 151 Millet, Mbemba, Grigoriev, Fateev, Aukauloo, Etiévant (b0015) 2011; 36 Snyder, Asanithi, Dalton, Erlebacher (b0315) 2008; 20 Sanchez Casalongue, Ng, Kaya, Friebel, Ogasawara, Nilsson (b0410) 2014; 53 Jung, McCrory, Ferrer, Peters, Jaramillo (b0415) 2016; 4 Hepel (b0460) 1985; 132 Kuo, Kawasaki, Nelson, Kloppenburg, Hautier, Shen, Schlom, Suntivich (b0140) 2017; 139 Chatterjee, Anikin, Ghoshal, Hart, Li, Intikhab, Chareev, Volkova, Vasiliev, Taheri, Koratkar, Karapetrov, Snyder (b0330) 2020; 184 Intikhab, Natu, Li, Li, Tao, Rosen, Barsoum, Snyder (b0060) 2019; 371 Shi, Zhu, Du, Wang, Xia, Engelhard, Feng, Lin (b0245) 2018; 6 Peharz, Dimroth, Wittstadt (b0050) 2007; 32 Reier, Pawolek, Cherevko, Bruns, Jones, Teschner, Selve, Bergmann, Nong, Schlögl, Mayrhofer, Strasser (b0165) 2015; 137 Jia, Seitz, Benck, Huo, Chen, Ng, Bilir, Harris, Jaramillo (b0040) 2016; 7 Solà-Hernández, Claudel, Maillard, Beauger (b0210) 2019; 44 Yoon, Yan, Surendranath (b0425) 2018; 140 Pi, Shao, Zhu, Huang (b0270) 2018; 12 Detsi, van de Schootbrugge, Punzhin, Onck, De Hosson (b0355) 2011; 64 Joo, Jin, Oh, Kim, Lee, Baik, Joo, Lee (b0250) 2018; 6 Ahmadi, Dincer, Rosen (b0045) 2013; 38 Muntean, Pascal, Rost, Holtkotte, Näther, Köster, Underberg, Hülser, Brodmann (b0200) 2019; 62 Sun, Wang, Tay, Li, Huang, Zhang (b0360) 2002; 106 Yan, Zhao, Zhang, Li, Li, Wang, Feng, Tang, Yuan, Zhang, Du (b0495) 2015; 157 Li, Polakovic, Curtis, Shumlas, Chatterjee, Intikhab, Chareev, Volkova, Vasiliev, Karapetrov, Snyder (b0265) 2018; 366 Alia, Rasimick, Ngo, Neyerlin, Kocha, Pylypenko, Xu, Pivovar (b0490) 2016; 163 Mamaca, Mayousse, Arrii-Clacens, Napporn, Servat, Guillet, Kokoh (b0155) 2012; 111-112 Fu, Cheng, Luo (b0170) 2017; 5 Pi, Shao, Wang, Guo, Huang (b0175) 2017; 27 Roger, Shipman, Symes (b0085) 2017; 1 Reier, Oezaslan, Strasser (b0150) 2012; 2 Yu, Danilovic, Wang, Willis, Poozhikunnath, Bonville, Capuano, Ayers, Maric (b0475) 2018; 239 Burke, O'Sullivan (b0430) 1981; 117 Pugh, Dursun, Corcoran (b0385) 2005; 152 Wei, Sun, Mandler, Wang, Qiao, Xu (b0440) 2019; 48 Hu, Chen, Xia (b0195) 2014; 39 Chen, Cao, Du, Kuang, Huang, Xie, Zheng (b0395) 2017; 39 A.S.M. Handbook, Alloy Phase Diagram, vol. 3, 1992. Lu, Srinivasan (b0095) 1978; 125 Zhang, Wang, Qi, Zhang, Qin, Frenzel (b0335) 2009; 113 Rozain (10.1016/j.jcat.2020.11.038_b0480) 2016; 182 Pattadar (10.1016/j.jcat.2020.11.038_b0375) 2019; 123 Yoon (10.1016/j.jcat.2020.11.038_b0425) 2018; 140 Hepel (10.1016/j.jcat.2020.11.038_b0460) 1985; 132 Xu (10.1016/j.jcat.2020.11.038_b0305) 2012; 173 Zhang (10.1016/j.jcat.2020.11.038_b0380) 2012; 2 Li (10.1016/j.jcat.2020.11.038_b0295) 2016; 354 Danilovic (10.1016/j.jcat.2020.11.038_b0115) 2014; 5 Fu (10.1016/j.jcat.2020.11.038_b0170) 2017; 5 Pérez-Alonso (10.1016/j.jcat.2020.11.038_b0110) 2014; 39 Erlebacher (10.1016/j.jcat.2020.11.038_b0350) 2004; 151 Jung (10.1016/j.jcat.2020.11.038_b0415) 2016; 4 Zhao (10.1016/j.jcat.2020.11.038_b0220) 2019; 59 Landman (10.1016/j.jcat.2020.11.038_b0035) 2017; 16 Joo (10.1016/j.jcat.2020.11.038_b0250) 2018; 6 Erlebacher (10.1016/j.jcat.2020.11.038_b0310) 2001; 410 Alia (10.1016/j.jcat.2020.11.038_b0490) 2016; 163 Snyder (10.1016/j.jcat.2020.11.038_b0325) 2008; 155 Jiao (10.1016/j.jcat.2020.11.038_b0075) 2015; 44 Kim (10.1016/j.jcat.2020.11.038_b0160) 2015; 359 McKone (10.1016/j.jcat.2020.11.038_b0030) 2014; 26 Chen (10.1016/j.jcat.2020.11.038_b0100) 2019; 15 Seitz (10.1016/j.jcat.2020.11.038_b0285) 2016; 353 Tackett (10.1016/j.jcat.2020.11.038_b0455) 2018; 8 Solà-Hernández (10.1016/j.jcat.2020.11.038_b0210) 2019; 44 Shi (10.1016/j.jcat.2020.11.038_b0215) 2018; 3 Zhang (10.1016/j.jcat.2020.11.038_b0335) 2009; 113 Man (10.1016/j.jcat.2020.11.038_b0145) 2011; 3 Lim (10.1016/j.jcat.2020.11.038_b0180) 2018; 28 Kim (10.1016/j.jcat.2020.11.038_b0225) 2017; 8 Li (10.1016/j.jcat.2020.11.038_b0300) 2017; 7 Intikhab (10.1016/j.jcat.2020.11.038_b0060) 2019; 371 Chang (10.1016/j.jcat.2020.11.038_b0120) 2014; 176 Slavcheva (10.1016/j.jcat.2020.11.038_b0010) 2007; 52 Kuo (10.1016/j.jcat.2020.11.038_b0140) 2017; 139 Du (10.1016/j.jcat.2020.11.038_b0405) 2011; 133 Detsi (10.1016/j.jcat.2020.11.038_b0355) 2011; 64 Shi (10.1016/j.jcat.2020.11.038_b0245) 2018; 6 Yan (10.1016/j.jcat.2020.11.038_b0495) 2015; 157 Xu (10.1016/j.jcat.2020.11.038_b0205) 2012; 59 Chatterjee (10.1016/j.jcat.2020.11.038_b0330) 2020; 184 Wei (10.1016/j.jcat.2020.11.038_b0440) 2019; 48 Hu (10.1016/j.jcat.2020.11.038_b0195) 2014; 39 Xiong (10.1016/j.jcat.2020.11.038_b0105) 2018; 86 Li (10.1016/j.jcat.2020.11.038_b0265) 2018; 366 Jia (10.1016/j.jcat.2020.11.038_b0040) 2016; 7 Pi (10.1016/j.jcat.2020.11.038_b0270) 2018; 12 Millet (10.1016/j.jcat.2020.11.038_b0015) 2011; 36 Pi (10.1016/j.jcat.2020.11.038_b0175) 2017; 27 Lv (10.1016/j.jcat.2020.11.038_b0235) 2018; 4 Sun (10.1016/j.jcat.2020.11.038_b0360) 2002; 106 Peharz (10.1016/j.jcat.2020.11.038_b0050) 2007; 32 Sanchez Casalongue (10.1016/j.jcat.2020.11.038_b0410) 2014; 53 Chen (10.1016/j.jcat.2020.11.038_b0400) 2011; 21 Rossmeisl (10.1016/j.jcat.2020.11.038_b0130) 2007; 607 Wei (10.1016/j.jcat.2020.11.038_b0420) 2019; 31 Burke (10.1016/j.jcat.2020.11.038_b0430) 1981; 117 Ankah (10.1016/j.jcat.2020.11.038_b0370) 2012; 85 Feng (10.1016/j.jcat.2020.11.038_b0230) 2017; 29 Stevens (10.1016/j.jcat.2020.11.038_b0445) 2017; 29 Stamenkovic (10.1016/j.jcat.2020.11.038_b0080) 2017; 16 Pugh (10.1016/j.jcat.2020.11.038_b0385) 2005; 152 Barbir (10.1016/j.jcat.2020.11.038_b0055) 2005; 78 Chung (10.1016/j.jcat.2020.11.038_b0125) 2020; 5 Freakley (10.1016/j.jcat.2020.11.038_b0345) 2017; 49 McCrory (10.1016/j.jcat.2020.11.038_b0450) 2013; 135 Reier (10.1016/j.jcat.2020.11.038_b0165) 2015; 137 Ghadge (10.1016/j.jcat.2020.11.038_b0185) 2019; 9 Snyder (10.1016/j.jcat.2020.11.038_b0315) 2008; 20 Strickler (10.1016/j.jcat.2020.11.038_b0240) 2019; 11 Siracusano (10.1016/j.jcat.2020.11.038_b0020) 2011; 36 Dionigi (10.1016/j.jcat.2020.11.038_b0065) 2016; 9 Chen (10.1016/j.jcat.2020.11.038_b0395) 2017; 39 Millet (10.1016/j.jcat.2020.11.038_b0005) 2010; 35 10.1016/j.jcat.2020.11.038_b0390 Ahmadi (10.1016/j.jcat.2020.11.038_b0045) 2013; 38 Renner (10.1016/j.jcat.2020.11.038_b0365) 2007; 9 Roger (10.1016/j.jcat.2020.11.038_b0085) 2017; 1 Doyle (10.1016/j.jcat.2020.11.038_b0435) 2013; 15 Liu (10.1016/j.jcat.2020.11.038_b0320) 2010; 157 Claudel (10.1016/j.jcat.2020.11.038_b0500) 2019; 9 Yu (10.1016/j.jcat.2020.11.038_b0475) 2018; 239 Muntean (10.1016/j.jcat.2020.11.038_b0200) 2019; 62 Reier (10.1016/j.jcat.2020.11.038_b0150) 2012; 2 Rossmeisl (10.1016/j.jcat.2020.11.038_b0135) 2005; 319 Li (10.1016/j.jcat.2020.11.038_b0090) 2017; 4 Mamaca (10.1016/j.jcat.2020.11.038_b0155) 2012; 111-112 Chatterjee (10.1016/j.jcat.2020.11.038_b0260) 2019; 9 Oh (10.1016/j.jcat.2020.11.038_b0465) 2016; 138 Abbott (10.1016/j.jcat.2020.11.038_b0470) 2016; 28 Jin (10.1016/j.jcat.2020.11.038_b0280) 2017; 42 Tan (10.1016/j.jcat.2020.11.038_b0290) 2019; 371 Walter (10.1016/j.jcat.2020.11.038_b0025) 2010; 110 Park (10.1016/j.jcat.2020.11.038_b0275) 2017; 11 Suen (10.1016/j.jcat.2020.11.038_b0070) 2017; 46 Mani (10.1016/j.jcat.2020.11.038_b0340) 2011; 196 Lu (10.1016/j.jcat.2020.11.038_b0095) 1978; 125 Bredar (10.1016/j.jcat.2020.11.038_b0485) 2020; 3 Fu (10.1016/j.jcat.2020.11.038_b0190) 2018; 10 |
References_xml | – volume: 39 start-page: 5204 year: 2014 end-page: 5212 ident: b0110 article-title: Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium publication-title: Int. J. Hydrogen Energy – volume: 32 start-page: 3248 year: 2007 end-page: 3252 ident: b0050 article-title: Solar hydrogen production by water splitting with a conversion efficiency of 18% publication-title: Int. J. Hydrogen Energy – volume: 38 start-page: 1795 year: 2013 end-page: 1805 ident: b0045 article-title: Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis publication-title: Int. J. Hydrogen Energy – volume: 173 start-page: 716 year: 2012 end-page: 723 ident: b0305 article-title: Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing publication-title: Sens. Actuators, B – volume: 9 start-page: 5290 year: 2019 end-page: 5301 ident: b0260 article-title: Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO 2 to Formate publication-title: ACS Catal. – volume: 371 start-page: 325 year: 2019 end-page: 332 ident: b0060 article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes publication-title: J. Catal. – volume: 184 start-page: 79 year: 2020 end-page: 85 ident: b0330 article-title: Nanoporous metals from thermal decomposition of transition metal dichalcogenides publication-title: Acta Mater. – volume: 4 start-page: 3068 year: 2016 end-page: 3076 ident: b0415 article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction publication-title: J. Mater. Chem. A – volume: 7 year: 2016 ident: b0040 article-title: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% publication-title: Nat. Commun. – volume: 35 start-page: 5043 year: 2010 end-page: 5052 ident: b0005 article-title: PEM water electrolyzers: From electrocatalysis to stack development publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 2615 year: 2018 end-page: 2621 ident: b0455 article-title: Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores publication-title: ACS Catal. – volume: 4 start-page: 1244 year: 2018 end-page: 1252 ident: b0235 article-title: Iridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts publication-title: ACS Cent. Sci. – volume: 123 start-page: 9496 year: 2019 end-page: 9505 ident: b0375 article-title: Halide-Dependent Dealloying of Cu x /Au y Core/Shell Nanoparticles for Composition Analysis by Anodic Stripping Voltammetry publication-title: J. Phys. Chem. C – volume: 139 start-page: 3473 year: 2017 end-page: 3479 ident: b0140 article-title: Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO 2 (110) publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 3889 year: 2007 end-page: 3894 ident: b0010 article-title: Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis publication-title: Electrochim. Acta – volume: 9 start-page: 962 year: 2016 end-page: 972 ident: b0065 article-title: Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis publication-title: ChemSusChem – volume: 85 start-page: 384 year: 2012 end-page: 392 ident: b0370 article-title: The influence of halides on the initial selective dissolution of Cu3Au (111) publication-title: Electrochim. Acta – volume: 9 start-page: 4688 year: 2019 end-page: 4698 ident: b0500 article-title: Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study publication-title: ACS Catal. – volume: 26 start-page: 407 year: 2014 end-page: 414 ident: b0030 article-title: Will Solar-Driven Water-Splitting Devices See the Light of Day? publication-title: Chem. Mater. – volume: 155 start-page: C464 year: 2008 ident: b0325 article-title: Dealloying Silver/Gold Alloys in Neutral Silver Nitrate Solution: Porosity Evolution, Surface Composition, and Surface Oxides publication-title: J. Electrochem. Soc. – volume: 59 start-page: 146 year: 2019 end-page: 153 ident: b0220 article-title: 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media publication-title: Nano Energy – volume: 5 start-page: 24836 year: 2017 end-page: 24841 ident: b0170 article-title: Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting publication-title: J. Mater. Chem. A – volume: 410 start-page: 450 year: 2001 end-page: 453 ident: b0310 article-title: Evolution of nanoporosity in dealloying publication-title: Nature – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: b0025 article-title: Solar Water Splitting Cells publication-title: Chem. Rev. – volume: 359 start-page: 227 year: 2015 end-page: 235 ident: b0160 article-title: Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides publication-title: Appl. Surf. Sci. – volume: 140 start-page: 2397 year: 2018 end-page: 2400 ident: b0425 article-title: Suppressing Ion Transfer Enables Versatile Measurements of Electrochemical Surface Area for Intrinsic Activity Comparisons publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 13737 year: 2013 ident: b0435 article-title: Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes publication-title: PCCP – volume: 4 start-page: 1600380 year: 2017 ident: b0090 article-title: One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts publication-title: Adv. Sci. – volume: 86 start-page: 161 year: 2018 end-page: 165 ident: b0105 article-title: MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity publication-title: Electrochem. Commun. – volume: 157 start-page: 345 year: 2015 end-page: 350 ident: b0495 article-title: A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates publication-title: Electrochim. Acta – volume: 39 start-page: 582 year: 2017 end-page: 589 ident: b0395 article-title: Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications publication-title: Nano Energy – volume: 36 start-page: 4134 year: 2011 end-page: 4142 ident: b0015 article-title: Electrochemical performances of PEM water electrolysis cells and perspectives publication-title: Int. J. Hydrogen Energy – volume: 111-112 start-page: 376 year: 2012 end-page: 380 ident: b0155 article-title: Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction publication-title: Appl. Catal. B – volume: 9 start-page: 2134 year: 2019 end-page: 2157 ident: b0185 article-title: Experimental and Theoretical Validation of High Efficiency and Robust Electrocatalytic Response of One-Dimensional (1D) (Mn, Ir)O 2:10F Nanorods for the Oxygen Evolution Reaction in PEM-Based Water Electrolysis publication-title: ACS Catal. – volume: 182 start-page: 153 year: 2016 end-page: 160 ident: b0480 article-title: Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO 2 -based anodes publication-title: Appl. Catal. B – volume: 11 start-page: 34059 year: 2019 end-page: 34066 ident: b0240 article-title: Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 1806296 year: 2019 ident: b0420 article-title: Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells publication-title: Adv. Mater. – volume: 64 start-page: 319 year: 2011 end-page: 322 ident: b0355 article-title: On tuning the morphology of nanoporous gold publication-title: Scr. Mater. – volume: 353 start-page: 1011 year: 2016 end-page: 1014 ident: b0285 article-title: A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction publication-title: Science – volume: 132 start-page: 2385 year: 1985 ident: b0460 article-title: Irreversible Voltammetric Behavior of the (100) IrO[sub 2] Single-Crystal Electrodes in Sulfuric Acid Medium publication-title: J. Electrochem. Soc. – volume: 106 start-page: 10701 year: 2002 end-page: 10705 ident: b0360 article-title: Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom publication-title: J. Phys. Chem. B – volume: 163 start-page: F3105 year: 2016 end-page: F3112 ident: b0490 article-title: Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction publication-title: J. Electrochem. Soc. – volume: 12 start-page: 7371 year: 2018 end-page: 7379 ident: b0270 article-title: Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis publication-title: ACS Nano – volume: 113 start-page: 12629 year: 2009 end-page: 12636 ident: b0335 article-title: Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying publication-title: J. Phys. Chem. C – volume: 117 start-page: 155 year: 1981 end-page: 160 ident: b0430 article-title: Oxygen gas evolution on hydrous oxides — An example of three-dimensional electrocatalysis? publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 196 start-page: 666 year: 2011 end-page: 673 ident: b0340 article-title: Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells publication-title: J. Power Sources – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: b0075 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. – volume: 53 start-page: 7169 year: 2014 end-page: 7172 ident: b0410 article-title: In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction publication-title: Angew. Chemie Int. Ed. – volume: 29 start-page: 120 year: 2017 end-page: 140 ident: b0445 article-title: Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts publication-title: Chem. Mater. – volume: 366 start-page: 50 year: 2018 end-page: 60 ident: b0265 article-title: Tuning the activity/stability balance of anion doped CoS Se2− dichalcogenides publication-title: J. Catal. – reference: A.S.M. Handbook, Alloy Phase Diagram, vol. 3, 1992. – volume: 354 start-page: 1414 year: 2016 end-page: 1419 ident: b0295 article-title: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction publication-title: Science – volume: 16 start-page: 646 year: 2017 end-page: 651 ident: b0035 article-title: Photoelectrochemical water splitting in separate oxygen and hydrogen cells publication-title: Nature Mater – volume: 28 start-page: 6591 year: 2016 end-page: 6604 ident: b0470 article-title: Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS publication-title: Chem. Mater. – volume: 10 start-page: 24993 year: 2018 end-page: 24998 ident: b0190 article-title: IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 794 year: 2017 end-page: 799 ident: b0345 article-title: The X-ray photoelectron spectra of Ir, IrO 2 and IrCl 3 revisited : The X-ray photoelectron spectra of Ir, IrO 2 and IrCl 3 revisited publication-title: Surf. Interface Anal. – volume: 2 start-page: 1765 year: 2012 end-page: 1772 ident: b0150 article-title: Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials publication-title: ACS Catal. – volume: 6 start-page: 8855 year: 2018 end-page: 8859 ident: b0245 article-title: Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range publication-title: J. Mater. Chem. A – volume: 28 start-page: 1704796 year: 2018 ident: b0180 article-title: Ultrathin IrO 2 Nanoneedles for Electrochemical Water Oxidation publication-title: Adv. Funct. Mater. – volume: 8 year: 2017 ident: b0225 article-title: Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts publication-title: Nat. Commun. – volume: 15 start-page: 1901518 year: 2019 ident: b0100 article-title: Hierarchically Porous Co/Co x M y (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries publication-title: Small – volume: 27 start-page: 1700886 year: 2017 ident: b0175 article-title: General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting publication-title: Adv. Funct. Mater. – volume: 2 start-page: 4481 year: 2012 ident: b0380 article-title: Influence of anion species on electrochemical dealloying of single-phase Al2Au alloy in sodium halide solutions publication-title: RSC Adv. – volume: 137 start-page: 13031 year: 2015 end-page: 13040 ident: b0165 article-title: Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER) publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 222 year: 2020 end-page: 230 ident: b0125 article-title: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction publication-title: Nat. Energy – volume: 319 start-page: 178 year: 2005 end-page: 184 ident: b0135 article-title: Electrolysis of water on (oxidized) metal surfaces publication-title: Chem. Phys. – volume: 44 start-page: 24331 year: 2019 end-page: 24341 ident: b0210 article-title: Doped tin oxide aerogels as oxygen evolution reaction catalyst supports publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 16130 year: 2018 end-page: 16138 ident: b0250 article-title: An IrRu alloy nanocactus on Cu 2−x S@IrS y as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes publication-title: J. Mater. Chem. A – volume: 39 start-page: 6967 year: 2014 end-page: 6976 ident: b0195 article-title: IrO2/Nb–TiO2 electrocatalyst for oxygen evolution reaction in acidic medium publication-title: Int. J. Hydrogen Energy – volume: 29 start-page: 1703798 year: 2017 ident: b0230 article-title: Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis publication-title: Adv. Mater. – volume: 5 start-page: 2474 year: 2014 end-page: 2478 ident: b0115 article-title: Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments publication-title: J. Phys. Chem. Lett. – volume: 152 start-page: B455 year: 2005 ident: b0385 article-title: Electrochemical and Morphological Characterization of Pt–Cu Dealloying publication-title: J. Electrochem. Soc. – volume: 59 start-page: 105 year: 2012 end-page: 112 ident: b0205 article-title: The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction publication-title: Electrochim. Acta – volume: 157 start-page: K168 year: 2010 ident: b0320 article-title: Factors Controlling the Less Noble Metal Retention in Nanoporous Structures Processed by Electrochemical Dealloying publication-title: J. Electrochem. Soc. – volume: 135 start-page: 16977 year: 2013 end-page: 16987 ident: b0450 article-title: Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2038 year: 2018 end-page: 2044 ident: b0215 article-title: Nanovoid Incorporated Ir x Cu Metallic Aerogels for Oxygen Evolution Reaction Catalysis publication-title: ACS Energy Lett. – volume: 16 start-page: 57 year: 2017 end-page: 69 ident: b0080 article-title: Energy and fuels from electrochemical interfaces publication-title: Nature Mater – volume: 48 start-page: 2518 year: 2019 end-page: 2534 ident: b0440 article-title: Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity publication-title: Chem. Soc. Rev. – volume: 11 start-page: 5500 year: 2017 end-page: 5509 ident: b0275 article-title: Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction publication-title: ACS Nano – volume: 42 start-page: 17 year: 2017 end-page: 25 ident: b0280 article-title: Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis publication-title: Nano Energy – volume: 20 start-page: 4883 year: 2008 end-page: 4886 ident: b0315 article-title: Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors publication-title: Adv. Mater. – volume: 78 start-page: 661 year: 2005 end-page: 669 ident: b0055 article-title: PEM electrolysis for production of hydrogen from renewable energy sources publication-title: Sol. Energy – volume: 133 start-page: 15172 year: 2011 end-page: 15183 ident: b0405 article-title: Highly Active Iridium/Iridium–Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction publication-title: J. Am. Chem. Soc. – volume: 371 start-page: 57 year: 2019 end-page: 70 ident: b0290 article-title: Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction publication-title: J. Catal. – volume: 125 start-page: 265 year: 1978 end-page: 270 ident: b0095 article-title: Nickel‐Based Alloys as Electrocatalysts for Oxygen Evolution from Alkaline Solutions publication-title: J. Electrochem. Soc. – volume: 7 start-page: 7995 year: 2017 end-page: 8005 ident: b0300 article-title: Morphological Instability in Topologically Complex, Three-Dimensional Electrocatalytic Nanostructures publication-title: ACS Catal. – volume: 239 start-page: 133 year: 2018 end-page: 146 ident: b0475 article-title: Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading publication-title: Appl. Catal. B – volume: 176 start-page: 125 year: 2014 end-page: 133 ident: b0120 article-title: Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction publication-title: Faraday Discuss. – volume: 151 start-page: C614 year: 2004 ident: b0350 article-title: An Atomistic Description of Dealloying publication-title: J. Electrochem. Soc. – volume: 1 year: 2017 ident: b0085 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. – volume: 36 start-page: 3333 year: 2011 end-page: 3339 ident: b0020 article-title: Optimization of components and assembling in a PEM electrolyzer stack publication-title: Int. J. Hydrogen Energy – volume: 21 start-page: 4364 year: 2011 end-page: 4370 ident: b0400 article-title: Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions publication-title: Adv. Funct. Mater. – volume: 3 start-page: 66 year: 2020 end-page: 98 ident: b0485 article-title: Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications publication-title: ACS Appl. Energy Mater. – volume: 62 start-page: 429 year: 2019 end-page: 438 ident: b0200 article-title: Investigation of Iridium Nanoparticles Supported on Sub-stoichiometric Titanium Oxides as Anodic Electrocatalysts in PEM Electrolysis. Part I.: Synthesis and Characterization publication-title: Top. Catal. – volume: 138 start-page: 12552 year: 2016 end-page: 12563 ident: b0465 article-title: Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO x Nanoparticle Catalysts during the Oxygen Evolution Reaction publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: b0070 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1639 year: 2007 end-page: 1642 ident: b0365 article-title: The influence of chloride on the initial anodic dissolution of Cu3Au(111) publication-title: Electrochem. Commun. – volume: 607 start-page: 83 year: 2007 end-page: 89 ident: b0130 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. – volume: 3 start-page: 1159 year: 2011 end-page: 1165 ident: b0145 article-title: Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces publication-title: ChemCatChem – volume: 46 start-page: 337 issue: 2 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0070 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 9 start-page: 5290 issue: 6 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0260 article-title: Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO 2 to Formate publication-title: ACS Catal. doi: 10.1021/acscatal.9b00330 – volume: 3 start-page: 66 issue: 1 year: 2020 ident: 10.1016/j.jcat.2020.11.038_b0485 article-title: Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01965 – volume: 155 start-page: C464 issue: 8 year: 2008 ident: 10.1016/j.jcat.2020.11.038_b0325 article-title: Dealloying Silver/Gold Alloys in Neutral Silver Nitrate Solution: Porosity Evolution, Surface Composition, and Surface Oxides publication-title: J. Electrochem. Soc. doi: 10.1149/1.2940319 – volume: 52 start-page: 3889 issue: 12 year: 2007 ident: 10.1016/j.jcat.2020.11.038_b0010 article-title: Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.11.005 – volume: 62 start-page: 429 issue: 5-6 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0200 article-title: Investigation of Iridium Nanoparticles Supported on Sub-stoichiometric Titanium Oxides as Anodic Electrocatalysts in PEM Electrolysis. Part I.: Synthesis and Characterization publication-title: Top. Catal. doi: 10.1007/s11244-019-01164-3 – volume: 196 start-page: 666 issue: 2 year: 2011 ident: 10.1016/j.jcat.2020.11.038_b0340 article-title: Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.07.047 – volume: 12 start-page: 7371 issue: 7 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0270 article-title: Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis publication-title: ACS Nano doi: 10.1021/acsnano.8b04023 – volume: 138 start-page: 12552 issue: 38 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0465 article-title: Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO x Nanoparticle Catalysts during the Oxygen Evolution Reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07199 – volume: 137 start-page: 13031 issue: 40 year: 2015 ident: 10.1016/j.jcat.2020.11.038_b0165 article-title: Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER) publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07788 – volume: 29 start-page: 120 issue: 1 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0445 article-title: Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02796 – volume: 15 start-page: 13737 issue: 33 year: 2013 ident: 10.1016/j.jcat.2020.11.038_b0435 article-title: Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes publication-title: PCCP doi: 10.1039/c3cp51213d – volume: 3 start-page: 2038 issue: 9 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0215 article-title: Nanovoid Incorporated Ir x Cu Metallic Aerogels for Oxygen Evolution Reaction Catalysis publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01338 – volume: 7 issue: 1 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0040 article-title: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% publication-title: Nat. Commun. doi: 10.1038/ncomms13237 – volume: 139 start-page: 3473 issue: 9 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0140 article-title: Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO 2 (110) publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11932 – volume: 371 start-page: 57 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0290 article-title: Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction publication-title: J. Catal. doi: 10.1016/j.jcat.2019.01.018 – volume: 5 start-page: 222 issue: 3 year: 2020 ident: 10.1016/j.jcat.2020.11.038_b0125 article-title: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction publication-title: Nat. Energy doi: 10.1038/s41560-020-0576-y – volume: 26 start-page: 407 issue: 1 year: 2014 ident: 10.1016/j.jcat.2020.11.038_b0030 article-title: Will Solar-Driven Water-Splitting Devices See the Light of Day? publication-title: Chem. Mater. doi: 10.1021/cm4021518 – volume: 182 start-page: 153 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0480 article-title: Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO 2 -based anodes publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.09.013 – volume: 9 start-page: 4688 issue: 5 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0500 article-title: Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study publication-title: ACS Catal. doi: 10.1021/acscatal.9b00280 – volume: 27 start-page: 1700886 issue: 27 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0175 article-title: General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700886 – volume: 366 start-page: 50 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0265 article-title: Tuning the activity/stability balance of anion doped CoS Se2− dichalcogenides publication-title: J. Catal. doi: 10.1016/j.jcat.2018.07.030 – volume: 21 start-page: 4364 issue: 22 year: 2011 ident: 10.1016/j.jcat.2020.11.038_b0400 article-title: Nanoporous PdNi Bimetallic Catalyst with Enhanced Electrocatalytic Performances for Electro-oxidation and Oxygen Reduction Reactions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101227 – volume: 31 start-page: 1806296 issue: 31 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0420 article-title: Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells publication-title: Adv. Mater. doi: 10.1002/adma.201806296 – volume: 36 start-page: 4134 issue: 6 year: 2011 ident: 10.1016/j.jcat.2020.11.038_b0015 article-title: Electrochemical performances of PEM water electrolysis cells and perspectives publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.06.105 – volume: 11 start-page: 34059 issue: 37 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0240 article-title: Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13697 – volume: 9 start-page: 1639 issue: 7 year: 2007 ident: 10.1016/j.jcat.2020.11.038_b0365 article-title: The influence of chloride on the initial anodic dissolution of Cu3Au(111) publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2007.03.001 – volume: 16 start-page: 646 issue: 6 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0035 article-title: Photoelectrochemical water splitting in separate oxygen and hydrogen cells publication-title: Nature Mater doi: 10.1038/nmat4876 – volume: 371 start-page: 325 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0060 article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes publication-title: J. Catal. doi: 10.1016/j.jcat.2019.01.037 – volume: 4 start-page: 1600380 issue: 3 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0090 article-title: One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts publication-title: Adv. Sci. doi: 10.1002/advs.201600380 – volume: 8 start-page: 2615 issue: 3 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0455 article-title: Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores publication-title: ACS Catal. doi: 10.1021/acscatal.7b04410 – volume: 3 start-page: 1159 issue: 7 year: 2011 ident: 10.1016/j.jcat.2020.11.038_b0145 article-title: Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces publication-title: ChemCatChem doi: 10.1002/cctc.201000397 – volume: 173 start-page: 716 year: 2012 ident: 10.1016/j.jcat.2020.11.038_b0305 article-title: Facile fabrication of nanoporous platinum by alloying–dealloying process and its application in glucose sensing publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2012.07.071 – volume: 7 start-page: 7995 issue: 11 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0300 article-title: Morphological Instability in Topologically Complex, Three-Dimensional Electrocatalytic Nanostructures publication-title: ACS Catal. doi: 10.1021/acscatal.7b02398 – volume: 44 start-page: 2060 issue: 8 year: 2015 ident: 10.1016/j.jcat.2020.11.038_b0075 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 125 start-page: 265 issue: 2 year: 1978 ident: 10.1016/j.jcat.2020.11.038_b0095 article-title: Nickel‐Based Alloys as Electrocatalysts for Oxygen Evolution from Alkaline Solutions publication-title: J. Electrochem. Soc. doi: 10.1149/1.2131426 – volume: 78 start-page: 661 issue: 5 year: 2005 ident: 10.1016/j.jcat.2020.11.038_b0055 article-title: PEM electrolysis for production of hydrogen from renewable energy sources publication-title: Sol. Energy doi: 10.1016/j.solener.2004.09.003 – volume: 163 start-page: F3105 issue: 11 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0490 article-title: Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction publication-title: J. Electrochem. Soc. doi: 10.1149/2.0151611jes – volume: 1 issue: 1 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0085 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – ident: 10.1016/j.jcat.2020.11.038_b0390 – volume: 133 start-page: 15172 issue: 38 year: 2011 ident: 10.1016/j.jcat.2020.11.038_b0405 article-title: Highly Active Iridium/Iridium–Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205649z – volume: 32 start-page: 3248 issue: 15 year: 2007 ident: 10.1016/j.jcat.2020.11.038_b0050 article-title: Solar hydrogen production by water splitting with a conversion efficiency of 18% publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.04.036 – volume: 410 start-page: 450 issue: 6827 year: 2001 ident: 10.1016/j.jcat.2020.11.038_b0310 article-title: Evolution of nanoporosity in dealloying publication-title: Nature doi: 10.1038/35068529 – volume: 8 issue: 1 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0225 article-title: Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-017-01734-7 – volume: 176 start-page: 125 year: 2014 ident: 10.1016/j.jcat.2020.11.038_b0120 article-title: Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction publication-title: Faraday Discuss. doi: 10.1039/C4FD00134F – volume: 151 start-page: C614 issue: 10 year: 2004 ident: 10.1016/j.jcat.2020.11.038_b0350 article-title: An Atomistic Description of Dealloying publication-title: J. Electrochem. Soc. doi: 10.1149/1.1784820 – volume: 48 start-page: 2518 issue: 9 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0440 article-title: Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00848E – volume: 2 start-page: 4481 issue: 10 year: 2012 ident: 10.1016/j.jcat.2020.11.038_b0380 article-title: Influence of anion species on electrochemical dealloying of single-phase Al2Au alloy in sodium halide solutions publication-title: RSC Adv. doi: 10.1039/c2ra20087b – volume: 4 start-page: 3068 issue: 8 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0415 article-title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07586F – volume: 152 start-page: B455 issue: 11 year: 2005 ident: 10.1016/j.jcat.2020.11.038_b0385 article-title: Electrochemical and Morphological Characterization of Pt–Cu Dealloying publication-title: J. Electrochem. Soc. doi: 10.1149/1.2048140 – volume: 29 start-page: 1703798 issue: 47 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0230 article-title: Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis publication-title: Adv. Mater. doi: 10.1002/adma.201703798 – volume: 132 start-page: 2385 year: 1985 ident: 10.1016/j.jcat.2020.11.038_b0460 article-title: Irreversible Voltammetric Behavior of the (100) IrO[sub 2] Single-Crystal Electrodes in Sulfuric Acid Medium publication-title: J. Electrochem. Soc. doi: 10.1149/1.2113583 – volume: 6 start-page: 8855 issue: 19 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0245 article-title: Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01288A – volume: 28 start-page: 1704796 issue: 4 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0180 article-title: Ultrathin IrO 2 Nanoneedles for Electrochemical Water Oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704796 – volume: 39 start-page: 6967 issue: 13 year: 2014 ident: 10.1016/j.jcat.2020.11.038_b0195 article-title: IrO2/Nb–TiO2 electrocatalyst for oxygen evolution reaction in acidic medium publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.114 – volume: 39 start-page: 5204 issue: 10 year: 2014 ident: 10.1016/j.jcat.2020.11.038_b0110 article-title: Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.186 – volume: 319 start-page: 178 issue: 1-3 year: 2005 ident: 10.1016/j.jcat.2020.11.038_b0135 article-title: Electrolysis of water on (oxidized) metal surfaces publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.05.038 – volume: 38 start-page: 1795 issue: 4 year: 2013 ident: 10.1016/j.jcat.2020.11.038_b0045 article-title: Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.11.025 – volume: 86 start-page: 161 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0105 article-title: MnO2-CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.12.008 – volume: 16 start-page: 57 issue: 1 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0080 article-title: Energy and fuels from electrochemical interfaces publication-title: Nature Mater doi: 10.1038/nmat4738 – volume: 85 start-page: 384 year: 2012 ident: 10.1016/j.jcat.2020.11.038_b0370 article-title: The influence of halides on the initial selective dissolution of Cu3Au (111) publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.08.059 – volume: 353 start-page: 1011 issue: 6303 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0285 article-title: A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction publication-title: Science doi: 10.1126/science.aaf5050 – volume: 5 start-page: 24836 issue: 47 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0170 article-title: Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08982A – volume: 157 start-page: K168 issue: 8 year: 2010 ident: 10.1016/j.jcat.2020.11.038_b0320 article-title: Factors Controlling the Less Noble Metal Retention in Nanoporous Structures Processed by Electrochemical Dealloying publication-title: J. Electrochem. Soc. doi: 10.1149/1.3454753 – volume: 123 start-page: 9496 issue: 14 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0375 article-title: Halide-Dependent Dealloying of Cu x /Au y Core/Shell Nanoparticles for Composition Analysis by Anodic Stripping Voltammetry publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b12174 – volume: 44 start-page: 24331 issue: 45 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0210 article-title: Doped tin oxide aerogels as oxygen evolution reaction catalyst supports publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.07.152 – volume: 6 start-page: 16130 issue: 33 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0250 article-title: An IrRu alloy nanocactus on Cu 2−x S@IrS y as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04886J – volume: 20 start-page: 4883 issue: 24 year: 2008 ident: 10.1016/j.jcat.2020.11.038_b0315 article-title: Stabilized Nanoporous Metals by Dealloying Ternary Alloy Precursors publication-title: Adv. Mater. doi: 10.1002/adma.200702760 – volume: 28 start-page: 6591 issue: 18 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0470 article-title: Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02625 – volume: 64 start-page: 319 issue: 4 year: 2011 ident: 10.1016/j.jcat.2020.11.038_b0355 article-title: On tuning the morphology of nanoporous gold publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.10.023 – volume: 39 start-page: 582 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0395 article-title: Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.041 – volume: 36 start-page: 3333 issue: 5 year: 2011 ident: 10.1016/j.jcat.2020.11.038_b0020 article-title: Optimization of components and assembling in a PEM electrolyzer stack publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.044 – volume: 9 start-page: 962 issue: 9 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0065 article-title: Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis publication-title: ChemSusChem doi: 10.1002/cssc.201501581 – volume: 140 start-page: 2397 issue: 7 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0425 article-title: Suppressing Ion Transfer Enables Versatile Measurements of Electrochemical Surface Area for Intrinsic Activity Comparisons publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10966 – volume: 607 start-page: 83 issue: 1-2 year: 2007 ident: 10.1016/j.jcat.2020.11.038_b0130 article-title: Electrolysis of water on oxide surfaces publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2006.11.008 – volume: 157 start-page: 345 year: 2015 ident: 10.1016/j.jcat.2020.11.038_b0495 article-title: A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.005 – volume: 59 start-page: 146 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0220 article-title: 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.020 – volume: 113 start-page: 12629 issue: 29 year: 2009 ident: 10.1016/j.jcat.2020.11.038_b0335 article-title: Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying publication-title: J. Phys. Chem. C doi: 10.1021/jp811445a – volume: 239 start-page: 133 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0475 article-title: Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.07.064 – volume: 135 start-page: 16977 issue: 45 year: 2013 ident: 10.1016/j.jcat.2020.11.038_b0450 article-title: Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 354 start-page: 1414 issue: 6318 year: 2016 ident: 10.1016/j.jcat.2020.11.038_b0295 article-title: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction publication-title: Science doi: 10.1126/science.aaf9050 – volume: 184 start-page: 79 year: 2020 ident: 10.1016/j.jcat.2020.11.038_b0330 article-title: Nanoporous metals from thermal decomposition of transition metal dichalcogenides publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.11.018 – volume: 9 start-page: 2134 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0185 article-title: Experimental and Theoretical Validation of High Efficiency and Robust Electrocatalytic Response of One-Dimensional (1D) (Mn, Ir)O 2:10F Nanorods for the Oxygen Evolution Reaction in PEM-Based Water Electrolysis publication-title: ACS Catal. doi: 10.1021/acscatal.8b02901 – volume: 106 start-page: 10701 issue: 41 year: 2002 ident: 10.1016/j.jcat.2020.11.038_b0360 article-title: Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom publication-title: J. Phys. Chem. B doi: 10.1021/jp025868l – volume: 359 start-page: 227 year: 2015 ident: 10.1016/j.jcat.2020.11.038_b0160 article-title: Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.10.082 – volume: 35 start-page: 5043 issue: 10 year: 2010 ident: 10.1016/j.jcat.2020.11.038_b0005 article-title: PEM water electrolyzers: From electrocatalysis to stack development publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.09.015 – volume: 49 start-page: 794 issue: 8 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0345 article-title: The X-ray photoelectron spectra of Ir, IrO 2 and IrCl 3 revisited : The X-ray photoelectron spectra of Ir, IrO 2 and IrCl 3 revisited publication-title: Surf. Interface Anal. doi: 10.1002/sia.6225 – volume: 2 start-page: 1765 issue: 8 year: 2012 ident: 10.1016/j.jcat.2020.11.038_b0150 article-title: Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials publication-title: ACS Catal. doi: 10.1021/cs3003098 – volume: 59 start-page: 105 year: 2012 ident: 10.1016/j.jcat.2020.11.038_b0205 article-title: The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.10.044 – volume: 117 start-page: 155 issue: 1 year: 1981 ident: 10.1016/j.jcat.2020.11.038_b0430 article-title: Oxygen gas evolution on hydrous oxides — An example of three-dimensional electrocatalysis? publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/S0022-0728(81)80459-7 – volume: 15 start-page: 1901518 issue: 28 year: 2019 ident: 10.1016/j.jcat.2020.11.038_b0100 article-title: Hierarchically Porous Co/Co x M y (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries publication-title: Small doi: 10.1002/smll.201901518 – volume: 11 start-page: 5500 issue: 6 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0275 article-title: Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction publication-title: ACS Nano doi: 10.1021/acsnano.7b00233 – volume: 53 start-page: 7169 year: 2014 ident: 10.1016/j.jcat.2020.11.038_b0410 article-title: In Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction publication-title: Angew. Chemie Int. Ed. doi: 10.1002/anie.201402311 – volume: 110 start-page: 6446 issue: 11 year: 2010 ident: 10.1016/j.jcat.2020.11.038_b0025 article-title: Solar Water Splitting Cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 42 start-page: 17 year: 2017 ident: 10.1016/j.jcat.2020.11.038_b0280 article-title: Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.033 – volume: 111-112 start-page: 376 year: 2012 ident: 10.1016/j.jcat.2020.11.038_b0155 article-title: Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2011.10.020 – volume: 4 start-page: 1244 issue: 9 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0235 article-title: Iridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00426 – volume: 5 start-page: 2474 issue: 14 year: 2014 ident: 10.1016/j.jcat.2020.11.038_b0115 article-title: Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501061n – volume: 10 start-page: 24993 issue: 30 year: 2018 ident: 10.1016/j.jcat.2020.11.038_b0190 article-title: IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b08717 |
SSID | ssj0011558 |
Score | 2.4672365 |
Snippet | [Display omitted]
•Electrolyte additives drive the propagation of etch fronts in high melting alloys during dealloying.•Free standing np-Ir electrodes exhibit... The dearth of appropriate electrocatalysts for stable anodic water splitting, oxygen evolution reaction (OER), in acid has given rise to concerted efforts... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 303 |
SubjectTerms | alloys catalysts catalytic activity durability electrodes iridium nanopores Nanoporous metals oxides Oxygen evolution reaction oxygen production PEM electrolysis water |
Title | Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions |
URI | https://dx.doi.org/10.1016/j.jcat.2020.11.038 https://www.proquest.com/docview/2498234809 |
Volume | 393 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_EgPvFNBG9Sbdokmx5lUXYVPCl4C0mahZW1q9tV3Iu_3Zk0XVTEg9BTSUrpN5355hlCTpjqeM64Tcpi4BKepTwpHMuSMpfCCjYQzIVqi1vZu-fXD-JhgXTbXhgsq4y6v9HpQVvHO-fxa54_D4fY4wt_m2CYRwSam2ETH-cdlPKzj3mZBxAe0WhjLEWA1bFxpqnxesToHrj_qDnOUuxR-d04_VDTwfZcrZHVSBrpRfNe62TBVxtkudue1bZBVr6MFdwkL6Ayx8CrwamnoWDwyQPFHg0d7U8oJtpnNTU19WF6BBgdaqqSAku0I0_jsTghqjOrpzUFUkuNG5awe_w-A3Gj_i2KKwXCGdoi6i1yf3V51-0l8WiFxAEjmSZK2kGu0twzblgn56lzHeUBFzBoBeYilXLcpFIxIAw858CaCmEHzBlpueEu3yaL1bjyO4QyW0ivSpsZnO2njDLGSJ9ZJiUXSqa7hLXfVLs4dxyPvxjptsDsUSMOGnEAh0QDDrvkdL7nuZm68edq0UKlv8mOBrPw577jFlcNeGGmxFQesNHgk6os5yot9v757H0MAIRIDVwHZHE6efWHQF-m9ijI5xFZuujf9G4_AWx47xA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YlvI3iTatMm2fQoi7LrY08K3kKSZmFl7apdxf33TtpUVMSD19IpJd9k5kvmBXBEZdsxykyUZwMbsSRmUWZpEuWp4IbTAae2yrboi-4du7zn9zPQaWphfFplsP21Ta-sdXhyGlbz9Gk49DW-uNs49XFEpLlJNgtzvjsVb8HcWe-q2_8MJqDLrA2yz0ZAgVA7U6d5PfgLvgRJ04lv5unLVH73Tz8sdeV-LpZhKfBGclb_2grMuGIV5jvNuLZVWPzSWXANntFqjpFa47meVDmDjw5Z9mhoSe-F-Fj7tCS6JK5qIIF-h-giJ0gUzciRMBmnutiZlpOSIK8l2g5zlB6_T1HjiHsLGkuQc1aVEeU63F2c33a6UZiuEFkkJZNICjNIZZw6yjRtpyy2ti0dQoM-LfPhSCkt07GQFDkDSxkSp4ybAbVaGKaZTTegVYwLtwmEmkw4mZtE-_Z-UkuttXCJoUIwLkW8BbRZU2VD63E_AWOkmhyzB-VxUB4HPJMoxGELjj9lnurGG3--zRuo1Df1UegZ_pQ7bHBViJcPlujCITYKj6UySZmMs-1_fvsA5ru3N9fqute_2oGFxKtfdXezC63Jy6vbQzYzMftBWz8AoEHxxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+multimetallic+Ir+alloys+as+efficient+and+stable+electrocatalysts+for+acidic+oxygen+evolution+reactions&rft.jtitle=Journal+of+catalysis&rft.au=Chatterjee%2C+Swarnendu&rft.au=Intikhab%2C+Saad&rft.au=Profitt%2C+Lauren&rft.au=Li%2C+Yawei&rft.date=2021-01-01&rft.issn=0021-9517&rft.volume=393+p.303-312&rft.spage=303&rft.epage=312&rft_id=info:doi/10.1016%2Fj.jcat.2020.11.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |