Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system

This article is concerned with the following Hamiltonian elliptic system: where is a small parameter, is a potential function, and is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semicla...

Full description

Saved in:
Bibliographic Details
Published inAdvances in nonlinear analysis Vol. 13; no. 1; pp. 97 - 100
Main Authors Zhang, Jian, Zhou, Huitao, Mi, Heilong
Format Journal Article
LanguageEnglish
Published De Gruyter 12.03.2024
Subjects
Online AccessGet full text
ISSN2191-950X
2191-950X
DOI10.1515/anona-2023-0139

Cover

Loading…
Abstract This article is concerned with the following Hamiltonian elliptic system: where is a small parameter, is a potential function, and is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semiclassical solutions which depends on the number of global minimum points of . This result indicates how the shape of the graph of affects the number of semiclassical solutions.
AbstractList This article is concerned with the following Hamiltonian elliptic system: where is a small parameter, is a potential function, and is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semiclassical solutions which depends on the number of global minimum points of . This result indicates how the shape of the graph of affects the number of semiclassical solutions.
This article is concerned with the following Hamiltonian elliptic system: − ε 2 Δ u + ε b → ⋅ ∇ u + u + V ( x ) v = H v ( u , v ) in R N , − ε 2 Δ v − ε b → ⋅ ∇ v + v + V ( x ) u = H u ( u , v ) in R N , \left\{\begin{array}{l}-{\varepsilon }^{2}\Delta u+\varepsilon \overrightarrow{b}\cdot \nabla u+u+V\left(x)v={H}_{v}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ -{\varepsilon }^{2}\Delta v-\varepsilon \overrightarrow{b}\cdot \nabla v+v+V\left(x)u={H}_{u}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array}\right. where ε > 0 \varepsilon \gt 0 is a small parameter, V V is a potential function, and H H is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semiclassical solutions which depends on the number of global minimum points of V V . This result indicates how the shape of the graph of V V affects the number of semiclassical solutions.
This article is concerned with the following Hamiltonian elliptic system: −ε2Δu+εb→⋅∇u+u+V(x)v=Hv(u,v)inRN,−ε2Δv−εb→⋅∇v+v+V(x)u=Hu(u,v)inRN,\left\{\begin{array}{l}-{\varepsilon }^{2}\Delta u+\varepsilon \overrightarrow{b}\cdot \nabla u+u+V\left(x)v={H}_{v}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ -{\varepsilon }^{2}\Delta v-\varepsilon \overrightarrow{b}\cdot \nabla v+v+V\left(x)u={H}_{u}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array}\right. where ε>0\varepsilon \gt 0 is a small parameter, VV is a potential function, and HH is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semiclassical solutions which depends on the number of global minimum points of VV. This result indicates how the shape of the graph of VV affects the number of semiclassical solutions.
Author Zhang, Jian
Mi, Heilong
Zhou, Huitao
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  email: zhangjian@hutb.edu.cn
  organization: College of Science, Hunan University of Technology and Business, 410205 Changsha, Hunan, China
– sequence: 2
  givenname: Huitao
  surname: Zhou
  fullname: Zhou, Huitao
  email: zhouhuitao141@163.com
  organization: College of Science, Hunan University of Technology and Business, 410205 Changsha, Hunan, China
– sequence: 3
  givenname: Heilong
  surname: Mi
  fullname: Mi, Heilong
  email: miheilong@126.com
  organization: College of Science, Hunan University of Technology and Business, 410205 Changsha, Hunan, China
BookMark eNp9kF1LBCEUhiUKqm2vu_UPTPkxM67dxdIXFN0UdBHIGXUWF3dc1CX23-fsRkRQInjU87zKc4oOhzBYhM4puaANbS6h7KFihPGKUC4P0AmjklayIW-HP-pjNE1pScqYNVQIcoLenzY-u7V32uUtDj1OduW0h5ScBo9T8JvswpBwHyIGvLsZ28p73g0WIr6HlfM5DA4GbL136-w0TtuU7eoMHfXgk51-rRP0envzMr-vHp_vHubXj5XmUuZKGDHTZWpmQbaEGlH3ja6NhY4zaLqulh0TtakZcCOsNZxx1s6soG0t-07wCXrY55oAS7WObgVxqwI4tTsIcaEglm95q1hrDGPcgKG0lkaApMJwQmHWNqaoLFmX-ywdQ0rR9t95lKjRtdq5VqNrNbouRPOLKC5htJYjOP8Pd7XnPsBnG41dxM22FGoZNnEovv4iKaf8ExUZm8s
CitedBy_id crossref_primary_10_1186_s13661_024_01857_z
crossref_primary_10_1007_s41980_024_00944_2
crossref_primary_10_1007_s12220_024_01805_4
crossref_primary_10_1515_anona_2024_0063
crossref_primary_10_1007_s12220_024_01724_4
crossref_primary_10_1186_s13661_024_01846_2
crossref_primary_10_3934_math_2024904
crossref_primary_10_1002_mma_10283
crossref_primary_10_1007_s12215_024_01048_w
crossref_primary_10_1007_s12220_024_01897_y
crossref_primary_10_1186_s13661_024_01908_5
crossref_primary_10_1515_anona_2024_0027
crossref_primary_10_1186_s13661_024_01850_6
crossref_primary_10_1515_anona_2024_0025
crossref_primary_10_1515_anona_2024_0047
crossref_primary_10_1186_s13661_024_01871_1
crossref_primary_10_1007_s12220_024_01682_x
crossref_primary_10_1002_mma_10219
crossref_primary_10_1080_17476933_2024_2337868
crossref_primary_10_1007_s12220_024_01753_z
crossref_primary_10_1007_s12220_024_01840_1
Cites_doi 10.1090/S0002-9947-2011-05452-8
10.1007/BF01389883
10.4171/pm/1954
10.1142/9789812709639
10.1016/S0022-0396(03)00017-2
10.1007/s00526-013-0693-6
10.1090/S0002-9947-2010-04982-7
10.1515/anona-2021-0204
10.3934/cpaa.2019110
10.1007/s00526-007-0103-z
10.1081/PDE-120037337
10.1016/j.jfa.2009.09.013
10.1016/j.jde.2010.09.014
10.1007/s00030-008-7080-6
10.1016/j.jde.2021.10.063
10.1007/978-1-4612-4146-1
10.1016/j.jfa.2004.09.008
10.1007/978-3-642-65024-6
10.3934/dcds.2017195
10.1090/S0002-9947-1994-1214781-2
10.57262/ade/1366399849
10.1002/mana.200410420
10.1080/00036811.2014.931940
10.1007/978-3-0348-8568-3
10.1088/1361-6544/acd045
10.1515/anona-2020-0113
10.1090/S0002-9947-03-03257-4
10.1007/s00032-005-0047-8
10.1016/j.jmaa.2009.07.052
10.1006/jfan.1993.1062
10.1007/s12220-022-01171-z
10.3934/cpaa.2016.15.599
10.1016/j.jde.2023.06.010
10.1515/anona-2020-0126
10.1007/s12220-022-00870-x
10.1007/s00033-022-01741-9
10.1007/s00033-010-0105-0
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/anona-2023-0139
DatabaseName CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-950X
EndPage 100
ExternalDocumentID oai_doaj_org_article_26dd223dad1149d7a917d301a865d151
10_1515_anona_2023_0139
10_1515_anona_2023_0139131
GroupedDBID 0R~
0~D
4.4
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
J9A
O9-
OK1
QD8
SA.
SLJYH
AAYXX
CITATION
ID FETCH-LOGICAL-c399t-7d78c78cc2ea9601d74f5c4deab32a5bb49b274d42a3d7eed323268e71649fb73
IEDL.DBID DOA
ISSN 2191-950X
IngestDate Wed Aug 27 01:29:50 EDT 2025
Tue Jul 01 00:37:49 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
Thu Jul 10 10:29:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-7d78c78cc2ea9601d74f5c4deab32a5bb49b274d42a3d7eed323268e71649fb73
OpenAccessLink https://doaj.org/article/26dd223dad1149d7a917d301a865d151
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_26dd223dad1149d7a917d301a865d151
crossref_primary_10_1515_anona_2023_0139
crossref_citationtrail_10_1515_anona_2023_0139
walterdegruyter_journals_10_1515_anona_2023_0139131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-12
PublicationDateYYYYMMDD 2024-03-12
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-12
  day: 12
PublicationDecade 2020
PublicationTitle Advances in nonlinear analysis
PublicationYear 2024
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2024031207125426049_j_anona-2023-0139_ref_002
2024031207125426049_j_anona-2023-0139_ref_024
2024031207125426049_j_anona-2023-0139_ref_003
2024031207125426049_j_anona-2023-0139_ref_025
2024031207125426049_j_anona-2023-0139_ref_022
2024031207125426049_j_anona-2023-0139_ref_001
2024031207125426049_j_anona-2023-0139_ref_023
2024031207125426049_j_anona-2023-0139_ref_020
2024031207125426049_j_anona-2023-0139_ref_021
2024031207125426049_j_anona-2023-0139_ref_008
2024031207125426049_j_anona-2023-0139_ref_009
2024031207125426049_j_anona-2023-0139_ref_006
2024031207125426049_j_anona-2023-0139_ref_028
2024031207125426049_j_anona-2023-0139_ref_007
2024031207125426049_j_anona-2023-0139_ref_029
2024031207125426049_j_anona-2023-0139_ref_004
2024031207125426049_j_anona-2023-0139_ref_026
2024031207125426049_j_anona-2023-0139_ref_005
2024031207125426049_j_anona-2023-0139_ref_027
2024031207125426049_j_anona-2023-0139_ref_013
2024031207125426049_j_anona-2023-0139_ref_035
2024031207125426049_j_anona-2023-0139_ref_014
2024031207125426049_j_anona-2023-0139_ref_036
2024031207125426049_j_anona-2023-0139_ref_011
2024031207125426049_j_anona-2023-0139_ref_033
2024031207125426049_j_anona-2023-0139_ref_012
2024031207125426049_j_anona-2023-0139_ref_034
2024031207125426049_j_anona-2023-0139_ref_031
2024031207125426049_j_anona-2023-0139_ref_010
2024031207125426049_j_anona-2023-0139_ref_032
2024031207125426049_j_anona-2023-0139_ref_030
2024031207125426049_j_anona-2023-0139_ref_019
2024031207125426049_j_anona-2023-0139_ref_017
2024031207125426049_j_anona-2023-0139_ref_018
2024031207125426049_j_anona-2023-0139_ref_015
2024031207125426049_j_anona-2023-0139_ref_037
2024031207125426049_j_anona-2023-0139_ref_016
2024031207125426049_j_anona-2023-0139_ref_038
References_xml – ident: 2024031207125426049_j_anona-2023-0139_ref_007
  doi: 10.1090/S0002-9947-2011-05452-8
– ident: 2024031207125426049_j_anona-2023-0139_ref_005
  doi: 10.1007/BF01389883
– ident: 2024031207125426049_j_anona-2023-0139_ref_006
  doi: 10.4171/pm/1954
– ident: 2024031207125426049_j_anona-2023-0139_ref_011
  doi: 10.1142/9789812709639
– ident: 2024031207125426049_j_anona-2023-0139_ref_003
  doi: 10.1016/S0022-0396(03)00017-2
– ident: 2024031207125426049_j_anona-2023-0139_ref_012
  doi: 10.1007/s00526-013-0693-6
– ident: 2024031207125426049_j_anona-2023-0139_ref_024
  doi: 10.1090/S0002-9947-2010-04982-7
– ident: 2024031207125426049_j_anona-2023-0139_ref_017
  doi: 10.1515/anona-2021-0204
– ident: 2024031207125426049_j_anona-2023-0139_ref_032
  doi: 10.3934/cpaa.2019110
– ident: 2024031207125426049_j_anona-2023-0139_ref_022
  doi: 10.1007/s00526-007-0103-z
– ident: 2024031207125426049_j_anona-2023-0139_ref_016
  doi: 10.1081/PDE-120037337
– ident: 2024031207125426049_j_anona-2023-0139_ref_025
  doi: 10.1016/j.jfa.2009.09.013
– ident: 2024031207125426049_j_anona-2023-0139_ref_023
– ident: 2024031207125426049_j_anona-2023-0139_ref_029
  doi: 10.1016/j.jde.2010.09.014
– ident: 2024031207125426049_j_anona-2023-0139_ref_030
  doi: 10.1007/s00030-008-7080-6
– ident: 2024031207125426049_j_anona-2023-0139_ref_021
  doi: 10.1016/j.jde.2021.10.063
– ident: 2024031207125426049_j_anona-2023-0139_ref_026
  doi: 10.1007/978-1-4612-4146-1
– ident: 2024031207125426049_j_anona-2023-0139_ref_008
  doi: 10.1016/j.jfa.2004.09.008
– ident: 2024031207125426049_j_anona-2023-0139_ref_018
  doi: 10.1007/978-3-642-65024-6
– ident: 2024031207125426049_j_anona-2023-0139_ref_036
  doi: 10.3934/dcds.2017195
– ident: 2024031207125426049_j_anona-2023-0139_ref_010
  doi: 10.1090/S0002-9947-1994-1214781-2
– ident: 2024031207125426049_j_anona-2023-0139_ref_014
  doi: 10.57262/ade/1366399849
– ident: 2024031207125426049_j_anona-2023-0139_ref_004
  doi: 10.1002/mana.200410420
– ident: 2024031207125426049_j_anona-2023-0139_ref_035
  doi: 10.1080/00036811.2014.931940
– ident: 2024031207125426049_j_anona-2023-0139_ref_019
  doi: 10.1007/978-3-0348-8568-3
– ident: 2024031207125426049_j_anona-2023-0139_ref_038
  doi: 10.1088/1361-6544/acd045
– ident: 2024031207125426049_j_anona-2023-0139_ref_034
  doi: 10.1515/anona-2020-0113
– ident: 2024031207125426049_j_anona-2023-0139_ref_009
  doi: 10.1090/S0002-9947-03-03257-4
– ident: 2024031207125426049_j_anona-2023-0139_ref_020
  doi: 10.1007/s00032-005-0047-8
– ident: 2024031207125426049_j_anona-2023-0139_ref_027
  doi: 10.1016/j.jmaa.2009.07.052
– ident: 2024031207125426049_j_anona-2023-0139_ref_013
  doi: 10.1006/jfan.1993.1062
– ident: 2024031207125426049_j_anona-2023-0139_ref_015
  doi: 10.1007/s12220-022-01171-z
– ident: 2024031207125426049_j_anona-2023-0139_ref_037
  doi: 10.3934/cpaa.2016.15.599
– ident: 2024031207125426049_j_anona-2023-0139_ref_002
  doi: 10.1016/j.jde.2023.06.010
– ident: 2024031207125426049_j_anona-2023-0139_ref_028
  doi: 10.1515/anona-2020-0126
– ident: 2024031207125426049_j_anona-2023-0139_ref_033
  doi: 10.1007/s12220-022-00870-x
– ident: 2024031207125426049_j_anona-2023-0139_ref_001
  doi: 10.1007/s00033-022-01741-9
– ident: 2024031207125426049_j_anona-2023-0139_ref_031
  doi: 10.1007/s00033-010-0105-0
SSID ssj0000851770
Score 2.4329035
Snippet This article is concerned with the following Hamiltonian elliptic system: where is a small parameter, is a potential function, and is a super-quadratic...
This article is concerned with the following Hamiltonian elliptic system: − ε 2 Δ u + ε b → ⋅ ∇ u + u + V ( x ) v = H v ( u , v ) in R N , − ε 2 Δ v − ε b → ⋅...
This article is concerned with the following Hamiltonian elliptic system:...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 97
SubjectTerms 35J50
35Q40
58E05
Hamiltonian elliptic system
multiplicity
semiclassical solutions
Title Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system
URI https://www.degruyter.com/doi/10.1515/anona-2023-0139
https://doaj.org/article/26dd223dad1149d7a917d301a865d151
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekz0Un1hf7MGDl1j3kWxzVLEUoZ4s9CAsu5mNKFKlTRH_vTObtFSheBFySjbZMDub-b7s7DeMnTuRAi1gJZnPVKJznHPelwKBXOkx4ggBkvY7Dx-ywUjfj9PxSqkvygmr5YFrw3VlBoAhDBwgcs_BOOQXgF7pelkKIm6elhjzVsjUa519JYy5arR8MGZ3HbJpl1Cx8IRQz48wFNX6W6z9GVeoITxP51_VYkU0Bpr-Nms3CJFf12-2wzbCZJe1VnQD99jTsE4DfCkQQ_P3ks8oxZ1wMJmcL92JIyLljscr1GxS62K4KR_Qfw2EfegcnCQ58cNR8FrVeZ-N-nePt4OkKZOQFIguqsSA6RV4FDI45CMCjC7TQkNwXkmXeq9zj9wTtHQKDMZEhSgq6wViSnnpjTpgm9h_OGQ8KJcKLwKhKmR6Lu-lWelzkCQbr7TssMuF1WzRaIhTKYs3S1wCzWyjmS2Z2ZKZO-xiecNHLZ-xvukNDcOyGelexxPoDbbxBvuXN3SY-jWItpmTs3X9CiWO_qPrY7aFz9SUnybkCduspvNwioCl8mfRN78BvDPo9Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7B7gH2sGp5iKW09YEDl7A4zvO4oNK03YUDIHFAsuyMsyAtLFqyqvrvO5OEiCK4VMopthNr_Jjvs8efAfaNDJE3sLzIRsoLUhpz1haSgFxhyeNIiT6fd56cRdlV8PM6vF6Bk-ezMBxWiW66WP4pa4XUIc7zJS-UtVoD5IGHhrix8fjqb48xzPC2vJ-tQjci-J90oDvKvl-ct0stjCri-KgR9nmj-D8-qZLu70H_d7Vd3dblhdc5_QD9Bi6KUd2-H2HFPWxA74WI4CbcTOqYwLucALWYF-KJ490ZFLP9Rdu3BMFTYUSVwtkeapEMsxAZL3IQBqSeIlifk2aRXNQSz1twdfrt8iTzmjsTvJygRunFGCc5PbnvDJETiXFQhHmAzljlm9DaILVERDHwjcKYHKQiSBUljmlTWthYbUOH_u92QDhlQmmlY4hFtM-kSRgVNkWfNeRV4A_g8NlqOm8Exflei5lmYkFm1pWZNZtZs5kHcNAWeKy1NN7PeszN0GZjEezqxXwx1c2Y0n6ESOgGDRKpS5FqKGOkCcskUYj01QGoV42omwH69N5_pZK7_1XqK6xll5OxHv84-_UJ1ikp4Eg16e9Bp1ws3WeCLqX90nTNv4iu7WM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH7aioTWA-LXRGEbPnDgknWOHac5lo3SAQUkhsQBybLznAoJUVRaIf573ktC1E3jgpRTbCfW84_3ffbzZ4A9JxPkDazIeKMindGY876QBOQKTx5HSoz5vPPozAyv9PF1cr1wFobDKjGMp_PnWaWQ2sVJPueFskZrgDxw1xE3dhFf_R0xhuk-YPERlozJlG7BUn94dHnerLQwqEjTH7Wuz39K_-WSSuX-Nqw8lbvVTVUWnM5gFVZqtCj6VfOuwYdwvw7tBQ3BDbgZVSGBtznhaTEpxCOHuzMmZvOLpmsJQqfCiTKFs91XGhluKoa8xkEQkDqKYHlOmkRyUSk8b8LV4PDPz2FUX5kQ5YQ0ZlGKaS-nJ4-DI24iMdVFkmsMzqvYJd7rzBMPRR07hSn5R0WIyvQCs6as8Kn6DC36f9gCEZRLpJeBERaxPpf1ElP4DGOWkFc67sD3V6vZvNYT52st7izzCjKzLc1s2cyWzdyB_abAQyWl8XbWA26GJhtrYJcvJtOxrYeUjQ0igRt0SJwuQ6qhTJHmK9czCdJXO6D-aURbj8_Ht_4rldx-V6ldWL74NbCnv89OduATpWiOU5PxF2jNpvPwlYDLzH-re-YLIxrsiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplicity+of+semiclassical+solutions+for+a+class+of+nonlinear+Hamiltonian+elliptic+system&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Zhang%2C+Jian&rft.au=Zhou%2C+Huitao&rft.au=Mi%2C+Heilong&rft.date=2024-03-12&rft.pub=De+Gruyter&rft.eissn=2191-950X&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1515%2Fanona-2023-0139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anona_2023_0139131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon