Random forest for ordinal responses: Prediction and variable selection
The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt variable importance measures. It can be applied to various kinds of regression problems including nominal, metric and survival response variabl...
Saved in:
Published in | Computational statistics & data analysis Vol. 96; pp. 57 - 73 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt variable importance measures. It can be applied to various kinds of regression problems including nominal, metric and survival response variables. While classification and regression problems using random forest methodology have been extensively investigated in the past, in the case of ordinal response there is no standard procedure. Extensive studies using random forest based on conditional inference trees are conducted to explore whether incorporating the ordering information yields any improvement in both prediction performance or variable selection. Two novel permutation variable importance measures are presented that are reasonable alternatives to the currently implemented importance measure which was developed for nominal response and makes no use of the ordering in the levels of an ordinal response variable. Results based on simulated and real data suggest that predictor rankings can be improved in some settings by using new permutation importance measures that explicitly use the ordering in the response levels in combination with ordinal regression trees. With respect to prediction accuracy, the performance of ordinal regression trees was similar to and in most settings even slightly better than that of classification trees. |
---|---|
AbstractList | The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt variable importance measures. It can be applied to various kinds of regression problems including nominal, metric and survival response variables. While classification and regression problems using random forest methodology have been extensively investigated in the past, in the case of ordinal response there is no standard procedure. Extensive studies using random forest based on conditional inference trees are conducted to explore whether incorporating the ordering information yields any improvement in both prediction performance or variable selection. Two novel permutation variable importance measures are presented that are reasonable alternatives to the currently implemented importance measure which was developed for nominal response and makes no use of the ordering in the levels of an ordinal response variable. Results based on simulated and real data suggest that predictor rankings can be improved in some settings by using new permutation importance measures that explicitly use the ordering in the response levels in combination with ordinal regression trees. With respect to prediction accuracy, the performance of ordinal regression trees was similar to and in most settings even slightly better than that of classification trees. |
Author | Janitza, Silke Tutz, Gerhard Boulesteix, Anne-Laure |
Author_xml | – sequence: 1 givenname: Silke orcidid: 0000-0003-0948-1501 surname: Janitza fullname: Janitza, Silke email: janitza@ibe.med.uni-muenchen.de organization: Department of Medical Informatics, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, D-81377 Munich, Germany – sequence: 2 givenname: Gerhard surname: Tutz fullname: Tutz, Gerhard organization: Department of Statistics, University of Munich, Akademiestr. 1, D-80799 Munich, Germany – sequence: 3 givenname: Anne-Laure surname: Boulesteix fullname: Boulesteix, Anne-Laure organization: Department of Medical Informatics, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, D-81377 Munich, Germany |
BookMark | eNp9kE1LAzEQhoNUsK3-AU979LJrPjabrHiRYlUoKKLnkCazkLJNarIt-O_NWk8eehp4eZ9h5pmhiQ8eELomuCKYNLebyiSrK4oJz0GFMT9DUyIFLQXjdIKmuSTKthbsAs1S2mCMaS3kFC3ftbdhW3QhQhrGUYRondd9kYNd8AnSXfEWwTozuOCLXC8OOjq97qFI0MNvfInOO90nuPqbc_S5fPxYPJer16eXxcOqNKxth1I2XEhea45b2nEiNbMgJe-AGW6xXIOsG26YbSSXhHYdY0bXLWWwrrVohWVzdHPcu4vha58vVluXDPS99hD2SVHKGaV5Cc9VeqyaGFKK0KlddFsdvxXBapSmNmqUpkZpY5alZUj-g4wb9PjhELXrT6P3RxTy_wcHUSXjwJtsLmZJygZ3Cv8BLz-Jpg |
CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106337 crossref_primary_10_1016_j_measurement_2016_07_070 crossref_primary_10_1111_oik_10166 crossref_primary_10_2174_0118722121285572240510100826 crossref_primary_10_1021_acs_analchem_3c04421 crossref_primary_10_1016_j_sciaf_2023_e01739 crossref_primary_10_1016_j_cej_2025_161634 crossref_primary_10_1016_j_conbuildmat_2022_130065 crossref_primary_10_1016_j_asr_2024_03_047 crossref_primary_10_1016_j_isprsjprs_2021_11_015 crossref_primary_10_1039_D0AN02045A crossref_primary_10_1039_C9AY00926D crossref_primary_10_3389_fmars_2021_771071 crossref_primary_10_1016_j_artmed_2017_09_005 crossref_primary_10_1016_j_ekir_2019_06_009 crossref_primary_10_3390_su14116651 crossref_primary_10_1109_ACCESS_2021_3062033 crossref_primary_10_1016_j_matpr_2021_12_020 crossref_primary_10_1016_j_fuel_2018_03_005 crossref_primary_10_1016_j_inpa_2021_09_004 crossref_primary_10_1007_s11135_016_0428_9 crossref_primary_10_1007_s00357_024_09497_9 crossref_primary_10_3390_w11050910 crossref_primary_10_1016_j_jenvman_2025_124146 crossref_primary_10_1111_ecog_06772 crossref_primary_10_1016_j_renene_2024_122029 crossref_primary_10_1111_bmsp_12375 crossref_primary_10_1016_j_asoc_2017_06_030 crossref_primary_10_1007_s12145_024_01623_w crossref_primary_10_3390_s23073536 crossref_primary_10_1016_j_energy_2021_121049 crossref_primary_10_1007_s11831_024_10088_5 crossref_primary_10_1016_j_conbuildmat_2019_03_189 crossref_primary_10_3390_math9070771 crossref_primary_10_1088_1742_6596_1911_1_012026 crossref_primary_10_2166_wst_2024_393 crossref_primary_10_1016_j_chemolab_2022_104679 crossref_primary_10_1111_ddi_12901 crossref_primary_10_34172_ajdr_1766 crossref_primary_10_1007_s10792_022_02246_0 crossref_primary_10_1016_j_uclim_2025_102388 crossref_primary_10_1016_j_ssci_2023_106138 crossref_primary_10_3389_feduc_2021_702406 crossref_primary_10_1016_j_chemolab_2018_06_003 crossref_primary_10_1016_j_cor_2023_106517 crossref_primary_10_1039_C9JA00371A crossref_primary_10_1016_j_soilbio_2021_108395 crossref_primary_10_1038_s41562_020_0930_x crossref_primary_10_1007_s40333_018_0056_4 crossref_primary_10_1063_5_0250694 crossref_primary_10_1002_wics_1545 crossref_primary_10_1061_AJRUA6_0001022 crossref_primary_10_3390_rs13122321 crossref_primary_10_1007_s00357_021_09406_4 crossref_primary_10_1007_s41024_024_00474_8 crossref_primary_10_1016_j_ijhm_2019_03_008 crossref_primary_10_1080_14413523_2024_2442188 crossref_primary_10_1007_s40808_024_02063_7 crossref_primary_10_1007_s10668_025_06037_2 crossref_primary_10_1016_j_jbiomech_2019_01_001 crossref_primary_10_1177_1078345819853286 crossref_primary_10_3390_fi16070229 crossref_primary_10_1016_j_energy_2020_117585 crossref_primary_10_1016_j_jclepro_2020_120665 crossref_primary_10_1016_j_fuel_2018_11_006 crossref_primary_10_1016_j_enconman_2024_118567 crossref_primary_10_1016_j_trd_2020_102677 crossref_primary_10_1093_bib_bbae490 crossref_primary_10_2139_ssrn_3788037 crossref_primary_10_3390_w15183190 crossref_primary_10_1007_s00122_018_3269_1 crossref_primary_10_1016_j_compbiolchem_2016_02_003 crossref_primary_10_1007_s10880_021_09771_7 crossref_primary_10_1016_j_compag_2020_105502 crossref_primary_10_1016_j_scs_2024_105951 crossref_primary_10_1177_13548166221097585 crossref_primary_10_1117_1_JRS_10_035021 crossref_primary_10_3390_sym12040581 crossref_primary_10_3390_su10010010 crossref_primary_10_3390_ma15155208 crossref_primary_10_1007_s00181_024_02646_4 crossref_primary_10_1016_j_asoc_2023_110997 crossref_primary_10_1016_j_jenvman_2024_123123 crossref_primary_10_1061__ASCE_MT_1943_5533_0003741 crossref_primary_10_3847_1538_4365_acdace crossref_primary_10_1016_j_jenvman_2025_124172 crossref_primary_10_3151_jact_20_404 crossref_primary_10_1016_j_jfca_2024_106967 crossref_primary_10_1016_j_csag_2024_100025 crossref_primary_10_1007_s11222_020_09992_0 crossref_primary_10_1007_s11634_016_0276_4 crossref_primary_10_1016_j_mtcomm_2021_103117 crossref_primary_10_1002_for_2856 crossref_primary_10_2139_ssrn_4818136 crossref_primary_10_1002_mcda_1737 crossref_primary_10_1007_s12161_017_1142_5 crossref_primary_10_1016_j_asoc_2023_110520 crossref_primary_10_1038_s41598_024_65620_1 crossref_primary_10_1080_07474938_2024_2429596 crossref_primary_10_1080_10826084_2020_1843058 crossref_primary_10_1016_j_istruc_2023_06_027 crossref_primary_10_1016_j_jenvman_2023_117739 crossref_primary_10_1007_s10479_024_06048_8 crossref_primary_10_1080_1528008X_2022_2143466 crossref_primary_10_1111_sjos_12606 crossref_primary_10_1002_stco_202400012 crossref_primary_10_1016_j_ijhydene_2025_02_483 crossref_primary_10_1016_j_conbuildmat_2023_133985 crossref_primary_10_1155_2019_5198583 crossref_primary_10_1016_j_renene_2021_11_028 crossref_primary_10_1016_j_mlwa_2022_100419 crossref_primary_10_1002_sam_11474 crossref_primary_10_1016_j_engappai_2017_03_008 crossref_primary_10_1186_s12911_021_01652_1 crossref_primary_10_1007_s00357_018_9302_x crossref_primary_10_1007_s12559_020_09747_z crossref_primary_10_3389_fmars_2017_00141 crossref_primary_10_1177_09544070221145474 crossref_primary_10_3390_bs15030345 crossref_primary_10_52547_ismj_24_5_454 crossref_primary_10_1016_j_jmrt_2023_04_209 crossref_primary_10_1021_acsami_3c10553 crossref_primary_10_61186_jsaeh_10_3_71 crossref_primary_10_1080_13588265_2020_1806644 crossref_primary_10_1016_j_agee_2020_106818 crossref_primary_10_1016_j_jtrangeo_2019_05_015 crossref_primary_10_3233_THC_174702 crossref_primary_10_1007_s11269_017_1774_7 crossref_primary_10_1142_S0218001420510131 crossref_primary_10_1016_j_agee_2024_109122 crossref_primary_10_1016_j_sleep_2020_04_012 crossref_primary_10_3390_rs13112047 crossref_primary_10_3390_su15021312 crossref_primary_10_1093_bib_bbaa007 crossref_primary_10_1016_j_fuel_2016_03_031 crossref_primary_10_3389_fmolb_2024_1483326 crossref_primary_10_1007_s11481_023_10088_5 crossref_primary_10_1080_01431161_2023_2283903 crossref_primary_10_3390_rs12152392 |
Cites_doi | 10.1198/106186006X133933 10.1002/bimj.201400246 10.1175/1520-0493(1970)098<0917:TRPSAT>2.3.CO;2 10.7326/0003-4819-122-3-199502010-00007 10.1093/bib/bbr053 10.1016/j.dss.2009.05.016 10.1046/j.1365-3016.1998.00134.x 10.32614/CRAN.package.partykit 10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2 10.1080/02664760120011635 10.1093/aje/kwq086 10.1023/A:1010933404324 10.1007/s00439-009-0782-y 10.1007/s00439-010-0943-z 10.1186/1753-6561-1-s1-s62 10.1002/sim.3707 10.1056/NEJMoa0905680 10.1158/1055-9965.EPI-07-2830 10.1093/bib/bbr016 10.1093/bioinformatics/btp331 10.1186/1471-2105-14-119 10.1186/1471-2105-8-25 10.1002/brb3.185 10.1198/000313006X118430 10.1002/widm.1072 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.csda.2015.10.005 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-7352 |
EndPage | 73 |
ExternalDocumentID | 10_1016_j_csda_2015_10_005 S0167947315002601 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c399t-8657854a5092f518a3de885fe3c5d08be8465c3d685812ff33ca4923eb4a797d3 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Thu Jul 10 19:27:14 EDT 2025 Thu Jul 03 08:29:46 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Fri Feb 23 02:23:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Feature selection Random forest Variable importance Ordinal response Prediction Ordinal regression trees |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-8657854a5092f518a3de885fe3c5d08be8465c3d685812ff33ca4923eb4a797d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0948-1501 |
PQID | 2253224655 |
PQPubID | 24069 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2253224655 crossref_primary_10_1016_j_csda_2015_10_005 crossref_citationtrail_10_1016_j_csda_2015_10_005 elsevier_sciencedirect_doi_10_1016_j_csda_2015_10_005 |
PublicationCentury | 2000 |
PublicationDate | April 2016 2016-04-00 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fürnkranz, Hüllermeier (br000050) 2010 Hothorn, T., Hornik, K., Zeileis, A., 2012. Party: a laboratory for recursive partytioning. R package version 10-3, URL Briggs, Goldstein, McCauley, Zuvich, De Jager, Rioux, Ivinson, Compston, Hafler, Hauser (br000030) 2010; 172 Murphy (br000115) 1970; 98 Hosmer, Lemeshow (br000065) 2004 Boulesteix, Bender, Bermejo, Strobl (br000015) 2012; 13 Janitza, Strobl, Boulesteix (br000090) 2013; 14 Pepe (br000145) 2004 Karamanian, Harhay, Grant, Palevsky, Grizzle, Zamanian, Ihida-Stansbury, Taichman, Kawut, Jones (br000095) 2014; 4 Steidl, Lee, Shah, Farinha, Han, Nayar, Delaney, Jones, Iqbal, Weisenburger (br000155) 2010; 362 Hothorn, Hornik, Van De Wiel, Zeileis (br000070) 2006; 60 Hothorn, Hornik, Zeileis (br000075) 2006; 15 Boulesteix, Janitza, Kruppa, König (br000020) 2012; 2 Nicodemus, Malley (br000135) 2009; 25 Sun, Cai, Desai, Lawrance, Leff, Jawaid, Kardia, Yang (br000165) 2007; 1 O’Shea, Kothadia, Roberts, Dillard (br000140) 1998; 12 Louppe, G., 2014. Understanding random forests: From theory to practice. arXiv preprint Breiman (br000025) 2001; 45 National Center for Health Statistics (2012). NHANES 2007 to 2008 public data general release file documentation. Janitza, Binder, Boulesteix (br000085) 2015 . Nicodemus, Callicott, Higier, Luna, Nixon, Lipska, Vakkalanka, Giegling, Rujescu, Clair (br000130) 2010; 127 Cortez, Cerdeira, Almeida, Matos, Reis (br000040) 2009; 47 Strobl, Boulesteix, Zeileis, Hothorn (br000160) 2007; 8 Archer, Mas (br000010) 2009; 28 Agresti (br000005) 2002 Chang, Yeh, Wiencke, Wiemels, Smirnov, Pico, Tihan, Patoka, Miike, Sison (br000035) 2008; 17 Piccarreta (br000150) 2001; 28 Harrington, Liu, Smith, Mills, Long, Aylward, Paulsen (br000055) 2014; 4 Nicodemus (br000125) 2011; 12 Tutz (br000170) 2011 Epstein (br000045) 1969; 8 Hechenbichler, K., Schliep, K., 2004. Weighted k-nearest-neighbor techniques and ordinal classification. Discussion Paper 399, University of Munich. Knaus, Harrell, Lynn, Goldman, Phillips, Connors, Dawson, Fulkerson, Califf, Desbiens (br000100) 1995; 122 Liu, Ackerman, Carulli (br000105) 2011; 129 Tutz (10.1016/j.csda.2015.10.005_br000170) 2011 Murphy (10.1016/j.csda.2015.10.005_br000115) 1970; 98 Nicodemus (10.1016/j.csda.2015.10.005_br000130) 2010; 127 Hothorn (10.1016/j.csda.2015.10.005_br000070) 2006; 60 Knaus (10.1016/j.csda.2015.10.005_br000100) 1995; 122 Hosmer (10.1016/j.csda.2015.10.005_br000065) 2004 Harrington (10.1016/j.csda.2015.10.005_br000055) 2014; 4 Strobl (10.1016/j.csda.2015.10.005_br000160) 2007; 8 Agresti (10.1016/j.csda.2015.10.005_br000005) 2002 Janitza (10.1016/j.csda.2015.10.005_br000085) 2015 Pepe (10.1016/j.csda.2015.10.005_br000145) 2004 Epstein (10.1016/j.csda.2015.10.005_br000045) 1969; 8 10.1016/j.csda.2015.10.005_br000110 Boulesteix (10.1016/j.csda.2015.10.005_br000015) 2012; 13 Briggs (10.1016/j.csda.2015.10.005_br000030) 2010; 172 Hothorn (10.1016/j.csda.2015.10.005_br000075) 2006; 15 O’Shea (10.1016/j.csda.2015.10.005_br000140) 1998; 12 Boulesteix (10.1016/j.csda.2015.10.005_br000020) 2012; 2 Archer (10.1016/j.csda.2015.10.005_br000010) 2009; 28 Fürnkranz (10.1016/j.csda.2015.10.005_br000050) 2010 Nicodemus (10.1016/j.csda.2015.10.005_br000135) 2009; 25 Breiman (10.1016/j.csda.2015.10.005_br000025) 2001; 45 Karamanian (10.1016/j.csda.2015.10.005_br000095) 2014; 4 Steidl (10.1016/j.csda.2015.10.005_br000155) 2010; 362 10.1016/j.csda.2015.10.005_br000080 Liu (10.1016/j.csda.2015.10.005_br000105) 2011; 129 Sun (10.1016/j.csda.2015.10.005_br000165) 2007; 1 10.1016/j.csda.2015.10.005_br000120 Chang (10.1016/j.csda.2015.10.005_br000035) 2008; 17 Janitza (10.1016/j.csda.2015.10.005_br000090) 2013; 14 Cortez (10.1016/j.csda.2015.10.005_br000040) 2009; 47 Nicodemus (10.1016/j.csda.2015.10.005_br000125) 2011; 12 Piccarreta (10.1016/j.csda.2015.10.005_br000150) 2001; 28 10.1016/j.csda.2015.10.005_br000060 |
References_xml | – volume: 25 start-page: 1884 year: 2009 end-page: 1890 ident: br000135 article-title: Predictor correlation impacts machine learning algorithms: implications for genomic studies publication-title: Bioinformatics – reference: National Center for Health Statistics (2012). NHANES 2007 to 2008 public data general release file documentation. – volume: 362 start-page: 875 year: 2010 end-page: 885 ident: br000155 article-title: Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma publication-title: New Engl. J. Med. – volume: 28 start-page: 3597 year: 2009 end-page: 3610 ident: br000010 article-title: Ordinal response prediction using bootstrap aggregation, with application to a high-throughput methylation data set publication-title: Stat. Med. – volume: 172 start-page: 217 year: 2010 ident: br000030 article-title: Variation within DNA repair pathway genes and risk of multiple sclerosis publication-title: Am. J. Epidemiol. – volume: 14 start-page: 119 year: 2013 ident: br000090 article-title: An AUC-based permutation variable importance measure for random forests publication-title: BMC Bioinformatics – reference: Hechenbichler, K., Schliep, K., 2004. Weighted k-nearest-neighbor techniques and ordinal classification. Discussion Paper 399, University of Munich. – volume: 98 start-page: 917 year: 1970 end-page: 924 ident: br000115 article-title: The ranked probability score and the probability score: A comparison publication-title: Mon. Weather Rev. – volume: 28 start-page: 107 year: 2001 end-page: 120 ident: br000150 article-title: A new measure of nominal-ordinal association publication-title: J. Appl. Stat. – volume: 1 start-page: S62 year: 2007 ident: br000165 article-title: Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests publication-title: BMC Proc. – volume: 122 start-page: 191 year: 1995 end-page: 203 ident: br000100 article-title: The support prognostic model: objective estimates of survival for seriously ill hospitalized adults publication-title: Ann. Intern. Med. – volume: 4 start-page: 29 year: 2014 end-page: 40 ident: br000055 article-title: Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease publication-title: Brain Behav. – year: 2015 ident: br000085 article-title: Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications publication-title: Biometrical J. – volume: 8 start-page: 985 year: 1969 end-page: 987 ident: br000045 article-title: A scoring system for probability forecasts of ranked categories publication-title: J. Appl. Meteorol. – volume: 8 start-page: 25 year: 2007 ident: br000160 article-title: Bias in random forest variable importance measures: Illustrations, sources and a solution publication-title: BMC Bioinformatics – volume: 13 start-page: 292 year: 2012 end-page: 304 ident: br000015 article-title: Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations publication-title: Brief. Bioinform. – volume: 17 start-page: 1368 year: 2008 end-page: 1373 ident: br000035 article-title: Pathway analysis of single-nucleotide polymorphisms potentially associated with glioblastoma multiforme susceptibility using random forests publication-title: Cancer Epidemiol. Biomarkers Prevent. – year: 2011 ident: br000170 article-title: Regression for Categorical Data – year: 2002 ident: br000005 article-title: Categorical Data Analysis – reference: Hothorn, T., Hornik, K., Zeileis, A., 2012. Party: a laboratory for recursive partytioning. R package version 10-3, URL – volume: 47 start-page: 547 year: 2009 end-page: 553 ident: br000040 article-title: Modeling wine preferences by data mining from physicochemical properties publication-title: Decis. Support Syst. – volume: 2 start-page: 493 year: 2012 end-page: 507 ident: br000020 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. – volume: 127 start-page: 441 year: 2010 end-page: 452 ident: br000130 article-title: Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging publication-title: Hum. Genet. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: br000025 article-title: Random forests publication-title: Mach. Learn. – volume: 60 start-page: 257 year: 2006 end-page: 263 ident: br000070 article-title: A lego system for conditional inference publication-title: Amer. Statist. – year: 2010 ident: br000050 article-title: Preference Learning – reference: Louppe, G., 2014. Understanding random forests: From theory to practice. arXiv preprint – year: 2004 ident: br000065 article-title: Applied Logistic Regression – year: 2004 ident: br000145 article-title: The Statistical Evaluation of Medical Tests for Classification and Prediction – volume: 129 start-page: 473 year: 2011 end-page: 485 ident: br000105 article-title: A genome-wide screen of gene–gene interactions for rheumatoid arthritis susceptibility publication-title: Hum. Genet. – reference: . – volume: 15 start-page: 651 year: 2006 end-page: 674 ident: br000075 article-title: Unbiased recursive partitioning: A conditional inference framework publication-title: J. Comput. Graph. Statist. – volume: 4 year: 2014 ident: br000095 article-title: Erythropoietin upregulation in pulmonary arterial hypertension publication-title: Pulmon. Circ. – volume: 12 start-page: 408 year: 1998 end-page: 421 ident: br000140 article-title: Perinatal events and the risk of intraparenchymal echodensity in very-low-birthweight neonates publication-title: Paediatr. Perinat. Epidemiol. – volume: 12 start-page: 369 year: 2011 end-page: 373 ident: br000125 article-title: Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures publication-title: Brief. Bioinform. – volume: 15 start-page: 651 issue: 3 year: 2006 ident: 10.1016/j.csda.2015.10.005_br000075 article-title: Unbiased recursive partitioning: A conditional inference framework publication-title: J. Comput. Graph. Statist. doi: 10.1198/106186006X133933 – year: 2015 ident: 10.1016/j.csda.2015.10.005_br000085 article-title: Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications publication-title: Biometrical J. doi: 10.1002/bimj.201400246 – volume: 98 start-page: 917 issue: 12 year: 1970 ident: 10.1016/j.csda.2015.10.005_br000115 article-title: The ranked probability score and the probability score: A comparison publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1970)098<0917:TRPSAT>2.3.CO;2 – volume: 122 start-page: 191 issue: 3 year: 1995 ident: 10.1016/j.csda.2015.10.005_br000100 article-title: The support prognostic model: objective estimates of survival for seriously ill hospitalized adults publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-122-3-199502010-00007 – ident: 10.1016/j.csda.2015.10.005_br000110 – ident: 10.1016/j.csda.2015.10.005_br000120 – volume: 13 start-page: 292 year: 2012 ident: 10.1016/j.csda.2015.10.005_br000015 article-title: Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations publication-title: Brief. Bioinform. doi: 10.1093/bib/bbr053 – year: 2011 ident: 10.1016/j.csda.2015.10.005_br000170 – year: 2004 ident: 10.1016/j.csda.2015.10.005_br000065 – volume: 47 start-page: 547 issue: 4 year: 2009 ident: 10.1016/j.csda.2015.10.005_br000040 article-title: Modeling wine preferences by data mining from physicochemical properties publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2009.05.016 – volume: 4 issue: 2 year: 2014 ident: 10.1016/j.csda.2015.10.005_br000095 article-title: Erythropoietin upregulation in pulmonary arterial hypertension publication-title: Pulmon. Circ. – volume: 12 start-page: 408 year: 1998 ident: 10.1016/j.csda.2015.10.005_br000140 article-title: Perinatal events and the risk of intraparenchymal echodensity in very-low-birthweight neonates publication-title: Paediatr. Perinat. Epidemiol. doi: 10.1046/j.1365-3016.1998.00134.x – ident: 10.1016/j.csda.2015.10.005_br000080 doi: 10.32614/CRAN.package.partykit – volume: 8 start-page: 985 issue: 6 year: 1969 ident: 10.1016/j.csda.2015.10.005_br000045 article-title: A scoring system for probability forecasts of ranked categories publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2 – volume: 28 start-page: 107 issue: 1 year: 2001 ident: 10.1016/j.csda.2015.10.005_br000150 article-title: A new measure of nominal-ordinal association publication-title: J. Appl. Stat. doi: 10.1080/02664760120011635 – volume: 172 start-page: 217 issue: 2 year: 2010 ident: 10.1016/j.csda.2015.10.005_br000030 article-title: Variation within DNA repair pathway genes and risk of multiple sclerosis publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwq086 – ident: 10.1016/j.csda.2015.10.005_br000060 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.csda.2015.10.005_br000025 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 127 start-page: 441 issue: 4 year: 2010 ident: 10.1016/j.csda.2015.10.005_br000130 article-title: Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging publication-title: Hum. Genet. doi: 10.1007/s00439-009-0782-y – volume: 129 start-page: 473 issue: 5 year: 2011 ident: 10.1016/j.csda.2015.10.005_br000105 article-title: A genome-wide screen of gene–gene interactions for rheumatoid arthritis susceptibility publication-title: Hum. Genet. doi: 10.1007/s00439-010-0943-z – volume: 1 start-page: S62 issue: Suppl 1 year: 2007 ident: 10.1016/j.csda.2015.10.005_br000165 article-title: Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests publication-title: BMC Proc. doi: 10.1186/1753-6561-1-s1-s62 – volume: 28 start-page: 3597 issue: 29 year: 2009 ident: 10.1016/j.csda.2015.10.005_br000010 article-title: Ordinal response prediction using bootstrap aggregation, with application to a high-throughput methylation data set publication-title: Stat. Med. doi: 10.1002/sim.3707 – year: 2002 ident: 10.1016/j.csda.2015.10.005_br000005 – volume: 362 start-page: 875 issue: 10 year: 2010 ident: 10.1016/j.csda.2015.10.005_br000155 article-title: Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma publication-title: New Engl. J. Med. doi: 10.1056/NEJMoa0905680 – volume: 17 start-page: 1368 issue: 6 year: 2008 ident: 10.1016/j.csda.2015.10.005_br000035 article-title: Pathway analysis of single-nucleotide polymorphisms potentially associated with glioblastoma multiforme susceptibility using random forests publication-title: Cancer Epidemiol. Biomarkers Prevent. doi: 10.1158/1055-9965.EPI-07-2830 – volume: 12 start-page: 369 issue: 4 year: 2011 ident: 10.1016/j.csda.2015.10.005_br000125 article-title: Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures publication-title: Brief. Bioinform. doi: 10.1093/bib/bbr016 – volume: 25 start-page: 1884 issue: 15 year: 2009 ident: 10.1016/j.csda.2015.10.005_br000135 article-title: Predictor correlation impacts machine learning algorithms: implications for genomic studies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp331 – volume: 14 start-page: 119 year: 2013 ident: 10.1016/j.csda.2015.10.005_br000090 article-title: An AUC-based permutation variable importance measure for random forests publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-119 – volume: 8 start-page: 25 year: 2007 ident: 10.1016/j.csda.2015.10.005_br000160 article-title: Bias in random forest variable importance measures: Illustrations, sources and a solution publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-25 – year: 2010 ident: 10.1016/j.csda.2015.10.005_br000050 – year: 2004 ident: 10.1016/j.csda.2015.10.005_br000145 – volume: 4 start-page: 29 issue: 1 year: 2014 ident: 10.1016/j.csda.2015.10.005_br000055 article-title: Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease publication-title: Brain Behav. doi: 10.1002/brb3.185 – volume: 60 start-page: 257 issue: 3 year: 2006 ident: 10.1016/j.csda.2015.10.005_br000070 article-title: A lego system for conditional inference publication-title: Amer. Statist. doi: 10.1198/000313006X118430 – volume: 2 start-page: 493 issue: 6 year: 2012 ident: 10.1016/j.csda.2015.10.005_br000020 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1072 |
SSID | ssj0002478 |
Score | 2.5153322 |
Snippet | The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 57 |
SubjectTerms | Feature selection Ordinal regression trees Ordinal response Prediction Random forest Variable importance |
Title | Random forest for ordinal responses: Prediction and variable selection |
URI | https://dx.doi.org/10.1016/j.csda.2015.10.005 https://www.proquest.com/docview/2253224655 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFZIniTbd3NJrvrrRRLtVikWuwtZJMsVHRbuq1Hf7sz-6go2IOnsCEJy0wyMyHffEPIpYgjbRIlHC60cnxl4UjFvnLAOQkF141QxznaYiB6I_9-zMc10qlyYRBWWdr-wqbn1rrsaZXSbM0mk9YTAugjP2AQ0uTEWJjB7ge4y5uf3zAPzy-sMfJ74-gycabAeOnMIPeQy5s5wov_5Zx-menc93R3yHYZNNJ28V-7pGbTPbL1sGJczfZJd6hSM32nEIPCAthQuFZiySs6L2CwNruhj3N8l0FdUBhOP-CijKlTNMur4UD3ARl1b587PaeskeBoCC0WTiiQrcZX4Pe9hLuhYsaGIU8s09xch7GF-IJrZpBm3vWShDGtkJPNgkKCKDDskNTTaWqPCLVeZBLEZ2rj-lwx5YLWIECIRGyR1u-YuJVwpC4JxLGOxZuskGKvEgUqUaDYBwI9JlerObOCPmPtaF7JXP7YBBLs-9p5F5WCJJwOfPJQqZ0uMwnWiiFlHucn_1z7lGzClyjAOmekvpgv7TnEIYu4kW-0Btlo3_V7A2z7w5f-F6m03So |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50PagH8YlvI-hJ6tqm6baCB1GX9Yn4AG8xTVJY0a5sdxUv_in_oDN9KAp6EDwV0iS0X5KZCfnyDcBaEEfaJCpwRKCV4yuLSyr2lYPOKVC43Qh1nLMtzoLWtX90I24G4K26C0O0ytL2FzY9t9ZlSb1Es_7YbtcviUAf-Q2OIU0ujFUyK4_tyzPu27Kdw30c5HXPax5c7bWcMrWAo9Ej95wwIJEXX6G79BLhhoobG4YisVwLsxXGFt2y0NyQOrvrJQnnWpGUmcX_aEQNw7HfQRjy0VxQ2oTN109eiecX5p8Exenzyps6BalMZ4bEjlyxmVPKxE_e8JtfyJ1dcxzGyiiV7RZATMCATSdh9PRD4jWbguaFSk3ngWHQix3QgyEelGOLdQverc222XmXDoJo8BlWZ0-4M6e7WizL0-9g8TRc_wtyM1BLO6mdBWa9yCRECNXG9YXiysVpghFJFMSWdATnwK3AkbpULKfEGfeyoqbdSQJUEqBUhoDOwcZHm8dCr-PX2qLCXH6ZdRIdyq_tVqsBkrgc6YxFpbbTzySaR04afULM_7HvFRhuXZ2eyJPDs-MFGME3QcEUWoRar9u3SxgE9eLlfNIxuP3vWf4OGiYWNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+forest+for+ordinal+responses%3A+Prediction+and+variable+selection&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Janitza%2C+Silke&rft.au=Tutz%2C+Gerhard&rft.au=Boulesteix%2C+Anne-Laure&rft.date=2016-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=96&rft.spage=57&rft.epage=73&rft_id=info:doi/10.1016%2Fj.csda.2015.10.005&rft.externalDocID=S0167947315002601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |