A General Pairwise Comparison Model for Extremely Sparse Networks
Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup,...
Saved in:
Published in | Journal of the American Statistical Association Vol. 118; no. 544; pp. 2422 - 2432 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.10.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup, we show that the maximum likelihood estimator for the latent score vector of the subjects is uniformly consistent under a near-minimal condition on network sparsity. This condition is sharp in terms of the leading order asymptotics describing the sparsity. Our analysis uses a novel chaining technique and illustrates an important connection between graph topology and model consistency. Our results guarantee that the maximum likelihood estimator is justified for estimation in large-scale pairwise comparison networks where data are asymptotically deficient. Simulation studies are provided in support of our theoretical findings.
Supplementary materials
for this article are available online. |
---|---|
AbstractList | Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup, we show that the maximum likelihood estimator for the latent score vector of the subjects is uniformly consistent under a near-minimal condition on network sparsity. This condition is sharp in terms of the leading order asymptotics describing the sparsity. Our analysis uses a novel chaining technique and illustrates an important connection between graph topology and model consistency. Our results guarantee that the maximum likelihood estimator is justified for estimation in large-scale pairwise comparison networks where data are asymptotically deficient. Simulation studies are provided in support of our theoretical findings. Supplementary materials for this article are available online. Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup, we show that the maximum likelihood estimator for the latent score vector of the subjects is uniformly consistent under a near-minimal condition on network sparsity. This condition is sharp in terms of the leading order asymptotics describing the sparsity. Our analysis uses a novel chaining technique and illustrates an important connection between graph topology and model consistency. Our results guarantee that the maximum likelihood estimator is justified for estimation in large-scale pairwise comparison networks where data are asymptotically deficient. Simulation studies are provided in support of our theoretical findings. Supplementary materials for this article are available online. |
Author | Xu, Yiming Han, Ruijian Chen, Kani |
Author_xml | – sequence: 1 givenname: Ruijian orcidid: 0000-0002-9225-2218 surname: Han fullname: Han, Ruijian organization: Department of Statistics, The Chinese University of Hong Kong – sequence: 2 givenname: Yiming orcidid: 0000-0001-7223-8147 surname: Xu fullname: Xu, Yiming organization: Department of Mathematics, University of Utah – sequence: 3 givenname: Kani orcidid: 0000-0003-0117-8065 surname: Chen fullname: Chen, Kani organization: Department of Mathematics, Hong Kong University of Science and Technology |
BookMark | eNp9kE1LAzEQQINUsK3-BGHBi5etySbZbG6WUqtQP0AFbyG7mYWt2U1NttT-e1NaLx6cw8xh3gwzb4QGnesAoUuCJwQX-AaTPCOMy0mGsywmTgkVJ2hIOBVpJtjHAA33TLqHztAohBWOIYpiiKbTZAEdeG2TF934bRMgmbl2rX0TXJc8OgM2qZ1P5t-9hxbsLnmNzUg9Qb91_jOco9Na2wAXxzpG73fzt9l9unxePMymy7SiUvap0GAynEsDzBTUkKIylSykwBVlgnMMJCMSV2VZSq2FKE2ZY1nmjIAsQdQFHaPrw961d18bCL1qm1CBtboDtwmKYoYZ51yQiF79QVdu47t4ncpk_JuInIlI8QNVeReCh1qtfdNqv1MEq71Y9StW7cWqo9g4d3uYa7ooptXRgjWq1zvrfO11VzXxmP9X_ACaxH_J |
Cites_doi | 10.1214/20-AAP1564 10.1016/j.neucom.2016.08.029 10.1037/h0070288 10.1016/0378-8733(83)90021-7 10.1080/01621459.1970.10481082 10.1080/01621459.1967.10482901 10.1093/biomet/77.2.265 10.1007/BF01180541 10.2307/2346567 10.1214/18-AOS1745 10.1080/00029890.1957.11989117 10.1214/aos/1079120141 10.1016/S0165-4896(02)00017-3 10.1214/12-STS396 10.2307/2334029 10.1287/opre.2016.1534 10.1214/aos/1018031267 10.1016/0022-2496(73)90021-7 10.1007/978-0-387-44956-2_8 10.1109/TIT.2016.2634418 10.1007/BF02294836 10.2307/2347562 10.1214/18-AOS1772 10.5705/ss.2010.299 10.1177/1471082X0600700102 |
ContentType | Journal Article |
Copyright | 2022 American Statistical Association 2022 2022 American Statistical Association |
Copyright_xml | – notice: 2022 American Statistical Association 2022 – notice: 2022 American Statistical Association |
DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
DOI | 10.1080/01621459.2022.2053137 |
DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 2432 |
ExternalDocumentID | 10_1080_01621459_2022_2053137 2053137 |
Genre | Research Article |
GrantInformation_xml | – fundername: Hong Kong Research Grants Council grantid: 16302881 – fundername: Chinese University of Hong Kong – fundername: Hong Kong Research Grants Council grantid: 14301821 |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFSUE AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 8BJ FQK JBE K9. TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c399t-7aed2069de4d83d18cdc98970c347550e12190cbbb9aa77bdb609b641e9be7f83 |
ISSN | 0162-1459 1537-274X |
IngestDate | Wed Jul 02 04:44:08 EDT 2025 Wed Aug 13 08:45:41 EDT 2025 Tue Jul 01 02:39:34 EDT 2025 Wed Dec 25 09:02:57 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 544 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c399t-7aed2069de4d83d18cdc98970c347550e12190cbbb9aa77bdb609b641e9be7f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9225-2218 0000-0003-0117-8065 0000-0001-7223-8147 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/A_General_Pairwise_Comparison_Model_for_Extremely_Sparse_Networks/19368919 |
PQID | 2907817647 |
PQPubID | 41715 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1080_01621459_2022_2053137 proquest_miscellaneous_3040455571 proquest_journals_2907817647 informaworld_taylorfrancis_310_1080_01621459_2022_2053137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-02 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 e_1_3_4_2_1 Chen Y. (e_1_3_4_8_1) 2015 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 Shah N. B. (e_1_3_4_30_1) 2016; 17 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 Davidson D. (e_1_3_4_11_1) 1959; 17 Erdős P. (e_1_3_4_14_1) 1960; 5 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_26_1 e_1_3_4_29_1 Chung F. R. K. (e_1_3_4_9_1) 1997 Agresti A. (e_1_3_4_3_1) 2019 e_1_3_4_31_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_33_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_15_1 Maystre L. (e_1_3_4_25_1) 2015 e_1_3_4_36_1 David H. A. (e_1_3_4_10_1) 1988 e_1_3_4_18_1 e_1_3_4_19_1 Luce R. D. (e_1_3_4_22_1) 1959 |
References_xml | – ident: e_1_3_4_17_1 doi: 10.1214/20-AAP1564 – ident: e_1_3_4_21_1 doi: 10.1016/j.neucom.2016.08.029 – ident: e_1_3_4_34_1 doi: 10.1037/h0070288 – volume: 17 start-page: 233 year: 1959 ident: e_1_3_4_11_1 article-title: “Experimental Tests of a Stochastic Decision Theory,” publication-title: Measurement: Definitions and Theories – ident: e_1_3_4_19_1 doi: 10.1016/0378-8733(83)90021-7 – ident: e_1_3_4_12_1 doi: 10.1080/01621459.1970.10481082 – ident: e_1_3_4_29_1 doi: 10.1080/01621459.1967.10482901 – ident: e_1_3_4_33_1 doi: 10.1093/biomet/77.2.265 – ident: e_1_3_4_36_1 doi: 10.1007/BF01180541 – volume: 5 start-page: 17 year: 1960 ident: e_1_3_4_14_1 article-title: “On the Evolution of Random Graphs,” publication-title: A Magyar Tudományos Akadémia Matematikai Kutató Intézetének közleményei – ident: e_1_3_4_28_1 doi: 10.2307/2346567 – ident: e_1_3_4_7_1 doi: 10.1214/18-AOS1745 – ident: e_1_3_4_16_1 doi: 10.1080/00029890.1957.11989117 – volume-title: of CBMS Regional Conference Series in Mathematics). Published for the Conference Board of the Mathematical Sciences year: 1997 ident: e_1_3_4_9_1 – start-page: 172 year: 2015 ident: e_1_3_4_25_1 article-title: Fast and Accurate Inference of Plackett publication-title: Advances in Neural Information Processing Systems – ident: e_1_3_4_20_1 doi: 10.1214/aos/1079120141 – ident: e_1_3_4_24_1 doi: 10.1016/S0165-4896(02)00017-3 – ident: e_1_3_4_5_1 doi: 10.1214/12-STS396 – volume-title: Wiley Series in Probability and Statistics year: 2019 ident: e_1_3_4_3_1 – ident: e_1_3_4_4_1 doi: 10.2307/2334029 – ident: e_1_3_4_27_1 doi: 10.1287/opre.2016.1534 – start-page: 371 volume-title: International Conference on Machine Learning, year: 2015 ident: e_1_3_4_8_1 – volume-title: The Method of Paired Comparisons year: 1988 ident: e_1_3_4_10_1 – ident: e_1_3_4_6_1 – volume-title: Individual Choice Behavior: A Theoretical Analysis year: 1959 ident: e_1_3_4_22_1 – ident: e_1_3_4_32_1 doi: 10.1214/aos/1018031267 – ident: e_1_3_4_15_1 doi: 10.1016/0022-2496(73)90021-7 – ident: e_1_3_4_26_1 doi: 10.1007/978-0-387-44956-2_8 – ident: e_1_3_4_31_1 doi: 10.1109/TIT.2016.2634418 – ident: e_1_3_4_23_1 doi: 10.1007/BF02294836 – ident: e_1_3_4_2_1 doi: 10.2307/2347562 – ident: e_1_3_4_18_1 doi: 10.1214/18-AOS1772 – volume: 17 start-page: 47 year: 2016 ident: e_1_3_4_30_1 article-title: Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence publication-title: Journal of Machine Learning Research – ident: e_1_3_4_35_1 doi: 10.5705/ss.2010.299 – ident: e_1_3_4_13_1 doi: 10.1177/1471082X0600700102 |
SSID | ssj0000788 |
Score | 2.4362035 |
Snippet | Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2422 |
SubjectTerms | Asymptotic properties Entry-wise error Flexibility Graph topology Maximum likelihood estimation Maximum likelihood estimators Networks Parameterization Simulation Sparsity statistical analysis Statistics Topology Uniform consistency |
Title | A General Pairwise Comparison Model for Extremely Sparse Networks |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2022.2053137 https://www.proquest.com/docview/2907817647 https://www.proquest.com/docview/3040455571 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZtesmlpHnQpNugQG7FwZZlyTouISE0JKcN7M1Illy2BKfEXhLy6zt6-LHdLU3bi1ks1jIznz7NyPNA6FQJmTEpyoiqVIKDwmgk8ySLKgUbbAWvzlwi7c0tu7qjX-fZfAgbc9klrTorXzbmlfyLVuEe6NVmyf6FZvuHwg34DfqFK2gYrq_S8bSrGg2G4OLxadEYv759X0Hb5sxlJ365eG7tMeA98AQMNjaq0QV_N78xTUfpJq7Bb-uqOW9QpqMu78UvF99HSJsvHbfblmHfhggCT3HXsl6MDxuID1sbXNPZWt-P8dEkI1FCQ31v09Epj8Dvna_w7UC49pM2pWP-pD5LOezFhPrDzzWeD4GRMKWdEdx8YpPqgE98BZlfSmiHkbfoHQFnwva5SOPbYb_mrjtp__5dnpetwL5pghULZqW-7dp-7oyU2Q56H1SIpx4qH9AbU--i7V6DzR6aTnHADO4wgwfMYIcZDHPhHjPYYwZ3mNlHd5cXs_OrKLTRiEqwPtuIS6NJzIQ2VOepTvJSlyIXPC5TysFBNQnsWnGpFKxbybnSisVCMZoYoQyv8vQAbdUPtfmIsOQVmJ-KVJnUQPZKZqSUrOJK6VRRTQ_RWSea4oevllIkXRHaIMvCyrIIsjxEYizAonUAqzy2ivQP_5100i7ComwKImz1Ks4oDJ_0w0CZ9juYrM3DEh4LGxfNsownR_8x_Se0PayQCdpqH5fmMxiorTp2-PoJxZ6JNw |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEA0uB724i7sRvPbYS5bOcRBl3AZBBW8hW4Moozg9uHy9Vb24Ih48p5NOUkmlUql6j5BdqwwXRrmI2czABUWwyOQJjwoLB2wBXRdVIu1ZX_Su2PE1v_6UC4NhlXiHLmqgiEpX4-ZGZ3QbErcHZgoCbGOeSYrJVLCOMjlOJrkSElkMsrj_oY1lxT2JVSKs02bx_NbMl_PpC3rpD21dHUGHs8S1na8jT247o9J23Os3XMf_jW6OzDQWKu3WS2qejIXBAplGo7TGdF4k3S5t0Krpubl5fLoZBrr_zmdIkV7tjsKI6MFzie7Huxd6AYXwVb8OOh8ukavDg8v9XtRQMUQOLJgykib4NBbKB-bzzCe5807lSsYuYxIuOSEBzRc7a0H2RkrrrYiVFSwJygZZ5NkymRjcD8IKoUYWYMLYtODGg8KwhqfOiEJa6zPLPFslnVYA-qFG3NBJC2TaTI3GqdHN1KwS9VlMuqxcHUXNS6KzP-putDLVzeYd6lQhApIUDIp33oth2-FbihmE-xE0C8qPcc5lsvaP32-Tqd7l2ak-PeqfrJNppLKvAgXTDTJRPo7CJhg8pd2qVvQbBvbyMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwQxDC66gvjiLd5W8HXWOTrt9HFZXTwXQQXfSjNtYVFWcWfx-PWmc3giPvjcSadN2jRpky-E7IHUKdcyDxgkGh0UzgKdRWngAA9Yh0PnZSLteZ8fXbOTm7SJJhzVYZXeh3YVUESpq_3mfjCuiYjbRyvF42v7NJPY51LhMkrEJJniHjzcZ3GE_Q9lLMrSk54k8DRNEs9v3Xw5nr6Al_5Q1uUJ1Jsj0Iy9Cjy5bY8LaOev32Ad_zW5eTJb26e0Uy2oBTJhh4tkxpukFaLzEul0aI1VTS_04PFpMLK0-17NkPriancUJ0QPnwt_-Xj3Qi-xEb_qVyHno2Vy3Tu86h4FdSGGIEf7pQiEtiYOuTSWmSwxUZabXGZShHnCBLo4NkK9F-YAKHktBBjgoQTOIivBCpclK6Q1vB_aVUK1cGjAQOxSbVBdgE7jXHMnAEwCzLA10m74rx4qvA0VNTCmNWuUZ42qWbNG5GcpqaK86HBVVRKV_EG72YhU1Vt3pGLp8Y8EZ9i8-96Mm86_pOihvR9jt6j6WJqmIlr_x-93yPTFQU-dHfdPN8iMr2NfRgnGm6RVPI7tFlo7BWyX6_kNDsLw1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Pairwise+Comparison+Model+for+Extremely+Sparse+Networks&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Han%2C+Ruijian&rft.au=Xu%2C+Yiming&rft.au=Chen%2C+Kani&rft.date=2023-10-02&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=118&rft.issue=544&rft.spage=2422&rft.epage=2432&rft_id=info:doi/10.1080%2F01621459.2022.2053137&rft.externalDocID=2053137 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |