A General Pairwise Comparison Model for Extremely Sparse Networks

Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup,...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 118; no. 544; pp. 2422 - 2432
Main Authors Han, Ruijian, Xu, Yiming, Chen, Kani
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.10.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup, we show that the maximum likelihood estimator for the latent score vector of the subjects is uniformly consistent under a near-minimal condition on network sparsity. This condition is sharp in terms of the leading order asymptotics describing the sparsity. Our analysis uses a novel chaining technique and illustrates an important connection between graph topology and model consistency. Our results guarantee that the maximum likelihood estimator is justified for estimation in large-scale pairwise comparison networks where data are asymptotically deficient. Simulation studies are provided in support of our theoretical findings. Supplementary materials for this article are available online.
AbstractList Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup, we show that the maximum likelihood estimator for the latent score vector of the subjects is uniformly consistent under a near-minimal condition on network sparsity. This condition is sharp in terms of the leading order asymptotics describing the sparsity. Our analysis uses a novel chaining technique and illustrates an important connection between graph topology and model consistency. Our results guarantee that the maximum likelihood estimator is justified for estimation in large-scale pairwise comparison networks where data are asymptotically deficient. Simulation studies are provided in support of our theoretical findings. Supplementary materials for this article are available online.
Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup, we show that the maximum likelihood estimator for the latent score vector of the subjects is uniformly consistent under a near-minimal condition on network sparsity. This condition is sharp in terms of the leading order asymptotics describing the sparsity. Our analysis uses a novel chaining technique and illustrates an important connection between graph topology and model consistency. Our results guarantee that the maximum likelihood estimator is justified for estimation in large-scale pairwise comparison networks where data are asymptotically deficient. Simulation studies are provided in support of our theoretical findings. Supplementary materials for this article are available online.
Author Xu, Yiming
Han, Ruijian
Chen, Kani
Author_xml – sequence: 1
  givenname: Ruijian
  orcidid: 0000-0002-9225-2218
  surname: Han
  fullname: Han, Ruijian
  organization: Department of Statistics, The Chinese University of Hong Kong
– sequence: 2
  givenname: Yiming
  orcidid: 0000-0001-7223-8147
  surname: Xu
  fullname: Xu, Yiming
  organization: Department of Mathematics, University of Utah
– sequence: 3
  givenname: Kani
  orcidid: 0000-0003-0117-8065
  surname: Chen
  fullname: Chen, Kani
  organization: Department of Mathematics, Hong Kong University of Science and Technology
BookMark eNp9kE1LAzEQQINUsK3-BGHBi5etySbZbG6WUqtQP0AFbyG7mYWt2U1NttT-e1NaLx6cw8xh3gwzb4QGnesAoUuCJwQX-AaTPCOMy0mGsywmTgkVJ2hIOBVpJtjHAA33TLqHztAohBWOIYpiiKbTZAEdeG2TF934bRMgmbl2rX0TXJc8OgM2qZ1P5t-9hxbsLnmNzUg9Qb91_jOco9Na2wAXxzpG73fzt9l9unxePMymy7SiUvap0GAynEsDzBTUkKIylSykwBVlgnMMJCMSV2VZSq2FKE2ZY1nmjIAsQdQFHaPrw961d18bCL1qm1CBtboDtwmKYoYZ51yQiF79QVdu47t4ncpk_JuInIlI8QNVeReCh1qtfdNqv1MEq71Y9StW7cWqo9g4d3uYa7ooptXRgjWq1zvrfO11VzXxmP9X_ACaxH_J
Cites_doi 10.1214/20-AAP1564
10.1016/j.neucom.2016.08.029
10.1037/h0070288
10.1016/0378-8733(83)90021-7
10.1080/01621459.1970.10481082
10.1080/01621459.1967.10482901
10.1093/biomet/77.2.265
10.1007/BF01180541
10.2307/2346567
10.1214/18-AOS1745
10.1080/00029890.1957.11989117
10.1214/aos/1079120141
10.1016/S0165-4896(02)00017-3
10.1214/12-STS396
10.2307/2334029
10.1287/opre.2016.1534
10.1214/aos/1018031267
10.1016/0022-2496(73)90021-7
10.1007/978-0-387-44956-2_8
10.1109/TIT.2016.2634418
10.1007/BF02294836
10.2307/2347562
10.1214/18-AOS1772
10.5705/ss.2010.299
10.1177/1471082X0600700102
ContentType Journal Article
Copyright 2022 American Statistical Association 2022
2022 American Statistical Association
Copyright_xml – notice: 2022 American Statistical Association 2022
– notice: 2022 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2022.2053137
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 2432
ExternalDocumentID 10_1080_01621459_2022_2053137
2053137
Genre Research Article
GrantInformation_xml – fundername: Hong Kong Research Grants Council
  grantid: 16302881
– fundername: Chinese University of Hong Kong
– fundername: Hong Kong Research Grants Council
  grantid: 14301821
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
8BJ
FQK
JBE
K9.
TASJS
7S9
L.6
ID FETCH-LOGICAL-c399t-7aed2069de4d83d18cdc98970c347550e12190cbbb9aa77bdb609b641e9be7f83
ISSN 0162-1459
1537-274X
IngestDate Wed Jul 02 04:44:08 EDT 2025
Wed Aug 13 08:45:41 EDT 2025
Tue Jul 01 02:39:34 EDT 2025
Wed Dec 25 09:02:57 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 544
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-7aed2069de4d83d18cdc98970c347550e12190cbbb9aa77bdb609b641e9be7f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9225-2218
0000-0003-0117-8065
0000-0001-7223-8147
OpenAccessLink https://figshare.com/articles/journal_contribution/A_General_Pairwise_Comparison_Model_for_Extremely_Sparse_Networks/19368919
PQID 2907817647
PQPubID 41715
PageCount 11
ParticipantIDs crossref_primary_10_1080_01621459_2022_2053137
proquest_miscellaneous_3040455571
proquest_journals_2907817647
informaworld_taylorfrancis_310_1080_01621459_2022_2053137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-02
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_2_1
Chen Y. (e_1_3_4_8_1) 2015
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
Shah N. B. (e_1_3_4_30_1) 2016; 17
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
Davidson D. (e_1_3_4_11_1) 1959; 17
Erdős P. (e_1_3_4_14_1) 1960; 5
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_26_1
e_1_3_4_29_1
Chung F. R. K. (e_1_3_4_9_1) 1997
Agresti A. (e_1_3_4_3_1) 2019
e_1_3_4_31_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_33_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_15_1
Maystre L. (e_1_3_4_25_1) 2015
e_1_3_4_36_1
David H. A. (e_1_3_4_10_1) 1988
e_1_3_4_18_1
e_1_3_4_19_1
Luce R. D. (e_1_3_4_22_1) 1959
References_xml – ident: e_1_3_4_17_1
  doi: 10.1214/20-AAP1564
– ident: e_1_3_4_21_1
  doi: 10.1016/j.neucom.2016.08.029
– ident: e_1_3_4_34_1
  doi: 10.1037/h0070288
– volume: 17
  start-page: 233
  year: 1959
  ident: e_1_3_4_11_1
  article-title: “Experimental Tests of a Stochastic Decision Theory,”
  publication-title: Measurement: Definitions and Theories
– ident: e_1_3_4_19_1
  doi: 10.1016/0378-8733(83)90021-7
– ident: e_1_3_4_12_1
  doi: 10.1080/01621459.1970.10481082
– ident: e_1_3_4_29_1
  doi: 10.1080/01621459.1967.10482901
– ident: e_1_3_4_33_1
  doi: 10.1093/biomet/77.2.265
– ident: e_1_3_4_36_1
  doi: 10.1007/BF01180541
– volume: 5
  start-page: 17
  year: 1960
  ident: e_1_3_4_14_1
  article-title: “On the Evolution of Random Graphs,”
  publication-title: A Magyar Tudományos Akadémia Matematikai Kutató Intézetének közleményei
– ident: e_1_3_4_28_1
  doi: 10.2307/2346567
– ident: e_1_3_4_7_1
  doi: 10.1214/18-AOS1745
– ident: e_1_3_4_16_1
  doi: 10.1080/00029890.1957.11989117
– volume-title: of CBMS Regional Conference Series in Mathematics). Published for the Conference Board of the Mathematical Sciences
  year: 1997
  ident: e_1_3_4_9_1
– start-page: 172
  year: 2015
  ident: e_1_3_4_25_1
  article-title: Fast and Accurate Inference of Plackett
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_4_20_1
  doi: 10.1214/aos/1079120141
– ident: e_1_3_4_24_1
  doi: 10.1016/S0165-4896(02)00017-3
– ident: e_1_3_4_5_1
  doi: 10.1214/12-STS396
– volume-title: Wiley Series in Probability and Statistics
  year: 2019
  ident: e_1_3_4_3_1
– ident: e_1_3_4_4_1
  doi: 10.2307/2334029
– ident: e_1_3_4_27_1
  doi: 10.1287/opre.2016.1534
– start-page: 371
  volume-title: International Conference on Machine Learning,
  year: 2015
  ident: e_1_3_4_8_1
– volume-title: The Method of Paired Comparisons
  year: 1988
  ident: e_1_3_4_10_1
– ident: e_1_3_4_6_1
– volume-title: Individual Choice Behavior: A Theoretical Analysis
  year: 1959
  ident: e_1_3_4_22_1
– ident: e_1_3_4_32_1
  doi: 10.1214/aos/1018031267
– ident: e_1_3_4_15_1
  doi: 10.1016/0022-2496(73)90021-7
– ident: e_1_3_4_26_1
  doi: 10.1007/978-0-387-44956-2_8
– ident: e_1_3_4_31_1
  doi: 10.1109/TIT.2016.2634418
– ident: e_1_3_4_23_1
  doi: 10.1007/BF02294836
– ident: e_1_3_4_2_1
  doi: 10.2307/2347562
– ident: e_1_3_4_18_1
  doi: 10.1214/18-AOS1772
– volume: 17
  start-page: 47
  year: 2016
  ident: e_1_3_4_30_1
  article-title: Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_4_35_1
  doi: 10.5705/ss.2010.299
– ident: e_1_3_4_13_1
  doi: 10.1177/1471082X0600700102
SSID ssj0000788
Score 2.4362035
Snippet Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 2422
SubjectTerms Asymptotic properties
Entry-wise error
Flexibility
Graph topology
Maximum likelihood estimation
Maximum likelihood estimators
Networks
Parameterization
Simulation
Sparsity
statistical analysis
Statistics
Topology
Uniform consistency
Title A General Pairwise Comparison Model for Extremely Sparse Networks
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2022.2053137
https://www.proquest.com/docview/2907817647
https://www.proquest.com/docview/3040455571
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZtesmlpHnQpNugQG7FwZZlyTouISE0JKcN7M1Illy2BKfEXhLy6zt6-LHdLU3bi1ks1jIznz7NyPNA6FQJmTEpyoiqVIKDwmgk8ySLKgUbbAWvzlwi7c0tu7qjX-fZfAgbc9klrTorXzbmlfyLVuEe6NVmyf6FZvuHwg34DfqFK2gYrq_S8bSrGg2G4OLxadEYv759X0Hb5sxlJ365eG7tMeA98AQMNjaq0QV_N78xTUfpJq7Bb-uqOW9QpqMu78UvF99HSJsvHbfblmHfhggCT3HXsl6MDxuID1sbXNPZWt-P8dEkI1FCQ31v09Epj8Dvna_w7UC49pM2pWP-pD5LOezFhPrDzzWeD4GRMKWdEdx8YpPqgE98BZlfSmiHkbfoHQFnwva5SOPbYb_mrjtp__5dnpetwL5pghULZqW-7dp-7oyU2Q56H1SIpx4qH9AbU--i7V6DzR6aTnHADO4wgwfMYIcZDHPhHjPYYwZ3mNlHd5cXs_OrKLTRiEqwPtuIS6NJzIQ2VOepTvJSlyIXPC5TysFBNQnsWnGpFKxbybnSisVCMZoYoQyv8vQAbdUPtfmIsOQVmJ-KVJnUQPZKZqSUrOJK6VRRTQ_RWSea4oevllIkXRHaIMvCyrIIsjxEYizAonUAqzy2ivQP_5100i7ComwKImz1Ks4oDJ_0w0CZ9juYrM3DEh4LGxfNsownR_8x_Se0PayQCdpqH5fmMxiorTp2-PoJxZ6JNw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEA0uB724i7sRvPbYS5bOcRBl3AZBBW8hW4Moozg9uHy9Vb24Ih48p5NOUkmlUql6j5BdqwwXRrmI2czABUWwyOQJjwoLB2wBXRdVIu1ZX_Su2PE1v_6UC4NhlXiHLmqgiEpX4-ZGZ3QbErcHZgoCbGOeSYrJVLCOMjlOJrkSElkMsrj_oY1lxT2JVSKs02bx_NbMl_PpC3rpD21dHUGHs8S1na8jT247o9J23Os3XMf_jW6OzDQWKu3WS2qejIXBAplGo7TGdF4k3S5t0Krpubl5fLoZBrr_zmdIkV7tjsKI6MFzie7Huxd6AYXwVb8OOh8ukavDg8v9XtRQMUQOLJgykib4NBbKB-bzzCe5807lSsYuYxIuOSEBzRc7a0H2RkrrrYiVFSwJygZZ5NkymRjcD8IKoUYWYMLYtODGg8KwhqfOiEJa6zPLPFslnVYA-qFG3NBJC2TaTI3GqdHN1KwS9VlMuqxcHUXNS6KzP-putDLVzeYd6lQhApIUDIp33oth2-FbihmE-xE0C8qPcc5lsvaP32-Tqd7l2ak-PeqfrJNppLKvAgXTDTJRPo7CJhg8pd2qVvQbBvbyMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwQxDC66gvjiLd5W8HXWOTrt9HFZXTwXQQXfSjNtYVFWcWfx-PWmc3giPvjcSadN2jRpky-E7IHUKdcyDxgkGh0UzgKdRWngAA9Yh0PnZSLteZ8fXbOTm7SJJhzVYZXeh3YVUESpq_3mfjCuiYjbRyvF42v7NJPY51LhMkrEJJniHjzcZ3GE_Q9lLMrSk54k8DRNEs9v3Xw5nr6Al_5Q1uUJ1Jsj0Iy9Cjy5bY8LaOev32Ad_zW5eTJb26e0Uy2oBTJhh4tkxpukFaLzEul0aI1VTS_04PFpMLK0-17NkPriancUJ0QPnwt_-Xj3Qi-xEb_qVyHno2Vy3Tu86h4FdSGGIEf7pQiEtiYOuTSWmSwxUZabXGZShHnCBLo4NkK9F-YAKHktBBjgoQTOIivBCpclK6Q1vB_aVUK1cGjAQOxSbVBdgE7jXHMnAEwCzLA10m74rx4qvA0VNTCmNWuUZ42qWbNG5GcpqaK86HBVVRKV_EG72YhU1Vt3pGLp8Y8EZ9i8-96Mm86_pOihvR9jt6j6WJqmIlr_x-93yPTFQU-dHfdPN8iMr2NfRgnGm6RVPI7tFlo7BWyX6_kNDsLw1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Pairwise+Comparison+Model+for+Extremely+Sparse+Networks&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Han%2C+Ruijian&rft.au=Xu%2C+Yiming&rft.au=Chen%2C+Kani&rft.date=2023-10-02&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=118&rft.issue=544&rft.spage=2422&rft.epage=2432&rft_id=info:doi/10.1080%2F01621459.2022.2053137&rft.externalDocID=2053137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon