Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review

Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they act through several mechanisms, including direct antibiosis, plant growth promotion and the induction of systemic resistance in the plant ho...

Full description

Saved in:
Bibliographic Details
Published inPhysiological and molecular plant pathology Vol. 117; p. 101754
Main Authors Dimkić, Ivica, Janakiev, Tamara, Petrović, Marija, Degrassi, Giuliano, Fira, Djordje
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they act through several mechanisms, including direct antibiosis, plant growth promotion and the induction of systemic resistance in the plant hosts. These beneficial bacteria have been proven to be very active against bacterial and fungal phytopathogens, nematodes and different insects. Direct antibiosis, an induced immune system response (ISR) in the host plant and competition for nutrients and space are the most common biocontrol potential of these genera. Species belonging to the Bacillus genus are commonly considered ideal due to their rapid growth, ease of handling and excellent colonizing properties. These endospore‐forming Bacillus strains are capable of suppressing and inhibiting plant pathogens, both indirectly by competing with the pathogens for a niche or nutrient requirements, or directly by producing various lipopeptide compounds such as iturin, surfactin and fengycin, which are active on many plant pathogens. Furthermore, they are also capable of inducing systemic resistance in plants through the production of volatile substances including alcohols, aldehydes, aromatics, sulfides and ketones. Lipopeptides, polyketides and volatiles from Bacillus spp. can stimulate the expression of genes coding for pathogenesis-related (PR) proteins and other defense-related proteins in the plant hosts through the activation of jasmonic acid (JA), salicylic acid (SA) or ethylene (ET) signaling pathways. In addition, inhibition of quorum sensing in competitive bacteria and the capability to downregulate expression of genes involved in mycelial growth, penetration, sporulation and the virulence of a fungal pathogen is another property of Bacillus strains and their volatiles. The Pseudomonas genus is rich in species with the potential for biocontrol with positive effects on plant welfare, which actively participate in complex plant-pathogen-antagonist interaction. The most common molecules involved in this mechanism are, among others, 2,4‐diacetylphloroglucinol, phenazine‐1‐carboxylic acid, phenazine-1-carboxamide, pyoluteorin and pyrrolnitrin. Cyclic lipopeptides from Pseudomonas spp. such as nunamycin, nunapeptin, brasmycin and braspeptin were intensively studied as agents for plant biocontrol and biostimulation in agriculture. Nunamycin, nunapeptin, brasmycin and braspeptin were identified as essential in the antifungal role. Furthermore, phenazines, sessilins and orfamides were shown to have additive roles in the suppression of some fungal diseases. Additionally, Bacillus and Pseudomonas spp. produce chitinases, glucanases and proteases involved in the suppression of many fungal diseases. Their production is mainly induced by the presence of fungal pathogen biomass and their cell wall. This review provides an updated overview of the antimicrobial activity of plant-associated Bacillus and Pseudomonas involved in plant disease suppression via biological control mechanisms, including their molecular basis and direct activity, offering a better understanding in preventing different pests. •Bacillus and Pseudomonas spp. produce wide array of secondary metabolites.•Secondary metabolites are involved in biocontrol and biofertilization mechanisms.•Numerous phytopathogens are controlled by Bacillus and Pseudomonas isolates.•Molecular mechanisms of biocontrol activity are discussed.
AbstractList Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they act through several mechanisms, including direct antibiosis, plant growth promotion and the induction of systemic resistance in the plant hosts. These beneficial bacteria have been proven to be very active against bacterial and fungal phytopathogens, nematodes and different insects. Direct antibiosis, an induced immune system response (ISR) in the host plant and competition for nutrients and space are the most common biocontrol potential of these genera. Species belonging to the Bacillus genus are commonly considered ideal due to their rapid growth, ease of handling and excellent colonizing properties. These endospore‐forming Bacillus strains are capable of suppressing and inhibiting plant pathogens, both indirectly by competing with the pathogens for a niche or nutrient requirements, or directly by producing various lipopeptide compounds such as iturin, surfactin and fengycin, which are active on many plant pathogens. Furthermore, they are also capable of inducing systemic resistance in plants through the production of volatile substances including alcohols, aldehydes, aromatics, sulfides and ketones. Lipopeptides, polyketides and volatiles from Bacillus spp. can stimulate the expression of genes coding for pathogenesis-related (PR) proteins and other defense-related proteins in the plant hosts through the activation of jasmonic acid (JA), salicylic acid (SA) or ethylene (ET) signaling pathways. In addition, inhibition of quorum sensing in competitive bacteria and the capability to downregulate expression of genes involved in mycelial growth, penetration, sporulation and the virulence of a fungal pathogen is another property of Bacillus strains and their volatiles. The Pseudomonas genus is rich in species with the potential for biocontrol with positive effects on plant welfare, which actively participate in complex plant-pathogen-antagonist interaction. The most common molecules involved in this mechanism are, among others, 2,4‐diacetylphloroglucinol, phenazine‐1‐carboxylic acid, phenazine-1-carboxamide, pyoluteorin and pyrrolnitrin. Cyclic lipopeptides from Pseudomonas spp. such as nunamycin, nunapeptin, brasmycin and braspeptin were intensively studied as agents for plant biocontrol and biostimulation in agriculture. Nunamycin, nunapeptin, brasmycin and braspeptin were identified as essential in the antifungal role. Furthermore, phenazines, sessilins and orfamides were shown to have additive roles in the suppression of some fungal diseases. Additionally, Bacillus and Pseudomonas spp. produce chitinases, glucanases and proteases involved in the suppression of many fungal diseases. Their production is mainly induced by the presence of fungal pathogen biomass and their cell wall. This review provides an updated overview of the antimicrobial activity of plant-associated Bacillus and Pseudomonas involved in plant disease suppression via biological control mechanisms, including their molecular basis and direct activity, offering a better understanding in preventing different pests.
Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they act through several mechanisms, including direct antibiosis, plant growth promotion and the induction of systemic resistance in the plant hosts. These beneficial bacteria have been proven to be very active against bacterial and fungal phytopathogens, nematodes and different insects. Direct antibiosis, an induced immune system response (ISR) in the host plant and competition for nutrients and space are the most common biocontrol potential of these genera. Species belonging to the Bacillus genus are commonly considered ideal due to their rapid growth, ease of handling and excellent colonizing properties. These endospore‐forming Bacillus strains are capable of suppressing and inhibiting plant pathogens, both indirectly by competing with the pathogens for a niche or nutrient requirements, or directly by producing various lipopeptide compounds such as iturin, surfactin and fengycin, which are active on many plant pathogens. Furthermore, they are also capable of inducing systemic resistance in plants through the production of volatile substances including alcohols, aldehydes, aromatics, sulfides and ketones. Lipopeptides, polyketides and volatiles from Bacillus spp. can stimulate the expression of genes coding for pathogenesis-related (PR) proteins and other defense-related proteins in the plant hosts through the activation of jasmonic acid (JA), salicylic acid (SA) or ethylene (ET) signaling pathways. In addition, inhibition of quorum sensing in competitive bacteria and the capability to downregulate expression of genes involved in mycelial growth, penetration, sporulation and the virulence of a fungal pathogen is another property of Bacillus strains and their volatiles. The Pseudomonas genus is rich in species with the potential for biocontrol with positive effects on plant welfare, which actively participate in complex plant-pathogen-antagonist interaction. The most common molecules involved in this mechanism are, among others, 2,4‐diacetylphloroglucinol, phenazine‐1‐carboxylic acid, phenazine-1-carboxamide, pyoluteorin and pyrrolnitrin. Cyclic lipopeptides from Pseudomonas spp. such as nunamycin, nunapeptin, brasmycin and braspeptin were intensively studied as agents for plant biocontrol and biostimulation in agriculture. Nunamycin, nunapeptin, brasmycin and braspeptin were identified as essential in the antifungal role. Furthermore, phenazines, sessilins and orfamides were shown to have additive roles in the suppression of some fungal diseases. Additionally, Bacillus and Pseudomonas spp. produce chitinases, glucanases and proteases involved in the suppression of many fungal diseases. Their production is mainly induced by the presence of fungal pathogen biomass and their cell wall. This review provides an updated overview of the antimicrobial activity of plant-associated Bacillus and Pseudomonas involved in plant disease suppression via biological control mechanisms, including their molecular basis and direct activity, offering a better understanding in preventing different pests. •Bacillus and Pseudomonas spp. produce wide array of secondary metabolites.•Secondary metabolites are involved in biocontrol and biofertilization mechanisms.•Numerous phytopathogens are controlled by Bacillus and Pseudomonas isolates.•Molecular mechanisms of biocontrol activity are discussed.
ArticleNumber 101754
Author Janakiev, Tamara
Dimkić, Ivica
Degrassi, Giuliano
Petrović, Marija
Fira, Djordje
Author_xml – sequence: 1
  givenname: Ivica
  orcidid: 0000-0002-0425-5938
  surname: Dimkić
  fullname: Dimkić, Ivica
  email: ivicad@bio.bg.ac.rs
  organization: University of Belgrade – Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
– sequence: 2
  givenname: Tamara
  orcidid: 0000-0003-3933-9610
  surname: Janakiev
  fullname: Janakiev, Tamara
  organization: University of Belgrade – Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
– sequence: 3
  givenname: Marija
  surname: Petrović
  fullname: Petrović, Marija
  organization: University of Belgrade – Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
– sequence: 4
  givenname: Giuliano
  surname: Degrassi
  fullname: Degrassi, Giuliano
  organization: International Centre for Genetic Engineering and Biotechnology (ICGEB), Industrial Biotechnology Group, Parque Tecnológico Miguelete, Av. General Paz N° 5445, B1650WAB San Martín, Buenos Aires, Argentina
– sequence: 5
  givenname: Djordje
  orcidid: 0000-0002-8773-8213
  surname: Fira
  fullname: Fira, Djordje
  organization: University of Belgrade – Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
BookMark eNp9kL2O1TAQRl0sErsLL0DlkiYX20mcRKJZVvxJK7EF1NZcewJzldjB41zEO_DQJLpUFFuNZvSdkb5zI65iiijEK60OWmn75nRY5mU5GGX0fuja5kpcq75vq7az7XNxw3xSSg2N1tfiz-MEsVTAnDxBwSDfgadpWllCDPKRcQ1pThH2vdBMPqcjwSTBFzpTIWRJUS77FxmIERglr8uSkZlSlGcCeaQ0pe_kN8ynWHKa5Iz-B0TimWUl72TGM-GvF-LZCBPjy3_zVnz78P7r_afq4cvHz_d3D5Wvh6FUnTadNb32NgxDaOvOgK57DU1rA3TjcKxR91YN26bGvh5HPcAIXY3GHhF0X9-K15e_S04_V-TiZmKP01YC08rO2No2zWCU3aL9Jbr1Zs44Ok8FCu01gCanldulu5PbpbtdurtI31DzH7pkmiH_fhp6e4Fw6785yY49YfQYKKMvLiR6Cv8Ld82irw
CitedBy_id crossref_primary_10_1186_s12866_023_02780_6
crossref_primary_10_1080_03235408_2025_2466851
crossref_primary_10_1007_s11274_025_04282_1
crossref_primary_10_1039_D4VA00216D
crossref_primary_10_1016_j_napere_2024_100070
crossref_primary_10_3390_ijms242115751
crossref_primary_10_1007_s11274_024_04156_y
crossref_primary_10_1016_j_psep_2022_07_035
crossref_primary_10_1038_s41598_022_19515_8
crossref_primary_10_1016_j_aac_2024_07_007
crossref_primary_10_3390_agronomy14010167
crossref_primary_10_1007_s10658_024_02882_5
crossref_primary_10_1016_j_biocontrol_2024_105690
crossref_primary_10_1186_s12866_024_03282_9
crossref_primary_10_3390_biom13101515
crossref_primary_10_1016_j_envres_2023_115529
crossref_primary_10_1016_j_rhisph_2023_100717
crossref_primary_10_3389_fmicb_2024_1304682
crossref_primary_10_1007_s00203_023_03774_8
crossref_primary_10_1111_1541_4337_70074
crossref_primary_10_2298_ABS230203009O
crossref_primary_10_1016_j_pmpp_2024_102442
crossref_primary_10_1002_wwp2_12215
crossref_primary_10_3390_f13040535
crossref_primary_10_3390_life13041034
crossref_primary_10_3390_molecules29245922
crossref_primary_10_1007_s41348_024_00959_1
crossref_primary_10_1094_PHYTO_04_24_0140_R
crossref_primary_10_3390_applmicrobiol5010002
crossref_primary_10_3389_fmicb_2024_1456847
crossref_primary_10_3390_plants12122277
crossref_primary_10_1111_ppl_14495
crossref_primary_10_1016_j_wasman_2023_09_003
crossref_primary_10_1051_e3sconf_202452703010
crossref_primary_10_3390_plants13131844
crossref_primary_10_1007_s11274_024_03935_x
crossref_primary_10_1016_j_rhisph_2022_100562
crossref_primary_10_1016_j_pmpp_2023_101966
crossref_primary_10_3390_d16120778
crossref_primary_10_1111_jph_13353
crossref_primary_10_1128_aem_00455_24
crossref_primary_10_1007_s10123_025_00652_9
crossref_primary_10_1080_09583157_2024_2307455
crossref_primary_10_1016_j_postharvbio_2024_113055
crossref_primary_10_3389_fmicb_2024_1419436
crossref_primary_10_3389_fmicb_2023_1187321
crossref_primary_10_3389_fpls_2024_1437947
crossref_primary_10_3390_microorganisms10071282
crossref_primary_10_1007_s11104_024_07166_9
crossref_primary_10_1080_07352689_2023_2268921
crossref_primary_10_1016_j_pmpp_2025_102595
crossref_primary_10_1016_j_phytol_2022_02_010
crossref_primary_10_1016_j_sajb_2022_09_036
crossref_primary_10_3390_microorganisms12040638
crossref_primary_10_1016_j_cropro_2023_106556
crossref_primary_10_3389_fmicb_2023_1230345
crossref_primary_10_1186_s41938_024_00766_8
crossref_primary_10_1155_sci5_2123395
crossref_primary_10_1016_j_micres_2024_127833
crossref_primary_10_5423_RPD_2024_30_2_181
crossref_primary_10_1016_j_postharvbio_2023_112379
crossref_primary_10_1111_ppl_14325
crossref_primary_10_1038_s41598_022_18905_2
crossref_primary_10_5423_RPD_2023_29_4_390
crossref_primary_10_3389_fpls_2024_1349357
crossref_primary_10_3389_fmicb_2023_1192932
crossref_primary_10_1016_j_envres_2023_117907
crossref_primary_10_1134_S1070363224030241
crossref_primary_10_11626_KJEB_2023_41_4_539
crossref_primary_10_1007_s10725_024_01218_x
crossref_primary_10_3389_fmicb_2022_1059549
crossref_primary_10_3389_fmicb_2022_1019800
crossref_primary_10_3390_cells12091301
crossref_primary_10_1016_j_pmpp_2023_102104
crossref_primary_10_1007_s40858_024_00677_x
crossref_primary_10_1007_s41348_024_00878_1
crossref_primary_10_1007_s11540_024_09693_5
crossref_primary_10_3390_agronomy14112495
crossref_primary_10_3390_f14050886
crossref_primary_10_1002_ps_7919
crossref_primary_10_1111_1751_7915_14348
crossref_primary_10_3389_fmicb_2025_1540628
crossref_primary_10_3390_applmicrobiol4040106
crossref_primary_10_3390_ijms232315432
crossref_primary_10_3390_ijpb16010009
crossref_primary_10_3390_plants12173147
crossref_primary_10_3390_microorganisms12112278
crossref_primary_10_3390_ijms25179508
crossref_primary_10_1016_j_cpb_2024_100390
crossref_primary_10_3390_su16052006
crossref_primary_10_1590_1519_6984_287279
crossref_primary_10_3390_ijms252212424
crossref_primary_10_3389_fmicb_2024_1447488
crossref_primary_10_3389_fpls_2023_1205894
crossref_primary_10_1016_j_biocontrol_2025_105699
crossref_primary_10_3389_fmicb_2022_920052
crossref_primary_10_3389_fmicb_2024_1485167
crossref_primary_10_1016_j_envpol_2024_125059
crossref_primary_10_1007_s10658_023_02647_6
crossref_primary_10_3390_microorganisms11081943
crossref_primary_10_1016_j_copbio_2023_103003
crossref_primary_10_3390_ijms24021016
crossref_primary_10_3390_ani14142079
crossref_primary_10_1016_j_envres_2024_120120
crossref_primary_10_1016_j_pmpp_2025_102672
crossref_primary_10_1007_s00438_024_02198_3
crossref_primary_10_1002_jobm_70021
crossref_primary_10_1111_1751_7915_70026
crossref_primary_10_1007_s12088_024_01429_w
crossref_primary_10_1007_s00425_022_03900_8
crossref_primary_10_3390_metabo14040180
crossref_primary_10_1080_03601234_2023_2220644
crossref_primary_10_3389_fagro_2024_1462323
crossref_primary_10_3390_ijms241512227
crossref_primary_10_1007_s42360_023_00673_2
crossref_primary_10_1016_j_postharvbio_2023_112737
crossref_primary_10_3390_horticulturae9030346
crossref_primary_10_1016_j_rhisph_2023_100676
crossref_primary_10_1128_spectrum_03072_22
crossref_primary_10_1094_PBIOMES_08_23_0077_R
crossref_primary_10_3390_microorganisms11010019
crossref_primary_10_1111_jph_13304
crossref_primary_10_1002_cbdv_202200687
crossref_primary_10_1021_acsomega_3c00870
crossref_primary_10_3389_fmicb_2022_1000033
crossref_primary_10_1016_j_rhisph_2023_100682
crossref_primary_10_3389_fmicb_2022_1034939
crossref_primary_10_1021_acs_jafc_3c01276
crossref_primary_10_1002_cssc_202401324
crossref_primary_10_3390_biology13060369
crossref_primary_10_1073_pnas_2221508120
crossref_primary_10_3390_molecules28176207
crossref_primary_10_1007_s11274_024_04137_1
crossref_primary_10_1039_D2NJ05051J
crossref_primary_10_3390_antibiotics13010029
crossref_primary_10_3390_su151914643
crossref_primary_10_1186_s40793_025_00680_y
crossref_primary_10_1016_j_cocis_2023_101746
crossref_primary_10_1007_s00248_024_02450_8
crossref_primary_10_3390_fermentation9070597
crossref_primary_10_1128_spectrum_05007_22
crossref_primary_10_1016_j_scitotenv_2022_159507
crossref_primary_10_1111_ppa_13790
crossref_primary_10_1007_s11104_024_06944_9
crossref_primary_10_3390_microorganisms12040668
crossref_primary_10_1016_j_micres_2024_127880
crossref_primary_10_1186_s13213_024_01755_w
crossref_primary_10_3389_fmicb_2022_943232
crossref_primary_10_1016_j_micres_2024_127762
crossref_primary_10_1016_j_biocontrol_2024_105527
crossref_primary_10_1007_s44372_025_00155_x
crossref_primary_10_1016_j_micres_2023_127465
crossref_primary_10_1016_j_biocontrol_2023_105340
crossref_primary_10_1007_s42161_024_01788_9
crossref_primary_10_1016_j_pmpp_2022_101892
crossref_primary_10_1016_j_foodcont_2024_110698
crossref_primary_10_3390_microorganisms12112331
crossref_primary_10_3390_horticulturae9090964
crossref_primary_10_18016_ksutarimdoga_vi_1459337
crossref_primary_10_1016_j_dyepig_2022_110486
crossref_primary_10_1093_jambio_lxae307
crossref_primary_10_1080_01904167_2024_2369069
crossref_primary_10_1007_s10343_023_00923_3
crossref_primary_10_1007_s11356_024_33910_w
crossref_primary_10_1016_j_plaphy_2024_109378
crossref_primary_10_1016_j_micpath_2024_106645
crossref_primary_10_1007_s13205_025_04243_3
crossref_primary_10_17660_ActaHortic_2024_1404_137
crossref_primary_10_31083_j_fbl2905188
crossref_primary_10_3389_fmicb_2024_1280333
crossref_primary_10_1016_j_biocontrol_2023_105241
crossref_primary_10_3390_su151511768
crossref_primary_10_1038_s41598_024_78485_1
crossref_primary_10_1002_jobm_202400342
crossref_primary_10_1016_j_apsoil_2023_105025
crossref_primary_10_1016_j_scitotenv_2024_170771
crossref_primary_10_1016_j_procbio_2022_06_005
crossref_primary_10_1007_s00203_022_03017_2
crossref_primary_10_3389_fpls_2022_1035549
crossref_primary_10_3389_fmicb_2023_1240206
crossref_primary_10_3389_fmicb_2022_906724
crossref_primary_10_1007_s00253_023_12864_y
crossref_primary_10_3390_microbiolres14030062
crossref_primary_10_1016_j_rhisph_2024_100851
crossref_primary_10_3390_microorganisms10081547
crossref_primary_10_1111_1758_2229_70011
crossref_primary_10_1111_jam_15791
crossref_primary_10_1186_s13568_022_01401_1
crossref_primary_10_1016_j_gene_2024_148669
crossref_primary_10_1007_s10123_025_00632_z
crossref_primary_10_1007_s11627_023_10358_0
crossref_primary_10_3390_agronomy12102510
crossref_primary_10_3390_plants11233201
crossref_primary_10_1016_j_crmicr_2023_100200
crossref_primary_10_1007_s10661_024_12850_5
crossref_primary_10_1007_s42360_024_00755_9
crossref_primary_10_1128_mra_00458_24
crossref_primary_10_1016_j_rhisph_2024_100963
crossref_primary_10_3389_fmicb_2023_1194606
crossref_primary_10_1016_j_plaphy_2024_108627
Cites_doi 10.1038/nbt1110
10.1007/s00203-008-0409-z
10.3389/fmicb.2020.01350
10.1128/AEM.01284-20
10.3389/fmicb.2020.00521
10.1111/lam.12382
10.1021/jf010885d
10.1128/JB.183.24.7044-7052.2001
10.1016/j.biocontrol.2018.10.005
10.1016/j.micres.2017.03.003
10.1111/j.1574-6968.1999.tb08775.x
10.1111/j.1469-8137.2007.02138.x
10.1002/mbo3.516
10.1111/j.1365-2672.2009.04466.x
10.1139/w06-119
10.1111/j.1574-6941.1999.tb00650.x
10.1016/j.synbio.2019.08.002
10.1016/j.micres.2004.01.005
10.1134/S0003683820010135
10.1128/JB.181.7.2166-2174.1999
10.1111/j.1472-765X.2009.02566.x
10.1016/j.cropro.2017.05.008
10.1007/s00253-004-1664-9
10.1093/femsle/fnaa218
10.3389/fmicb.2018.01315
10.1016/j.micres.2012.05.002
10.1104/pp.103.028712
10.1016/j.biocontrol.2018.04.018
10.1016/j.apsoil.2017.12.004
10.1128/jb.100.1.310-318.1969
10.1016/j.enzmictec.2005.08.030
10.1111/mpp.12170
10.3390/biom9090443
10.1099/mic.0.000370
10.1002/jobm.201900347
10.1111/1751-7915.13659
10.7554/eLife.22835
10.1111/mpp.12809
10.1007/s12600-009-0078-8
10.1128/jb.174.1.186-190.1992
10.1007/s00425-020-03357-7
10.1080/17429145.2010.541944
10.1128/JB.180.7.1939-1943.1998
10.1007/s00284-012-0160-1
10.1128/mBio.00079-15
10.1016/j.biocontrol.2019.104160
10.1111/jam.14506
10.1111/j.1365-2958.2005.04587.x
10.3389/fmicb.2017.01102
10.1111/jam.14488
10.1016/j.jbiotec.2018.07.044
10.3389/fmicb.2019.00544
10.1007/s10526-006-9000-1
10.1021/acs.jpcb.9b02588
10.1016/j.ijbiomac.2019.12.216
10.1002/ps.2165
10.1111/j.1574-6976.2010.00221.x
10.1039/C9NP00022D
10.1016/0885-5765(88)90013-6
10.1002/ps.3301
10.1016/j.resmic.2010.04.007
10.1094/MPMI-12-14-0406-R
10.1021/acs.jafc.0c06106
10.1007/s13313-020-00696-7
10.1007/s11101-013-9278-4
10.1016/j.pestbp.2021.104777
10.3389/fpls.2015.00566
10.7164/antibiotics.22.135
10.1016/j.biocontrol.2019.04.006
10.3389/fmicb.2017.00925
10.1016/j.pestbp.2014.10.006
10.3389/fmicb.2015.00693
10.1016/j.nbt.2015.01.006
10.1163/15685411-bja10013
10.3389/fmicb.2018.00913
10.1016/j.micres.2018.11.003
10.1016/j.biocontrol.2018.04.015
10.1128/AEM.68.7.3416-3423.2002
10.1007/s13205-020-02585-8
10.1016/j.bcab.2016.02.001
10.1264/jsme2.ME20078
10.3390/genes10080601
10.3390/ijerph17041434
10.3389/fbioe.2019.00488
10.1038/ja.2010.78
10.1016/j.apsoil.2019.01.015
10.1080/13102818.2019.1637279
10.1093/nar/gkt1178
10.1094/MPMI-06-11-0162
10.3389/fmicb.2019.02287
10.1146/annurev.phyto.44.013106.145710
10.3389/fmicb.2020.01196
10.1371/journal.pgen.1002784
10.1094/PHYTO-09-19-0367-R
10.1016/j.rhisph.2018.01.001
10.3389/fmicb.2019.00719
10.3389/fmicb.2017.01895
10.1016/j.biocontrol.2013.03.012
10.1016/0038-0717(93)90217-Y
10.3390/ijms12010141
10.1111/j.1574-6976.2010.00244.x
10.1007/s00344-019-09966-1
10.1186/s12864-016-3224-y
10.1046/j.1469-8137.2003.00686.x
10.1007/s10886-013-0319-7
10.1016/j.postharvbio.2019.111022
10.1016/j.cbpa.2010.10.015
10.1016/j.pestbp.2017.08.014
10.1016/j.chemosphere.2021.129819
10.1016/j.pestbp.2017.10.006
10.1007/s42161-019-00457-6
10.1111/j.1365-2621.2004.tb10721.x
10.1039/b817075b
10.1016/j.bmc.2017.01.002
10.1111/1462-2920.12469
10.1111/1758-2229.12454
10.3390/ijms21228740
10.3390/molecules23092139
10.1080/14786419.2012.696257
10.1094/MPMI-11-17-0273-R
10.7717/peerj.3107
10.3389/fpls.2019.00901
10.4067/S0718-95162010000100006
10.1038/srep32266
10.1016/j.plaphy.2012.03.003
10.1104/pp.108.127878
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.pmpp.2021.101754
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
ExternalDocumentID 10_1016_j_pmpp_2021_101754
S0885576521001557
GroupedDBID --K
--M
-~X
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSH
SSU
SSZ
T5K
UNMZH
WH7
WUQ
XJT
XPP
Y6R
YK3
ZMT
ZU3
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c399t-71276281c6d99d5372a1381a456da7f9b3e186096da0f83ff19afa73e26bea183
IEDL.DBID .~1
ISSN 0885-5765
IngestDate Fri Jul 11 02:33:24 EDT 2025
Tue Jul 01 03:43:40 EDT 2025
Thu Apr 24 23:07:14 EDT 2025
Sun Apr 06 06:53:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Beneficial microorganisms
Pseudomonas
Antimicrobials
Bacillus
Biocontrol
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-71276281c6d99d5372a1381a456da7f9b3e186096da0f83ff19afa73e26bea183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0425-5938
0000-0003-3933-9610
0000-0002-8773-8213
PQID 2636449206
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636449206
crossref_citationtrail_10_1016_j_pmpp_2021_101754
crossref_primary_10_1016_j_pmpp_2021_101754
elsevier_sciencedirect_doi_10_1016_j_pmpp_2021_101754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Physiological and molecular plant pathology
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stein (bib8) 2005; 56
Kumar, Singh (bib1) 2014; 5
Nowak-Thompson, Chaney, Wing, Gould, Loper (bib46) 1999; 181
Devi, Kiesewalter, Kovács, Frisvad, Weber, Larsen, Kovács, Ding (bib10) 2019; 4
Xie, Vallet, Sun, Kunert, David, Zhang, Chen, Lu, Boland, Shao (bib83) 2020; 7
Xiang, Zhang, Wang, Liu, Liao (bib117) 2018; 147
Loper, Hassan, Mavrodi, Davis, Lim, Shaffer, Elbourne, Stockwell, Hartney, Breakwell, Henkels, Tetu, Rangel, Kidarsa, Wilson, van de Mortel, Song, Blumhagen, Radune, Hostetler, Brinkac, Durkin, Kluepfel, Wechter, Anderson, Kim, Pierson, Pierson, Lindow, Kobayashi, Raaijmakers, Weller, Thomashow, Allen, Paulsen (bib131) 2012; 8
Jamali, Sharma, Roohi, Srivastava (bib99) 2020; 60
Leelasuphakul, Sivanunsakul, Phongpaichit (bib108) 2006; 38
Zhao, Liu, Zhang (bib128) 2019; 10
Tian, Chen, Chen, Liu, Fan, Zhao, an Long (bib90) 2020; 159
Saati-Santamaría, López-Mondéjar, Jiménez-Gómez, Díez-Méndez, Vetrovský, Igual, Velázquez, Kolarik, Rivas, García-Fraile (bib132) 2018; 9
Wang, Wang, Liu, Wang, Xu (bib94) 2021; 14
Lombard, Golaconda Ramulu, Drula, Coutinho, Henrissat (bib101) 2014; 42
Sánchez San Fulgencio, Suárez-Estrella, López, Jurado, López-González, Moreno (bib60) 2018; 124
Fu, Marian, Enomoto, Hieno, Ina, Suga, Shimizu (bib75) 2020; 35
Nakkeeran, Vinodkumar, Senthilraja, Renukadevi (bib6) 2019
Saxena, Kumar, Chakdar, Anuroopa, Bagyaraj (bib78) 2020; 128
Penha, Vandenberghe, Faulds, Soccol, Soccol (bib97) 2020; 251
Morales-Ruiz, Priego-Rivera, Figueroa-López, Cazares-Álvarez, Maldonado-Mendoza (bib102) 2020; 368
Kakembo, Lee (bib129) 2019; 134
Pramanik, Mandal, Banerjee, Ghosh, Maiti, Mandal (bib140) 2021; 274
Falardeau, Wise, Novitsky, Avis (bib20) 2013; 39
Bais, Fall, Vivanco (bib68) 2004; 134
Aydi Ben Abdallah, Stedel, Garagounis, Nefzi, Jabnoun-Khiareddine, Papadopoulou, Daami-Remadi (bib72) 2017; 99
Li, Huang, Wang, Xu (bib48) 2012; 7
Yasmin, Hafeez, Mirza, Rasul, Arshad, Zubair, Iqbal (bib28) 2017; 8
Hammer, Burd, Hill, Ligon, van Pée (bib40) 1999; 180
El-Bendary, Hamed, Moharam (bib58) 2016; 5
Watanabe, Kasahara, Aida, Tanaka (bib107) 1992; 174
Yamamoto, Shiraishi, Suzuki (bib81) 2015; 60
Arrebola, Tienda, Vida, de Vicente, Cazorla (bib139) 2019; 10
Shanmugaiah, Mathivanan, Varghese (bib116) 2010; 108
Raaijmakers, de Bruijn, Nybroe, Ongena (bib17) 2010; 34
Jiao, Munir, He, Yang, Wu, Wang, He, Cai, Wang, He (bib70) 2020; 143
Saraf, Thakker, Patel (bib63) 2008; 4
Dihazi, Jaiti, Taktak, Kilani-Feki, Jaoua, Driouich, Baaziz, Daayf, Serghini (bib71) 2012; 55
Xu, Wang, Wang, Liu, Shi, Gao, Wang (bib92) 2020; 147
Maksimov, Singh, Cherepanova, Burkhanova, Khairullin (bib14) 2020; 56
Götze, Stallforth (bib50) 2020; 37
Solanki, Robert, Singh, Kumar, Pandey, Srivastava, Arora (bib104) 2012; 65
Sharma, Vishnoi, Dubey, Maheshwari (bib61) 2018; 5
Borland, Prigent-Combaret, Wisniewski-Dyé (bib27) 2016; 162
Guttenberger, Blankenfeldt, Breinbauer (bib35) 2017; 25
Nielsen, Sørensen, Tobiasen, Andersen, Christophersen, Givskov, Sørensen (bib123) 2002; 68
Ji, Peng, Chen, Liu, Yan, Zhu (bib109) 2020; 145
Andreolli, Zapparoli, Angelini, Lucchetta, Lampis, Vallini (bib29) 2019; 219
Raio, Reveglia, Puopolo, Cimmino, Danti, Evidente (bib113) 2017; 199
Shali, Ghasemi, Ahmadian, Ranjbar, Dehestani, Khalesi, Motallebi, Vahed (bib106) 2010; 38
Dimkić, Živković, Berić, Ivanović, Gavrilović, Stanković, Fira (bib96) 2013; 65
Farace, Fernandez, Jacquens, Coutte, Krier, Jacques, Clément, Barka, Jacquard, Dorey (bib82) 2015; 16
Etchegaray, de Castro Bueno, de Melo, Tsai, de Fátima Fiore, Silva-Stenico, de Moraes, Teschke (bib88) 2008; 190
Zachow, Jahanshah, de Bruijn, Song, Ianni, Pataj, Gerhardt, Pianet, Lämmerhofer, Berg, Gross, Raaijmakers (bib124) 2015; 28
Xu, Wang, Lv, Shi, Wang (bib93) 2019; 33
Jacob, Jamier, Ba (bib38) 2011; 15
Wu, Liu, Xu, Zhang, Shen, Zhang (bib77) 2018; 31
Hamdache, Azarken, Lamarti, Aleu, Collado (bib19) 2013; 12
Nose, Arima (bib45) 1969; 22
Janakiev, Dimkić, Unković, Ljaljević Grbić, Opsenica, Gašić, Stanković, Berić (bib4) 2019; 10
Nagarajkumar, Bhaskaran, Velazhahan (bib64) 2004; 159
Simionato, Navarro, de Jesus, Barazetti, da Silva, Simões, Balbi-Peña, de Mello, Panagio, de Almeida, Andrade, de Oliveira (bib114) 2017; 8
Fira, Dimkić, Berić, Lozo, Stanković (bib2) 2018; 285
Paulsen, Press, Ravel, Kobayashi, Myers, Mavrodi, DeBoy, Seshadri, Ren, Madupu, Dodson, Durkin, Brinkac, Daugherty, Sullivan, Rosovitz, Gwinn, Zhou, Schneider, Cartinhour, Nelson, Weidman, Watkins, Tran, Khouri, Pierson, Pierson, Thomashow, Loper (bib26) 2005; 23
Arora, Min, Sun, Maheshwari (bib65) 2007; 53
Poger, Mark (bib86) 2019; 123
Zhao, Chen, Yu, Hu, Song (bib115) 2018; 147
Shahzad, Khan, Bilal, Asaf, Lee (bib73) 2017
Dimkic, Stankovic, Nišavic, Petkovic, Ristivojevic, Fira, Beric (bib3) 2017; 8
Jan, Azam, Ali, Rizwanul Haq (bib110) 2011; 6
Gupta, Kumar, Dubey, Maheshwari (bib137) 2006; 51
de Vleesschauwer, Djavaheri, Bakker, Höfte (bib53) 2008; 148
Özcengiz, Öğülür (bib13) 2015; 32
Fridlender, Inbar, Chet (bib67) 1993; 25
Hoster, Schmitz, Daniel (bib55) 2005; 66
Sahebani, Omranzade (bib76) 2020; 22
Zhao, Kuipers (bib11) 2016; 17
Seydlová, Čabala, Svobodová (bib18) 2011
Zhang, Yu, Yang, Zhang, Zhao, Pan, Fan, Yang, Zhu (bib79) 2020; 11
Zhu, Tan, Shen, Yang, Yu, Gao, Li, Cheng, Chen, Guo, Sun, Yan, Li, Zeng (bib95) 2020; 102
Abriouel, Franz, Ben Omar, Galvez (bib5) 2011; 35
Andrić, Meyer, Ongena (bib7) 2020; 11
Mavrodi, Blankenfeldt, Thomashow (bib34) 2006; 44
Malviya, Sahu, Singh, Paul, Gupta, Gupta, Singh, Kumar, Paul, Rai, Singh, Brahmaprakash (bib51) 2020; 17
Couillerot, Prigent-Combaret, Caballero-Mellado, Moënne-Loccoz (bib22) 2009; 48
Michelsen, Watrous, Glaring, Kersten, Koyama, Dorrestein, Stougaard (bib125) 2015; 6
Tripathi, Gottlieb (bib44) 1969; 100
Yu, Huang, Zhu, Zhang, Yao, Wu, Xu, Li (bib122) 2018; 23
Panpatte, Jhala, Shelat, Vyas (bib23) 2016; 1
Xu, Pan, Luo, Wu, Zhou, Liang, He, Zhou (bib112) 2015; 117
Kumar, Dubey, Maheshwari (bib57) 2012; 167
Sundheim, Poplawsky, Ellingboe (bib62) 1988; 33
Shahid, Han, Hardie, Baig, Malik, Borchers, Mehnaz (bib36) 2021; 11
Oni, Olorunleke, Höfte (bib30) 2019; 129
Wang, Shih, Liang, Wang (bib105) 2002; 50
Sánchez, Chávez, Forero, García-Huante, Romero, Sánchez, Rocha, Sánchez, Valos, Guzmán-Trampe, Rodríguez-Sanoja, Langley, Ruiz (bib135) 2010; 63
Toral, Rodríguez, Béjar, Sampedro (bib84) 2018; 9
Christiansen, Alanin, Christopher, Olsson, Stougaard, Hennessy (bib127) 2020; 86
Nielsen, Sørensen (bib136) 1999; 30
Nakkeeran, Surya, Vinodkumar (bib85) 2020; 39
Roongsawang, Washio, Morikawa (bib12) 2011; 12
Yan, Philmus, Chang, Loper (bib119) 2017; 6
Gong, Tan, Chen, Li, Zhu, Jian, Yuan, Xu, Hu, Jiang, Duan (bib121) 2016; 6
Jadhav, Shaikh, Sayyed (bib100) 2017; 2
Höfte, Altier (bib24) 2010; 161
Reyes-Ramírez, Escudero-Abarca, Aguilar-Uscanga, Hayward-Jones, Eleazar Barboza-Corona (bib56) 2006; 69
Lim, Kim (bib66) 1994; 4
Hennessy, Phippen, Nielsen, Olsson, Stougaard (bib126) 2017; 6
Kirner, Hammer, Hill, Altmann, Fischer, Weislo, Lanahan, Van Pee, Ligon (bib42) 1998; 180
Borriss, Wu, Gao (bib16) 2019
Puopolo, Masi, Raio, Andolfi, Zoina, Cimmino, Evidente (bib31) 2013; 27
le Quesne, Dong, Blythe (bib43) 1999; 13
Ma, Hoang Hua, Ongena, Höfte (bib54) 2016; 8
Mishra, Arora (bib111) 2018; 125
van der Voort, Meijer, Schmidt, Watrous, Dekkers, Mendes, Dorrestein, Gross, Raaijmakers (bib134) 2015; 6
Martínez-Viveros, Jorquera, Crowley, Gajardo, Mora (bib39) 2010; 10
Tran, Ficke, Asiimwe, Höfte, Raaijmakers (bib52) 2007; 175
Gross, Loper (bib25) 2009; 26
Omoboye, Oni, Batool, Yimer, de Mot, Höfte (bib130) 2019; 10
Zhang, Kong, Li, Chen, Chen (bib49) 2020; 49
Abdallah, Jabnoun-Khiareddine, Daami-Remadi (bib21) 2019
Chlebek, Pinski, Żur, Michalska, Hupert-Kocurek (bib118) 2020; 21
Zhang, Mavrodi, Yang, Thomashow, Mavrodi, Kelton, Weller (bib120) 2020; 110
Ye, Wang, Ng, Zhang (bib91) 2021; 69
Chin-A-Woeng, Bloemberg, Lugtenberg (bib37) 2003; 157
Sreejith, Aswani, Radhakrishnan (bib15) 2019
Zhang, Li, Xu, Guo, Zhang, Feng, Peng, Li, Xing, Qin (bib33) 2021; 173
Huang, Tsay, Chang, Yang, Wu, Chen (bib80) 2012; 68
Janakiev, Dimkić, Bojić, Fira, Stanković, Berić (bib69) 2020; 128
Jangir, Pathak, Sharma, Sharma (bib59) 2018; 123
Zeriouh, Romero, Garcia-Gutierrez, Cazorla, de Vicente, Perez-Garcia (bib89) 2011; 24
Chen, Koumoutsi, Scholz, Borriss (bib9) 2008; 16
Hassan, Afghan, Hafeez (bib47) 2011; 67
Schönbichler, Díaz-Moreno, Srivastava, McKee (bib103) 2020; 11
Nelkner, Tejerizo, Hassa, Lin, Witte, Verwaaijen, Winkler, Bunk, Spröer, Overmann, Grosch, Pühler, Schlüter (bib133) 2019; 10
Li, Héloir, Zhang, Geissler, Trouvelot, Jacquens, Henkel, Su, Fang, Wang, Adrian (bib87) 2019; 20
Guo, Li, Lou, Shi, Jiang, Zhou, Sun, Xue, Lai (bib74) 2019; 137
Folders, Algra, Roelofs, van Loon, Tommassen, Bitter (bib138) 2001; 183
Alsohim, Taylor, Barrett, Gallie, Zhang, Altamirano-Junqueira, Johnson, Rainey, Jackson (bib32) 2014; 16
Pawar, Chaudhari, Prabha, Shukla, Singh (bib41) 2019; 9
Bardin, Ajouz, Comby, Lopez-Ferber, Graillot, Siegwart, Nicot (bib98) 2015; 6
Fridlender (10.1016/j.pmpp.2021.101754_bib67) 1993; 25
Xiang (10.1016/j.pmpp.2021.101754_bib117) 2018; 147
Mavrodi (10.1016/j.pmpp.2021.101754_bib34) 2006; 44
Li (10.1016/j.pmpp.2021.101754_bib48) 2012; 7
Omoboye (10.1016/j.pmpp.2021.101754_bib130) 2019; 10
Wang (10.1016/j.pmpp.2021.101754_bib105) 2002; 50
Seydlová (10.1016/j.pmpp.2021.101754_bib18) 2011
Nagarajkumar (10.1016/j.pmpp.2021.101754_bib64) 2004; 159
Penha (10.1016/j.pmpp.2021.101754_bib97) 2020; 251
Leelasuphakul (10.1016/j.pmpp.2021.101754_bib108) 2006; 38
Özcengiz (10.1016/j.pmpp.2021.101754_bib13) 2015; 32
Sundheim (10.1016/j.pmpp.2021.101754_bib62) 1988; 33
Dimkic (10.1016/j.pmpp.2021.101754_bib3) 2017; 8
Hoster (10.1016/j.pmpp.2021.101754_bib55) 2005; 66
Zhang (10.1016/j.pmpp.2021.101754_bib120) 2020; 110
Saraf (10.1016/j.pmpp.2021.101754_bib63) 2008; 4
Nowak-Thompson (10.1016/j.pmpp.2021.101754_bib46) 1999; 181
Shanmugaiah (10.1016/j.pmpp.2021.101754_bib116) 2010; 108
Xie (10.1016/j.pmpp.2021.101754_bib83) 2020; 7
Raaijmakers (10.1016/j.pmpp.2021.101754_bib17) 2010; 34
Nielsen (10.1016/j.pmpp.2021.101754_bib136) 1999; 30
Oni (10.1016/j.pmpp.2021.101754_bib30) 2019; 129
Jan (10.1016/j.pmpp.2021.101754_bib110) 2011; 6
Tran (10.1016/j.pmpp.2021.101754_bib52) 2007; 175
Watanabe (10.1016/j.pmpp.2021.101754_bib107) 1992; 174
Nakkeeran (10.1016/j.pmpp.2021.101754_bib85) 2020; 39
Zachow (10.1016/j.pmpp.2021.101754_bib124) 2015; 28
Sahebani (10.1016/j.pmpp.2021.101754_bib76) 2020; 22
Fira (10.1016/j.pmpp.2021.101754_bib2) 2018; 285
Christiansen (10.1016/j.pmpp.2021.101754_bib127) 2020; 86
Hassan (10.1016/j.pmpp.2021.101754_bib47) 2011; 67
Xu (10.1016/j.pmpp.2021.101754_bib112) 2015; 117
Bais (10.1016/j.pmpp.2021.101754_bib68) 2004; 134
Raio (10.1016/j.pmpp.2021.101754_bib113) 2017; 199
Hammer (10.1016/j.pmpp.2021.101754_bib40) 1999; 180
Arrebola (10.1016/j.pmpp.2021.101754_bib139) 2019; 10
Solanki (10.1016/j.pmpp.2021.101754_bib104) 2012; 65
Chin-A-Woeng (10.1016/j.pmpp.2021.101754_bib37) 2003; 157
le Quesne (10.1016/j.pmpp.2021.101754_bib43) 1999; 13
Kumar (10.1016/j.pmpp.2021.101754_bib57) 2012; 167
Couillerot (10.1016/j.pmpp.2021.101754_bib22) 2009; 48
Paulsen (10.1016/j.pmpp.2021.101754_bib26) 2005; 23
Reyes-Ramírez (10.1016/j.pmpp.2021.101754_bib56) 2006; 69
Zhao (10.1016/j.pmpp.2021.101754_bib115) 2018; 147
Kakembo (10.1016/j.pmpp.2021.101754_bib129) 2019; 134
Sánchez San Fulgencio (10.1016/j.pmpp.2021.101754_bib60) 2018; 124
Ji (10.1016/j.pmpp.2021.101754_bib109) 2020; 145
Sreejith (10.1016/j.pmpp.2021.101754_bib15) 2019
Guttenberger (10.1016/j.pmpp.2021.101754_bib35) 2017; 25
Jangir (10.1016/j.pmpp.2021.101754_bib59) 2018; 123
Janakiev (10.1016/j.pmpp.2021.101754_bib69) 2020; 128
Malviya (10.1016/j.pmpp.2021.101754_bib51) 2020; 17
Sharma (10.1016/j.pmpp.2021.101754_bib61) 2018; 5
Lombard (10.1016/j.pmpp.2021.101754_bib101) 2014; 42
Mishra (10.1016/j.pmpp.2021.101754_bib111) 2018; 125
van der Voort (10.1016/j.pmpp.2021.101754_bib134) 2015; 6
Gong (10.1016/j.pmpp.2021.101754_bib121) 2016; 6
Höfte (10.1016/j.pmpp.2021.101754_bib24) 2010; 161
Huang (10.1016/j.pmpp.2021.101754_bib80) 2012; 68
Wang (10.1016/j.pmpp.2021.101754_bib94) 2021; 14
Aydi Ben Abdallah (10.1016/j.pmpp.2021.101754_bib72) 2017; 99
Ye (10.1016/j.pmpp.2021.101754_bib91) 2021; 69
Pramanik (10.1016/j.pmpp.2021.101754_bib140) 2021; 274
Shahid (10.1016/j.pmpp.2021.101754_bib36) 2021; 11
Zhao (10.1016/j.pmpp.2021.101754_bib11) 2016; 17
Folders (10.1016/j.pmpp.2021.101754_bib138) 2001; 183
Guo (10.1016/j.pmpp.2021.101754_bib74) 2019; 137
Pawar (10.1016/j.pmpp.2021.101754_bib41) 2019; 9
Gupta (10.1016/j.pmpp.2021.101754_bib137) 2006; 51
Xu (10.1016/j.pmpp.2021.101754_bib93) 2019; 33
Fu (10.1016/j.pmpp.2021.101754_bib75) 2020; 35
Wu (10.1016/j.pmpp.2021.101754_bib77) 2018; 31
Bardin (10.1016/j.pmpp.2021.101754_bib98) 2015; 6
Yamamoto (10.1016/j.pmpp.2021.101754_bib81) 2015; 60
Yu (10.1016/j.pmpp.2021.101754_bib122) 2018; 23
Andreolli (10.1016/j.pmpp.2021.101754_bib29) 2019; 219
Jiao (10.1016/j.pmpp.2021.101754_bib70) 2020; 143
Devi (10.1016/j.pmpp.2021.101754_bib10) 2019; 4
Poger (10.1016/j.pmpp.2021.101754_bib86) 2019; 123
Simionato (10.1016/j.pmpp.2021.101754_bib114) 2017; 8
Janakiev (10.1016/j.pmpp.2021.101754_bib4) 2019; 10
Jacob (10.1016/j.pmpp.2021.101754_bib38) 2011; 15
Toral (10.1016/j.pmpp.2021.101754_bib84) 2018; 9
Panpatte (10.1016/j.pmpp.2021.101754_bib23) 2016; 1
Jadhav (10.1016/j.pmpp.2021.101754_bib100) 2017; 2
Chlebek (10.1016/j.pmpp.2021.101754_bib118) 2020; 21
Abdallah (10.1016/j.pmpp.2021.101754_bib21) 2019
Zhao (10.1016/j.pmpp.2021.101754_bib128) 2019; 10
Zhang (10.1016/j.pmpp.2021.101754_bib49) 2020; 49
El-Bendary (10.1016/j.pmpp.2021.101754_bib58) 2016; 5
Martínez-Viveros (10.1016/j.pmpp.2021.101754_bib39) 2010; 10
Andrić (10.1016/j.pmpp.2021.101754_bib7) 2020; 11
Götze (10.1016/j.pmpp.2021.101754_bib50) 2020; 37
Zhang (10.1016/j.pmpp.2021.101754_bib33) 2021; 173
Nielsen (10.1016/j.pmpp.2021.101754_bib123) 2002; 68
Saati-Santamaría (10.1016/j.pmpp.2021.101754_bib132) 2018; 9
Chen (10.1016/j.pmpp.2021.101754_bib9) 2008; 16
Nose (10.1016/j.pmpp.2021.101754_bib45) 1969; 22
Borland (10.1016/j.pmpp.2021.101754_bib27) 2016; 162
Nelkner (10.1016/j.pmpp.2021.101754_bib133) 2019; 10
Alsohim (10.1016/j.pmpp.2021.101754_bib32) 2014; 16
Shali (10.1016/j.pmpp.2021.101754_bib106) 2010; 38
Maksimov (10.1016/j.pmpp.2021.101754_bib14) 2020; 56
Kumar (10.1016/j.pmpp.2021.101754_bib1) 2014; 5
Roongsawang (10.1016/j.pmpp.2021.101754_bib12) 2011; 12
Dihazi (10.1016/j.pmpp.2021.101754_bib71) 2012; 55
Loper (10.1016/j.pmpp.2021.101754_bib131) 2012; 8
Hamdache (10.1016/j.pmpp.2021.101754_bib19) 2013; 12
Michelsen (10.1016/j.pmpp.2021.101754_bib125) 2015; 6
de Vleesschauwer (10.1016/j.pmpp.2021.101754_bib53) 2008; 148
Puopolo (10.1016/j.pmpp.2021.101754_bib31) 2013; 27
Li (10.1016/j.pmpp.2021.101754_bib87) 2019; 20
Nakkeeran (10.1016/j.pmpp.2021.101754_bib6) 2019
Saxena (10.1016/j.pmpp.2021.101754_bib78) 2020; 128
Arora (10.1016/j.pmpp.2021.101754_bib65) 2007; 53
Etchegaray (10.1016/j.pmpp.2021.101754_bib88) 2008; 190
Borriss (10.1016/j.pmpp.2021.101754_bib16) 2019
Dimkić (10.1016/j.pmpp.2021.101754_bib96) 2013; 65
Ma (10.1016/j.pmpp.2021.101754_bib54) 2016; 8
Yan (10.1016/j.pmpp.2021.101754_bib119) 2017; 6
Falardeau (10.1016/j.pmpp.2021.101754_bib20) 2013; 39
Jamali (10.1016/j.pmpp.2021.101754_bib99) 2020; 60
Abriouel (10.1016/j.pmpp.2021.101754_bib5) 2011; 35
Gross (10.1016/j.pmpp.2021.101754_bib25) 2009; 26
Zeriouh (10.1016/j.pmpp.2021.101754_bib89) 2011; 24
Stein (10.1016/j.pmpp.2021.101754_bib8) 2005; 56
Yasmin (10.1016/j.pmpp.2021.101754_bib28) 2017; 8
Lim (10.1016/j.pmpp.2021.101754_bib66) 1994; 4
Schönbichler (10.1016/j.pmpp.2021.101754_bib103) 2020; 11
Shahzad (10.1016/j.pmpp.2021.101754_bib73) 2017
Morales-Ruiz (10.1016/j.pmpp.2021.101754_bib102) 2020; 368
Tian (10.1016/j.pmpp.2021.101754_bib90) 2020; 159
Zhang (10.1016/j.pmpp.2021.101754_bib79) 2020; 11
Zhu (10.1016/j.pmpp.2021.101754_bib95) 2020; 102
Xu (10.1016/j.pmpp.2021.101754_bib92) 2020; 147
Sánchez (10.1016/j.pmpp.2021.101754_bib135) 2010; 63
Kirner (10.1016/j.pmpp.2021.101754_bib42) 1998; 180
Hennessy (10.1016/j.pmpp.2021.101754_bib126) 2017; 6
Tripathi (10.1016/j.pmpp.2021.101754_bib44) 1969; 100
Farace (10.1016/j.pmpp.2021.101754_bib82) 2015; 16
References_xml – volume: 37
  start-page: 29
  year: 2020
  end-page: 54
  ident: bib50
  article-title: Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads
  publication-title: Nat. Prod. Rep.
– volume: 11
  start-page: 48
  year: 2021
  ident: bib36
  article-title: Profiling of antimicrobial metabolites of plant growth promoting
  publication-title: 3 Biotech
– volume: 117
  start-page: 39
  year: 2015
  end-page: 46
  ident: bib112
  article-title: Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium
  publication-title: , Pestic. Biochem. Physiol.
– volume: 22
  start-page: 1091
  year: 2020
  end-page: 1099
  ident: bib76
  article-title: Assessment of plant defence induction and biocontrol potential of
  publication-title: Nematology
– volume: 5
  start-page: 173
  year: 2016
  end-page: 178
  ident: bib58
  article-title: Potential of
  publication-title: Biocatal. Agric. Biotechnol.
– volume: 159
  start-page: 73
  year: 2004
  end-page: 81
  ident: bib64
  article-title: Involvement of secondary metabolites and extracellular lytic enzymes produced by
  publication-title: Microbiol. Res.
– volume: 68
  start-page: 1306
  year: 2012
  end-page: 1310
  ident: bib80
  article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by
  publication-title: Pest Manag. Sci.
– volume: 8
  start-page: 1895
  year: 2017
  ident: bib28
  article-title: Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric
  publication-title: Front. Microbiol.
– volume: 7
  year: 2012
  ident: bib48
  article-title: Transcriptional activation of pyoluteorin operon mediated by the LysR-type regulator PltR bound at a 22 bp
  publication-title: PLoS One
– volume: 134
  start-page: 307
  year: 2004
  end-page: 319
  ident: bib68
  article-title: Biocontrol of
  publication-title: Plant Physiol.
– volume: 23
  start-page: 2139
  year: 2018
  ident: bib122
  article-title: Design, synthesis, phloem mobility, and bioactivities of a series of phenazine-1-carboxylic acid-amino acid conjugates
  publication-title: Molecules
– volume: 175
  start-page: 731
  year: 2007
  end-page: 742
  ident: bib52
  article-title: Role of the cyclic lipopeptide massetolide a in biological control of
  publication-title: New Phytol.
– volume: 161
  start-page: 464
  year: 2010
  end-page: 471
  ident: bib24
  article-title: Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems
  publication-title: Res. Microbiol.
– volume: 199
  start-page: 49
  year: 2017
  end-page: 56
  ident: bib113
  article-title: Involvement of phenazine-1-carboxylic acid in the interaction between
  publication-title: Microbiol. Res.
– volume: 181
  start-page: 2166
  year: 1999
  end-page: 2174
  ident: bib46
  article-title: Characterization of the pyoluteorin biosynthetic gene cluster of
  publication-title: J. Bacteriol.
– volume: 55
  start-page: 7
  year: 2012
  end-page: 15
  ident: bib71
  article-title: Use of two bacteria for biological control of bayoud disease caused by
  publication-title: Plant Physiol. Biochem.
– volume: 56
  start-page: 845
  year: 2005
  end-page: 857
  ident: bib8
  article-title: antibiotics: structures, syntheses and specific functions
  publication-title: Mol. Microbiol.
– volume: 15
  start-page: 149
  year: 2011
  end-page: 155
  ident: bib38
  article-title: Redox active secondary metabolites
  publication-title: Curr. Opin. Chem. Biol.
– volume: 39
  start-page: 869
  year: 2013
  end-page: 878
  ident: bib20
  article-title: Ecological and mechanistic insights into the direct and indirect antimicrobial properties of
  publication-title: J. Chem. Ecol.
– volume: 28
  start-page: 800
  year: 2015
  end-page: 810
  ident: bib124
  article-title: The novel lipopeptide poaeamide of the endophyte
  publication-title: Mol. Plant Microbe Interact.
– volume: 147
  start-page: 32
  year: 2018
  end-page: 39
  ident: bib117
  article-title: Effects and inhibition mechanism of phenazine-1-carboxamide on the mycelial morphology and ultrastructure of
  publication-title: Pestic. Biochem. Physiol.
– volume: 6
  start-page: 693
  year: 2015
  ident: bib134
  article-title: Genome mining and metabolic profiling of the rhizosphere bacterium
  publication-title: Front. Microbiol.
– volume: 9
  start-page: 1315
  year: 2018
  ident: bib84
  article-title: Antifungal activity of lipopeptides from
  publication-title: Front. Microbiol.
– volume: 4
  start-page: 142
  year: 2019
  end-page: 149
  ident: bib10
  article-title: Depiction of secondary metabolites and antifungal activity of
  publication-title: Synth. Syst. Biotechnol.
– year: 2017
  ident: bib73
  article-title: Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of
  publication-title: PeerJ
– volume: 53
  start-page: 207
  year: 2007
  end-page: 212
  ident: bib65
  article-title: Role of chitinase and
  publication-title: Can. J. Microbiol.
– volume: 190
  start-page: 611
  year: 2008
  end-page: 622
  ident: bib88
  article-title: Effect of a highly concentrated lipopeptide extract of
  publication-title: Arch. Microbiol.
– volume: 21
  start-page: 8740
  year: 2020
  ident: bib118
  article-title: Genome mining and evaluation of the biocontrol potential of
  publication-title: Int. J. Mol. Sci.
– volume: 162
  start-page: 1715
  year: 2016
  end-page: 1734
  ident: bib27
  article-title: Bacterial hybrid histidine kinases in plant-bacteria interactions
  publication-title: Microbiol.
– volume: 99
  start-page: 45
  year: 2017
  end-page: 58
  ident: bib72
  article-title: Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of
  publication-title: Crop Protect.
– volume: 124
  start-page: 82
  year: 2018
  end-page: 91
  ident: bib60
  article-title: Biotic aspects involved in the control of damping-off producing agents: the role of the thermotolerant microbiota isolated from composting of plant waste
  publication-title: Biol. Control
– volume: 2
  start-page: 183
  year: 2017
  end-page: 203
  ident: bib100
  article-title: Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview
  publication-title: Rhizotrophs: Plant Growth Promotion to Bioremediation
– volume: 10
  start-page: 719
  year: 2019
  ident: bib139
  article-title: Fitness features involved in the biocontrol interaction of
  publication-title: Front. Microbiol.
– volume: 368
  start-page: fnaa218
  year: 2020
  ident: bib102
  article-title: Biochemical characterization of two chitinases from
  publication-title: FEMS Microbiol. Lett.
– volume: 11
  start-page: 521
  year: 2020
  ident: bib103
  article-title: Exploring the potential for fungal antagonism and cell wall attack by
  publication-title: Front. Microbiol.
– volume: 147
  start-page: 104288
  year: 2020
  ident: bib92
  article-title: Evaluation of the biocontrol potential of
  publication-title: WB against
– volume: 30
  start-page: 217
  year: 1999
  end-page: 227
  ident: bib136
  article-title: Chitinolytic activity of
  publication-title: FEMS Microbiol. Ecol.
– volume: 12
  start-page: 141
  year: 2011
  end-page: 172
  ident: bib12
  article-title: Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants
  publication-title: Int. J. Mol. Sci.
– volume: 6
  year: 2015
  ident: bib125
  article-title: Nonribosomal peptides, key biocontrol components for
  publication-title: mBio
– volume: 6
  start-page: 566
  year: 2015
  ident: bib98
  article-title: Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?
  publication-title: Front. Plant Sci.
– volume: 38
  start-page: 141
  year: 2010
  end-page: 147
  ident: bib106
  article-title: SG2 chitinases induced and regulated by chitin, show inhibitory activity against
  publication-title: Phytoparasitica
– volume: 26
  start-page: 1408
  year: 2009
  end-page: 1446
  ident: bib25
  article-title: Genomics of secondary metabolite production by
  publication-title: Nat. Prod. Rep.
– volume: 183
  start-page: 7044
  year: 2001
  end-page: 7052
  ident: bib138
  article-title: Characterization of
  publication-title: J. Bacteriol.
– volume: 42
  start-page: 490
  year: 2014
  end-page: 495
  ident: bib101
  article-title: The carbohydrate-active enzymes database (CAZy) in 2013
  publication-title: Nucleic Acids Res.
– volume: 174
  start-page: 186
  year: 1992
  end-page: 190
  ident: bib107
  article-title: Three N-terminal domains of
  publication-title: J. Bacteriol.
– volume: 48
  start-page: 505
  year: 2009
  end-page: 512
  ident: bib22
  article-title: and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens
  publication-title: Lett. Appl. Microbiol.
– volume: 129
  start-page: 109
  year: 2019
  end-page: 114
  ident: bib30
  article-title: Phenazines and cyclic lipopeptides produced by
  publication-title: Biol. Control
– volume: 8
  start-page: 925
  year: 2017
  ident: bib3
  article-title: The profile and antimicrobial activity of
  publication-title: Front. Microbiol.
– volume: 17
  start-page: 1434
  year: 2020
  ident: bib51
  article-title: Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection
  publication-title: Int. J. Environ. Res. Publ. Health
– start-page: 423
  year: 2019
  end-page: 447
  ident: bib15
  article-title: Agriculturally important biosynthetic features of endophytic microorganisms
  publication-title: Seed Endophytes
– volume: 148
  start-page: 1996
  year: 2008
  end-page: 2012
  ident: bib53
  article-title: WCS374r-induced systemic resistance in rice against
  publication-title: Plant Physiol.
– volume: 38
  start-page: 990
  year: 2006
  end-page: 997
  ident: bib108
  article-title: Purification, characterization and synergistic activity of
  publication-title: Enzyme Microb. Technol.
– volume: 147
  start-page: 46
  year: 2018
  end-page: 50
  ident: bib115
  article-title: Investigating the antifungal activity and mechanism of a microbial pesticide shenqinmycin against
  publication-title: Pestic. Biochem. Physiol.
– volume: 86
  year: 2020
  ident: bib127
  article-title: Fungal-associated molecules induce key genes involved in the biosynthesis of the antifungal secondary metabolites nunamycin and nunapeptin in the biocontrol strain
  publication-title: Appl. Environ. Microbiol.
– volume: 9
  start-page: 913
  year: 2018
  ident: bib132
  article-title: Discovery of phloeophagus beetles as a source of
  publication-title: Front. Microbiol.
– volume: 159
  start-page: 111022
  year: 2020
  ident: bib90
  article-title: Biocontrol and the mechanisms of
  publication-title: Postharvest Biol. Technol.
– volume: 167
  start-page: 493
  year: 2012
  end-page: 499
  ident: bib57
  article-title: strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens
  publication-title: Microbiol. Res.
– volume: 274
  start-page: 129819
  year: 2021
  ident: bib140
  article-title: Unraveling the heavy metal resistance and biocontrol potential of
  publication-title: Chemosphere
– start-page: 487
  year: 2019
  end-page: 514
  ident: bib6
  article-title: Antimicrobial peptides of
  publication-title: Microbial Antagonists: Their Role in Biological Control of Plant Diseases
– volume: 69
  start-page: 2051
  year: 2021
  end-page: 2061
  ident: bib91
  article-title: Study on the biocontrol potential of antifungal peptides produced by
  publication-title: J. Agric. Food Chem.
– volume: 65
  start-page: 330
  year: 2012
  end-page: 336
  ident: bib104
  article-title: Characterization of mycolytic enzymes of
  publication-title: Curr. Microbiol.
– volume: 110
  start-page: 1010
  year: 2020
  end-page: 1017
  ident: bib120
  article-title: 2-79 transformed with pyrrolnitrin biosynthesis genes has improved biocontrol activity against soilborne pathogens of wheat and canola
  publication-title: Phytopathology
– volume: 7
  start-page: 488
  year: 2020
  ident: bib83
  article-title: Biocontrol potential of a novel endophytic bacterium from mulberry (
  publication-title: Front. Bioeng. Biotechnol.
– volume: 24
  start-page: 1540
  year: 2011
  end-page: 1552
  ident: bib89
  article-title: The iturin-like lipopeptides are essential components in the biological control arsenal of
  publication-title: Mol. Plant Microbe Interact.
– volume: 33
  start-page: 483
  year: 1988
  end-page: 491
  ident: bib62
  article-title: Molecular cloning of two chitinase genes from
  publication-title: Physiol. Mol. Plant Pathol.
– volume: 6
  year: 2017
  ident: bib126
  article-title: Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by
  publication-title: Microbiologyopen
– volume: 285
  start-page: 44
  year: 2018
  end-page: 55
  ident: bib2
  article-title: Biological control of plant pathogens by
  publication-title: J. Biotechnol.
– volume: 67
  start-page: 1147
  year: 2011
  end-page: 1154
  ident: bib47
  article-title: Biological control of red rot in sugarcane by native pyoluteorin-producing
  publication-title: Pest Manag. Sci.
– volume: 65
  start-page: 312
  year: 2013
  end-page: 321
  ident: bib96
  article-title: Characterization and evaluation of two
  publication-title: Biol. Control
– volume: 251
  start-page: 70
  year: 2020
  ident: bib97
  article-title: lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations
  publication-title: Planta
– volume: 20
  start-page: 1037
  year: 2019
  end-page: 1050
  ident: bib87
  article-title: Surfactin and fengycin contribute to the protection of a
  publication-title: Mol. Plant Pathol.
– volume: 5
  start-page: 71
  year: 2018
  end-page: 75
  ident: bib61
  article-title: A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen
  publication-title: Rhizosphere
– volume: 50
  start-page: 2241
  year: 2002
  end-page: 2248
  ident: bib105
  article-title: Purification and characterization of two antifungal chitinases extracellularly produced by
  publication-title: J. Agric. Food Chem.
– volume: 69
  start-page: M131
  year: 2006
  end-page: M134
  ident: bib56
  article-title: Antifungal activity of
  publication-title: J. Food Sci.
– volume: 32
  start-page: 612
  year: 2015
  end-page: 619
  ident: bib13
  article-title: Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic
  publication-title: N. Biotech.
– start-page: 305
  year: 2011
  end-page: 330
  ident: bib18
  article-title: Surfactin-novel solutions for global issues
  publication-title: Biomedical Engineering, Trends, Research and Technologies
– volume: 157
  start-page: 503
  year: 2003
  end-page: 523
  ident: bib37
  article-title: Phenazines and their role in biocontrol by
  publication-title: New Phytol.
– volume: 10
  start-page: 601
  year: 2019
  ident: bib133
  article-title: Genetic potential of the biocontrol agent
  publication-title: Genes
– volume: 128
  start-page: 528
  year: 2020
  end-page: 543
  ident: bib69
  article-title: Bacterial communities of plum phyllosphere and characterization of indigenous antagonistic
  publication-title: J. Appl. Microbiol.
– volume: 12
  start-page: 685
  year: 2013
  end-page: 716
  ident: bib19
  article-title: Comparative genome analysis of
  publication-title: Phytochemistry Rev.
– volume: 22
  start-page: 135
  year: 1969
  end-page: 143
  ident: bib45
  article-title: On the mode of action of a new antifungal antibiotic, pyrrolnitrin
  publication-title: J. Antibiot.
– volume: 31
  start-page: 560
  year: 2018
  end-page: 567
  ident: bib77
  article-title: Exploring elicitors of the beneficial rhizobacterium
  publication-title: Mol. Plant Microbe Interact.
– volume: 60
  start-page: 379
  year: 2015
  end-page: 386
  ident: bib81
  article-title: Are cyclic lipopeptides produced by
  publication-title: Lett. Appl. Microbiol.
– volume: 25
  start-page: 1211
  year: 1993
  end-page: 1221
  ident: bib67
  article-title: Biological control of soilborne plant pathogens by a
  publication-title: Soil Biol. Biochem.
– volume: 56
  start-page: 15
  year: 2020
  end-page: 28
  ident: bib14
  article-title: Prospects and applications of lipopeptide-producing bacteria for plant protection (Review)
  publication-title: Appl. Biochem. Microbiol.
– volume: 8
  start-page: 1102
  year: 2017
  ident: bib114
  article-title: The effect of phenazine-1-carboxylic acid on mycelial growth of
  publication-title: Front. Microbiol.
– volume: 100
  start-page: 310
  year: 1969
  end-page: 318
  ident: bib44
  article-title: Mechanism of action of the antifungal antibiotic pyrrolnitrin
  publication-title: J. Bacteriol.
– volume: 10
  start-page: 293
  year: 2010
  end-page: 319
  ident: bib39
  article-title: Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 33
  start-page: 1042
  year: 2019
  end-page: 1052
  ident: bib93
  article-title: Antifungal activity and functional components of cell-free supernatant from
  publication-title: Biotechnol. Biotechnol. Equip.
– volume: 145
  start-page: 594
  year: 2020
  end-page: 603
  ident: bib109
  article-title: Identification and characterization of a serine protease from
  publication-title: Int. J. Biol. Macromol.
– volume: 5
  start-page: e121
  year: 2014
  ident: bib1
  article-title: Biopesticides for integrated crop management: environmental and regulatory aspects
  publication-title: J. Biofert. Biopestic.
– volume: 125
  start-page: 35
  year: 2018
  end-page: 45
  ident: bib111
  article-title: Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture
  publication-title: Appl. Soil Ecol.
– volume: 134
  start-page: 72
  year: 2019
  end-page: 81
  ident: bib129
  article-title: Analysis of traits for biocontrol performance of
  publication-title: Biol. Control
– volume: 173
  start-page: 104777
  year: 2021
  ident: bib33
  article-title: Antifungal effect of volatile organic compounds produced by
  publication-title: Pestic. Biochem. Physiol.
– volume: 60
  start-page: 268
  year: 2020
  end-page: 280
  ident: bib99
  article-title: Biocontrol potential of
  publication-title: J. Basic Microbiol.
– volume: 27
  start-page: 956
  year: 2013
  end-page: 966
  ident: bib31
  article-title: Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives
  publication-title: Nat. Prod. Res.
– start-page: 147
  year: 2019
  end-page: 169
  ident: bib16
  article-title: Secondary metabolites of the plant growth promoting model rhizobacterium
  publication-title: Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms
– volume: 8
  start-page: 896
  year: 2016
  end-page: 904
  ident: bib54
  article-title: Role of phenazines and cyclic lipopeptides produced by
  publication-title: Environ. Microbiol. Rep.
– volume: 4
  start-page: 134
  year: 1994
  end-page: 140
  ident: bib66
  article-title: The production and enzymatic properties of extracellular chitinase from
  publication-title: J. Microbiol. Biotechnol.
– volume: 39
  start-page: 99
  year: 2020
  end-page: 111
  ident: bib85
  article-title: Antifungal potential of plant growth promoting
  publication-title: J. Plant Growth Regul.
– volume: 16
  start-page: 177
  year: 2015
  end-page: 187
  ident: bib82
  article-title: Cyclic lipopeptides from
  publication-title: Mol. Plant Pathol.
– start-page: 319
  year: 2019
  end-page: 352
  ident: bib21
  article-title: Exploring the beneficial endophytic microorganisms for plant growth promotion and crop protection: elucidation of some bioactive secondary metabolites involved in both effects
  publication-title: Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms
– volume: 102
  start-page: 433
  year: 2020
  end-page: 441
  ident: bib95
  article-title: Biocontrol potential of
  publication-title: J. Plant Pathol.
– volume: 9
  start-page: 443
  year: 2019
  ident: bib41
  article-title: Microbial pyrrolnitrin: natural metabolite with immense practical utility
  publication-title: Biomolecules
– volume: 35
  start-page: 201
  year: 2011
  end-page: 232
  ident: bib5
  article-title: Diversity and applications of
  publication-title: FEMS Microbiol. Rev.
– volume: 10
  start-page: 544
  year: 2019
  ident: bib128
  article-title: and genetic analyses of cyclic lipopeptide synthetic gene clusters in
  publication-title: Front. Microbiol.
– volume: 25
  start-page: 6149
  year: 2017
  end-page: 6166
  ident: bib35
  article-title: Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products
  publication-title: Bioorg. Med. Chem.
– volume: 180
  start-page: 1939
  year: 1998
  end-page: 1943
  ident: bib42
  article-title: Functions encoded by pyrrolnitrin biosynthetic genes from
  publication-title: J. Bacteriol.
– volume: 180
  start-page: 39
  year: 1999
  end-page: 44
  ident: bib40
  article-title: Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains
  publication-title: FEMS Microbiol. Lett.
– volume: 68
  start-page: 3416
  year: 2002
  end-page: 3423
  ident: bib123
  article-title: Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  start-page: 2287
  year: 2019
  ident: bib4
  article-title: Phyllosphere fungal communities of plum and antifungal activity of indigenous phenazine-producing
  publication-title: Front. Microbiol.
– volume: 44
  start-page: 417
  year: 2006
  end-page: 445
  ident: bib34
  article-title: Phenazine compounds in fluorescent
  publication-title: Annu. Rev. Phytopathol.
– volume: 4
  start-page: 223
  year: 2008
  end-page: 232
  ident: bib63
  article-title: Biocontrol activity of different species of
  publication-title: Int. J. Biotechnol. Biochem.
– volume: 6
  year: 2017
  ident: bib119
  article-title: Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in
  publication-title: Elife
– volume: 51
  start-page: 821
  year: 2006
  end-page: 835
  ident: bib137
  article-title: Chitinase-mediated destructive antagonistic potential of
  publication-title: BioControl
– volume: 123
  start-page: 5291
  year: 2019
  end-page: 5301
  ident: bib86
  article-title: Effect of triclosan and chloroxylenol on bacterial membranes
  publication-title: J. Phys. Chem. B
– volume: 10
  start-page: 901
  year: 2019
  ident: bib130
  article-title: cyclic lipopeptides suppress the rice blast fungus
  publication-title: Front. Plant Sci.
– volume: 66
  start-page: 434
  year: 2005
  end-page: 442
  ident: bib55
  article-title: Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 14
  start-page: 517
  year: 2021
  end-page: 534
  ident: bib94
  article-title: Membrane disruption of
  publication-title: Microb. Biotechnol.
– volume: 8
  year: 2012
  ident: bib131
  article-title: Comparative genomics of plant-associated
  publication-title: PLoS Genet.
– volume: 128
  start-page: 1583
  year: 2020
  end-page: 1594
  ident: bib78
  article-title: species in soil as a natural resource for plant health and nutrition
  publication-title: J. Appl. Microbiol.
– volume: 1
  start-page: 257
  year: 2016
  end-page: 270
  ident: bib23
  article-title: : a promising biocontrol agent and PGPR for sustainable agriculture
  publication-title: Microbial Inoculants in Sustainable Agricultural Productivity
– volume: 11
  start-page: 1350
  year: 2020
  ident: bib7
  article-title: responses to plant-associated fungal and bacterial communities
  publication-title: Front. Microbiol.
– volume: 16
  start-page: 14
  year: 2008
  end-page: 24
  ident: bib9
  article-title: More than anticipated-production of antibiotics and other secondary metabolites by
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 34
  start-page: 1037
  year: 2010
  end-page: 1062
  ident: bib17
  article-title: Natural functions of lipopeptides from
  publication-title: FEMS Microbiol. Rev.
– volume: 49
  start-page: 307
  year: 2020
  end-page: 317
  ident: bib49
  article-title: Antibiotics of
  publication-title: Australas. Plant Pathol.
– volume: 143
  start-page: 104160
  year: 2020
  ident: bib70
  article-title: Biocontrol potential of the endophytic
  publication-title: Biol. Control
– volume: 123
  start-page: 60
  year: 2018
  end-page: 70
  ident: bib59
  article-title: Biocontrol mechanisms of
  publication-title: Biol. Control
– volume: 23
  start-page: 873
  year: 2005
  end-page: 878
  ident: bib26
  article-title: Complete genome sequence of the plant commensal
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 32266
  year: 2016
  ident: bib121
  article-title: Novel synthesized 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology
  publication-title: Sci. Rep.
– volume: 35
  year: 2020
  ident: bib75
  article-title: Biocontrol of tomato bacterial wilt by foliar spray application of a novel strain of endophytic
  publication-title: Microb. Environ.
– volume: 137
  start-page: 154
  year: 2019
  end-page: 166
  ident: bib74
  article-title: Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease
  publication-title: Appl. Soil Ecol.
– volume: 63
  start-page: 442
  year: 2010
  end-page: 459
  ident: bib135
  article-title: Carbon source regulation of antibiotic production
  publication-title: J. Antibiot. (Tokyo)
– volume: 17
  start-page: 882
  year: 2016
  ident: bib11
  article-title: Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species
  publication-title: BMC Genom.
– volume: 108
  start-page: 703
  year: 2010
  end-page: 711
  ident: bib116
  article-title: Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium,
  publication-title: J. Appl. Microbiol.
– volume: 219
  start-page: 123
  year: 2019
  end-page: 131
  ident: bib29
  article-title: MP12: a plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens
  publication-title: Microbiol. Res.
– volume: 13
  start-page: 238
  year: 1999
  end-page: 282
  ident: bib43
  article-title: Recent research on pyrrole alkaloids
  publication-title: Alkaloids: Chemical and Biological Perspectives
– volume: 16
  start-page: 2267
  year: 2014
  end-page: 2281
  ident: bib32
  article-title: The biosurfactant viscosin produced by
  publication-title: Environ. Microbiol.
– volume: 11
  start-page: 1196
  year: 2020
  ident: bib79
  article-title: Antifungal effects of volatiles produced by
  publication-title: Front. Microbiol.
– volume: 6
  start-page: 195
  year: 2011
  end-page: 205
  ident: bib110
  article-title: Novel approaches of beneficial
  publication-title: J. Plant Interact.
– volume: 23
  start-page: 873
  year: 2005
  ident: 10.1016/j.pmpp.2021.101754_bib26
  article-title: Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1110
– volume: 190
  start-page: 611
  year: 2008
  ident: 10.1016/j.pmpp.2021.101754_bib88
  article-title: Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-008-0409-z
– volume: 11
  start-page: 1350
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib7
  article-title: Bacillus responses to plant-associated fungal and bacterial communities
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01350
– volume: 86
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib127
  article-title: Fungal-associated molecules induce key genes involved in the biosynthesis of the antifungal secondary metabolites nunamycin and nunapeptin in the biocontrol strain Pseudomonas fluorescens In5
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01284-20
– volume: 11
  start-page: 521
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib103
  article-title: Exploring the potential for fungal antagonism and cell wall attack by Bacillus subtilis natto
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00521
– volume: 60
  start-page: 379
  year: 2015
  ident: 10.1016/j.pmpp.2021.101754_bib81
  article-title: Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/lam.12382
– start-page: 147
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib16
  article-title: Secondary metabolites of the plant growth promoting model rhizobacterium Bacillus velezensis FZB42 are involved in direct suppression of plant pathogens and in stimulation of plant-induced systemic resistance
– volume: 50
  start-page: 2241
  year: 2002
  ident: 10.1016/j.pmpp.2021.101754_bib105
  article-title: Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf010885d
– volume: 183
  start-page: 7044
  year: 2001
  ident: 10.1016/j.pmpp.2021.101754_bib138
  article-title: Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.24.7044-7052.2001
– volume: 129
  start-page: 109
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib30
  article-title: Phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a are involved in the biological control of Pythium myriotylum on cocoyam (Xanthosoma sagittifolium)
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2018.10.005
– volume: 7
  year: 2012
  ident: 10.1016/j.pmpp.2021.101754_bib48
  article-title: Transcriptional activation of pyoluteorin operon mediated by the LysR-type regulator PltR bound at a 22 bp lys box in Pseudomonas aeruginosa M18
  publication-title: PLoS One
– volume: 199
  start-page: 49
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib113
  article-title: Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.03.003
– volume: 180
  start-page: 39
  year: 1999
  ident: 10.1016/j.pmpp.2021.101754_bib40
  article-title: Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1999.tb08775.x
– volume: 175
  start-page: 731
  year: 2007
  ident: 10.1016/j.pmpp.2021.101754_bib52
  article-title: Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02138.x
– volume: 6
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib126
  article-title: Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF
  publication-title: Microbiologyopen
  doi: 10.1002/mbo3.516
– volume: 5
  start-page: e121
  year: 2014
  ident: 10.1016/j.pmpp.2021.101754_bib1
  article-title: Biopesticides for integrated crop management: environmental and regulatory aspects
  publication-title: J. Biofert. Biopestic.
– volume: 108
  start-page: 703
  year: 2010
  ident: 10.1016/j.pmpp.2021.101754_bib116
  article-title: Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2009.04466.x
– volume: 53
  start-page: 207
  year: 2007
  ident: 10.1016/j.pmpp.2021.101754_bib65
  article-title: Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w06-119
– volume: 30
  start-page: 217
  year: 1999
  ident: 10.1016/j.pmpp.2021.101754_bib136
  article-title: Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1999.tb00650.x
– volume: 4
  start-page: 142
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib10
  article-title: Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2019.08.002
– volume: 159
  start-page: 73
  year: 2004
  ident: 10.1016/j.pmpp.2021.101754_bib64
  article-title: Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2004.01.005
– volume: 56
  start-page: 15
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib14
  article-title: Prospects and applications of lipopeptide-producing bacteria for plant protection (Review)
  publication-title: Appl. Biochem. Microbiol.
  doi: 10.1134/S0003683820010135
– volume: 181
  start-page: 2166
  year: 1999
  ident: 10.1016/j.pmpp.2021.101754_bib46
  article-title: Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.7.2166-2174.1999
– volume: 48
  start-page: 505
  year: 2009
  ident: 10.1016/j.pmpp.2021.101754_bib22
  article-title: Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.2009.02566.x
– volume: 2
  start-page: 183
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib100
  article-title: Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview
– volume: 99
  start-page: 45
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib72
  article-title: Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato
  publication-title: Crop Protect.
  doi: 10.1016/j.cropro.2017.05.008
– start-page: 305
  year: 2011
  ident: 10.1016/j.pmpp.2021.101754_bib18
  article-title: Surfactin-novel solutions for global issues
– volume: 66
  start-page: 434
  year: 2005
  ident: 10.1016/j.pmpp.2021.101754_bib55
  article-title: Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-004-1664-9
– volume: 368
  start-page: fnaa218
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib102
  article-title: Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1093/femsle/fnaa218
– start-page: 423
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib15
  article-title: Agriculturally important biosynthetic features of endophytic microorganisms
– volume: 9
  start-page: 1315
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib84
  article-title: Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01315
– volume: 167
  start-page: 493
  year: 2012
  ident: 10.1016/j.pmpp.2021.101754_bib57
  article-title: Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2012.05.002
– volume: 134
  start-page: 307
  year: 2004
  ident: 10.1016/j.pmpp.2021.101754_bib68
  article-title: Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.028712
– volume: 123
  start-page: 60
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib59
  article-title: Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2018.04.018
– volume: 125
  start-page: 35
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib111
  article-title: Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.12.004
– volume: 100
  start-page: 310
  year: 1969
  ident: 10.1016/j.pmpp.2021.101754_bib44
  article-title: Mechanism of action of the antifungal antibiotic pyrrolnitrin
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.100.1.310-318.1969
– volume: 38
  start-page: 990
  year: 2006
  ident: 10.1016/j.pmpp.2021.101754_bib108
  article-title: Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2005.08.030
– volume: 16
  start-page: 177
  year: 2015
  ident: 10.1016/j.pmpp.2021.101754_bib82
  article-title: Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12170
– volume: 9
  start-page: 443
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib41
  article-title: Microbial pyrrolnitrin: natural metabolite with immense practical utility
  publication-title: Biomolecules
  doi: 10.3390/biom9090443
– volume: 162
  start-page: 1715
  year: 2016
  ident: 10.1016/j.pmpp.2021.101754_bib27
  article-title: Bacterial hybrid histidine kinases in plant-bacteria interactions
  publication-title: Microbiol.
  doi: 10.1099/mic.0.000370
– volume: 60
  start-page: 268
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib99
  article-title: Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201900347
– volume: 14
  start-page: 517
  year: 2021
  ident: 10.1016/j.pmpp.2021.101754_bib94
  article-title: Membrane disruption of Fusarium oxysporum f. sp. niveum induced by myriocin from Bacillus amyloliquefaciens LZN01
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.13659
– volume: 6
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib119
  article-title: Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens
  publication-title: Elife
  doi: 10.7554/eLife.22835
– volume: 20
  start-page: 1037
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib87
  article-title: Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12809
– volume: 38
  start-page: 141
  year: 2010
  ident: 10.1016/j.pmpp.2021.101754_bib106
  article-title: Bacillus pumilus SG2 chitinases induced and regulated by chitin, show inhibitory activity against Fusarium graminearum and Bipolaris sorokiniana
  publication-title: Phytoparasitica
  doi: 10.1007/s12600-009-0078-8
– volume: 174
  start-page: 186
  year: 1992
  ident: 10.1016/j.pmpp.2021.101754_bib107
  article-title: Three N-terminal domains of β-1,3-glucanase A1 are involved in binding to insoluble β-1,3-glucan
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.174.1.186-190.1992
– volume: 251
  start-page: 70
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib97
  article-title: Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations
  publication-title: Planta
  doi: 10.1007/s00425-020-03357-7
– volume: 6
  start-page: 195
  year: 2011
  ident: 10.1016/j.pmpp.2021.101754_bib110
  article-title: Novel approaches of beneficial Pseudomonas in mitigation of plant diseases - an appraisal
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2010.541944
– volume: 180
  start-page: 1939
  year: 1998
  ident: 10.1016/j.pmpp.2021.101754_bib42
  article-title: Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.7.1939-1943.1998
– volume: 65
  start-page: 330
  year: 2012
  ident: 10.1016/j.pmpp.2021.101754_bib104
  article-title: Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-012-0160-1
– volume: 6
  year: 2015
  ident: 10.1016/j.pmpp.2021.101754_bib125
  article-title: Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil
  publication-title: mBio
  doi: 10.1128/mBio.00079-15
– volume: 143
  start-page: 104160
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib70
  article-title: Biocontrol potential of the endophytic Bacillus amyloliquefaciens YN201732 against tobacco powdery mildew and its growth promotion
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2019.104160
– volume: 128
  start-page: 1583
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib78
  article-title: Bacillus species in soil as a natural resource for plant health and nutrition
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14506
– volume: 56
  start-page: 845
  year: 2005
  ident: 10.1016/j.pmpp.2021.101754_bib8
  article-title: Bacillus subtilis antibiotics: structures, syntheses and specific functions
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2005.04587.x
– volume: 4
  start-page: 223
  year: 2008
  ident: 10.1016/j.pmpp.2021.101754_bib63
  article-title: Biocontrol activity of different species of Pseudomonas against phytopathogenic fungi in vivo and in vitro conditions
  publication-title: Int. J. Biotechnol. Biochem.
– volume: 8
  start-page: 1102
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib114
  article-title: The effect of phenazine-1-carboxylic acid on mycelial growth of Botrytis cinerea produced by Pseudomonas aeruginosa LV strain
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01102
– volume: 128
  start-page: 528
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib69
  article-title: Bacterial communities of plum phyllosphere and characterization of indigenous antagonistic Bacillus thuringiensis R3/3 isolate
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14488
– volume: 285
  start-page: 44
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib2
  article-title: Biological control of plant pathogens by Bacillus species
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2018.07.044
– volume: 10
  start-page: 544
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib128
  article-title: In silico and genetic analyses of cyclic lipopeptide synthetic gene clusters in Pseudomonas sp. 11K1
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00544
– volume: 51
  start-page: 821
  year: 2006
  ident: 10.1016/j.pmpp.2021.101754_bib137
  article-title: Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut
  publication-title: BioControl
  doi: 10.1007/s10526-006-9000-1
– volume: 123
  start-page: 5291
  issue: 25
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib86
  article-title: Effect of triclosan and chloroxylenol on bacterial membranes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b02588
– volume: 145
  start-page: 594
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib109
  article-title: Identification and characterization of a serine protease from Bacillus licheniformis W10: a potential antifungal agent
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.12.216
– volume: 67
  start-page: 1147
  year: 2011
  ident: 10.1016/j.pmpp.2021.101754_bib47
  article-title: Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.2165
– volume: 34
  start-page: 1037
  year: 2010
  ident: 10.1016/j.pmpp.2021.101754_bib17
  article-title: Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2010.00221.x
– volume: 37
  start-page: 29
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib50
  article-title: Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C9NP00022D
– volume: 33
  start-page: 483
  year: 1988
  ident: 10.1016/j.pmpp.2021.101754_bib62
  article-title: Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/0885-5765(88)90013-6
– volume: 68
  start-page: 1306
  year: 2012
  ident: 10.1016/j.pmpp.2021.101754_bib80
  article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.3301
– volume: 161
  start-page: 464
  year: 2010
  ident: 10.1016/j.pmpp.2021.101754_bib24
  article-title: Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2010.04.007
– volume: 28
  start-page: 800
  year: 2015
  ident: 10.1016/j.pmpp.2021.101754_bib124
  article-title: The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE∗1-1-14 is involved in pathogen suppression and root colonization
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-12-14-0406-R
– volume: 69
  start-page: 2051
  year: 2021
  ident: 10.1016/j.pmpp.2021.101754_bib91
  article-title: Study on the biocontrol potential of antifungal peptides produced by Bacillus velezensis against Fusarium solani that infects the passion fruit passiflora edulis
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c06106
– volume: 49
  start-page: 307
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib49
  article-title: Antibiotics of Pseudomonas protegens FD6 are essential for biocontrol activity
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-020-00696-7
– volume: 12
  start-page: 685
  year: 2013
  ident: 10.1016/j.pmpp.2021.101754_bib19
  article-title: Comparative genome analysis of Bacillus spp. and its relationship with bioactive nonribosomal peptide production
  publication-title: Phytochemistry Rev.
  doi: 10.1007/s11101-013-9278-4
– volume: 173
  start-page: 104777
  year: 2021
  ident: 10.1016/j.pmpp.2021.101754_bib33
  article-title: Antifungal effect of volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 on oxidative stress and mitochondrial dysfunction of Ceratocystis fimbriata
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2021.104777
– volume: 6
  start-page: 566
  year: 2015
  ident: 10.1016/j.pmpp.2021.101754_bib98
  article-title: Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00566
– volume: 22
  start-page: 135
  year: 1969
  ident: 10.1016/j.pmpp.2021.101754_bib45
  article-title: On the mode of action of a new antifungal antibiotic, pyrrolnitrin
  publication-title: J. Antibiot.
  doi: 10.7164/antibiotics.22.135
– volume: 134
  start-page: 72
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib129
  article-title: Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2019.04.006
– volume: 8
  start-page: 925
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib3
  article-title: The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00925
– volume: 117
  start-page: 39
  year: 2015
  ident: 10.1016/j.pmpp.2021.101754_bib112
  article-title: Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv
  publication-title: oryzae, Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2014.10.006
– volume: 6
  start-page: 693
  year: 2015
  ident: 10.1016/j.pmpp.2021.101754_bib134
  article-title: Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00693
– start-page: 487
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib6
  article-title: Antimicrobial peptides of Bacillus species: biosynthesis, mode of action and their role in plant disease management
– volume: 32
  start-page: 612
  year: 2015
  ident: 10.1016/j.pmpp.2021.101754_bib13
  article-title: Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic
  publication-title: N. Biotech.
  doi: 10.1016/j.nbt.2015.01.006
– volume: 22
  start-page: 1091
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib76
  article-title: Assessment of plant defence induction and biocontrol potential of Bacillus megaterium wr101 against Meloidogyne javanica
  publication-title: Nematology
  doi: 10.1163/15685411-bja10013
– volume: 9
  start-page: 913
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib132
  article-title: Discovery of phloeophagus beetles as a source of Pseudomonas strains that produce potentially new bioactive substances and description of Pseudomonas bohemica sp. nov
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00913
– volume: 219
  start-page: 123
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib29
  article-title: Pseudomonas protegens MP12: a plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.11.003
– volume: 124
  start-page: 82
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib60
  article-title: Biotic aspects involved in the control of damping-off producing agents: the role of the thermotolerant microbiota isolated from composting of plant waste
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2018.04.015
– volume: 68
  start-page: 3416
  year: 2002
  ident: 10.1016/j.pmpp.2021.101754_bib123
  article-title: Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.7.3416-3423.2002
– volume: 11
  start-page: 48
  year: 2021
  ident: 10.1016/j.pmpp.2021.101754_bib36
  article-title: Profiling of antimicrobial metabolites of plant growth promoting Pseudomonas spp. isolated from different plant hosts
  publication-title: 3 Biotech
  doi: 10.1007/s13205-020-02585-8
– volume: 5
  start-page: 173
  year: 2016
  ident: 10.1016/j.pmpp.2021.101754_bib58
  article-title: Potential of Bacillus isolates as bio-control agents against some fungal phytopathogens
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2016.02.001
– volume: 35
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib75
  article-title: Biocontrol of tomato bacterial wilt by foliar spray application of a novel strain of endophytic Bacillus sp
  publication-title: Microb. Environ.
  doi: 10.1264/jsme2.ME20078
– volume: 10
  start-page: 601
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib133
  article-title: Genetic potential of the biocontrol agent Pseudomonas brassicacearum (Formerly P. trivialis) 3Re2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics
  publication-title: Genes
  doi: 10.3390/genes10080601
– volume: 17
  start-page: 1434
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib51
  article-title: Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph17041434
– volume: 7
  start-page: 488
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib83
  article-title: Biocontrol potential of a novel endophytic bacterium from mulberry (Morus) tree
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00488
– volume: 63
  start-page: 442
  year: 2010
  ident: 10.1016/j.pmpp.2021.101754_bib135
  article-title: Carbon source regulation of antibiotic production
  publication-title: J. Antibiot. (Tokyo)
  doi: 10.1038/ja.2010.78
– volume: 137
  start-page: 154
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib74
  article-title: Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.01.015
– volume: 33
  start-page: 1042
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib93
  article-title: Antifungal activity and functional components of cell-free supernatant from Bacillus amyloliquefaciens LZN01 inhibit Fusarium oxysporum f. sp. niveum growth
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2019.1637279
– volume: 42
  start-page: 490
  year: 2014
  ident: 10.1016/j.pmpp.2021.101754_bib101
  article-title: The carbohydrate-active enzymes database (CAZy) in 2013
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1178
– volume: 24
  start-page: 1540
  year: 2011
  ident: 10.1016/j.pmpp.2021.101754_bib89
  article-title: The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-06-11-0162
– volume: 10
  start-page: 2287
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib4
  article-title: Phyllosphere fungal communities of plum and antifungal activity of indigenous phenazine-producing Pseudomonas synxantha against Monilinia laxa
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02287
– volume: 44
  start-page: 417
  year: 2006
  ident: 10.1016/j.pmpp.2021.101754_bib34
  article-title: Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev.phyto.44.013106.145710
– volume: 11
  start-page: 1196
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib79
  article-title: Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01196
– volume: 8
  year: 2012
  ident: 10.1016/j.pmpp.2021.101754_bib131
  article-title: Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002784
– volume: 110
  start-page: 1010
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib120
  article-title: Pseudomonas synxantha 2-79 transformed with pyrrolnitrin biosynthesis genes has improved biocontrol activity against soilborne pathogens of wheat and canola
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-09-19-0367-R
– volume: 5
  start-page: 71
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib61
  article-title: A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2018.01.001
– volume: 10
  start-page: 719
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib139
  article-title: Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: the case study of PcPCL1606
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00719
– volume: 8
  start-page: 1895
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib28
  article-title: Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01895
– volume: 65
  start-page: 312
  year: 2013
  ident: 10.1016/j.pmpp.2021.101754_bib96
  article-title: Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2013.03.012
– volume: 25
  start-page: 1211
  year: 1993
  ident: 10.1016/j.pmpp.2021.101754_bib67
  article-title: Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(93)90217-Y
– volume: 12
  start-page: 141
  year: 2011
  ident: 10.1016/j.pmpp.2021.101754_bib12
  article-title: Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12010141
– volume: 35
  start-page: 201
  year: 2011
  ident: 10.1016/j.pmpp.2021.101754_bib5
  article-title: Diversity and applications of Bacillus bacteriocins
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2010.00244.x
– volume: 39
  start-page: 99
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib85
  article-title: Antifungal potential of plant growth promoting Bacillus species against blossom blight of rose
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-019-09966-1
– volume: 17
  start-page: 882
  year: 2016
  ident: 10.1016/j.pmpp.2021.101754_bib11
  article-title: Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species
  publication-title: BMC Genom.
  doi: 10.1186/s12864-016-3224-y
– volume: 157
  start-page: 503
  year: 2003
  ident: 10.1016/j.pmpp.2021.101754_bib37
  article-title: Phenazines and their role in biocontrol by Pseudomonas bacteria
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00686.x
– volume: 16
  start-page: 14
  year: 2008
  ident: 10.1016/j.pmpp.2021.101754_bib9
  article-title: More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 39
  start-page: 869
  year: 2013
  ident: 10.1016/j.pmpp.2021.101754_bib20
  article-title: Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens
  publication-title: J. Chem. Ecol.
  doi: 10.1007/s10886-013-0319-7
– volume: 159
  start-page: 111022
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib90
  article-title: Biocontrol and the mechanisms of Bacillus sp. w176 against postharvest green mold in citrus
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2019.111022
– volume: 15
  start-page: 149
  year: 2011
  ident: 10.1016/j.pmpp.2021.101754_bib38
  article-title: Redox active secondary metabolites
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2010.10.015
– volume: 147
  start-page: 46
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib115
  article-title: Investigating the antifungal activity and mechanism of a microbial pesticide shenqinmycin against Phoma sp
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2017.08.014
– volume: 274
  start-page: 129819
  year: 2021
  ident: 10.1016/j.pmpp.2021.101754_bib140
  article-title: Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129819
– volume: 147
  start-page: 32
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib117
  article-title: Effects and inhibition mechanism of phenazine-1-carboxamide on the mycelial morphology and ultrastructure of Rhizoctonia solani
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2017.10.006
– volume: 102
  start-page: 433
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib95
  article-title: Biocontrol potential of Bacillus subtilis IBFCBF-4 against Fusarium wilt of watermelon
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-019-00457-6
– start-page: 319
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib21
  article-title: Exploring the beneficial endophytic microorganisms for plant growth promotion and crop protection: elucidation of some bioactive secondary metabolites involved in both effects
– volume: 69
  start-page: M131
  year: 2006
  ident: 10.1016/j.pmpp.2021.101754_bib56
  article-title: Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds
  publication-title: J. Food Sci.
  doi: 10.1111/j.1365-2621.2004.tb10721.x
– volume: 147
  start-page: 104288
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib92
  article-title: Evaluation of the biocontrol potential of Bacillus sp
  publication-title: WB against Fusarium oxysporum f. sp. niveum, Biol. Control.
– volume: 26
  start-page: 1408
  year: 2009
  ident: 10.1016/j.pmpp.2021.101754_bib25
  article-title: Genomics of secondary metabolite production by Pseudomonas spp
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b817075b
– volume: 4
  start-page: 134
  year: 1994
  ident: 10.1016/j.pmpp.2021.101754_bib66
  article-title: The production and enzymatic properties of extracellular chitinase from Pseudomonas stutzeri YPL-1, as a biocontrol agent
  publication-title: J. Microbiol. Biotechnol.
– volume: 25
  start-page: 6149
  year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib35
  article-title: Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2017.01.002
– volume: 16
  start-page: 2267
  year: 2014
  ident: 10.1016/j.pmpp.2021.101754_bib32
  article-title: The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 mediates in vitro spreading motility and plant growth promotion
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12469
– volume: 8
  start-page: 896
  year: 2016
  ident: 10.1016/j.pmpp.2021.101754_bib54
  article-title: Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12454
– volume: 21
  start-page: 8740
  year: 2020
  ident: 10.1016/j.pmpp.2021.101754_bib118
  article-title: Genome mining and evaluation of the biocontrol potential of Pseudomonas fluorescens brz63, a new endophyte of oilseed rape (Brassica napus L.) against fungal pathogens
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21228740
– volume: 1
  start-page: 257
  year: 2016
  ident: 10.1016/j.pmpp.2021.101754_bib23
  article-title: Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture
– volume: 23
  start-page: 2139
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib122
  article-title: Design, synthesis, phloem mobility, and bioactivities of a series of phenazine-1-carboxylic acid-amino acid conjugates
  publication-title: Molecules
  doi: 10.3390/molecules23092139
– volume: 27
  start-page: 956
  year: 2013
  ident: 10.1016/j.pmpp.2021.101754_bib31
  article-title: Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives
  publication-title: Nat. Prod. Res.
  doi: 10.1080/14786419.2012.696257
– volume: 31
  start-page: 560
  year: 2018
  ident: 10.1016/j.pmpp.2021.101754_bib77
  article-title: Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-11-17-0273-R
– year: 2017
  ident: 10.1016/j.pmpp.2021.101754_bib73
  article-title: Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato
  publication-title: PeerJ
  doi: 10.7717/peerj.3107
– volume: 13
  start-page: 238
  year: 1999
  ident: 10.1016/j.pmpp.2021.101754_bib43
  article-title: Recent research on pyrrole alkaloids
– volume: 10
  start-page: 901
  year: 2019
  ident: 10.1016/j.pmpp.2021.101754_bib130
  article-title: Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00901
– volume: 10
  start-page: 293
  year: 2010
  ident: 10.1016/j.pmpp.2021.101754_bib39
  article-title: Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.4067/S0718-95162010000100006
– volume: 6
  start-page: 32266
  year: 2016
  ident: 10.1016/j.pmpp.2021.101754_bib121
  article-title: Novel synthesized 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology
  publication-title: Sci. Rep.
  doi: 10.1038/srep32266
– volume: 55
  start-page: 7
  year: 2012
  ident: 10.1016/j.pmpp.2021.101754_bib71
  article-title: Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.03.003
– volume: 148
  start-page: 1996
  year: 2008
  ident: 10.1016/j.pmpp.2021.101754_bib53
  article-title: Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.127878
SSID ssj0009411
Score 2.6679142
SecondaryResourceType review_article
Snippet Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101754
SubjectTerms antibiosis
antimicrobial properties
Antimicrobials
Bacillus
Bacillus (bacteria)
Beneficial microorganisms
Biocontrol
biological control
biomass
cell walls
chitinase
disease control
ethylene
growth promotion
host plants
immune system
iturin
jasmonic acid
mycelium
Nematoda
phenazines
plant growth
plant pathogenic fungi
plant pathology
polyketides
proteinases
Pseudomonas
salicylic acid
secondary metabolites
species richness
sporulation
surfactin
virulence
Title Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review
URI https://dx.doi.org/10.1016/j.pmpp.2021.101754
https://www.proquest.com/docview/2636449206
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pi9UwEA7L6kEPoqvi-mOJ4E3ie22TtDm-XVyeiougC3sL0yaVLu_1lW274MW_wD_amTRVFNyDx5ZkKJnJN5Nm5hvGXmlwGlKvhFFOCQS8pQDj8eBaupqa1FRlaAf08Uyvz-X7C3Wxx07mWhhKq4zYP2F6QOv4ZhFXc9E1zeIz7g-F0TL6n-D4qaJcypys_M3332keRoYevDRY0OhYODPleHXbjjgr0yTQDSn5L-f0F0wH33N6n92LQSNfTd_1gO359oDdXX29isQZ_oDdPt5hmPftIftBbYgGAXHZvePHUDWbzdhzaB3_1PvR7dD2gJ6HZtsEJiaUThUO14FflTct70gKj9c3vB-7mDDb8usG-ETdRPrlMdedbz3VEDf9tueCr_hUEvOInZ--_XKyFrHlgqgwUhlEnqSIjkVSaWeMU1meQoI-HTDMcpDXpsx8Umg89jhY1kVW14mBGvLMp7r0gPDwmO23u9Y_YbxG4KyM1JAvpVQmA1UleWmKDFElL7Q8ZMm81raKfOTUFmNj58SzS0v6saQfO-nnkL3-Naeb2DhuHK1mFdo_bMqiu7hx3stZ3xY3G92gQOt3Y29TnWH8aNKlfvqfsp-xOykVUISfOM_Z_nA1-hcY1gzlUbDbI3Zr9e7D-uwnVXz4mg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VggQcEBQqytNIcEJmN07sxAcOW6Da0oeQaKXejBM7KGg3GzVJUS_8Av4Nf5Cx44BAogekHhPFluV5fON45huA50IboZnlVHLDKTq8KdXS4sE1N6VrUlPkvh3QwaGYHyfvT_jJGvwYa2FcWmXw_YNP9946vJmE3Zw0VTX5iPbBMVpG_PHAn4bMyj17_hXPbe3r3bco5BeM7bw7ejOnobUALRCRO5pGDL1AFhXCSGl4nDIdIXZpDCeMTkuZxzbKBIb3Rk_LLC7LSOpSp7FlIrcazQDnvQJXE3QXrm3Cq2-_80pk4pv-utVRt7xQqTMklTXLxpFkssjzG_HkX2j4Fy54sNu5DbdClEpmw0bcgTVbb8DN2efTwNRhN-Da9grjyvO78N31PeqoDnK2hmzrolos-pbo2pAPre3NCpVdu-euWlae-glndyUVZ57QlVQ1adwsJNwXkbZvQoZuTc4qTQauKKdQJCTXk6V1RctVu2wJJTMy1ODcg-NLEcQmrNer2t4HUqKnLmQidDpNEi5jzYsozWUWoxtLM5FsQTTutSoCAbrrw7FQY6bbF-Xko5x81CCfLXj5a0wz0H9c-DUfRaj-UGKF-HThuGejvBVat7uy0bVd9a1iIsaAVbKpePCfcz-F6_Ojg321v3u49xBuMFe94f8gPYL17rS3jzGm6vInXocJfLpso_kJTpEzfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant-associated+Bacillus+and+Pseudomonas+antimicrobial+activities+in+plant+disease+suppression+via+biological+control+mechanisms+-+A+review&rft.jtitle=Physiological+and+molecular+plant+pathology&rft.au=Dimki%C4%87%2C+Ivica&rft.au=Janakiev%2C+Tamara&rft.au=Petrovi%C4%87%2C+Marija&rft.au=Degrassi%2C+Giuliano&rft.date=2022-01-01&rft.issn=0885-5765&rft.volume=117+p.101754-&rft_id=info:doi/10.1016%2Fj.pmpp.2021.101754&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-5765&client=summon