Random forest for ordinal responses: Prediction and variable selection

The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt variable importance measures. It can be applied to various kinds of regression problems including nominal, metric and survival response variabl...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 96; pp. 57 - 73
Main Authors Janitza, Silke, Tutz, Gerhard, Boulesteix, Anne-Laure
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt variable importance measures. It can be applied to various kinds of regression problems including nominal, metric and survival response variables. While classification and regression problems using random forest methodology have been extensively investigated in the past, in the case of ordinal response there is no standard procedure. Extensive studies using random forest based on conditional inference trees are conducted to explore whether incorporating the ordering information yields any improvement in both prediction performance or variable selection. Two novel permutation variable importance measures are presented that are reasonable alternatives to the currently implemented importance measure which was developed for nominal response and makes no use of the ordering in the levels of an ordinal response variable. Results based on simulated and real data suggest that predictor rankings can be improved in some settings by using new permutation importance measures that explicitly use the ordering in the response levels in combination with ordinal regression trees. With respect to prediction accuracy, the performance of ordinal regression trees was similar to and in most settings even slightly better than that of classification trees.
AbstractList The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt variable importance measures. It can be applied to various kinds of regression problems including nominal, metric and survival response variables. While classification and regression problems using random forest methodology have been extensively investigated in the past, in the case of ordinal response there is no standard procedure. Extensive studies using random forest based on conditional inference trees are conducted to explore whether incorporating the ordering information yields any improvement in both prediction performance or variable selection. Two novel permutation variable importance measures are presented that are reasonable alternatives to the currently implemented importance measure which was developed for nominal response and makes no use of the ordering in the levels of an ordinal response variable. Results based on simulated and real data suggest that predictor rankings can be improved in some settings by using new permutation importance measures that explicitly use the ordering in the response levels in combination with ordinal regression trees. With respect to prediction accuracy, the performance of ordinal regression trees was similar to and in most settings even slightly better than that of classification trees.
Author Janitza, Silke
Tutz, Gerhard
Boulesteix, Anne-Laure
Author_xml – sequence: 1
  givenname: Silke
  orcidid: 0000-0003-0948-1501
  surname: Janitza
  fullname: Janitza, Silke
  email: janitza@ibe.med.uni-muenchen.de
  organization: Department of Medical Informatics, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, D-81377 Munich, Germany
– sequence: 2
  givenname: Gerhard
  surname: Tutz
  fullname: Tutz, Gerhard
  organization: Department of Statistics, University of Munich, Akademiestr. 1, D-80799 Munich, Germany
– sequence: 3
  givenname: Anne-Laure
  surname: Boulesteix
  fullname: Boulesteix, Anne-Laure
  organization: Department of Medical Informatics, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, D-81377 Munich, Germany
BookMark eNp9kE1LAzEQhoNUsK3-AU979LJrPjabrHiRYlUoKKLnkCazkLJNarIt-O_NWk8eehp4eZ9h5pmhiQ8eELomuCKYNLebyiSrK4oJz0GFMT9DUyIFLQXjdIKmuSTKthbsAs1S2mCMaS3kFC3ftbdhW3QhQhrGUYRondd9kYNd8AnSXfEWwTozuOCLXC8OOjq97qFI0MNvfInOO90nuPqbc_S5fPxYPJer16eXxcOqNKxth1I2XEhea45b2nEiNbMgJe-AGW6xXIOsG26YbSSXhHYdY0bXLWWwrrVohWVzdHPcu4vha58vVluXDPS99hD2SVHKGaV5Cc9VeqyaGFKK0KlddFsdvxXBapSmNmqUpkZpY5alZUj-g4wb9PjhELXrT6P3RxTy_wcHUSXjwJtsLmZJygZ3Cv8BLz-Jpg
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106337
crossref_primary_10_1016_j_measurement_2016_07_070
crossref_primary_10_1111_oik_10166
crossref_primary_10_2174_0118722121285572240510100826
crossref_primary_10_1021_acs_analchem_3c04421
crossref_primary_10_1016_j_sciaf_2023_e01739
crossref_primary_10_1016_j_cej_2025_161634
crossref_primary_10_1016_j_conbuildmat_2022_130065
crossref_primary_10_1016_j_asr_2024_03_047
crossref_primary_10_1016_j_isprsjprs_2021_11_015
crossref_primary_10_1039_D0AN02045A
crossref_primary_10_1039_C9AY00926D
crossref_primary_10_3389_fmars_2021_771071
crossref_primary_10_1016_j_artmed_2017_09_005
crossref_primary_10_1016_j_ekir_2019_06_009
crossref_primary_10_3390_su14116651
crossref_primary_10_1109_ACCESS_2021_3062033
crossref_primary_10_1016_j_matpr_2021_12_020
crossref_primary_10_1016_j_fuel_2018_03_005
crossref_primary_10_1016_j_inpa_2021_09_004
crossref_primary_10_1007_s11135_016_0428_9
crossref_primary_10_1007_s00357_024_09497_9
crossref_primary_10_3390_w11050910
crossref_primary_10_1016_j_jenvman_2025_124146
crossref_primary_10_1111_ecog_06772
crossref_primary_10_1016_j_renene_2024_122029
crossref_primary_10_1111_bmsp_12375
crossref_primary_10_1016_j_asoc_2017_06_030
crossref_primary_10_1007_s12145_024_01623_w
crossref_primary_10_3390_s23073536
crossref_primary_10_1016_j_energy_2021_121049
crossref_primary_10_1007_s11831_024_10088_5
crossref_primary_10_1016_j_conbuildmat_2019_03_189
crossref_primary_10_3390_math9070771
crossref_primary_10_1088_1742_6596_1911_1_012026
crossref_primary_10_2166_wst_2024_393
crossref_primary_10_1016_j_chemolab_2022_104679
crossref_primary_10_1111_ddi_12901
crossref_primary_10_34172_ajdr_1766
crossref_primary_10_1007_s10792_022_02246_0
crossref_primary_10_1016_j_uclim_2025_102388
crossref_primary_10_1016_j_ssci_2023_106138
crossref_primary_10_3389_feduc_2021_702406
crossref_primary_10_1016_j_chemolab_2018_06_003
crossref_primary_10_1016_j_cor_2023_106517
crossref_primary_10_1039_C9JA00371A
crossref_primary_10_1016_j_soilbio_2021_108395
crossref_primary_10_1038_s41562_020_0930_x
crossref_primary_10_1007_s40333_018_0056_4
crossref_primary_10_1063_5_0250694
crossref_primary_10_1002_wics_1545
crossref_primary_10_1061_AJRUA6_0001022
crossref_primary_10_3390_rs13122321
crossref_primary_10_1007_s00357_021_09406_4
crossref_primary_10_1007_s41024_024_00474_8
crossref_primary_10_1016_j_ijhm_2019_03_008
crossref_primary_10_1080_14413523_2024_2442188
crossref_primary_10_1007_s40808_024_02063_7
crossref_primary_10_1007_s10668_025_06037_2
crossref_primary_10_1016_j_jbiomech_2019_01_001
crossref_primary_10_1177_1078345819853286
crossref_primary_10_3390_fi16070229
crossref_primary_10_1016_j_energy_2020_117585
crossref_primary_10_1016_j_jclepro_2020_120665
crossref_primary_10_1016_j_fuel_2018_11_006
crossref_primary_10_1016_j_enconman_2024_118567
crossref_primary_10_1016_j_trd_2020_102677
crossref_primary_10_1093_bib_bbae490
crossref_primary_10_2139_ssrn_3788037
crossref_primary_10_3390_w15183190
crossref_primary_10_1007_s00122_018_3269_1
crossref_primary_10_1016_j_compbiolchem_2016_02_003
crossref_primary_10_1007_s10880_021_09771_7
crossref_primary_10_1016_j_compag_2020_105502
crossref_primary_10_1016_j_scs_2024_105951
crossref_primary_10_1177_13548166221097585
crossref_primary_10_1117_1_JRS_10_035021
crossref_primary_10_3390_sym12040581
crossref_primary_10_3390_su10010010
crossref_primary_10_3390_ma15155208
crossref_primary_10_1007_s00181_024_02646_4
crossref_primary_10_1016_j_asoc_2023_110997
crossref_primary_10_1016_j_jenvman_2024_123123
crossref_primary_10_1061__ASCE_MT_1943_5533_0003741
crossref_primary_10_3847_1538_4365_acdace
crossref_primary_10_1016_j_jenvman_2025_124172
crossref_primary_10_3151_jact_20_404
crossref_primary_10_1016_j_jfca_2024_106967
crossref_primary_10_1016_j_csag_2024_100025
crossref_primary_10_1007_s11222_020_09992_0
crossref_primary_10_1007_s11634_016_0276_4
crossref_primary_10_1016_j_mtcomm_2021_103117
crossref_primary_10_1002_for_2856
crossref_primary_10_2139_ssrn_4818136
crossref_primary_10_1002_mcda_1737
crossref_primary_10_1007_s12161_017_1142_5
crossref_primary_10_1016_j_asoc_2023_110520
crossref_primary_10_1038_s41598_024_65620_1
crossref_primary_10_1080_07474938_2024_2429596
crossref_primary_10_1080_10826084_2020_1843058
crossref_primary_10_1016_j_istruc_2023_06_027
crossref_primary_10_1016_j_jenvman_2023_117739
crossref_primary_10_1007_s10479_024_06048_8
crossref_primary_10_1080_1528008X_2022_2143466
crossref_primary_10_1111_sjos_12606
crossref_primary_10_1002_stco_202400012
crossref_primary_10_1016_j_ijhydene_2025_02_483
crossref_primary_10_1016_j_conbuildmat_2023_133985
crossref_primary_10_1155_2019_5198583
crossref_primary_10_1016_j_renene_2021_11_028
crossref_primary_10_1016_j_mlwa_2022_100419
crossref_primary_10_1002_sam_11474
crossref_primary_10_1016_j_engappai_2017_03_008
crossref_primary_10_1186_s12911_021_01652_1
crossref_primary_10_1007_s00357_018_9302_x
crossref_primary_10_1007_s12559_020_09747_z
crossref_primary_10_3389_fmars_2017_00141
crossref_primary_10_1177_09544070221145474
crossref_primary_10_3390_bs15030345
crossref_primary_10_52547_ismj_24_5_454
crossref_primary_10_1016_j_jmrt_2023_04_209
crossref_primary_10_1021_acsami_3c10553
crossref_primary_10_61186_jsaeh_10_3_71
crossref_primary_10_1080_13588265_2020_1806644
crossref_primary_10_1016_j_agee_2020_106818
crossref_primary_10_1016_j_jtrangeo_2019_05_015
crossref_primary_10_3233_THC_174702
crossref_primary_10_1007_s11269_017_1774_7
crossref_primary_10_1142_S0218001420510131
crossref_primary_10_1016_j_agee_2024_109122
crossref_primary_10_1016_j_sleep_2020_04_012
crossref_primary_10_3390_rs13112047
crossref_primary_10_3390_su15021312
crossref_primary_10_1093_bib_bbaa007
crossref_primary_10_1016_j_fuel_2016_03_031
crossref_primary_10_3389_fmolb_2024_1483326
crossref_primary_10_1007_s11481_023_10088_5
crossref_primary_10_1080_01431161_2023_2283903
crossref_primary_10_3390_rs12152392
Cites_doi 10.1198/106186006X133933
10.1002/bimj.201400246
10.1175/1520-0493(1970)098<0917:TRPSAT>2.3.CO;2
10.7326/0003-4819-122-3-199502010-00007
10.1093/bib/bbr053
10.1016/j.dss.2009.05.016
10.1046/j.1365-3016.1998.00134.x
10.32614/CRAN.package.partykit
10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
10.1080/02664760120011635
10.1093/aje/kwq086
10.1023/A:1010933404324
10.1007/s00439-009-0782-y
10.1007/s00439-010-0943-z
10.1186/1753-6561-1-s1-s62
10.1002/sim.3707
10.1056/NEJMoa0905680
10.1158/1055-9965.EPI-07-2830
10.1093/bib/bbr016
10.1093/bioinformatics/btp331
10.1186/1471-2105-14-119
10.1186/1471-2105-8-25
10.1002/brb3.185
10.1198/000313006X118430
10.1002/widm.1072
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2015.10.005
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
EndPage 73
ExternalDocumentID 10_1016_j_csda_2015_10_005
S0167947315002601
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c399t-8657854a5092f518a3de885fe3c5d08be8465c3d685812ff33ca4923eb4a797d3
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Thu Jul 10 19:27:14 EDT 2025
Thu Jul 03 08:29:46 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Fri Feb 23 02:23:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Random forest
Variable importance
Ordinal response
Prediction
Ordinal regression trees
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-8657854a5092f518a3de885fe3c5d08be8465c3d685812ff33ca4923eb4a797d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0948-1501
PQID 2253224655
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_2253224655
crossref_primary_10_1016_j_csda_2015_10_005
crossref_citationtrail_10_1016_j_csda_2015_10_005
elsevier_sciencedirect_doi_10_1016_j_csda_2015_10_005
PublicationCentury 2000
PublicationDate April 2016
2016-04-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fürnkranz, Hüllermeier (br000050) 2010
Hothorn, T., Hornik, K., Zeileis, A., 2012. Party: a laboratory for recursive partytioning. R package version 10-3, URL
Briggs, Goldstein, McCauley, Zuvich, De Jager, Rioux, Ivinson, Compston, Hafler, Hauser (br000030) 2010; 172
Murphy (br000115) 1970; 98
Hosmer, Lemeshow (br000065) 2004
Boulesteix, Bender, Bermejo, Strobl (br000015) 2012; 13
Janitza, Strobl, Boulesteix (br000090) 2013; 14
Pepe (br000145) 2004
Karamanian, Harhay, Grant, Palevsky, Grizzle, Zamanian, Ihida-Stansbury, Taichman, Kawut, Jones (br000095) 2014; 4
Steidl, Lee, Shah, Farinha, Han, Nayar, Delaney, Jones, Iqbal, Weisenburger (br000155) 2010; 362
Hothorn, Hornik, Van De Wiel, Zeileis (br000070) 2006; 60
Hothorn, Hornik, Zeileis (br000075) 2006; 15
Boulesteix, Janitza, Kruppa, König (br000020) 2012; 2
Nicodemus, Malley (br000135) 2009; 25
Sun, Cai, Desai, Lawrance, Leff, Jawaid, Kardia, Yang (br000165) 2007; 1
O’Shea, Kothadia, Roberts, Dillard (br000140) 1998; 12
Louppe, G., 2014. Understanding random forests: From theory to practice. arXiv preprint
Breiman (br000025) 2001; 45
National Center for Health Statistics (2012). NHANES 2007 to 2008 public data general release file documentation.
Janitza, Binder, Boulesteix (br000085) 2015
.
Nicodemus, Callicott, Higier, Luna, Nixon, Lipska, Vakkalanka, Giegling, Rujescu, Clair (br000130) 2010; 127
Cortez, Cerdeira, Almeida, Matos, Reis (br000040) 2009; 47
Strobl, Boulesteix, Zeileis, Hothorn (br000160) 2007; 8
Archer, Mas (br000010) 2009; 28
Agresti (br000005) 2002
Chang, Yeh, Wiencke, Wiemels, Smirnov, Pico, Tihan, Patoka, Miike, Sison (br000035) 2008; 17
Piccarreta (br000150) 2001; 28
Harrington, Liu, Smith, Mills, Long, Aylward, Paulsen (br000055) 2014; 4
Nicodemus (br000125) 2011; 12
Tutz (br000170) 2011
Epstein (br000045) 1969; 8
Hechenbichler, K., Schliep, K., 2004. Weighted k-nearest-neighbor techniques and ordinal classification. Discussion Paper 399, University of Munich.
Knaus, Harrell, Lynn, Goldman, Phillips, Connors, Dawson, Fulkerson, Califf, Desbiens (br000100) 1995; 122
Liu, Ackerman, Carulli (br000105) 2011; 129
Tutz (10.1016/j.csda.2015.10.005_br000170) 2011
Murphy (10.1016/j.csda.2015.10.005_br000115) 1970; 98
Nicodemus (10.1016/j.csda.2015.10.005_br000130) 2010; 127
Hothorn (10.1016/j.csda.2015.10.005_br000070) 2006; 60
Knaus (10.1016/j.csda.2015.10.005_br000100) 1995; 122
Hosmer (10.1016/j.csda.2015.10.005_br000065) 2004
Harrington (10.1016/j.csda.2015.10.005_br000055) 2014; 4
Strobl (10.1016/j.csda.2015.10.005_br000160) 2007; 8
Agresti (10.1016/j.csda.2015.10.005_br000005) 2002
Janitza (10.1016/j.csda.2015.10.005_br000085) 2015
Pepe (10.1016/j.csda.2015.10.005_br000145) 2004
Epstein (10.1016/j.csda.2015.10.005_br000045) 1969; 8
10.1016/j.csda.2015.10.005_br000110
Boulesteix (10.1016/j.csda.2015.10.005_br000015) 2012; 13
Briggs (10.1016/j.csda.2015.10.005_br000030) 2010; 172
Hothorn (10.1016/j.csda.2015.10.005_br000075) 2006; 15
O’Shea (10.1016/j.csda.2015.10.005_br000140) 1998; 12
Boulesteix (10.1016/j.csda.2015.10.005_br000020) 2012; 2
Archer (10.1016/j.csda.2015.10.005_br000010) 2009; 28
Fürnkranz (10.1016/j.csda.2015.10.005_br000050) 2010
Nicodemus (10.1016/j.csda.2015.10.005_br000135) 2009; 25
Breiman (10.1016/j.csda.2015.10.005_br000025) 2001; 45
Karamanian (10.1016/j.csda.2015.10.005_br000095) 2014; 4
Steidl (10.1016/j.csda.2015.10.005_br000155) 2010; 362
10.1016/j.csda.2015.10.005_br000080
Liu (10.1016/j.csda.2015.10.005_br000105) 2011; 129
Sun (10.1016/j.csda.2015.10.005_br000165) 2007; 1
10.1016/j.csda.2015.10.005_br000120
Chang (10.1016/j.csda.2015.10.005_br000035) 2008; 17
Janitza (10.1016/j.csda.2015.10.005_br000090) 2013; 14
Cortez (10.1016/j.csda.2015.10.005_br000040) 2009; 47
Nicodemus (10.1016/j.csda.2015.10.005_br000125) 2011; 12
Piccarreta (10.1016/j.csda.2015.10.005_br000150) 2001; 28
10.1016/j.csda.2015.10.005_br000060
References_xml – volume: 25
  start-page: 1884
  year: 2009
  end-page: 1890
  ident: br000135
  article-title: Predictor correlation impacts machine learning algorithms: implications for genomic studies
  publication-title: Bioinformatics
– reference: National Center for Health Statistics (2012). NHANES 2007 to 2008 public data general release file documentation.
– volume: 362
  start-page: 875
  year: 2010
  end-page: 885
  ident: br000155
  article-title: Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma
  publication-title: New Engl. J. Med.
– volume: 28
  start-page: 3597
  year: 2009
  end-page: 3610
  ident: br000010
  article-title: Ordinal response prediction using bootstrap aggregation, with application to a high-throughput methylation data set
  publication-title: Stat. Med.
– volume: 172
  start-page: 217
  year: 2010
  ident: br000030
  article-title: Variation within DNA repair pathway genes and risk of multiple sclerosis
  publication-title: Am. J. Epidemiol.
– volume: 14
  start-page: 119
  year: 2013
  ident: br000090
  article-title: An AUC-based permutation variable importance measure for random forests
  publication-title: BMC Bioinformatics
– reference: Hechenbichler, K., Schliep, K., 2004. Weighted k-nearest-neighbor techniques and ordinal classification. Discussion Paper 399, University of Munich.
– volume: 98
  start-page: 917
  year: 1970
  end-page: 924
  ident: br000115
  article-title: The ranked probability score and the probability score: A comparison
  publication-title: Mon. Weather Rev.
– volume: 28
  start-page: 107
  year: 2001
  end-page: 120
  ident: br000150
  article-title: A new measure of nominal-ordinal association
  publication-title: J. Appl. Stat.
– volume: 1
  start-page: S62
  year: 2007
  ident: br000165
  article-title: Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests
  publication-title: BMC Proc.
– volume: 122
  start-page: 191
  year: 1995
  end-page: 203
  ident: br000100
  article-title: The support prognostic model: objective estimates of survival for seriously ill hospitalized adults
  publication-title: Ann. Intern. Med.
– volume: 4
  start-page: 29
  year: 2014
  end-page: 40
  ident: br000055
  article-title: Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease
  publication-title: Brain Behav.
– year: 2015
  ident: br000085
  article-title: Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications
  publication-title: Biometrical J.
– volume: 8
  start-page: 985
  year: 1969
  end-page: 987
  ident: br000045
  article-title: A scoring system for probability forecasts of ranked categories
  publication-title: J. Appl. Meteorol.
– volume: 8
  start-page: 25
  year: 2007
  ident: br000160
  article-title: Bias in random forest variable importance measures: Illustrations, sources and a solution
  publication-title: BMC Bioinformatics
– volume: 13
  start-page: 292
  year: 2012
  end-page: 304
  ident: br000015
  article-title: Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations
  publication-title: Brief. Bioinform.
– volume: 17
  start-page: 1368
  year: 2008
  end-page: 1373
  ident: br000035
  article-title: Pathway analysis of single-nucleotide polymorphisms potentially associated with glioblastoma multiforme susceptibility using random forests
  publication-title: Cancer Epidemiol. Biomarkers Prevent.
– year: 2011
  ident: br000170
  article-title: Regression for Categorical Data
– year: 2002
  ident: br000005
  article-title: Categorical Data Analysis
– reference: Hothorn, T., Hornik, K., Zeileis, A., 2012. Party: a laboratory for recursive partytioning. R package version 10-3, URL
– volume: 47
  start-page: 547
  year: 2009
  end-page: 553
  ident: br000040
  article-title: Modeling wine preferences by data mining from physicochemical properties
  publication-title: Decis. Support Syst.
– volume: 2
  start-page: 493
  year: 2012
  end-page: 507
  ident: br000020
  article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
– volume: 127
  start-page: 441
  year: 2010
  end-page: 452
  ident: br000130
  article-title: Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging
  publication-title: Hum. Genet.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: br000025
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 60
  start-page: 257
  year: 2006
  end-page: 263
  ident: br000070
  article-title: A lego system for conditional inference
  publication-title: Amer. Statist.
– year: 2010
  ident: br000050
  article-title: Preference Learning
– reference: Louppe, G., 2014. Understanding random forests: From theory to practice. arXiv preprint
– year: 2004
  ident: br000065
  article-title: Applied Logistic Regression
– year: 2004
  ident: br000145
  article-title: The Statistical Evaluation of Medical Tests for Classification and Prediction
– volume: 129
  start-page: 473
  year: 2011
  end-page: 485
  ident: br000105
  article-title: A genome-wide screen of gene–gene interactions for rheumatoid arthritis susceptibility
  publication-title: Hum. Genet.
– reference: .
– volume: 15
  start-page: 651
  year: 2006
  end-page: 674
  ident: br000075
  article-title: Unbiased recursive partitioning: A conditional inference framework
  publication-title: J. Comput. Graph. Statist.
– volume: 4
  year: 2014
  ident: br000095
  article-title: Erythropoietin upregulation in pulmonary arterial hypertension
  publication-title: Pulmon. Circ.
– volume: 12
  start-page: 408
  year: 1998
  end-page: 421
  ident: br000140
  article-title: Perinatal events and the risk of intraparenchymal echodensity in very-low-birthweight neonates
  publication-title: Paediatr. Perinat. Epidemiol.
– volume: 12
  start-page: 369
  year: 2011
  end-page: 373
  ident: br000125
  article-title: Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures
  publication-title: Brief. Bioinform.
– volume: 15
  start-page: 651
  issue: 3
  year: 2006
  ident: 10.1016/j.csda.2015.10.005_br000075
  article-title: Unbiased recursive partitioning: A conditional inference framework
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/106186006X133933
– year: 2015
  ident: 10.1016/j.csda.2015.10.005_br000085
  article-title: Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications
  publication-title: Biometrical J.
  doi: 10.1002/bimj.201400246
– volume: 98
  start-page: 917
  issue: 12
  year: 1970
  ident: 10.1016/j.csda.2015.10.005_br000115
  article-title: The ranked probability score and the probability score: A comparison
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1970)098<0917:TRPSAT>2.3.CO;2
– volume: 122
  start-page: 191
  issue: 3
  year: 1995
  ident: 10.1016/j.csda.2015.10.005_br000100
  article-title: The support prognostic model: objective estimates of survival for seriously ill hospitalized adults
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-122-3-199502010-00007
– ident: 10.1016/j.csda.2015.10.005_br000110
– ident: 10.1016/j.csda.2015.10.005_br000120
– volume: 13
  start-page: 292
  year: 2012
  ident: 10.1016/j.csda.2015.10.005_br000015
  article-title: Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbr053
– year: 2011
  ident: 10.1016/j.csda.2015.10.005_br000170
– year: 2004
  ident: 10.1016/j.csda.2015.10.005_br000065
– volume: 47
  start-page: 547
  issue: 4
  year: 2009
  ident: 10.1016/j.csda.2015.10.005_br000040
  article-title: Modeling wine preferences by data mining from physicochemical properties
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2009.05.016
– volume: 4
  issue: 2
  year: 2014
  ident: 10.1016/j.csda.2015.10.005_br000095
  article-title: Erythropoietin upregulation in pulmonary arterial hypertension
  publication-title: Pulmon. Circ.
– volume: 12
  start-page: 408
  year: 1998
  ident: 10.1016/j.csda.2015.10.005_br000140
  article-title: Perinatal events and the risk of intraparenchymal echodensity in very-low-birthweight neonates
  publication-title: Paediatr. Perinat. Epidemiol.
  doi: 10.1046/j.1365-3016.1998.00134.x
– ident: 10.1016/j.csda.2015.10.005_br000080
  doi: 10.32614/CRAN.package.partykit
– volume: 8
  start-page: 985
  issue: 6
  year: 1969
  ident: 10.1016/j.csda.2015.10.005_br000045
  article-title: A scoring system for probability forecasts of ranked categories
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
– volume: 28
  start-page: 107
  issue: 1
  year: 2001
  ident: 10.1016/j.csda.2015.10.005_br000150
  article-title: A new measure of nominal-ordinal association
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760120011635
– volume: 172
  start-page: 217
  issue: 2
  year: 2010
  ident: 10.1016/j.csda.2015.10.005_br000030
  article-title: Variation within DNA repair pathway genes and risk of multiple sclerosis
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwq086
– ident: 10.1016/j.csda.2015.10.005_br000060
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.csda.2015.10.005_br000025
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 127
  start-page: 441
  issue: 4
  year: 2010
  ident: 10.1016/j.csda.2015.10.005_br000130
  article-title: Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-009-0782-y
– volume: 129
  start-page: 473
  issue: 5
  year: 2011
  ident: 10.1016/j.csda.2015.10.005_br000105
  article-title: A genome-wide screen of gene–gene interactions for rheumatoid arthritis susceptibility
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-010-0943-z
– volume: 1
  start-page: S62
  issue: Suppl 1
  year: 2007
  ident: 10.1016/j.csda.2015.10.005_br000165
  article-title: Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests
  publication-title: BMC Proc.
  doi: 10.1186/1753-6561-1-s1-s62
– volume: 28
  start-page: 3597
  issue: 29
  year: 2009
  ident: 10.1016/j.csda.2015.10.005_br000010
  article-title: Ordinal response prediction using bootstrap aggregation, with application to a high-throughput methylation data set
  publication-title: Stat. Med.
  doi: 10.1002/sim.3707
– year: 2002
  ident: 10.1016/j.csda.2015.10.005_br000005
– volume: 362
  start-page: 875
  issue: 10
  year: 2010
  ident: 10.1016/j.csda.2015.10.005_br000155
  article-title: Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa0905680
– volume: 17
  start-page: 1368
  issue: 6
  year: 2008
  ident: 10.1016/j.csda.2015.10.005_br000035
  article-title: Pathway analysis of single-nucleotide polymorphisms potentially associated with glioblastoma multiforme susceptibility using random forests
  publication-title: Cancer Epidemiol. Biomarkers Prevent.
  doi: 10.1158/1055-9965.EPI-07-2830
– volume: 12
  start-page: 369
  issue: 4
  year: 2011
  ident: 10.1016/j.csda.2015.10.005_br000125
  article-title: Letter to the editor: On the stability and ranking of predictors from random forest variable importance measures
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbr016
– volume: 25
  start-page: 1884
  issue: 15
  year: 2009
  ident: 10.1016/j.csda.2015.10.005_br000135
  article-title: Predictor correlation impacts machine learning algorithms: implications for genomic studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp331
– volume: 14
  start-page: 119
  year: 2013
  ident: 10.1016/j.csda.2015.10.005_br000090
  article-title: An AUC-based permutation variable importance measure for random forests
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-119
– volume: 8
  start-page: 25
  year: 2007
  ident: 10.1016/j.csda.2015.10.005_br000160
  article-title: Bias in random forest variable importance measures: Illustrations, sources and a solution
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-25
– year: 2010
  ident: 10.1016/j.csda.2015.10.005_br000050
– year: 2004
  ident: 10.1016/j.csda.2015.10.005_br000145
– volume: 4
  start-page: 29
  issue: 1
  year: 2014
  ident: 10.1016/j.csda.2015.10.005_br000055
  article-title: Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease
  publication-title: Brain Behav.
  doi: 10.1002/brb3.185
– volume: 60
  start-page: 257
  issue: 3
  year: 2006
  ident: 10.1016/j.csda.2015.10.005_br000070
  article-title: A lego system for conditional inference
  publication-title: Amer. Statist.
  doi: 10.1198/000313006X118430
– volume: 2
  start-page: 493
  issue: 6
  year: 2012
  ident: 10.1016/j.csda.2015.10.005_br000020
  article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1072
SSID ssj0002478
Score 2.5153322
Snippet The random forest method is a commonly used tool for classification with high-dimensional data that is able to rank candidate predictors through its inbuilt...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Feature selection
Ordinal regression trees
Ordinal response
Prediction
Random forest
Variable importance
Title Random forest for ordinal responses: Prediction and variable selection
URI https://dx.doi.org/10.1016/j.csda.2015.10.005
https://www.proquest.com/docview/2253224655
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFZIniTbd3NJrvrrRRLtVikWuwtZJMsVHRbuq1Hf7sz-6go2IOnsCEJy0wyMyHffEPIpYgjbRIlHC60cnxl4UjFvnLAOQkF141QxznaYiB6I_9-zMc10qlyYRBWWdr-wqbn1rrsaZXSbM0mk9YTAugjP2AQ0uTEWJjB7ge4y5uf3zAPzy-sMfJ74-gycabAeOnMIPeQy5s5wov_5Zx-menc93R3yHYZNNJ28V-7pGbTPbL1sGJczfZJd6hSM32nEIPCAthQuFZiySs6L2CwNruhj3N8l0FdUBhOP-CijKlTNMur4UD3ARl1b587PaeskeBoCC0WTiiQrcZX4Pe9hLuhYsaGIU8s09xch7GF-IJrZpBm3vWShDGtkJPNgkKCKDDskNTTaWqPCLVeZBLEZ2rj-lwx5YLWIECIRGyR1u-YuJVwpC4JxLGOxZuskGKvEgUqUaDYBwI9JlerObOCPmPtaF7JXP7YBBLs-9p5F5WCJJwOfPJQqZ0uMwnWiiFlHucn_1z7lGzClyjAOmekvpgv7TnEIYu4kW-0Btlo3_V7A2z7w5f-F6m03So
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50PagH8YlvI-hJ6tqm6baCB1GX9Yn4AG8xTVJY0a5sdxUv_in_oDN9KAp6EDwV0iS0X5KZCfnyDcBaEEfaJCpwRKCV4yuLSyr2lYPOKVC43Qh1nLMtzoLWtX90I24G4K26C0O0ytL2FzY9t9ZlSb1Es_7YbtcviUAf-Q2OIU0ujFUyK4_tyzPu27Kdw30c5HXPax5c7bWcMrWAo9Ej95wwIJEXX6G79BLhhoobG4YisVwLsxXGFt2y0NyQOrvrJQnnWpGUmcX_aEQNw7HfQRjy0VxQ2oTN109eiecX5p8Exenzyps6BalMZ4bEjlyxmVPKxE_e8JtfyJ1dcxzGyiiV7RZATMCATSdh9PRD4jWbguaFSk3ngWHQix3QgyEelGOLdQverc222XmXDoJo8BlWZ0-4M6e7WizL0-9g8TRc_wtyM1BLO6mdBWa9yCRECNXG9YXiysVpghFJFMSWdATnwK3AkbpULKfEGfeyoqbdSQJUEqBUhoDOwcZHm8dCr-PX2qLCXH6ZdRIdyq_tVqsBkrgc6YxFpbbTzySaR04afULM_7HvFRhuXZ2eyJPDs-MFGME3QcEUWoRar9u3SxgE9eLlfNIxuP3vWf4OGiYWNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+forest+for+ordinal+responses%3A+Prediction+and+variable+selection&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Janitza%2C+Silke&rft.au=Tutz%2C+Gerhard&rft.au=Boulesteix%2C+Anne-Laure&rft.date=2016-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=96&rft.spage=57&rft.epage=73&rft_id=info:doi/10.1016%2Fj.csda.2015.10.005&rft.externalDocID=S0167947315002601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon