Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system
This article is concerned with the following Hamiltonian elliptic system: where is a small parameter, is a potential function, and is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semicla...
Saved in:
Published in | Advances in nonlinear analysis Vol. 13; no. 1; pp. 97 - 100 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
12.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2191-950X 2191-950X |
DOI | 10.1515/anona-2023-0139 |
Cover
Loading…
Abstract | This article is concerned with the following Hamiltonian elliptic system:
where
is a small parameter,
is a potential function, and
is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semiclassical solutions which depends on the number of global minimum points of
. This result indicates how the shape of the graph of
affects the number of semiclassical solutions. |
---|---|
AbstractList | This article is concerned with the following Hamiltonian elliptic system:
where
is a small parameter,
is a potential function, and
is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semiclassical solutions which depends on the number of global minimum points of
. This result indicates how the shape of the graph of
affects the number of semiclassical solutions. This article is concerned with the following Hamiltonian elliptic system: − ε 2 Δ u + ε b → ⋅ ∇ u + u + V ( x ) v = H v ( u , v ) in R N , − ε 2 Δ v − ε b → ⋅ ∇ v + v + V ( x ) u = H u ( u , v ) in R N , \left\{\begin{array}{l}-{\varepsilon }^{2}\Delta u+\varepsilon \overrightarrow{b}\cdot \nabla u+u+V\left(x)v={H}_{v}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ -{\varepsilon }^{2}\Delta v-\varepsilon \overrightarrow{b}\cdot \nabla v+v+V\left(x)u={H}_{u}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array}\right. where ε > 0 \varepsilon \gt 0 is a small parameter, V V is a potential function, and H H is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semiclassical solutions which depends on the number of global minimum points of V V . This result indicates how the shape of the graph of V V affects the number of semiclassical solutions. This article is concerned with the following Hamiltonian elliptic system: −ε2Δu+εb→⋅∇u+u+V(x)v=Hv(u,v)inRN,−ε2Δv−εb→⋅∇v+v+V(x)u=Hu(u,v)inRN,\left\{\begin{array}{l}-{\varepsilon }^{2}\Delta u+\varepsilon \overrightarrow{b}\cdot \nabla u+u+V\left(x)v={H}_{v}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ -{\varepsilon }^{2}\Delta v-\varepsilon \overrightarrow{b}\cdot \nabla v+v+V\left(x)u={H}_{u}\left(u,v)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array}\right. where ε>0\varepsilon \gt 0 is a small parameter, VV is a potential function, and HH is a super-quadratic sub-critical Hamiltonian. Applying suitable variational arguments and refined analysis techniques, we construct a new multiplicity result of semiclassical solutions which depends on the number of global minimum points of VV. This result indicates how the shape of the graph of VV affects the number of semiclassical solutions. |
Author | Zhang, Jian Mi, Heilong Zhou, Huitao |
Author_xml | – sequence: 1 givenname: Jian surname: Zhang fullname: Zhang, Jian email: zhangjian@hutb.edu.cn organization: College of Science, Hunan University of Technology and Business, 410205 Changsha, Hunan, China – sequence: 2 givenname: Huitao surname: Zhou fullname: Zhou, Huitao email: zhouhuitao141@163.com organization: College of Science, Hunan University of Technology and Business, 410205 Changsha, Hunan, China – sequence: 3 givenname: Heilong surname: Mi fullname: Mi, Heilong email: miheilong@126.com organization: College of Science, Hunan University of Technology and Business, 410205 Changsha, Hunan, China |
BookMark | eNp9kF1LBCEUhiUKqm2vu_UPTPkxM67dxdIXFN0UdBHIGXUWF3dc1CX23-fsRkRQInjU87zKc4oOhzBYhM4puaANbS6h7KFihPGKUC4P0AmjklayIW-HP-pjNE1pScqYNVQIcoLenzY-u7V32uUtDj1OduW0h5ScBo9T8JvswpBwHyIGvLsZ28p73g0WIr6HlfM5DA4GbL136-w0TtuU7eoMHfXgk51-rRP0envzMr-vHp_vHubXj5XmUuZKGDHTZWpmQbaEGlH3ja6NhY4zaLqulh0TtakZcCOsNZxx1s6soG0t-07wCXrY55oAS7WObgVxqwI4tTsIcaEglm95q1hrDGPcgKG0lkaApMJwQmHWNqaoLFmX-ywdQ0rR9t95lKjRtdq5VqNrNbouRPOLKC5htJYjOP8Pd7XnPsBnG41dxM22FGoZNnEovv4iKaf8ExUZm8s |
CitedBy_id | crossref_primary_10_1186_s13661_024_01857_z crossref_primary_10_1007_s41980_024_00944_2 crossref_primary_10_1007_s12220_024_01805_4 crossref_primary_10_1515_anona_2024_0063 crossref_primary_10_1007_s12220_024_01724_4 crossref_primary_10_1186_s13661_024_01846_2 crossref_primary_10_3934_math_2024904 crossref_primary_10_1002_mma_10283 crossref_primary_10_1007_s12215_024_01048_w crossref_primary_10_1007_s12220_024_01897_y crossref_primary_10_1186_s13661_024_01908_5 crossref_primary_10_1515_anona_2024_0027 crossref_primary_10_1186_s13661_024_01850_6 crossref_primary_10_1515_anona_2024_0025 crossref_primary_10_1515_anona_2024_0047 crossref_primary_10_1186_s13661_024_01871_1 crossref_primary_10_1007_s12220_024_01682_x crossref_primary_10_1002_mma_10219 crossref_primary_10_1080_17476933_2024_2337868 crossref_primary_10_1007_s12220_024_01753_z crossref_primary_10_1007_s12220_024_01840_1 |
Cites_doi | 10.1090/S0002-9947-2011-05452-8 10.1007/BF01389883 10.4171/pm/1954 10.1142/9789812709639 10.1016/S0022-0396(03)00017-2 10.1007/s00526-013-0693-6 10.1090/S0002-9947-2010-04982-7 10.1515/anona-2021-0204 10.3934/cpaa.2019110 10.1007/s00526-007-0103-z 10.1081/PDE-120037337 10.1016/j.jfa.2009.09.013 10.1016/j.jde.2010.09.014 10.1007/s00030-008-7080-6 10.1016/j.jde.2021.10.063 10.1007/978-1-4612-4146-1 10.1016/j.jfa.2004.09.008 10.1007/978-3-642-65024-6 10.3934/dcds.2017195 10.1090/S0002-9947-1994-1214781-2 10.57262/ade/1366399849 10.1002/mana.200410420 10.1080/00036811.2014.931940 10.1007/978-3-0348-8568-3 10.1088/1361-6544/acd045 10.1515/anona-2020-0113 10.1090/S0002-9947-03-03257-4 10.1007/s00032-005-0047-8 10.1016/j.jmaa.2009.07.052 10.1006/jfan.1993.1062 10.1007/s12220-022-01171-z 10.3934/cpaa.2016.15.599 10.1016/j.jde.2023.06.010 10.1515/anona-2020-0126 10.1007/s12220-022-00870-x 10.1007/s00033-022-01741-9 10.1007/s00033-010-0105-0 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/anona-2023-0139 |
DatabaseName | CrossRef Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-950X |
EndPage | 100 |
ExternalDocumentID | oai_doaj_org_article_26dd223dad1149d7a917d301a865d151 10_1515_anona_2023_0139 10_1515_anona_2023_0139131 |
GroupedDBID | 0R~ 0~D 4.4 AAFPC AAFWJ AAQCX AASOL AASQH ABAOT ABAQN ABFKT ABIQR ABSOE ABUVI ABXMZ ACGFS ACXLN ACZBO ADGQD ADGYE ADJVZ ADOZN AEJTT AENEX AEQDQ AEXIE AFBAA AFBDD AFCXV AFPKN AFQUK AHGSO AIERV AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM BAKPI BBCWN CFGNV EBS GROUPED_DOAJ HZ~ IY9 J9A O9- OK1 QD8 SA. SLJYH AAYXX CITATION |
ID | FETCH-LOGICAL-c399t-7d78c78cc2ea9601d74f5c4deab32a5bb49b274d42a3d7eed323268e71649fb73 |
IEDL.DBID | DOA |
ISSN | 2191-950X |
IngestDate | Wed Aug 27 01:29:50 EDT 2025 Tue Jul 01 00:37:49 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Thu Jul 10 10:29:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-7d78c78cc2ea9601d74f5c4deab32a5bb49b274d42a3d7eed323268e71649fb73 |
OpenAccessLink | https://doaj.org/article/26dd223dad1149d7a917d301a865d151 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_26dd223dad1149d7a917d301a865d151 crossref_primary_10_1515_anona_2023_0139 crossref_citationtrail_10_1515_anona_2023_0139 walterdegruyter_journals_10_1515_anona_2023_0139131 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-12 |
PublicationDateYYYYMMDD | 2024-03-12 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Advances in nonlinear analysis |
PublicationYear | 2024 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2024031207125426049_j_anona-2023-0139_ref_002 2024031207125426049_j_anona-2023-0139_ref_024 2024031207125426049_j_anona-2023-0139_ref_003 2024031207125426049_j_anona-2023-0139_ref_025 2024031207125426049_j_anona-2023-0139_ref_022 2024031207125426049_j_anona-2023-0139_ref_001 2024031207125426049_j_anona-2023-0139_ref_023 2024031207125426049_j_anona-2023-0139_ref_020 2024031207125426049_j_anona-2023-0139_ref_021 2024031207125426049_j_anona-2023-0139_ref_008 2024031207125426049_j_anona-2023-0139_ref_009 2024031207125426049_j_anona-2023-0139_ref_006 2024031207125426049_j_anona-2023-0139_ref_028 2024031207125426049_j_anona-2023-0139_ref_007 2024031207125426049_j_anona-2023-0139_ref_029 2024031207125426049_j_anona-2023-0139_ref_004 2024031207125426049_j_anona-2023-0139_ref_026 2024031207125426049_j_anona-2023-0139_ref_005 2024031207125426049_j_anona-2023-0139_ref_027 2024031207125426049_j_anona-2023-0139_ref_013 2024031207125426049_j_anona-2023-0139_ref_035 2024031207125426049_j_anona-2023-0139_ref_014 2024031207125426049_j_anona-2023-0139_ref_036 2024031207125426049_j_anona-2023-0139_ref_011 2024031207125426049_j_anona-2023-0139_ref_033 2024031207125426049_j_anona-2023-0139_ref_012 2024031207125426049_j_anona-2023-0139_ref_034 2024031207125426049_j_anona-2023-0139_ref_031 2024031207125426049_j_anona-2023-0139_ref_010 2024031207125426049_j_anona-2023-0139_ref_032 2024031207125426049_j_anona-2023-0139_ref_030 2024031207125426049_j_anona-2023-0139_ref_019 2024031207125426049_j_anona-2023-0139_ref_017 2024031207125426049_j_anona-2023-0139_ref_018 2024031207125426049_j_anona-2023-0139_ref_015 2024031207125426049_j_anona-2023-0139_ref_037 2024031207125426049_j_anona-2023-0139_ref_016 2024031207125426049_j_anona-2023-0139_ref_038 |
References_xml | – ident: 2024031207125426049_j_anona-2023-0139_ref_007 doi: 10.1090/S0002-9947-2011-05452-8 – ident: 2024031207125426049_j_anona-2023-0139_ref_005 doi: 10.1007/BF01389883 – ident: 2024031207125426049_j_anona-2023-0139_ref_006 doi: 10.4171/pm/1954 – ident: 2024031207125426049_j_anona-2023-0139_ref_011 doi: 10.1142/9789812709639 – ident: 2024031207125426049_j_anona-2023-0139_ref_003 doi: 10.1016/S0022-0396(03)00017-2 – ident: 2024031207125426049_j_anona-2023-0139_ref_012 doi: 10.1007/s00526-013-0693-6 – ident: 2024031207125426049_j_anona-2023-0139_ref_024 doi: 10.1090/S0002-9947-2010-04982-7 – ident: 2024031207125426049_j_anona-2023-0139_ref_017 doi: 10.1515/anona-2021-0204 – ident: 2024031207125426049_j_anona-2023-0139_ref_032 doi: 10.3934/cpaa.2019110 – ident: 2024031207125426049_j_anona-2023-0139_ref_022 doi: 10.1007/s00526-007-0103-z – ident: 2024031207125426049_j_anona-2023-0139_ref_016 doi: 10.1081/PDE-120037337 – ident: 2024031207125426049_j_anona-2023-0139_ref_025 doi: 10.1016/j.jfa.2009.09.013 – ident: 2024031207125426049_j_anona-2023-0139_ref_023 – ident: 2024031207125426049_j_anona-2023-0139_ref_029 doi: 10.1016/j.jde.2010.09.014 – ident: 2024031207125426049_j_anona-2023-0139_ref_030 doi: 10.1007/s00030-008-7080-6 – ident: 2024031207125426049_j_anona-2023-0139_ref_021 doi: 10.1016/j.jde.2021.10.063 – ident: 2024031207125426049_j_anona-2023-0139_ref_026 doi: 10.1007/978-1-4612-4146-1 – ident: 2024031207125426049_j_anona-2023-0139_ref_008 doi: 10.1016/j.jfa.2004.09.008 – ident: 2024031207125426049_j_anona-2023-0139_ref_018 doi: 10.1007/978-3-642-65024-6 – ident: 2024031207125426049_j_anona-2023-0139_ref_036 doi: 10.3934/dcds.2017195 – ident: 2024031207125426049_j_anona-2023-0139_ref_010 doi: 10.1090/S0002-9947-1994-1214781-2 – ident: 2024031207125426049_j_anona-2023-0139_ref_014 doi: 10.57262/ade/1366399849 – ident: 2024031207125426049_j_anona-2023-0139_ref_004 doi: 10.1002/mana.200410420 – ident: 2024031207125426049_j_anona-2023-0139_ref_035 doi: 10.1080/00036811.2014.931940 – ident: 2024031207125426049_j_anona-2023-0139_ref_019 doi: 10.1007/978-3-0348-8568-3 – ident: 2024031207125426049_j_anona-2023-0139_ref_038 doi: 10.1088/1361-6544/acd045 – ident: 2024031207125426049_j_anona-2023-0139_ref_034 doi: 10.1515/anona-2020-0113 – ident: 2024031207125426049_j_anona-2023-0139_ref_009 doi: 10.1090/S0002-9947-03-03257-4 – ident: 2024031207125426049_j_anona-2023-0139_ref_020 doi: 10.1007/s00032-005-0047-8 – ident: 2024031207125426049_j_anona-2023-0139_ref_027 doi: 10.1016/j.jmaa.2009.07.052 – ident: 2024031207125426049_j_anona-2023-0139_ref_013 doi: 10.1006/jfan.1993.1062 – ident: 2024031207125426049_j_anona-2023-0139_ref_015 doi: 10.1007/s12220-022-01171-z – ident: 2024031207125426049_j_anona-2023-0139_ref_037 doi: 10.3934/cpaa.2016.15.599 – ident: 2024031207125426049_j_anona-2023-0139_ref_002 doi: 10.1016/j.jde.2023.06.010 – ident: 2024031207125426049_j_anona-2023-0139_ref_028 doi: 10.1515/anona-2020-0126 – ident: 2024031207125426049_j_anona-2023-0139_ref_033 doi: 10.1007/s12220-022-00870-x – ident: 2024031207125426049_j_anona-2023-0139_ref_001 doi: 10.1007/s00033-022-01741-9 – ident: 2024031207125426049_j_anona-2023-0139_ref_031 doi: 10.1007/s00033-010-0105-0 |
SSID | ssj0000851770 |
Score | 2.4329035 |
Snippet | This article is concerned with the following Hamiltonian elliptic system:
where
is a small parameter,
is a potential function, and
is a super-quadratic... This article is concerned with the following Hamiltonian elliptic system: − ε 2 Δ u + ε b → ⋅ ∇ u + u + V ( x ) v = H v ( u , v ) in R N , − ε 2 Δ v − ε b → ⋅... This article is concerned with the following Hamiltonian elliptic system:... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 97 |
SubjectTerms | 35J50 35Q40 58E05 Hamiltonian elliptic system multiplicity semiclassical solutions |
Title | Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system |
URI | https://www.degruyter.com/doi/10.1515/anona-2023-0139 https://doaj.org/article/26dd223dad1149d7a917d301a865d151 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekz0Un1hf7MGDl1j3kWxzVLEUoZ4s9CAsu5mNKFKlTRH_vTObtFSheBFySjbZMDub-b7s7DeMnTuRAi1gJZnPVKJznHPelwKBXOkx4ggBkvY7Dx-ywUjfj9PxSqkvygmr5YFrw3VlBoAhDBwgcs_BOOQXgF7pelkKIm6elhjzVsjUa519JYy5arR8MGZ3HbJpl1Cx8IRQz48wFNX6W6z9GVeoITxP51_VYkU0Bpr-Nms3CJFf12-2wzbCZJe1VnQD99jTsE4DfCkQQ_P3ks8oxZ1wMJmcL92JIyLljscr1GxS62K4KR_Qfw2EfegcnCQ58cNR8FrVeZ-N-nePt4OkKZOQFIguqsSA6RV4FDI45CMCjC7TQkNwXkmXeq9zj9wTtHQKDMZEhSgq6wViSnnpjTpgm9h_OGQ8KJcKLwKhKmR6Lu-lWelzkCQbr7TssMuF1WzRaIhTKYs3S1wCzWyjmS2Z2ZKZO-xiecNHLZ-xvukNDcOyGelexxPoDbbxBvuXN3SY-jWItpmTs3X9CiWO_qPrY7aFz9SUnybkCduspvNwioCl8mfRN78BvDPo9Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7B7gH2sGp5iKW09YEDl7A4zvO4oNK03YUDIHFAsuyMsyAtLFqyqvrvO5OEiCK4VMopthNr_Jjvs8efAfaNDJE3sLzIRsoLUhpz1haSgFxhyeNIiT6fd56cRdlV8PM6vF6Bk-ezMBxWiW66WP4pa4XUIc7zJS-UtVoD5IGHhrix8fjqb48xzPC2vJ-tQjci-J90oDvKvl-ct0stjCri-KgR9nmj-D8-qZLu70H_d7Vd3dblhdc5_QD9Bi6KUd2-H2HFPWxA74WI4CbcTOqYwLucALWYF-KJ490ZFLP9Rdu3BMFTYUSVwtkeapEMsxAZL3IQBqSeIlifk2aRXNQSz1twdfrt8iTzmjsTvJygRunFGCc5PbnvDJETiXFQhHmAzljlm9DaILVERDHwjcKYHKQiSBUljmlTWthYbUOH_u92QDhlQmmlY4hFtM-kSRgVNkWfNeRV4A_g8NlqOm8Exflei5lmYkFm1pWZNZtZs5kHcNAWeKy1NN7PeszN0GZjEezqxXwx1c2Y0n6ESOgGDRKpS5FqKGOkCcskUYj01QGoV42omwH69N5_pZK7_1XqK6xll5OxHv84-_UJ1ikp4Eg16e9Bp1ws3WeCLqX90nTNv4iu7WM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH7aioTWA-LXRGEbPnDgknWOHac5lo3SAQUkhsQBybLznAoJUVRaIf573ktC1E3jgpRTbCfW84_3ffbzZ4A9JxPkDazIeKMindGY876QBOQKTx5HSoz5vPPozAyv9PF1cr1wFobDKjGMp_PnWaWQ2sVJPueFskZrgDxw1xE3dhFf_R0xhuk-YPERlozJlG7BUn94dHnerLQwqEjTH7Wuz39K_-WSSuX-Nqw8lbvVTVUWnM5gFVZqtCj6VfOuwYdwvw7tBQ3BDbgZVSGBtznhaTEpxCOHuzMmZvOLpmsJQqfCiTKFs91XGhluKoa8xkEQkDqKYHlOmkRyUSk8b8LV4PDPz2FUX5kQ5YQ0ZlGKaS-nJ4-DI24iMdVFkmsMzqvYJd7rzBMPRR07hSn5R0WIyvQCs6as8Kn6DC36f9gCEZRLpJeBERaxPpf1ElP4DGOWkFc67sD3V6vZvNYT52st7izzCjKzLc1s2cyWzdyB_abAQyWl8XbWA26GJhtrYJcvJtOxrYeUjQ0igRt0SJwuQ6qhTJHmK9czCdJXO6D-aURbj8_Ht_4rldx-V6ldWL74NbCnv89OduATpWiOU5PxF2jNpvPwlYDLzH-re-YLIxrsiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplicity+of+semiclassical+solutions+for+a+class+of+nonlinear+Hamiltonian+elliptic+system&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Zhang%2C+Jian&rft.au=Zhou%2C+Huitao&rft.au=Mi%2C+Heilong&rft.date=2024-03-12&rft.pub=De+Gruyter&rft.eissn=2191-950X&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1515%2Fanona-2023-0139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anona_2023_0139131 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon |