Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review
Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they act through several mechanisms, including direct antibiosis, plant growth promotion and the induction of systemic resistance in the plant ho...
Saved in:
Published in | Physiological and molecular plant pathology Vol. 117; p. 101754 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they act through several mechanisms, including direct antibiosis, plant growth promotion and the induction of systemic resistance in the plant hosts. These beneficial bacteria have been proven to be very active against bacterial and fungal phytopathogens, nematodes and different insects. Direct antibiosis, an induced immune system response (ISR) in the host plant and competition for nutrients and space are the most common biocontrol potential of these genera. Species belonging to the Bacillus genus are commonly considered ideal due to their rapid growth, ease of handling and excellent colonizing properties. These endospore‐forming Bacillus strains are capable of suppressing and inhibiting plant pathogens, both indirectly by competing with the pathogens for a niche or nutrient requirements, or directly by producing various lipopeptide compounds such as iturin, surfactin and fengycin, which are active on many plant pathogens. Furthermore, they are also capable of inducing systemic resistance in plants through the production of volatile substances including alcohols, aldehydes, aromatics, sulfides and ketones. Lipopeptides, polyketides and volatiles from Bacillus spp. can stimulate the expression of genes coding for pathogenesis-related (PR) proteins and other defense-related proteins in the plant hosts through the activation of jasmonic acid (JA), salicylic acid (SA) or ethylene (ET) signaling pathways. In addition, inhibition of quorum sensing in competitive bacteria and the capability to downregulate expression of genes involved in mycelial growth, penetration, sporulation and the virulence of a fungal pathogen is another property of Bacillus strains and their volatiles. The Pseudomonas genus is rich in species with the potential for biocontrol with positive effects on plant welfare, which actively participate in complex plant-pathogen-antagonist interaction. The most common molecules involved in this mechanism are, among others, 2,4‐diacetylphloroglucinol, phenazine‐1‐carboxylic acid, phenazine-1-carboxamide, pyoluteorin and pyrrolnitrin. Cyclic lipopeptides from Pseudomonas spp. such as nunamycin, nunapeptin, brasmycin and braspeptin were intensively studied as agents for plant biocontrol and biostimulation in agriculture. Nunamycin, nunapeptin, brasmycin and braspeptin were identified as essential in the antifungal role. Furthermore, phenazines, sessilins and orfamides were shown to have additive roles in the suppression of some fungal diseases. Additionally, Bacillus and Pseudomonas spp. produce chitinases, glucanases and proteases involved in the suppression of many fungal diseases. Their production is mainly induced by the presence of fungal pathogen biomass and their cell wall. This review provides an updated overview of the antimicrobial activity of plant-associated Bacillus and Pseudomonas involved in plant disease suppression via biological control mechanisms, including their molecular basis and direct activity, offering a better understanding in preventing different pests.
•Bacillus and Pseudomonas spp. produce wide array of secondary metabolites.•Secondary metabolites are involved in biocontrol and biofertilization mechanisms.•Numerous phytopathogens are controlled by Bacillus and Pseudomonas isolates.•Molecular mechanisms of biocontrol activity are discussed. |
---|---|
AbstractList | Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they act through several mechanisms, including direct antibiosis, plant growth promotion and the induction of systemic resistance in the plant hosts. These beneficial bacteria have been proven to be very active against bacterial and fungal phytopathogens, nematodes and different insects. Direct antibiosis, an induced immune system response (ISR) in the host plant and competition for nutrients and space are the most common biocontrol potential of these genera. Species belonging to the Bacillus genus are commonly considered ideal due to their rapid growth, ease of handling and excellent colonizing properties. These endospore‐forming Bacillus strains are capable of suppressing and inhibiting plant pathogens, both indirectly by competing with the pathogens for a niche or nutrient requirements, or directly by producing various lipopeptide compounds such as iturin, surfactin and fengycin, which are active on many plant pathogens. Furthermore, they are also capable of inducing systemic resistance in plants through the production of volatile substances including alcohols, aldehydes, aromatics, sulfides and ketones. Lipopeptides, polyketides and volatiles from Bacillus spp. can stimulate the expression of genes coding for pathogenesis-related (PR) proteins and other defense-related proteins in the plant hosts through the activation of jasmonic acid (JA), salicylic acid (SA) or ethylene (ET) signaling pathways. In addition, inhibition of quorum sensing in competitive bacteria and the capability to downregulate expression of genes involved in mycelial growth, penetration, sporulation and the virulence of a fungal pathogen is another property of Bacillus strains and their volatiles. The Pseudomonas genus is rich in species with the potential for biocontrol with positive effects on plant welfare, which actively participate in complex plant-pathogen-antagonist interaction. The most common molecules involved in this mechanism are, among others, 2,4‐diacetylphloroglucinol, phenazine‐1‐carboxylic acid, phenazine-1-carboxamide, pyoluteorin and pyrrolnitrin. Cyclic lipopeptides from Pseudomonas spp. such as nunamycin, nunapeptin, brasmycin and braspeptin were intensively studied as agents for plant biocontrol and biostimulation in agriculture. Nunamycin, nunapeptin, brasmycin and braspeptin were identified as essential in the antifungal role. Furthermore, phenazines, sessilins and orfamides were shown to have additive roles in the suppression of some fungal diseases. Additionally, Bacillus and Pseudomonas spp. produce chitinases, glucanases and proteases involved in the suppression of many fungal diseases. Their production is mainly induced by the presence of fungal pathogen biomass and their cell wall. This review provides an updated overview of the antimicrobial activity of plant-associated Bacillus and Pseudomonas involved in plant disease suppression via biological control mechanisms, including their molecular basis and direct activity, offering a better understanding in preventing different pests. Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they act through several mechanisms, including direct antibiosis, plant growth promotion and the induction of systemic resistance in the plant hosts. These beneficial bacteria have been proven to be very active against bacterial and fungal phytopathogens, nematodes and different insects. Direct antibiosis, an induced immune system response (ISR) in the host plant and competition for nutrients and space are the most common biocontrol potential of these genera. Species belonging to the Bacillus genus are commonly considered ideal due to their rapid growth, ease of handling and excellent colonizing properties. These endospore‐forming Bacillus strains are capable of suppressing and inhibiting plant pathogens, both indirectly by competing with the pathogens for a niche or nutrient requirements, or directly by producing various lipopeptide compounds such as iturin, surfactin and fengycin, which are active on many plant pathogens. Furthermore, they are also capable of inducing systemic resistance in plants through the production of volatile substances including alcohols, aldehydes, aromatics, sulfides and ketones. Lipopeptides, polyketides and volatiles from Bacillus spp. can stimulate the expression of genes coding for pathogenesis-related (PR) proteins and other defense-related proteins in the plant hosts through the activation of jasmonic acid (JA), salicylic acid (SA) or ethylene (ET) signaling pathways. In addition, inhibition of quorum sensing in competitive bacteria and the capability to downregulate expression of genes involved in mycelial growth, penetration, sporulation and the virulence of a fungal pathogen is another property of Bacillus strains and their volatiles. The Pseudomonas genus is rich in species with the potential for biocontrol with positive effects on plant welfare, which actively participate in complex plant-pathogen-antagonist interaction. The most common molecules involved in this mechanism are, among others, 2,4‐diacetylphloroglucinol, phenazine‐1‐carboxylic acid, phenazine-1-carboxamide, pyoluteorin and pyrrolnitrin. Cyclic lipopeptides from Pseudomonas spp. such as nunamycin, nunapeptin, brasmycin and braspeptin were intensively studied as agents for plant biocontrol and biostimulation in agriculture. Nunamycin, nunapeptin, brasmycin and braspeptin were identified as essential in the antifungal role. Furthermore, phenazines, sessilins and orfamides were shown to have additive roles in the suppression of some fungal diseases. Additionally, Bacillus and Pseudomonas spp. produce chitinases, glucanases and proteases involved in the suppression of many fungal diseases. Their production is mainly induced by the presence of fungal pathogen biomass and their cell wall. This review provides an updated overview of the antimicrobial activity of plant-associated Bacillus and Pseudomonas involved in plant disease suppression via biological control mechanisms, including their molecular basis and direct activity, offering a better understanding in preventing different pests. •Bacillus and Pseudomonas spp. produce wide array of secondary metabolites.•Secondary metabolites are involved in biocontrol and biofertilization mechanisms.•Numerous phytopathogens are controlled by Bacillus and Pseudomonas isolates.•Molecular mechanisms of biocontrol activity are discussed. |
ArticleNumber | 101754 |
Author | Janakiev, Tamara Dimkić, Ivica Degrassi, Giuliano Petrović, Marija Fira, Djordje |
Author_xml | – sequence: 1 givenname: Ivica orcidid: 0000-0002-0425-5938 surname: Dimkić fullname: Dimkić, Ivica email: ivicad@bio.bg.ac.rs organization: University of Belgrade – Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia – sequence: 2 givenname: Tamara orcidid: 0000-0003-3933-9610 surname: Janakiev fullname: Janakiev, Tamara organization: University of Belgrade – Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia – sequence: 3 givenname: Marija surname: Petrović fullname: Petrović, Marija organization: University of Belgrade – Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia – sequence: 4 givenname: Giuliano surname: Degrassi fullname: Degrassi, Giuliano organization: International Centre for Genetic Engineering and Biotechnology (ICGEB), Industrial Biotechnology Group, Parque Tecnológico Miguelete, Av. General Paz N° 5445, B1650WAB San Martín, Buenos Aires, Argentina – sequence: 5 givenname: Djordje orcidid: 0000-0002-8773-8213 surname: Fira fullname: Fira, Djordje organization: University of Belgrade – Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia |
BookMark | eNp9kL2O1TAQRl0sErsLL0DlkiYX20mcRKJZVvxJK7EF1NZcewJzldjB41zEO_DQJLpUFFuNZvSdkb5zI65iiijEK60OWmn75nRY5mU5GGX0fuja5kpcq75vq7az7XNxw3xSSg2N1tfiz-MEsVTAnDxBwSDfgadpWllCDPKRcQ1pThH2vdBMPqcjwSTBFzpTIWRJUS77FxmIERglr8uSkZlSlGcCeaQ0pe_kN8ynWHKa5Iz-B0TimWUl72TGM-GvF-LZCBPjy3_zVnz78P7r_afq4cvHz_d3D5Wvh6FUnTadNb32NgxDaOvOgK57DU1rA3TjcKxR91YN26bGvh5HPcAIXY3GHhF0X9-K15e_S04_V-TiZmKP01YC08rO2No2zWCU3aL9Jbr1Zs44Ok8FCu01gCanldulu5PbpbtdurtI31DzH7pkmiH_fhp6e4Fw6785yY49YfQYKKMvLiR6Cv8Ld82irw |
CitedBy_id | crossref_primary_10_1186_s12866_023_02780_6 crossref_primary_10_1080_03235408_2025_2466851 crossref_primary_10_1007_s11274_025_04282_1 crossref_primary_10_1039_D4VA00216D crossref_primary_10_1016_j_napere_2024_100070 crossref_primary_10_3390_ijms242115751 crossref_primary_10_1007_s11274_024_04156_y crossref_primary_10_1016_j_psep_2022_07_035 crossref_primary_10_1038_s41598_022_19515_8 crossref_primary_10_1016_j_aac_2024_07_007 crossref_primary_10_3390_agronomy14010167 crossref_primary_10_1007_s10658_024_02882_5 crossref_primary_10_1016_j_biocontrol_2024_105690 crossref_primary_10_1186_s12866_024_03282_9 crossref_primary_10_3390_biom13101515 crossref_primary_10_1016_j_envres_2023_115529 crossref_primary_10_1016_j_rhisph_2023_100717 crossref_primary_10_3389_fmicb_2024_1304682 crossref_primary_10_1007_s00203_023_03774_8 crossref_primary_10_1111_1541_4337_70074 crossref_primary_10_2298_ABS230203009O crossref_primary_10_1016_j_pmpp_2024_102442 crossref_primary_10_1002_wwp2_12215 crossref_primary_10_3390_f13040535 crossref_primary_10_3390_life13041034 crossref_primary_10_3390_molecules29245922 crossref_primary_10_1007_s41348_024_00959_1 crossref_primary_10_1094_PHYTO_04_24_0140_R crossref_primary_10_3390_applmicrobiol5010002 crossref_primary_10_3389_fmicb_2024_1456847 crossref_primary_10_3390_plants12122277 crossref_primary_10_1111_ppl_14495 crossref_primary_10_1016_j_wasman_2023_09_003 crossref_primary_10_1051_e3sconf_202452703010 crossref_primary_10_3390_plants13131844 crossref_primary_10_1007_s11274_024_03935_x crossref_primary_10_1016_j_rhisph_2022_100562 crossref_primary_10_1016_j_pmpp_2023_101966 crossref_primary_10_3390_d16120778 crossref_primary_10_1111_jph_13353 crossref_primary_10_1128_aem_00455_24 crossref_primary_10_1007_s10123_025_00652_9 crossref_primary_10_1080_09583157_2024_2307455 crossref_primary_10_1016_j_postharvbio_2024_113055 crossref_primary_10_3389_fmicb_2024_1419436 crossref_primary_10_3389_fmicb_2023_1187321 crossref_primary_10_3389_fpls_2024_1437947 crossref_primary_10_3390_microorganisms10071282 crossref_primary_10_1007_s11104_024_07166_9 crossref_primary_10_1080_07352689_2023_2268921 crossref_primary_10_1016_j_pmpp_2025_102595 crossref_primary_10_1016_j_phytol_2022_02_010 crossref_primary_10_1016_j_sajb_2022_09_036 crossref_primary_10_3390_microorganisms12040638 crossref_primary_10_1016_j_cropro_2023_106556 crossref_primary_10_3389_fmicb_2023_1230345 crossref_primary_10_1186_s41938_024_00766_8 crossref_primary_10_1155_sci5_2123395 crossref_primary_10_1016_j_micres_2024_127833 crossref_primary_10_5423_RPD_2024_30_2_181 crossref_primary_10_1016_j_postharvbio_2023_112379 crossref_primary_10_1111_ppl_14325 crossref_primary_10_1038_s41598_022_18905_2 crossref_primary_10_5423_RPD_2023_29_4_390 crossref_primary_10_3389_fpls_2024_1349357 crossref_primary_10_3389_fmicb_2023_1192932 crossref_primary_10_1016_j_envres_2023_117907 crossref_primary_10_1134_S1070363224030241 crossref_primary_10_11626_KJEB_2023_41_4_539 crossref_primary_10_1007_s10725_024_01218_x crossref_primary_10_3389_fmicb_2022_1059549 crossref_primary_10_3389_fmicb_2022_1019800 crossref_primary_10_3390_cells12091301 crossref_primary_10_1016_j_pmpp_2023_102104 crossref_primary_10_1007_s40858_024_00677_x crossref_primary_10_1007_s41348_024_00878_1 crossref_primary_10_1007_s11540_024_09693_5 crossref_primary_10_3390_agronomy14112495 crossref_primary_10_3390_f14050886 crossref_primary_10_1002_ps_7919 crossref_primary_10_1111_1751_7915_14348 crossref_primary_10_3389_fmicb_2025_1540628 crossref_primary_10_3390_applmicrobiol4040106 crossref_primary_10_3390_ijms232315432 crossref_primary_10_3390_ijpb16010009 crossref_primary_10_3390_plants12173147 crossref_primary_10_3390_microorganisms12112278 crossref_primary_10_3390_ijms25179508 crossref_primary_10_1016_j_cpb_2024_100390 crossref_primary_10_3390_su16052006 crossref_primary_10_1590_1519_6984_287279 crossref_primary_10_3390_ijms252212424 crossref_primary_10_3389_fmicb_2024_1447488 crossref_primary_10_3389_fpls_2023_1205894 crossref_primary_10_1016_j_biocontrol_2025_105699 crossref_primary_10_3389_fmicb_2022_920052 crossref_primary_10_3389_fmicb_2024_1485167 crossref_primary_10_1016_j_envpol_2024_125059 crossref_primary_10_1007_s10658_023_02647_6 crossref_primary_10_3390_microorganisms11081943 crossref_primary_10_1016_j_copbio_2023_103003 crossref_primary_10_3390_ijms24021016 crossref_primary_10_3390_ani14142079 crossref_primary_10_1016_j_envres_2024_120120 crossref_primary_10_1016_j_pmpp_2025_102672 crossref_primary_10_1007_s00438_024_02198_3 crossref_primary_10_1002_jobm_70021 crossref_primary_10_1111_1751_7915_70026 crossref_primary_10_1007_s12088_024_01429_w crossref_primary_10_1007_s00425_022_03900_8 crossref_primary_10_3390_metabo14040180 crossref_primary_10_1080_03601234_2023_2220644 crossref_primary_10_3389_fagro_2024_1462323 crossref_primary_10_3390_ijms241512227 crossref_primary_10_1007_s42360_023_00673_2 crossref_primary_10_1016_j_postharvbio_2023_112737 crossref_primary_10_3390_horticulturae9030346 crossref_primary_10_1016_j_rhisph_2023_100676 crossref_primary_10_1128_spectrum_03072_22 crossref_primary_10_1094_PBIOMES_08_23_0077_R crossref_primary_10_3390_microorganisms11010019 crossref_primary_10_1111_jph_13304 crossref_primary_10_1002_cbdv_202200687 crossref_primary_10_1021_acsomega_3c00870 crossref_primary_10_3389_fmicb_2022_1000033 crossref_primary_10_1016_j_rhisph_2023_100682 crossref_primary_10_3389_fmicb_2022_1034939 crossref_primary_10_1021_acs_jafc_3c01276 crossref_primary_10_1002_cssc_202401324 crossref_primary_10_3390_biology13060369 crossref_primary_10_1073_pnas_2221508120 crossref_primary_10_3390_molecules28176207 crossref_primary_10_1007_s11274_024_04137_1 crossref_primary_10_1039_D2NJ05051J crossref_primary_10_3390_antibiotics13010029 crossref_primary_10_3390_su151914643 crossref_primary_10_1186_s40793_025_00680_y crossref_primary_10_1016_j_cocis_2023_101746 crossref_primary_10_1007_s00248_024_02450_8 crossref_primary_10_3390_fermentation9070597 crossref_primary_10_1128_spectrum_05007_22 crossref_primary_10_1016_j_scitotenv_2022_159507 crossref_primary_10_1111_ppa_13790 crossref_primary_10_1007_s11104_024_06944_9 crossref_primary_10_3390_microorganisms12040668 crossref_primary_10_1016_j_micres_2024_127880 crossref_primary_10_1186_s13213_024_01755_w crossref_primary_10_3389_fmicb_2022_943232 crossref_primary_10_1016_j_micres_2024_127762 crossref_primary_10_1016_j_biocontrol_2024_105527 crossref_primary_10_1007_s44372_025_00155_x crossref_primary_10_1016_j_micres_2023_127465 crossref_primary_10_1016_j_biocontrol_2023_105340 crossref_primary_10_1007_s42161_024_01788_9 crossref_primary_10_1016_j_pmpp_2022_101892 crossref_primary_10_1016_j_foodcont_2024_110698 crossref_primary_10_3390_microorganisms12112331 crossref_primary_10_3390_horticulturae9090964 crossref_primary_10_18016_ksutarimdoga_vi_1459337 crossref_primary_10_1016_j_dyepig_2022_110486 crossref_primary_10_1093_jambio_lxae307 crossref_primary_10_1080_01904167_2024_2369069 crossref_primary_10_1007_s10343_023_00923_3 crossref_primary_10_1007_s11356_024_33910_w crossref_primary_10_1016_j_plaphy_2024_109378 crossref_primary_10_1016_j_micpath_2024_106645 crossref_primary_10_1007_s13205_025_04243_3 crossref_primary_10_17660_ActaHortic_2024_1404_137 crossref_primary_10_31083_j_fbl2905188 crossref_primary_10_3389_fmicb_2024_1280333 crossref_primary_10_1016_j_biocontrol_2023_105241 crossref_primary_10_3390_su151511768 crossref_primary_10_1038_s41598_024_78485_1 crossref_primary_10_1002_jobm_202400342 crossref_primary_10_1016_j_apsoil_2023_105025 crossref_primary_10_1016_j_scitotenv_2024_170771 crossref_primary_10_1016_j_procbio_2022_06_005 crossref_primary_10_1007_s00203_022_03017_2 crossref_primary_10_3389_fpls_2022_1035549 crossref_primary_10_3389_fmicb_2023_1240206 crossref_primary_10_3389_fmicb_2022_906724 crossref_primary_10_1007_s00253_023_12864_y crossref_primary_10_3390_microbiolres14030062 crossref_primary_10_1016_j_rhisph_2024_100851 crossref_primary_10_3390_microorganisms10081547 crossref_primary_10_1111_1758_2229_70011 crossref_primary_10_1111_jam_15791 crossref_primary_10_1186_s13568_022_01401_1 crossref_primary_10_1016_j_gene_2024_148669 crossref_primary_10_1007_s10123_025_00632_z crossref_primary_10_1007_s11627_023_10358_0 crossref_primary_10_3390_agronomy12102510 crossref_primary_10_3390_plants11233201 crossref_primary_10_1016_j_crmicr_2023_100200 crossref_primary_10_1007_s10661_024_12850_5 crossref_primary_10_1007_s42360_024_00755_9 crossref_primary_10_1128_mra_00458_24 crossref_primary_10_1016_j_rhisph_2024_100963 crossref_primary_10_3389_fmicb_2023_1194606 crossref_primary_10_1016_j_plaphy_2024_108627 |
Cites_doi | 10.1038/nbt1110 10.1007/s00203-008-0409-z 10.3389/fmicb.2020.01350 10.1128/AEM.01284-20 10.3389/fmicb.2020.00521 10.1111/lam.12382 10.1021/jf010885d 10.1128/JB.183.24.7044-7052.2001 10.1016/j.biocontrol.2018.10.005 10.1016/j.micres.2017.03.003 10.1111/j.1574-6968.1999.tb08775.x 10.1111/j.1469-8137.2007.02138.x 10.1002/mbo3.516 10.1111/j.1365-2672.2009.04466.x 10.1139/w06-119 10.1111/j.1574-6941.1999.tb00650.x 10.1016/j.synbio.2019.08.002 10.1016/j.micres.2004.01.005 10.1134/S0003683820010135 10.1128/JB.181.7.2166-2174.1999 10.1111/j.1472-765X.2009.02566.x 10.1016/j.cropro.2017.05.008 10.1007/s00253-004-1664-9 10.1093/femsle/fnaa218 10.3389/fmicb.2018.01315 10.1016/j.micres.2012.05.002 10.1104/pp.103.028712 10.1016/j.biocontrol.2018.04.018 10.1016/j.apsoil.2017.12.004 10.1128/jb.100.1.310-318.1969 10.1016/j.enzmictec.2005.08.030 10.1111/mpp.12170 10.3390/biom9090443 10.1099/mic.0.000370 10.1002/jobm.201900347 10.1111/1751-7915.13659 10.7554/eLife.22835 10.1111/mpp.12809 10.1007/s12600-009-0078-8 10.1128/jb.174.1.186-190.1992 10.1007/s00425-020-03357-7 10.1080/17429145.2010.541944 10.1128/JB.180.7.1939-1943.1998 10.1007/s00284-012-0160-1 10.1128/mBio.00079-15 10.1016/j.biocontrol.2019.104160 10.1111/jam.14506 10.1111/j.1365-2958.2005.04587.x 10.3389/fmicb.2017.01102 10.1111/jam.14488 10.1016/j.jbiotec.2018.07.044 10.3389/fmicb.2019.00544 10.1007/s10526-006-9000-1 10.1021/acs.jpcb.9b02588 10.1016/j.ijbiomac.2019.12.216 10.1002/ps.2165 10.1111/j.1574-6976.2010.00221.x 10.1039/C9NP00022D 10.1016/0885-5765(88)90013-6 10.1002/ps.3301 10.1016/j.resmic.2010.04.007 10.1094/MPMI-12-14-0406-R 10.1021/acs.jafc.0c06106 10.1007/s13313-020-00696-7 10.1007/s11101-013-9278-4 10.1016/j.pestbp.2021.104777 10.3389/fpls.2015.00566 10.7164/antibiotics.22.135 10.1016/j.biocontrol.2019.04.006 10.3389/fmicb.2017.00925 10.1016/j.pestbp.2014.10.006 10.3389/fmicb.2015.00693 10.1016/j.nbt.2015.01.006 10.1163/15685411-bja10013 10.3389/fmicb.2018.00913 10.1016/j.micres.2018.11.003 10.1016/j.biocontrol.2018.04.015 10.1128/AEM.68.7.3416-3423.2002 10.1007/s13205-020-02585-8 10.1016/j.bcab.2016.02.001 10.1264/jsme2.ME20078 10.3390/genes10080601 10.3390/ijerph17041434 10.3389/fbioe.2019.00488 10.1038/ja.2010.78 10.1016/j.apsoil.2019.01.015 10.1080/13102818.2019.1637279 10.1093/nar/gkt1178 10.1094/MPMI-06-11-0162 10.3389/fmicb.2019.02287 10.1146/annurev.phyto.44.013106.145710 10.3389/fmicb.2020.01196 10.1371/journal.pgen.1002784 10.1094/PHYTO-09-19-0367-R 10.1016/j.rhisph.2018.01.001 10.3389/fmicb.2019.00719 10.3389/fmicb.2017.01895 10.1016/j.biocontrol.2013.03.012 10.1016/0038-0717(93)90217-Y 10.3390/ijms12010141 10.1111/j.1574-6976.2010.00244.x 10.1007/s00344-019-09966-1 10.1186/s12864-016-3224-y 10.1046/j.1469-8137.2003.00686.x 10.1007/s10886-013-0319-7 10.1016/j.postharvbio.2019.111022 10.1016/j.cbpa.2010.10.015 10.1016/j.pestbp.2017.08.014 10.1016/j.chemosphere.2021.129819 10.1016/j.pestbp.2017.10.006 10.1007/s42161-019-00457-6 10.1111/j.1365-2621.2004.tb10721.x 10.1039/b817075b 10.1016/j.bmc.2017.01.002 10.1111/1462-2920.12469 10.1111/1758-2229.12454 10.3390/ijms21228740 10.3390/molecules23092139 10.1080/14786419.2012.696257 10.1094/MPMI-11-17-0273-R 10.7717/peerj.3107 10.3389/fpls.2019.00901 10.4067/S0718-95162010000100006 10.1038/srep32266 10.1016/j.plaphy.2012.03.003 10.1104/pp.108.127878 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.pmpp.2021.101754 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany |
ExternalDocumentID | 10_1016_j_pmpp_2021_101754 S0885576521001557 |
GroupedDBID | --K --M -~X .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADFGL ADMUD ADNMO ADQTV ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSH SSU SSZ T5K UNMZH WH7 WUQ XJT XPP Y6R YK3 ZMT ZU3 ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c399t-71276281c6d99d5372a1381a456da7f9b3e186096da0f83ff19afa73e26bea183 |
IEDL.DBID | .~1 |
ISSN | 0885-5765 |
IngestDate | Fri Jul 11 02:33:24 EDT 2025 Tue Jul 01 03:43:40 EDT 2025 Thu Apr 24 23:07:14 EDT 2025 Sun Apr 06 06:53:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Beneficial microorganisms Pseudomonas Antimicrobials Bacillus Biocontrol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-71276281c6d99d5372a1381a456da7f9b3e186096da0f83ff19afa73e26bea183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0425-5938 0000-0003-3933-9610 0000-0002-8773-8213 |
PQID | 2636449206 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636449206 crossref_citationtrail_10_1016_j_pmpp_2021_101754 crossref_primary_10_1016_j_pmpp_2021_101754 elsevier_sciencedirect_doi_10_1016_j_pmpp_2021_101754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Physiological and molecular plant pathology |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Stein (bib8) 2005; 56 Kumar, Singh (bib1) 2014; 5 Nowak-Thompson, Chaney, Wing, Gould, Loper (bib46) 1999; 181 Devi, Kiesewalter, Kovács, Frisvad, Weber, Larsen, Kovács, Ding (bib10) 2019; 4 Xie, Vallet, Sun, Kunert, David, Zhang, Chen, Lu, Boland, Shao (bib83) 2020; 7 Xiang, Zhang, Wang, Liu, Liao (bib117) 2018; 147 Loper, Hassan, Mavrodi, Davis, Lim, Shaffer, Elbourne, Stockwell, Hartney, Breakwell, Henkels, Tetu, Rangel, Kidarsa, Wilson, van de Mortel, Song, Blumhagen, Radune, Hostetler, Brinkac, Durkin, Kluepfel, Wechter, Anderson, Kim, Pierson, Pierson, Lindow, Kobayashi, Raaijmakers, Weller, Thomashow, Allen, Paulsen (bib131) 2012; 8 Jamali, Sharma, Roohi, Srivastava (bib99) 2020; 60 Leelasuphakul, Sivanunsakul, Phongpaichit (bib108) 2006; 38 Zhao, Liu, Zhang (bib128) 2019; 10 Tian, Chen, Chen, Liu, Fan, Zhao, an Long (bib90) 2020; 159 Saati-Santamaría, López-Mondéjar, Jiménez-Gómez, Díez-Méndez, Vetrovský, Igual, Velázquez, Kolarik, Rivas, García-Fraile (bib132) 2018; 9 Wang, Wang, Liu, Wang, Xu (bib94) 2021; 14 Lombard, Golaconda Ramulu, Drula, Coutinho, Henrissat (bib101) 2014; 42 Sánchez San Fulgencio, Suárez-Estrella, López, Jurado, López-González, Moreno (bib60) 2018; 124 Fu, Marian, Enomoto, Hieno, Ina, Suga, Shimizu (bib75) 2020; 35 Nakkeeran, Vinodkumar, Senthilraja, Renukadevi (bib6) 2019 Saxena, Kumar, Chakdar, Anuroopa, Bagyaraj (bib78) 2020; 128 Penha, Vandenberghe, Faulds, Soccol, Soccol (bib97) 2020; 251 Morales-Ruiz, Priego-Rivera, Figueroa-López, Cazares-Álvarez, Maldonado-Mendoza (bib102) 2020; 368 Kakembo, Lee (bib129) 2019; 134 Pramanik, Mandal, Banerjee, Ghosh, Maiti, Mandal (bib140) 2021; 274 Falardeau, Wise, Novitsky, Avis (bib20) 2013; 39 Bais, Fall, Vivanco (bib68) 2004; 134 Aydi Ben Abdallah, Stedel, Garagounis, Nefzi, Jabnoun-Khiareddine, Papadopoulou, Daami-Remadi (bib72) 2017; 99 Li, Huang, Wang, Xu (bib48) 2012; 7 Yasmin, Hafeez, Mirza, Rasul, Arshad, Zubair, Iqbal (bib28) 2017; 8 Hammer, Burd, Hill, Ligon, van Pée (bib40) 1999; 180 El-Bendary, Hamed, Moharam (bib58) 2016; 5 Watanabe, Kasahara, Aida, Tanaka (bib107) 1992; 174 Yamamoto, Shiraishi, Suzuki (bib81) 2015; 60 Arrebola, Tienda, Vida, de Vicente, Cazorla (bib139) 2019; 10 Shanmugaiah, Mathivanan, Varghese (bib116) 2010; 108 Raaijmakers, de Bruijn, Nybroe, Ongena (bib17) 2010; 34 Jiao, Munir, He, Yang, Wu, Wang, He, Cai, Wang, He (bib70) 2020; 143 Saraf, Thakker, Patel (bib63) 2008; 4 Dihazi, Jaiti, Taktak, Kilani-Feki, Jaoua, Driouich, Baaziz, Daayf, Serghini (bib71) 2012; 55 Xu, Wang, Wang, Liu, Shi, Gao, Wang (bib92) 2020; 147 Maksimov, Singh, Cherepanova, Burkhanova, Khairullin (bib14) 2020; 56 Götze, Stallforth (bib50) 2020; 37 Solanki, Robert, Singh, Kumar, Pandey, Srivastava, Arora (bib104) 2012; 65 Sharma, Vishnoi, Dubey, Maheshwari (bib61) 2018; 5 Borland, Prigent-Combaret, Wisniewski-Dyé (bib27) 2016; 162 Guttenberger, Blankenfeldt, Breinbauer (bib35) 2017; 25 Nielsen, Sørensen, Tobiasen, Andersen, Christophersen, Givskov, Sørensen (bib123) 2002; 68 Ji, Peng, Chen, Liu, Yan, Zhu (bib109) 2020; 145 Andreolli, Zapparoli, Angelini, Lucchetta, Lampis, Vallini (bib29) 2019; 219 Raio, Reveglia, Puopolo, Cimmino, Danti, Evidente (bib113) 2017; 199 Shali, Ghasemi, Ahmadian, Ranjbar, Dehestani, Khalesi, Motallebi, Vahed (bib106) 2010; 38 Dimkić, Živković, Berić, Ivanović, Gavrilović, Stanković, Fira (bib96) 2013; 65 Farace, Fernandez, Jacquens, Coutte, Krier, Jacques, Clément, Barka, Jacquard, Dorey (bib82) 2015; 16 Etchegaray, de Castro Bueno, de Melo, Tsai, de Fátima Fiore, Silva-Stenico, de Moraes, Teschke (bib88) 2008; 190 Zachow, Jahanshah, de Bruijn, Song, Ianni, Pataj, Gerhardt, Pianet, Lämmerhofer, Berg, Gross, Raaijmakers (bib124) 2015; 28 Xu, Wang, Lv, Shi, Wang (bib93) 2019; 33 Jacob, Jamier, Ba (bib38) 2011; 15 Wu, Liu, Xu, Zhang, Shen, Zhang (bib77) 2018; 31 Hamdache, Azarken, Lamarti, Aleu, Collado (bib19) 2013; 12 Nose, Arima (bib45) 1969; 22 Janakiev, Dimkić, Unković, Ljaljević Grbić, Opsenica, Gašić, Stanković, Berić (bib4) 2019; 10 Nagarajkumar, Bhaskaran, Velazhahan (bib64) 2004; 159 Simionato, Navarro, de Jesus, Barazetti, da Silva, Simões, Balbi-Peña, de Mello, Panagio, de Almeida, Andrade, de Oliveira (bib114) 2017; 8 Fira, Dimkić, Berić, Lozo, Stanković (bib2) 2018; 285 Paulsen, Press, Ravel, Kobayashi, Myers, Mavrodi, DeBoy, Seshadri, Ren, Madupu, Dodson, Durkin, Brinkac, Daugherty, Sullivan, Rosovitz, Gwinn, Zhou, Schneider, Cartinhour, Nelson, Weidman, Watkins, Tran, Khouri, Pierson, Pierson, Thomashow, Loper (bib26) 2005; 23 Arora, Min, Sun, Maheshwari (bib65) 2007; 53 Poger, Mark (bib86) 2019; 123 Zhao, Chen, Yu, Hu, Song (bib115) 2018; 147 Shahzad, Khan, Bilal, Asaf, Lee (bib73) 2017 Dimkic, Stankovic, Nišavic, Petkovic, Ristivojevic, Fira, Beric (bib3) 2017; 8 Jan, Azam, Ali, Rizwanul Haq (bib110) 2011; 6 Gupta, Kumar, Dubey, Maheshwari (bib137) 2006; 51 de Vleesschauwer, Djavaheri, Bakker, Höfte (bib53) 2008; 148 Özcengiz, Öğülür (bib13) 2015; 32 Fridlender, Inbar, Chet (bib67) 1993; 25 Hoster, Schmitz, Daniel (bib55) 2005; 66 Sahebani, Omranzade (bib76) 2020; 22 Zhao, Kuipers (bib11) 2016; 17 Seydlová, Čabala, Svobodová (bib18) 2011 Zhang, Yu, Yang, Zhang, Zhao, Pan, Fan, Yang, Zhu (bib79) 2020; 11 Zhu, Tan, Shen, Yang, Yu, Gao, Li, Cheng, Chen, Guo, Sun, Yan, Li, Zeng (bib95) 2020; 102 Abriouel, Franz, Ben Omar, Galvez (bib5) 2011; 35 Andrić, Meyer, Ongena (bib7) 2020; 11 Mavrodi, Blankenfeldt, Thomashow (bib34) 2006; 44 Malviya, Sahu, Singh, Paul, Gupta, Gupta, Singh, Kumar, Paul, Rai, Singh, Brahmaprakash (bib51) 2020; 17 Couillerot, Prigent-Combaret, Caballero-Mellado, Moënne-Loccoz (bib22) 2009; 48 Michelsen, Watrous, Glaring, Kersten, Koyama, Dorrestein, Stougaard (bib125) 2015; 6 Tripathi, Gottlieb (bib44) 1969; 100 Yu, Huang, Zhu, Zhang, Yao, Wu, Xu, Li (bib122) 2018; 23 Panpatte, Jhala, Shelat, Vyas (bib23) 2016; 1 Xu, Pan, Luo, Wu, Zhou, Liang, He, Zhou (bib112) 2015; 117 Kumar, Dubey, Maheshwari (bib57) 2012; 167 Sundheim, Poplawsky, Ellingboe (bib62) 1988; 33 Shahid, Han, Hardie, Baig, Malik, Borchers, Mehnaz (bib36) 2021; 11 Oni, Olorunleke, Höfte (bib30) 2019; 129 Wang, Shih, Liang, Wang (bib105) 2002; 50 Sánchez, Chávez, Forero, García-Huante, Romero, Sánchez, Rocha, Sánchez, Valos, Guzmán-Trampe, Rodríguez-Sanoja, Langley, Ruiz (bib135) 2010; 63 Toral, Rodríguez, Béjar, Sampedro (bib84) 2018; 9 Christiansen, Alanin, Christopher, Olsson, Stougaard, Hennessy (bib127) 2020; 86 Nielsen, Sørensen (bib136) 1999; 30 Nakkeeran, Surya, Vinodkumar (bib85) 2020; 39 Roongsawang, Washio, Morikawa (bib12) 2011; 12 Yan, Philmus, Chang, Loper (bib119) 2017; 6 Gong, Tan, Chen, Li, Zhu, Jian, Yuan, Xu, Hu, Jiang, Duan (bib121) 2016; 6 Jadhav, Shaikh, Sayyed (bib100) 2017; 2 Höfte, Altier (bib24) 2010; 161 Reyes-Ramírez, Escudero-Abarca, Aguilar-Uscanga, Hayward-Jones, Eleazar Barboza-Corona (bib56) 2006; 69 Lim, Kim (bib66) 1994; 4 Hennessy, Phippen, Nielsen, Olsson, Stougaard (bib126) 2017; 6 Kirner, Hammer, Hill, Altmann, Fischer, Weislo, Lanahan, Van Pee, Ligon (bib42) 1998; 180 Borriss, Wu, Gao (bib16) 2019 Puopolo, Masi, Raio, Andolfi, Zoina, Cimmino, Evidente (bib31) 2013; 27 le Quesne, Dong, Blythe (bib43) 1999; 13 Ma, Hoang Hua, Ongena, Höfte (bib54) 2016; 8 Mishra, Arora (bib111) 2018; 125 van der Voort, Meijer, Schmidt, Watrous, Dekkers, Mendes, Dorrestein, Gross, Raaijmakers (bib134) 2015; 6 Martínez-Viveros, Jorquera, Crowley, Gajardo, Mora (bib39) 2010; 10 Tran, Ficke, Asiimwe, Höfte, Raaijmakers (bib52) 2007; 175 Gross, Loper (bib25) 2009; 26 Omoboye, Oni, Batool, Yimer, de Mot, Höfte (bib130) 2019; 10 Zhang, Kong, Li, Chen, Chen (bib49) 2020; 49 Abdallah, Jabnoun-Khiareddine, Daami-Remadi (bib21) 2019 Chlebek, Pinski, Żur, Michalska, Hupert-Kocurek (bib118) 2020; 21 Zhang, Mavrodi, Yang, Thomashow, Mavrodi, Kelton, Weller (bib120) 2020; 110 Ye, Wang, Ng, Zhang (bib91) 2021; 69 Chin-A-Woeng, Bloemberg, Lugtenberg (bib37) 2003; 157 Sreejith, Aswani, Radhakrishnan (bib15) 2019 Zhang, Li, Xu, Guo, Zhang, Feng, Peng, Li, Xing, Qin (bib33) 2021; 173 Huang, Tsay, Chang, Yang, Wu, Chen (bib80) 2012; 68 Janakiev, Dimkić, Bojić, Fira, Stanković, Berić (bib69) 2020; 128 Jangir, Pathak, Sharma, Sharma (bib59) 2018; 123 Zeriouh, Romero, Garcia-Gutierrez, Cazorla, de Vicente, Perez-Garcia (bib89) 2011; 24 Chen, Koumoutsi, Scholz, Borriss (bib9) 2008; 16 Hassan, Afghan, Hafeez (bib47) 2011; 67 Schönbichler, Díaz-Moreno, Srivastava, McKee (bib103) 2020; 11 Nelkner, Tejerizo, Hassa, Lin, Witte, Verwaaijen, Winkler, Bunk, Spröer, Overmann, Grosch, Pühler, Schlüter (bib133) 2019; 10 Li, Héloir, Zhang, Geissler, Trouvelot, Jacquens, Henkel, Su, Fang, Wang, Adrian (bib87) 2019; 20 Guo, Li, Lou, Shi, Jiang, Zhou, Sun, Xue, Lai (bib74) 2019; 137 Folders, Algra, Roelofs, van Loon, Tommassen, Bitter (bib138) 2001; 183 Alsohim, Taylor, Barrett, Gallie, Zhang, Altamirano-Junqueira, Johnson, Rainey, Jackson (bib32) 2014; 16 Pawar, Chaudhari, Prabha, Shukla, Singh (bib41) 2019; 9 Bardin, Ajouz, Comby, Lopez-Ferber, Graillot, Siegwart, Nicot (bib98) 2015; 6 Fridlender (10.1016/j.pmpp.2021.101754_bib67) 1993; 25 Xiang (10.1016/j.pmpp.2021.101754_bib117) 2018; 147 Mavrodi (10.1016/j.pmpp.2021.101754_bib34) 2006; 44 Li (10.1016/j.pmpp.2021.101754_bib48) 2012; 7 Omoboye (10.1016/j.pmpp.2021.101754_bib130) 2019; 10 Wang (10.1016/j.pmpp.2021.101754_bib105) 2002; 50 Seydlová (10.1016/j.pmpp.2021.101754_bib18) 2011 Nagarajkumar (10.1016/j.pmpp.2021.101754_bib64) 2004; 159 Penha (10.1016/j.pmpp.2021.101754_bib97) 2020; 251 Leelasuphakul (10.1016/j.pmpp.2021.101754_bib108) 2006; 38 Özcengiz (10.1016/j.pmpp.2021.101754_bib13) 2015; 32 Sundheim (10.1016/j.pmpp.2021.101754_bib62) 1988; 33 Dimkic (10.1016/j.pmpp.2021.101754_bib3) 2017; 8 Hoster (10.1016/j.pmpp.2021.101754_bib55) 2005; 66 Zhang (10.1016/j.pmpp.2021.101754_bib120) 2020; 110 Saraf (10.1016/j.pmpp.2021.101754_bib63) 2008; 4 Nowak-Thompson (10.1016/j.pmpp.2021.101754_bib46) 1999; 181 Shanmugaiah (10.1016/j.pmpp.2021.101754_bib116) 2010; 108 Xie (10.1016/j.pmpp.2021.101754_bib83) 2020; 7 Raaijmakers (10.1016/j.pmpp.2021.101754_bib17) 2010; 34 Nielsen (10.1016/j.pmpp.2021.101754_bib136) 1999; 30 Oni (10.1016/j.pmpp.2021.101754_bib30) 2019; 129 Jan (10.1016/j.pmpp.2021.101754_bib110) 2011; 6 Tran (10.1016/j.pmpp.2021.101754_bib52) 2007; 175 Watanabe (10.1016/j.pmpp.2021.101754_bib107) 1992; 174 Nakkeeran (10.1016/j.pmpp.2021.101754_bib85) 2020; 39 Zachow (10.1016/j.pmpp.2021.101754_bib124) 2015; 28 Sahebani (10.1016/j.pmpp.2021.101754_bib76) 2020; 22 Fira (10.1016/j.pmpp.2021.101754_bib2) 2018; 285 Christiansen (10.1016/j.pmpp.2021.101754_bib127) 2020; 86 Hassan (10.1016/j.pmpp.2021.101754_bib47) 2011; 67 Xu (10.1016/j.pmpp.2021.101754_bib112) 2015; 117 Bais (10.1016/j.pmpp.2021.101754_bib68) 2004; 134 Raio (10.1016/j.pmpp.2021.101754_bib113) 2017; 199 Hammer (10.1016/j.pmpp.2021.101754_bib40) 1999; 180 Arrebola (10.1016/j.pmpp.2021.101754_bib139) 2019; 10 Solanki (10.1016/j.pmpp.2021.101754_bib104) 2012; 65 Chin-A-Woeng (10.1016/j.pmpp.2021.101754_bib37) 2003; 157 le Quesne (10.1016/j.pmpp.2021.101754_bib43) 1999; 13 Kumar (10.1016/j.pmpp.2021.101754_bib57) 2012; 167 Couillerot (10.1016/j.pmpp.2021.101754_bib22) 2009; 48 Paulsen (10.1016/j.pmpp.2021.101754_bib26) 2005; 23 Reyes-Ramírez (10.1016/j.pmpp.2021.101754_bib56) 2006; 69 Zhao (10.1016/j.pmpp.2021.101754_bib115) 2018; 147 Kakembo (10.1016/j.pmpp.2021.101754_bib129) 2019; 134 Sánchez San Fulgencio (10.1016/j.pmpp.2021.101754_bib60) 2018; 124 Ji (10.1016/j.pmpp.2021.101754_bib109) 2020; 145 Sreejith (10.1016/j.pmpp.2021.101754_bib15) 2019 Guttenberger (10.1016/j.pmpp.2021.101754_bib35) 2017; 25 Jangir (10.1016/j.pmpp.2021.101754_bib59) 2018; 123 Janakiev (10.1016/j.pmpp.2021.101754_bib69) 2020; 128 Malviya (10.1016/j.pmpp.2021.101754_bib51) 2020; 17 Sharma (10.1016/j.pmpp.2021.101754_bib61) 2018; 5 Lombard (10.1016/j.pmpp.2021.101754_bib101) 2014; 42 Mishra (10.1016/j.pmpp.2021.101754_bib111) 2018; 125 van der Voort (10.1016/j.pmpp.2021.101754_bib134) 2015; 6 Gong (10.1016/j.pmpp.2021.101754_bib121) 2016; 6 Höfte (10.1016/j.pmpp.2021.101754_bib24) 2010; 161 Huang (10.1016/j.pmpp.2021.101754_bib80) 2012; 68 Wang (10.1016/j.pmpp.2021.101754_bib94) 2021; 14 Aydi Ben Abdallah (10.1016/j.pmpp.2021.101754_bib72) 2017; 99 Ye (10.1016/j.pmpp.2021.101754_bib91) 2021; 69 Pramanik (10.1016/j.pmpp.2021.101754_bib140) 2021; 274 Shahid (10.1016/j.pmpp.2021.101754_bib36) 2021; 11 Zhao (10.1016/j.pmpp.2021.101754_bib11) 2016; 17 Folders (10.1016/j.pmpp.2021.101754_bib138) 2001; 183 Guo (10.1016/j.pmpp.2021.101754_bib74) 2019; 137 Pawar (10.1016/j.pmpp.2021.101754_bib41) 2019; 9 Gupta (10.1016/j.pmpp.2021.101754_bib137) 2006; 51 Xu (10.1016/j.pmpp.2021.101754_bib93) 2019; 33 Fu (10.1016/j.pmpp.2021.101754_bib75) 2020; 35 Wu (10.1016/j.pmpp.2021.101754_bib77) 2018; 31 Bardin (10.1016/j.pmpp.2021.101754_bib98) 2015; 6 Yamamoto (10.1016/j.pmpp.2021.101754_bib81) 2015; 60 Yu (10.1016/j.pmpp.2021.101754_bib122) 2018; 23 Andreolli (10.1016/j.pmpp.2021.101754_bib29) 2019; 219 Jiao (10.1016/j.pmpp.2021.101754_bib70) 2020; 143 Devi (10.1016/j.pmpp.2021.101754_bib10) 2019; 4 Poger (10.1016/j.pmpp.2021.101754_bib86) 2019; 123 Simionato (10.1016/j.pmpp.2021.101754_bib114) 2017; 8 Janakiev (10.1016/j.pmpp.2021.101754_bib4) 2019; 10 Jacob (10.1016/j.pmpp.2021.101754_bib38) 2011; 15 Toral (10.1016/j.pmpp.2021.101754_bib84) 2018; 9 Panpatte (10.1016/j.pmpp.2021.101754_bib23) 2016; 1 Jadhav (10.1016/j.pmpp.2021.101754_bib100) 2017; 2 Chlebek (10.1016/j.pmpp.2021.101754_bib118) 2020; 21 Abdallah (10.1016/j.pmpp.2021.101754_bib21) 2019 Zhao (10.1016/j.pmpp.2021.101754_bib128) 2019; 10 Zhang (10.1016/j.pmpp.2021.101754_bib49) 2020; 49 El-Bendary (10.1016/j.pmpp.2021.101754_bib58) 2016; 5 Martínez-Viveros (10.1016/j.pmpp.2021.101754_bib39) 2010; 10 Andrić (10.1016/j.pmpp.2021.101754_bib7) 2020; 11 Götze (10.1016/j.pmpp.2021.101754_bib50) 2020; 37 Zhang (10.1016/j.pmpp.2021.101754_bib33) 2021; 173 Nielsen (10.1016/j.pmpp.2021.101754_bib123) 2002; 68 Saati-Santamaría (10.1016/j.pmpp.2021.101754_bib132) 2018; 9 Chen (10.1016/j.pmpp.2021.101754_bib9) 2008; 16 Nose (10.1016/j.pmpp.2021.101754_bib45) 1969; 22 Borland (10.1016/j.pmpp.2021.101754_bib27) 2016; 162 Nelkner (10.1016/j.pmpp.2021.101754_bib133) 2019; 10 Alsohim (10.1016/j.pmpp.2021.101754_bib32) 2014; 16 Shali (10.1016/j.pmpp.2021.101754_bib106) 2010; 38 Maksimov (10.1016/j.pmpp.2021.101754_bib14) 2020; 56 Kumar (10.1016/j.pmpp.2021.101754_bib1) 2014; 5 Roongsawang (10.1016/j.pmpp.2021.101754_bib12) 2011; 12 Dihazi (10.1016/j.pmpp.2021.101754_bib71) 2012; 55 Loper (10.1016/j.pmpp.2021.101754_bib131) 2012; 8 Hamdache (10.1016/j.pmpp.2021.101754_bib19) 2013; 12 Michelsen (10.1016/j.pmpp.2021.101754_bib125) 2015; 6 de Vleesschauwer (10.1016/j.pmpp.2021.101754_bib53) 2008; 148 Puopolo (10.1016/j.pmpp.2021.101754_bib31) 2013; 27 Li (10.1016/j.pmpp.2021.101754_bib87) 2019; 20 Nakkeeran (10.1016/j.pmpp.2021.101754_bib6) 2019 Saxena (10.1016/j.pmpp.2021.101754_bib78) 2020; 128 Arora (10.1016/j.pmpp.2021.101754_bib65) 2007; 53 Etchegaray (10.1016/j.pmpp.2021.101754_bib88) 2008; 190 Borriss (10.1016/j.pmpp.2021.101754_bib16) 2019 Dimkić (10.1016/j.pmpp.2021.101754_bib96) 2013; 65 Ma (10.1016/j.pmpp.2021.101754_bib54) 2016; 8 Yan (10.1016/j.pmpp.2021.101754_bib119) 2017; 6 Falardeau (10.1016/j.pmpp.2021.101754_bib20) 2013; 39 Jamali (10.1016/j.pmpp.2021.101754_bib99) 2020; 60 Abriouel (10.1016/j.pmpp.2021.101754_bib5) 2011; 35 Gross (10.1016/j.pmpp.2021.101754_bib25) 2009; 26 Zeriouh (10.1016/j.pmpp.2021.101754_bib89) 2011; 24 Stein (10.1016/j.pmpp.2021.101754_bib8) 2005; 56 Yasmin (10.1016/j.pmpp.2021.101754_bib28) 2017; 8 Lim (10.1016/j.pmpp.2021.101754_bib66) 1994; 4 Schönbichler (10.1016/j.pmpp.2021.101754_bib103) 2020; 11 Shahzad (10.1016/j.pmpp.2021.101754_bib73) 2017 Morales-Ruiz (10.1016/j.pmpp.2021.101754_bib102) 2020; 368 Tian (10.1016/j.pmpp.2021.101754_bib90) 2020; 159 Zhang (10.1016/j.pmpp.2021.101754_bib79) 2020; 11 Zhu (10.1016/j.pmpp.2021.101754_bib95) 2020; 102 Xu (10.1016/j.pmpp.2021.101754_bib92) 2020; 147 Sánchez (10.1016/j.pmpp.2021.101754_bib135) 2010; 63 Kirner (10.1016/j.pmpp.2021.101754_bib42) 1998; 180 Hennessy (10.1016/j.pmpp.2021.101754_bib126) 2017; 6 Tripathi (10.1016/j.pmpp.2021.101754_bib44) 1969; 100 Farace (10.1016/j.pmpp.2021.101754_bib82) 2015; 16 |
References_xml | – volume: 37 start-page: 29 year: 2020 end-page: 54 ident: bib50 article-title: Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads publication-title: Nat. Prod. Rep. – volume: 11 start-page: 48 year: 2021 ident: bib36 article-title: Profiling of antimicrobial metabolites of plant growth promoting publication-title: 3 Biotech – volume: 117 start-page: 39 year: 2015 end-page: 46 ident: bib112 article-title: Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium publication-title: , Pestic. Biochem. Physiol. – volume: 22 start-page: 1091 year: 2020 end-page: 1099 ident: bib76 article-title: Assessment of plant defence induction and biocontrol potential of publication-title: Nematology – volume: 5 start-page: 173 year: 2016 end-page: 178 ident: bib58 article-title: Potential of publication-title: Biocatal. Agric. Biotechnol. – volume: 159 start-page: 73 year: 2004 end-page: 81 ident: bib64 article-title: Involvement of secondary metabolites and extracellular lytic enzymes produced by publication-title: Microbiol. Res. – volume: 68 start-page: 1306 year: 2012 end-page: 1310 ident: bib80 article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by publication-title: Pest Manag. Sci. – volume: 8 start-page: 1895 year: 2017 ident: bib28 article-title: Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric publication-title: Front. Microbiol. – volume: 7 year: 2012 ident: bib48 article-title: Transcriptional activation of pyoluteorin operon mediated by the LysR-type regulator PltR bound at a 22 bp publication-title: PLoS One – volume: 134 start-page: 307 year: 2004 end-page: 319 ident: bib68 article-title: Biocontrol of publication-title: Plant Physiol. – volume: 23 start-page: 2139 year: 2018 ident: bib122 article-title: Design, synthesis, phloem mobility, and bioactivities of a series of phenazine-1-carboxylic acid-amino acid conjugates publication-title: Molecules – volume: 175 start-page: 731 year: 2007 end-page: 742 ident: bib52 article-title: Role of the cyclic lipopeptide massetolide a in biological control of publication-title: New Phytol. – volume: 161 start-page: 464 year: 2010 end-page: 471 ident: bib24 article-title: Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems publication-title: Res. Microbiol. – volume: 199 start-page: 49 year: 2017 end-page: 56 ident: bib113 article-title: Involvement of phenazine-1-carboxylic acid in the interaction between publication-title: Microbiol. Res. – volume: 181 start-page: 2166 year: 1999 end-page: 2174 ident: bib46 article-title: Characterization of the pyoluteorin biosynthetic gene cluster of publication-title: J. Bacteriol. – volume: 55 start-page: 7 year: 2012 end-page: 15 ident: bib71 article-title: Use of two bacteria for biological control of bayoud disease caused by publication-title: Plant Physiol. Biochem. – volume: 56 start-page: 845 year: 2005 end-page: 857 ident: bib8 article-title: antibiotics: structures, syntheses and specific functions publication-title: Mol. Microbiol. – volume: 15 start-page: 149 year: 2011 end-page: 155 ident: bib38 article-title: Redox active secondary metabolites publication-title: Curr. Opin. Chem. Biol. – volume: 39 start-page: 869 year: 2013 end-page: 878 ident: bib20 article-title: Ecological and mechanistic insights into the direct and indirect antimicrobial properties of publication-title: J. Chem. Ecol. – volume: 28 start-page: 800 year: 2015 end-page: 810 ident: bib124 article-title: The novel lipopeptide poaeamide of the endophyte publication-title: Mol. Plant Microbe Interact. – volume: 147 start-page: 32 year: 2018 end-page: 39 ident: bib117 article-title: Effects and inhibition mechanism of phenazine-1-carboxamide on the mycelial morphology and ultrastructure of publication-title: Pestic. Biochem. Physiol. – volume: 6 start-page: 693 year: 2015 ident: bib134 article-title: Genome mining and metabolic profiling of the rhizosphere bacterium publication-title: Front. Microbiol. – volume: 9 start-page: 1315 year: 2018 ident: bib84 article-title: Antifungal activity of lipopeptides from publication-title: Front. Microbiol. – volume: 4 start-page: 142 year: 2019 end-page: 149 ident: bib10 article-title: Depiction of secondary metabolites and antifungal activity of publication-title: Synth. Syst. Biotechnol. – year: 2017 ident: bib73 article-title: Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of publication-title: PeerJ – volume: 53 start-page: 207 year: 2007 end-page: 212 ident: bib65 article-title: Role of chitinase and publication-title: Can. J. Microbiol. – volume: 190 start-page: 611 year: 2008 end-page: 622 ident: bib88 article-title: Effect of a highly concentrated lipopeptide extract of publication-title: Arch. Microbiol. – volume: 21 start-page: 8740 year: 2020 ident: bib118 article-title: Genome mining and evaluation of the biocontrol potential of publication-title: Int. J. Mol. Sci. – volume: 162 start-page: 1715 year: 2016 end-page: 1734 ident: bib27 article-title: Bacterial hybrid histidine kinases in plant-bacteria interactions publication-title: Microbiol. – volume: 99 start-page: 45 year: 2017 end-page: 58 ident: bib72 article-title: Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of publication-title: Crop Protect. – volume: 124 start-page: 82 year: 2018 end-page: 91 ident: bib60 article-title: Biotic aspects involved in the control of damping-off producing agents: the role of the thermotolerant microbiota isolated from composting of plant waste publication-title: Biol. Control – volume: 2 start-page: 183 year: 2017 end-page: 203 ident: bib100 article-title: Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview publication-title: Rhizotrophs: Plant Growth Promotion to Bioremediation – volume: 10 start-page: 719 year: 2019 ident: bib139 article-title: Fitness features involved in the biocontrol interaction of publication-title: Front. Microbiol. – volume: 368 start-page: fnaa218 year: 2020 ident: bib102 article-title: Biochemical characterization of two chitinases from publication-title: FEMS Microbiol. Lett. – volume: 11 start-page: 521 year: 2020 ident: bib103 article-title: Exploring the potential for fungal antagonism and cell wall attack by publication-title: Front. Microbiol. – volume: 147 start-page: 104288 year: 2020 ident: bib92 article-title: Evaluation of the biocontrol potential of publication-title: WB against – volume: 30 start-page: 217 year: 1999 end-page: 227 ident: bib136 article-title: Chitinolytic activity of publication-title: FEMS Microbiol. Ecol. – volume: 12 start-page: 141 year: 2011 end-page: 172 ident: bib12 article-title: Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants publication-title: Int. J. Mol. Sci. – volume: 6 year: 2015 ident: bib125 article-title: Nonribosomal peptides, key biocontrol components for publication-title: mBio – volume: 6 start-page: 566 year: 2015 ident: bib98 article-title: Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? publication-title: Front. Plant Sci. – volume: 38 start-page: 141 year: 2010 end-page: 147 ident: bib106 article-title: SG2 chitinases induced and regulated by chitin, show inhibitory activity against publication-title: Phytoparasitica – volume: 26 start-page: 1408 year: 2009 end-page: 1446 ident: bib25 article-title: Genomics of secondary metabolite production by publication-title: Nat. Prod. Rep. – volume: 183 start-page: 7044 year: 2001 end-page: 7052 ident: bib138 article-title: Characterization of publication-title: J. Bacteriol. – volume: 42 start-page: 490 year: 2014 end-page: 495 ident: bib101 article-title: The carbohydrate-active enzymes database (CAZy) in 2013 publication-title: Nucleic Acids Res. – volume: 174 start-page: 186 year: 1992 end-page: 190 ident: bib107 article-title: Three N-terminal domains of publication-title: J. Bacteriol. – volume: 48 start-page: 505 year: 2009 end-page: 512 ident: bib22 article-title: and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens publication-title: Lett. Appl. Microbiol. – volume: 129 start-page: 109 year: 2019 end-page: 114 ident: bib30 article-title: Phenazines and cyclic lipopeptides produced by publication-title: Biol. Control – volume: 8 start-page: 925 year: 2017 ident: bib3 article-title: The profile and antimicrobial activity of publication-title: Front. Microbiol. – volume: 17 start-page: 1434 year: 2020 ident: bib51 article-title: Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection publication-title: Int. J. Environ. Res. Publ. Health – start-page: 423 year: 2019 end-page: 447 ident: bib15 article-title: Agriculturally important biosynthetic features of endophytic microorganisms publication-title: Seed Endophytes – volume: 148 start-page: 1996 year: 2008 end-page: 2012 ident: bib53 article-title: WCS374r-induced systemic resistance in rice against publication-title: Plant Physiol. – volume: 38 start-page: 990 year: 2006 end-page: 997 ident: bib108 article-title: Purification, characterization and synergistic activity of publication-title: Enzyme Microb. Technol. – volume: 147 start-page: 46 year: 2018 end-page: 50 ident: bib115 article-title: Investigating the antifungal activity and mechanism of a microbial pesticide shenqinmycin against publication-title: Pestic. Biochem. Physiol. – volume: 86 year: 2020 ident: bib127 article-title: Fungal-associated molecules induce key genes involved in the biosynthesis of the antifungal secondary metabolites nunamycin and nunapeptin in the biocontrol strain publication-title: Appl. Environ. Microbiol. – volume: 9 start-page: 913 year: 2018 ident: bib132 article-title: Discovery of phloeophagus beetles as a source of publication-title: Front. Microbiol. – volume: 159 start-page: 111022 year: 2020 ident: bib90 article-title: Biocontrol and the mechanisms of publication-title: Postharvest Biol. Technol. – volume: 167 start-page: 493 year: 2012 end-page: 499 ident: bib57 article-title: strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens publication-title: Microbiol. Res. – volume: 274 start-page: 129819 year: 2021 ident: bib140 article-title: Unraveling the heavy metal resistance and biocontrol potential of publication-title: Chemosphere – start-page: 487 year: 2019 end-page: 514 ident: bib6 article-title: Antimicrobial peptides of publication-title: Microbial Antagonists: Their Role in Biological Control of Plant Diseases – volume: 69 start-page: 2051 year: 2021 end-page: 2061 ident: bib91 article-title: Study on the biocontrol potential of antifungal peptides produced by publication-title: J. Agric. Food Chem. – volume: 65 start-page: 330 year: 2012 end-page: 336 ident: bib104 article-title: Characterization of mycolytic enzymes of publication-title: Curr. Microbiol. – volume: 110 start-page: 1010 year: 2020 end-page: 1017 ident: bib120 article-title: 2-79 transformed with pyrrolnitrin biosynthesis genes has improved biocontrol activity against soilborne pathogens of wheat and canola publication-title: Phytopathology – volume: 7 start-page: 488 year: 2020 ident: bib83 article-title: Biocontrol potential of a novel endophytic bacterium from mulberry ( publication-title: Front. Bioeng. Biotechnol. – volume: 24 start-page: 1540 year: 2011 end-page: 1552 ident: bib89 article-title: The iturin-like lipopeptides are essential components in the biological control arsenal of publication-title: Mol. Plant Microbe Interact. – volume: 33 start-page: 483 year: 1988 end-page: 491 ident: bib62 article-title: Molecular cloning of two chitinase genes from publication-title: Physiol. Mol. Plant Pathol. – volume: 6 year: 2017 ident: bib126 article-title: Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by publication-title: Microbiologyopen – volume: 285 start-page: 44 year: 2018 end-page: 55 ident: bib2 article-title: Biological control of plant pathogens by publication-title: J. Biotechnol. – volume: 67 start-page: 1147 year: 2011 end-page: 1154 ident: bib47 article-title: Biological control of red rot in sugarcane by native pyoluteorin-producing publication-title: Pest Manag. Sci. – volume: 65 start-page: 312 year: 2013 end-page: 321 ident: bib96 article-title: Characterization and evaluation of two publication-title: Biol. Control – volume: 251 start-page: 70 year: 2020 ident: bib97 article-title: lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations publication-title: Planta – volume: 20 start-page: 1037 year: 2019 end-page: 1050 ident: bib87 article-title: Surfactin and fengycin contribute to the protection of a publication-title: Mol. Plant Pathol. – volume: 5 start-page: 71 year: 2018 end-page: 75 ident: bib61 article-title: A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen publication-title: Rhizosphere – volume: 50 start-page: 2241 year: 2002 end-page: 2248 ident: bib105 article-title: Purification and characterization of two antifungal chitinases extracellularly produced by publication-title: J. Agric. Food Chem. – volume: 69 start-page: M131 year: 2006 end-page: M134 ident: bib56 article-title: Antifungal activity of publication-title: J. Food Sci. – volume: 32 start-page: 612 year: 2015 end-page: 619 ident: bib13 article-title: Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic publication-title: N. Biotech. – start-page: 305 year: 2011 end-page: 330 ident: bib18 article-title: Surfactin-novel solutions for global issues publication-title: Biomedical Engineering, Trends, Research and Technologies – volume: 157 start-page: 503 year: 2003 end-page: 523 ident: bib37 article-title: Phenazines and their role in biocontrol by publication-title: New Phytol. – volume: 10 start-page: 601 year: 2019 ident: bib133 article-title: Genetic potential of the biocontrol agent publication-title: Genes – volume: 128 start-page: 528 year: 2020 end-page: 543 ident: bib69 article-title: Bacterial communities of plum phyllosphere and characterization of indigenous antagonistic publication-title: J. Appl. Microbiol. – volume: 12 start-page: 685 year: 2013 end-page: 716 ident: bib19 article-title: Comparative genome analysis of publication-title: Phytochemistry Rev. – volume: 22 start-page: 135 year: 1969 end-page: 143 ident: bib45 article-title: On the mode of action of a new antifungal antibiotic, pyrrolnitrin publication-title: J. Antibiot. – volume: 31 start-page: 560 year: 2018 end-page: 567 ident: bib77 article-title: Exploring elicitors of the beneficial rhizobacterium publication-title: Mol. Plant Microbe Interact. – volume: 60 start-page: 379 year: 2015 end-page: 386 ident: bib81 article-title: Are cyclic lipopeptides produced by publication-title: Lett. Appl. Microbiol. – volume: 25 start-page: 1211 year: 1993 end-page: 1221 ident: bib67 article-title: Biological control of soilborne plant pathogens by a publication-title: Soil Biol. Biochem. – volume: 56 start-page: 15 year: 2020 end-page: 28 ident: bib14 article-title: Prospects and applications of lipopeptide-producing bacteria for plant protection (Review) publication-title: Appl. Biochem. Microbiol. – volume: 8 start-page: 1102 year: 2017 ident: bib114 article-title: The effect of phenazine-1-carboxylic acid on mycelial growth of publication-title: Front. Microbiol. – volume: 100 start-page: 310 year: 1969 end-page: 318 ident: bib44 article-title: Mechanism of action of the antifungal antibiotic pyrrolnitrin publication-title: J. Bacteriol. – volume: 10 start-page: 293 year: 2010 end-page: 319 ident: bib39 article-title: Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria publication-title: J. Soil Sci. Plant Nutr. – volume: 33 start-page: 1042 year: 2019 end-page: 1052 ident: bib93 article-title: Antifungal activity and functional components of cell-free supernatant from publication-title: Biotechnol. Biotechnol. Equip. – volume: 145 start-page: 594 year: 2020 end-page: 603 ident: bib109 article-title: Identification and characterization of a serine protease from publication-title: Int. J. Biol. Macromol. – volume: 5 start-page: e121 year: 2014 ident: bib1 article-title: Biopesticides for integrated crop management: environmental and regulatory aspects publication-title: J. Biofert. Biopestic. – volume: 125 start-page: 35 year: 2018 end-page: 45 ident: bib111 article-title: Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture publication-title: Appl. Soil Ecol. – volume: 134 start-page: 72 year: 2019 end-page: 81 ident: bib129 article-title: Analysis of traits for biocontrol performance of publication-title: Biol. Control – volume: 173 start-page: 104777 year: 2021 ident: bib33 article-title: Antifungal effect of volatile organic compounds produced by publication-title: Pestic. Biochem. Physiol. – volume: 60 start-page: 268 year: 2020 end-page: 280 ident: bib99 article-title: Biocontrol potential of publication-title: J. Basic Microbiol. – volume: 27 start-page: 956 year: 2013 end-page: 966 ident: bib31 article-title: Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives publication-title: Nat. Prod. Res. – start-page: 147 year: 2019 end-page: 169 ident: bib16 article-title: Secondary metabolites of the plant growth promoting model rhizobacterium publication-title: Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms – volume: 8 start-page: 896 year: 2016 end-page: 904 ident: bib54 article-title: Role of phenazines and cyclic lipopeptides produced by publication-title: Environ. Microbiol. Rep. – volume: 4 start-page: 134 year: 1994 end-page: 140 ident: bib66 article-title: The production and enzymatic properties of extracellular chitinase from publication-title: J. Microbiol. Biotechnol. – volume: 39 start-page: 99 year: 2020 end-page: 111 ident: bib85 article-title: Antifungal potential of plant growth promoting publication-title: J. Plant Growth Regul. – volume: 16 start-page: 177 year: 2015 end-page: 187 ident: bib82 article-title: Cyclic lipopeptides from publication-title: Mol. Plant Pathol. – start-page: 319 year: 2019 end-page: 352 ident: bib21 article-title: Exploring the beneficial endophytic microorganisms for plant growth promotion and crop protection: elucidation of some bioactive secondary metabolites involved in both effects publication-title: Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms – volume: 102 start-page: 433 year: 2020 end-page: 441 ident: bib95 article-title: Biocontrol potential of publication-title: J. Plant Pathol. – volume: 9 start-page: 443 year: 2019 ident: bib41 article-title: Microbial pyrrolnitrin: natural metabolite with immense practical utility publication-title: Biomolecules – volume: 35 start-page: 201 year: 2011 end-page: 232 ident: bib5 article-title: Diversity and applications of publication-title: FEMS Microbiol. Rev. – volume: 10 start-page: 544 year: 2019 ident: bib128 article-title: and genetic analyses of cyclic lipopeptide synthetic gene clusters in publication-title: Front. Microbiol. – volume: 25 start-page: 6149 year: 2017 end-page: 6166 ident: bib35 article-title: Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products publication-title: Bioorg. Med. Chem. – volume: 180 start-page: 1939 year: 1998 end-page: 1943 ident: bib42 article-title: Functions encoded by pyrrolnitrin biosynthetic genes from publication-title: J. Bacteriol. – volume: 180 start-page: 39 year: 1999 end-page: 44 ident: bib40 article-title: Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains publication-title: FEMS Microbiol. Lett. – volume: 68 start-page: 3416 year: 2002 end-page: 3423 ident: bib123 article-title: Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent publication-title: Appl. Environ. Microbiol. – volume: 10 start-page: 2287 year: 2019 ident: bib4 article-title: Phyllosphere fungal communities of plum and antifungal activity of indigenous phenazine-producing publication-title: Front. Microbiol. – volume: 44 start-page: 417 year: 2006 end-page: 445 ident: bib34 article-title: Phenazine compounds in fluorescent publication-title: Annu. Rev. Phytopathol. – volume: 4 start-page: 223 year: 2008 end-page: 232 ident: bib63 article-title: Biocontrol activity of different species of publication-title: Int. J. Biotechnol. Biochem. – volume: 6 year: 2017 ident: bib119 article-title: Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in publication-title: Elife – volume: 51 start-page: 821 year: 2006 end-page: 835 ident: bib137 article-title: Chitinase-mediated destructive antagonistic potential of publication-title: BioControl – volume: 123 start-page: 5291 year: 2019 end-page: 5301 ident: bib86 article-title: Effect of triclosan and chloroxylenol on bacterial membranes publication-title: J. Phys. Chem. B – volume: 10 start-page: 901 year: 2019 ident: bib130 article-title: cyclic lipopeptides suppress the rice blast fungus publication-title: Front. Plant Sci. – volume: 66 start-page: 434 year: 2005 end-page: 442 ident: bib55 article-title: Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel publication-title: Appl. Microbiol. Biotechnol. – volume: 14 start-page: 517 year: 2021 end-page: 534 ident: bib94 article-title: Membrane disruption of publication-title: Microb. Biotechnol. – volume: 8 year: 2012 ident: bib131 article-title: Comparative genomics of plant-associated publication-title: PLoS Genet. – volume: 128 start-page: 1583 year: 2020 end-page: 1594 ident: bib78 article-title: species in soil as a natural resource for plant health and nutrition publication-title: J. Appl. Microbiol. – volume: 1 start-page: 257 year: 2016 end-page: 270 ident: bib23 article-title: : a promising biocontrol agent and PGPR for sustainable agriculture publication-title: Microbial Inoculants in Sustainable Agricultural Productivity – volume: 11 start-page: 1350 year: 2020 ident: bib7 article-title: responses to plant-associated fungal and bacterial communities publication-title: Front. Microbiol. – volume: 16 start-page: 14 year: 2008 end-page: 24 ident: bib9 article-title: More than anticipated-production of antibiotics and other secondary metabolites by publication-title: J. Mol. Microbiol. Biotechnol. – volume: 34 start-page: 1037 year: 2010 end-page: 1062 ident: bib17 article-title: Natural functions of lipopeptides from publication-title: FEMS Microbiol. Rev. – volume: 49 start-page: 307 year: 2020 end-page: 317 ident: bib49 article-title: Antibiotics of publication-title: Australas. Plant Pathol. – volume: 143 start-page: 104160 year: 2020 ident: bib70 article-title: Biocontrol potential of the endophytic publication-title: Biol. Control – volume: 123 start-page: 60 year: 2018 end-page: 70 ident: bib59 article-title: Biocontrol mechanisms of publication-title: Biol. Control – volume: 23 start-page: 873 year: 2005 end-page: 878 ident: bib26 article-title: Complete genome sequence of the plant commensal publication-title: Nat. Biotechnol. – volume: 6 start-page: 32266 year: 2016 ident: bib121 article-title: Novel synthesized 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology publication-title: Sci. Rep. – volume: 35 year: 2020 ident: bib75 article-title: Biocontrol of tomato bacterial wilt by foliar spray application of a novel strain of endophytic publication-title: Microb. Environ. – volume: 137 start-page: 154 year: 2019 end-page: 166 ident: bib74 article-title: Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease publication-title: Appl. Soil Ecol. – volume: 63 start-page: 442 year: 2010 end-page: 459 ident: bib135 article-title: Carbon source regulation of antibiotic production publication-title: J. Antibiot. (Tokyo) – volume: 17 start-page: 882 year: 2016 ident: bib11 article-title: Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species publication-title: BMC Genom. – volume: 108 start-page: 703 year: 2010 end-page: 711 ident: bib116 article-title: Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, publication-title: J. Appl. Microbiol. – volume: 219 start-page: 123 year: 2019 end-page: 131 ident: bib29 article-title: MP12: a plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens publication-title: Microbiol. Res. – volume: 13 start-page: 238 year: 1999 end-page: 282 ident: bib43 article-title: Recent research on pyrrole alkaloids publication-title: Alkaloids: Chemical and Biological Perspectives – volume: 16 start-page: 2267 year: 2014 end-page: 2281 ident: bib32 article-title: The biosurfactant viscosin produced by publication-title: Environ. Microbiol. – volume: 11 start-page: 1196 year: 2020 ident: bib79 article-title: Antifungal effects of volatiles produced by publication-title: Front. Microbiol. – volume: 6 start-page: 195 year: 2011 end-page: 205 ident: bib110 article-title: Novel approaches of beneficial publication-title: J. Plant Interact. – volume: 23 start-page: 873 year: 2005 ident: 10.1016/j.pmpp.2021.101754_bib26 article-title: Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1110 – volume: 190 start-page: 611 year: 2008 ident: 10.1016/j.pmpp.2021.101754_bib88 article-title: Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells publication-title: Arch. Microbiol. doi: 10.1007/s00203-008-0409-z – volume: 11 start-page: 1350 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib7 article-title: Bacillus responses to plant-associated fungal and bacterial communities publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01350 – volume: 86 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib127 article-title: Fungal-associated molecules induce key genes involved in the biosynthesis of the antifungal secondary metabolites nunamycin and nunapeptin in the biocontrol strain Pseudomonas fluorescens In5 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01284-20 – volume: 11 start-page: 521 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib103 article-title: Exploring the potential for fungal antagonism and cell wall attack by Bacillus subtilis natto publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00521 – volume: 60 start-page: 379 year: 2015 ident: 10.1016/j.pmpp.2021.101754_bib81 article-title: Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? publication-title: Lett. Appl. Microbiol. doi: 10.1111/lam.12382 – start-page: 147 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib16 article-title: Secondary metabolites of the plant growth promoting model rhizobacterium Bacillus velezensis FZB42 are involved in direct suppression of plant pathogens and in stimulation of plant-induced systemic resistance – volume: 50 start-page: 2241 year: 2002 ident: 10.1016/j.pmpp.2021.101754_bib105 article-title: Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium publication-title: J. Agric. Food Chem. doi: 10.1021/jf010885d – volume: 183 start-page: 7044 year: 2001 ident: 10.1016/j.pmpp.2021.101754_bib138 article-title: Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein publication-title: J. Bacteriol. doi: 10.1128/JB.183.24.7044-7052.2001 – volume: 129 start-page: 109 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib30 article-title: Phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a are involved in the biological control of Pythium myriotylum on cocoyam (Xanthosoma sagittifolium) publication-title: Biol. Control doi: 10.1016/j.biocontrol.2018.10.005 – volume: 7 year: 2012 ident: 10.1016/j.pmpp.2021.101754_bib48 article-title: Transcriptional activation of pyoluteorin operon mediated by the LysR-type regulator PltR bound at a 22 bp lys box in Pseudomonas aeruginosa M18 publication-title: PLoS One – volume: 199 start-page: 49 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib113 article-title: Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.03.003 – volume: 180 start-page: 39 year: 1999 ident: 10.1016/j.pmpp.2021.101754_bib40 article-title: Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1999.tb08775.x – volume: 175 start-page: 731 year: 2007 ident: 10.1016/j.pmpp.2021.101754_bib52 article-title: Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02138.x – volume: 6 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib126 article-title: Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF publication-title: Microbiologyopen doi: 10.1002/mbo3.516 – volume: 5 start-page: e121 year: 2014 ident: 10.1016/j.pmpp.2021.101754_bib1 article-title: Biopesticides for integrated crop management: environmental and regulatory aspects publication-title: J. Biofert. Biopestic. – volume: 108 start-page: 703 year: 2010 ident: 10.1016/j.pmpp.2021.101754_bib116 article-title: Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212 publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2009.04466.x – volume: 53 start-page: 207 year: 2007 ident: 10.1016/j.pmpp.2021.101754_bib65 article-title: Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani publication-title: Can. J. Microbiol. doi: 10.1139/w06-119 – volume: 30 start-page: 217 year: 1999 ident: 10.1016/j.pmpp.2021.101754_bib136 article-title: Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1999.tb00650.x – volume: 4 start-page: 142 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib10 article-title: Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001 publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2019.08.002 – volume: 159 start-page: 73 year: 2004 ident: 10.1016/j.pmpp.2021.101754_bib64 article-title: Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen publication-title: Microbiol. Res. doi: 10.1016/j.micres.2004.01.005 – volume: 56 start-page: 15 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib14 article-title: Prospects and applications of lipopeptide-producing bacteria for plant protection (Review) publication-title: Appl. Biochem. Microbiol. doi: 10.1134/S0003683820010135 – volume: 181 start-page: 2166 year: 1999 ident: 10.1016/j.pmpp.2021.101754_bib46 article-title: Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5 publication-title: J. Bacteriol. doi: 10.1128/JB.181.7.2166-2174.1999 – volume: 48 start-page: 505 year: 2009 ident: 10.1016/j.pmpp.2021.101754_bib22 article-title: Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2009.02566.x – volume: 2 start-page: 183 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib100 article-title: Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview – volume: 99 start-page: 45 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib72 article-title: Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato publication-title: Crop Protect. doi: 10.1016/j.cropro.2017.05.008 – start-page: 305 year: 2011 ident: 10.1016/j.pmpp.2021.101754_bib18 article-title: Surfactin-novel solutions for global issues – volume: 66 start-page: 434 year: 2005 ident: 10.1016/j.pmpp.2021.101754_bib55 article-title: Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1664-9 – volume: 368 start-page: fnaa218 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib102 article-title: Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03 publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnaa218 – start-page: 423 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib15 article-title: Agriculturally important biosynthetic features of endophytic microorganisms – volume: 9 start-page: 1315 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib84 article-title: Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01315 – volume: 167 start-page: 493 year: 2012 ident: 10.1016/j.pmpp.2021.101754_bib57 article-title: Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens publication-title: Microbiol. Res. doi: 10.1016/j.micres.2012.05.002 – volume: 134 start-page: 307 year: 2004 ident: 10.1016/j.pmpp.2021.101754_bib68 article-title: Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production publication-title: Plant Physiol. doi: 10.1104/pp.103.028712 – volume: 123 start-page: 60 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib59 article-title: Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici publication-title: Biol. Control doi: 10.1016/j.biocontrol.2018.04.018 – volume: 125 start-page: 35 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib111 article-title: Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.12.004 – volume: 100 start-page: 310 year: 1969 ident: 10.1016/j.pmpp.2021.101754_bib44 article-title: Mechanism of action of the antifungal antibiotic pyrrolnitrin publication-title: J. Bacteriol. doi: 10.1128/jb.100.1.310-318.1969 – volume: 38 start-page: 990 year: 2006 ident: 10.1016/j.pmpp.2021.101754_bib108 article-title: Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2005.08.030 – volume: 16 start-page: 177 year: 2015 ident: 10.1016/j.pmpp.2021.101754_bib82 article-title: Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12170 – volume: 9 start-page: 443 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib41 article-title: Microbial pyrrolnitrin: natural metabolite with immense practical utility publication-title: Biomolecules doi: 10.3390/biom9090443 – volume: 162 start-page: 1715 year: 2016 ident: 10.1016/j.pmpp.2021.101754_bib27 article-title: Bacterial hybrid histidine kinases in plant-bacteria interactions publication-title: Microbiol. doi: 10.1099/mic.0.000370 – volume: 60 start-page: 268 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib99 article-title: Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201900347 – volume: 14 start-page: 517 year: 2021 ident: 10.1016/j.pmpp.2021.101754_bib94 article-title: Membrane disruption of Fusarium oxysporum f. sp. niveum induced by myriocin from Bacillus amyloliquefaciens LZN01 publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.13659 – volume: 6 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib119 article-title: Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens publication-title: Elife doi: 10.7554/eLife.22835 – volume: 20 start-page: 1037 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib87 article-title: Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12809 – volume: 38 start-page: 141 year: 2010 ident: 10.1016/j.pmpp.2021.101754_bib106 article-title: Bacillus pumilus SG2 chitinases induced and regulated by chitin, show inhibitory activity against Fusarium graminearum and Bipolaris sorokiniana publication-title: Phytoparasitica doi: 10.1007/s12600-009-0078-8 – volume: 174 start-page: 186 year: 1992 ident: 10.1016/j.pmpp.2021.101754_bib107 article-title: Three N-terminal domains of β-1,3-glucanase A1 are involved in binding to insoluble β-1,3-glucan publication-title: J. Bacteriol. doi: 10.1128/jb.174.1.186-190.1992 – volume: 251 start-page: 70 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib97 article-title: Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations publication-title: Planta doi: 10.1007/s00425-020-03357-7 – volume: 6 start-page: 195 year: 2011 ident: 10.1016/j.pmpp.2021.101754_bib110 article-title: Novel approaches of beneficial Pseudomonas in mitigation of plant diseases - an appraisal publication-title: J. Plant Interact. doi: 10.1080/17429145.2010.541944 – volume: 180 start-page: 1939 year: 1998 ident: 10.1016/j.pmpp.2021.101754_bib42 article-title: Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens publication-title: J. Bacteriol. doi: 10.1128/JB.180.7.1939-1943.1998 – volume: 65 start-page: 330 year: 2012 ident: 10.1016/j.pmpp.2021.101754_bib104 article-title: Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato publication-title: Curr. Microbiol. doi: 10.1007/s00284-012-0160-1 – volume: 6 year: 2015 ident: 10.1016/j.pmpp.2021.101754_bib125 article-title: Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil publication-title: mBio doi: 10.1128/mBio.00079-15 – volume: 143 start-page: 104160 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib70 article-title: Biocontrol potential of the endophytic Bacillus amyloliquefaciens YN201732 against tobacco powdery mildew and its growth promotion publication-title: Biol. Control doi: 10.1016/j.biocontrol.2019.104160 – volume: 128 start-page: 1583 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib78 article-title: Bacillus species in soil as a natural resource for plant health and nutrition publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14506 – volume: 56 start-page: 845 year: 2005 ident: 10.1016/j.pmpp.2021.101754_bib8 article-title: Bacillus subtilis antibiotics: structures, syntheses and specific functions publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.04587.x – volume: 4 start-page: 223 year: 2008 ident: 10.1016/j.pmpp.2021.101754_bib63 article-title: Biocontrol activity of different species of Pseudomonas against phytopathogenic fungi in vivo and in vitro conditions publication-title: Int. J. Biotechnol. Biochem. – volume: 8 start-page: 1102 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib114 article-title: The effect of phenazine-1-carboxylic acid on mycelial growth of Botrytis cinerea produced by Pseudomonas aeruginosa LV strain publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01102 – volume: 128 start-page: 528 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib69 article-title: Bacterial communities of plum phyllosphere and characterization of indigenous antagonistic Bacillus thuringiensis R3/3 isolate publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14488 – volume: 285 start-page: 44 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib2 article-title: Biological control of plant pathogens by Bacillus species publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2018.07.044 – volume: 10 start-page: 544 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib128 article-title: In silico and genetic analyses of cyclic lipopeptide synthetic gene clusters in Pseudomonas sp. 11K1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00544 – volume: 51 start-page: 821 year: 2006 ident: 10.1016/j.pmpp.2021.101754_bib137 article-title: Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut publication-title: BioControl doi: 10.1007/s10526-006-9000-1 – volume: 123 start-page: 5291 issue: 25 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib86 article-title: Effect of triclosan and chloroxylenol on bacterial membranes publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b02588 – volume: 145 start-page: 594 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib109 article-title: Identification and characterization of a serine protease from Bacillus licheniformis W10: a potential antifungal agent publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.12.216 – volume: 67 start-page: 1147 year: 2011 ident: 10.1016/j.pmpp.2021.101754_bib47 article-title: Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action publication-title: Pest Manag. Sci. doi: 10.1002/ps.2165 – volume: 34 start-page: 1037 year: 2010 ident: 10.1016/j.pmpp.2021.101754_bib17 article-title: Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2010.00221.x – volume: 37 start-page: 29 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib50 article-title: Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads publication-title: Nat. Prod. Rep. doi: 10.1039/C9NP00022D – volume: 33 start-page: 483 year: 1988 ident: 10.1016/j.pmpp.2021.101754_bib62 article-title: Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/0885-5765(88)90013-6 – volume: 68 start-page: 1306 year: 2012 ident: 10.1016/j.pmpp.2021.101754_bib80 article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L publication-title: Pest Manag. Sci. doi: 10.1002/ps.3301 – volume: 161 start-page: 464 year: 2010 ident: 10.1016/j.pmpp.2021.101754_bib24 article-title: Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2010.04.007 – volume: 28 start-page: 800 year: 2015 ident: 10.1016/j.pmpp.2021.101754_bib124 article-title: The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE∗1-1-14 is involved in pathogen suppression and root colonization publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-12-14-0406-R – volume: 69 start-page: 2051 year: 2021 ident: 10.1016/j.pmpp.2021.101754_bib91 article-title: Study on the biocontrol potential of antifungal peptides produced by Bacillus velezensis against Fusarium solani that infects the passion fruit passiflora edulis publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c06106 – volume: 49 start-page: 307 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib49 article-title: Antibiotics of Pseudomonas protegens FD6 are essential for biocontrol activity publication-title: Australas. Plant Pathol. doi: 10.1007/s13313-020-00696-7 – volume: 12 start-page: 685 year: 2013 ident: 10.1016/j.pmpp.2021.101754_bib19 article-title: Comparative genome analysis of Bacillus spp. and its relationship with bioactive nonribosomal peptide production publication-title: Phytochemistry Rev. doi: 10.1007/s11101-013-9278-4 – volume: 173 start-page: 104777 year: 2021 ident: 10.1016/j.pmpp.2021.101754_bib33 article-title: Antifungal effect of volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 on oxidative stress and mitochondrial dysfunction of Ceratocystis fimbriata publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2021.104777 – volume: 6 start-page: 566 year: 2015 ident: 10.1016/j.pmpp.2021.101754_bib98 article-title: Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00566 – volume: 22 start-page: 135 year: 1969 ident: 10.1016/j.pmpp.2021.101754_bib45 article-title: On the mode of action of a new antifungal antibiotic, pyrrolnitrin publication-title: J. Antibiot. doi: 10.7164/antibiotics.22.135 – volume: 134 start-page: 72 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib129 article-title: Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants publication-title: Biol. Control doi: 10.1016/j.biocontrol.2019.04.006 – volume: 8 start-page: 925 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib3 article-title: The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00925 – volume: 117 start-page: 39 year: 2015 ident: 10.1016/j.pmpp.2021.101754_bib112 article-title: Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv publication-title: oryzae, Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2014.10.006 – volume: 6 start-page: 693 year: 2015 ident: 10.1016/j.pmpp.2021.101754_bib134 article-title: Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00693 – start-page: 487 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib6 article-title: Antimicrobial peptides of Bacillus species: biosynthesis, mode of action and their role in plant disease management – volume: 32 start-page: 612 year: 2015 ident: 10.1016/j.pmpp.2021.101754_bib13 article-title: Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic publication-title: N. Biotech. doi: 10.1016/j.nbt.2015.01.006 – volume: 22 start-page: 1091 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib76 article-title: Assessment of plant defence induction and biocontrol potential of Bacillus megaterium wr101 against Meloidogyne javanica publication-title: Nematology doi: 10.1163/15685411-bja10013 – volume: 9 start-page: 913 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib132 article-title: Discovery of phloeophagus beetles as a source of Pseudomonas strains that produce potentially new bioactive substances and description of Pseudomonas bohemica sp. nov publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00913 – volume: 219 start-page: 123 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib29 article-title: Pseudomonas protegens MP12: a plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.11.003 – volume: 124 start-page: 82 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib60 article-title: Biotic aspects involved in the control of damping-off producing agents: the role of the thermotolerant microbiota isolated from composting of plant waste publication-title: Biol. Control doi: 10.1016/j.biocontrol.2018.04.015 – volume: 68 start-page: 3416 year: 2002 ident: 10.1016/j.pmpp.2021.101754_bib123 article-title: Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.7.3416-3423.2002 – volume: 11 start-page: 48 year: 2021 ident: 10.1016/j.pmpp.2021.101754_bib36 article-title: Profiling of antimicrobial metabolites of plant growth promoting Pseudomonas spp. isolated from different plant hosts publication-title: 3 Biotech doi: 10.1007/s13205-020-02585-8 – volume: 5 start-page: 173 year: 2016 ident: 10.1016/j.pmpp.2021.101754_bib58 article-title: Potential of Bacillus isolates as bio-control agents against some fungal phytopathogens publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2016.02.001 – volume: 35 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib75 article-title: Biocontrol of tomato bacterial wilt by foliar spray application of a novel strain of endophytic Bacillus sp publication-title: Microb. Environ. doi: 10.1264/jsme2.ME20078 – volume: 10 start-page: 601 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib133 article-title: Genetic potential of the biocontrol agent Pseudomonas brassicacearum (Formerly P. trivialis) 3Re2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics publication-title: Genes doi: 10.3390/genes10080601 – volume: 17 start-page: 1434 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib51 article-title: Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17041434 – volume: 7 start-page: 488 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib83 article-title: Biocontrol potential of a novel endophytic bacterium from mulberry (Morus) tree publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00488 – volume: 63 start-page: 442 year: 2010 ident: 10.1016/j.pmpp.2021.101754_bib135 article-title: Carbon source regulation of antibiotic production publication-title: J. Antibiot. (Tokyo) doi: 10.1038/ja.2010.78 – volume: 137 start-page: 154 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib74 article-title: Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.01.015 – volume: 33 start-page: 1042 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib93 article-title: Antifungal activity and functional components of cell-free supernatant from Bacillus amyloliquefaciens LZN01 inhibit Fusarium oxysporum f. sp. niveum growth publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2019.1637279 – volume: 42 start-page: 490 year: 2014 ident: 10.1016/j.pmpp.2021.101754_bib101 article-title: The carbohydrate-active enzymes database (CAZy) in 2013 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1178 – volume: 24 start-page: 1540 year: 2011 ident: 10.1016/j.pmpp.2021.101754_bib89 article-title: The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-06-11-0162 – volume: 10 start-page: 2287 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib4 article-title: Phyllosphere fungal communities of plum and antifungal activity of indigenous phenazine-producing Pseudomonas synxantha against Monilinia laxa publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02287 – volume: 44 start-page: 417 year: 2006 ident: 10.1016/j.pmpp.2021.101754_bib34 article-title: Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev.phyto.44.013106.145710 – volume: 11 start-page: 1196 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib79 article-title: Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01196 – volume: 8 year: 2012 ident: 10.1016/j.pmpp.2021.101754_bib131 article-title: Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002784 – volume: 110 start-page: 1010 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib120 article-title: Pseudomonas synxantha 2-79 transformed with pyrrolnitrin biosynthesis genes has improved biocontrol activity against soilborne pathogens of wheat and canola publication-title: Phytopathology doi: 10.1094/PHYTO-09-19-0367-R – volume: 5 start-page: 71 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib61 article-title: A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.01.001 – volume: 10 start-page: 719 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib139 article-title: Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: the case study of PcPCL1606 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00719 – volume: 8 start-page: 1895 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib28 article-title: Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01895 – volume: 65 start-page: 312 year: 2013 ident: 10.1016/j.pmpp.2021.101754_bib96 article-title: Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi publication-title: Biol. Control doi: 10.1016/j.biocontrol.2013.03.012 – volume: 25 start-page: 1211 year: 1993 ident: 10.1016/j.pmpp.2021.101754_bib67 article-title: Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(93)90217-Y – volume: 12 start-page: 141 year: 2011 ident: 10.1016/j.pmpp.2021.101754_bib12 article-title: Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12010141 – volume: 35 start-page: 201 year: 2011 ident: 10.1016/j.pmpp.2021.101754_bib5 article-title: Diversity and applications of Bacillus bacteriocins publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2010.00244.x – volume: 39 start-page: 99 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib85 article-title: Antifungal potential of plant growth promoting Bacillus species against blossom blight of rose publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-019-09966-1 – volume: 17 start-page: 882 year: 2016 ident: 10.1016/j.pmpp.2021.101754_bib11 article-title: Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species publication-title: BMC Genom. doi: 10.1186/s12864-016-3224-y – volume: 157 start-page: 503 year: 2003 ident: 10.1016/j.pmpp.2021.101754_bib37 article-title: Phenazines and their role in biocontrol by Pseudomonas bacteria publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00686.x – volume: 16 start-page: 14 year: 2008 ident: 10.1016/j.pmpp.2021.101754_bib9 article-title: More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42 publication-title: J. Mol. Microbiol. Biotechnol. – volume: 39 start-page: 869 year: 2013 ident: 10.1016/j.pmpp.2021.101754_bib20 article-title: Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens publication-title: J. Chem. Ecol. doi: 10.1007/s10886-013-0319-7 – volume: 159 start-page: 111022 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib90 article-title: Biocontrol and the mechanisms of Bacillus sp. w176 against postharvest green mold in citrus publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2019.111022 – volume: 15 start-page: 149 year: 2011 ident: 10.1016/j.pmpp.2021.101754_bib38 article-title: Redox active secondary metabolites publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2010.10.015 – volume: 147 start-page: 46 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib115 article-title: Investigating the antifungal activity and mechanism of a microbial pesticide shenqinmycin against Phoma sp publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2017.08.014 – volume: 274 start-page: 129819 year: 2021 ident: 10.1016/j.pmpp.2021.101754_bib140 article-title: Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129819 – volume: 147 start-page: 32 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib117 article-title: Effects and inhibition mechanism of phenazine-1-carboxamide on the mycelial morphology and ultrastructure of Rhizoctonia solani publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2017.10.006 – volume: 102 start-page: 433 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib95 article-title: Biocontrol potential of Bacillus subtilis IBFCBF-4 against Fusarium wilt of watermelon publication-title: J. Plant Pathol. doi: 10.1007/s42161-019-00457-6 – start-page: 319 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib21 article-title: Exploring the beneficial endophytic microorganisms for plant growth promotion and crop protection: elucidation of some bioactive secondary metabolites involved in both effects – volume: 69 start-page: M131 year: 2006 ident: 10.1016/j.pmpp.2021.101754_bib56 article-title: Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds publication-title: J. Food Sci. doi: 10.1111/j.1365-2621.2004.tb10721.x – volume: 147 start-page: 104288 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib92 article-title: Evaluation of the biocontrol potential of Bacillus sp publication-title: WB against Fusarium oxysporum f. sp. niveum, Biol. Control. – volume: 26 start-page: 1408 year: 2009 ident: 10.1016/j.pmpp.2021.101754_bib25 article-title: Genomics of secondary metabolite production by Pseudomonas spp publication-title: Nat. Prod. Rep. doi: 10.1039/b817075b – volume: 4 start-page: 134 year: 1994 ident: 10.1016/j.pmpp.2021.101754_bib66 article-title: The production and enzymatic properties of extracellular chitinase from Pseudomonas stutzeri YPL-1, as a biocontrol agent publication-title: J. Microbiol. Biotechnol. – volume: 25 start-page: 6149 year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib35 article-title: Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2017.01.002 – volume: 16 start-page: 2267 year: 2014 ident: 10.1016/j.pmpp.2021.101754_bib32 article-title: The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 mediates in vitro spreading motility and plant growth promotion publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12469 – volume: 8 start-page: 896 year: 2016 ident: 10.1016/j.pmpp.2021.101754_bib54 article-title: Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12454 – volume: 21 start-page: 8740 year: 2020 ident: 10.1016/j.pmpp.2021.101754_bib118 article-title: Genome mining and evaluation of the biocontrol potential of Pseudomonas fluorescens brz63, a new endophyte of oilseed rape (Brassica napus L.) against fungal pathogens publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21228740 – volume: 1 start-page: 257 year: 2016 ident: 10.1016/j.pmpp.2021.101754_bib23 article-title: Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture – volume: 23 start-page: 2139 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib122 article-title: Design, synthesis, phloem mobility, and bioactivities of a series of phenazine-1-carboxylic acid-amino acid conjugates publication-title: Molecules doi: 10.3390/molecules23092139 – volume: 27 start-page: 956 year: 2013 ident: 10.1016/j.pmpp.2021.101754_bib31 article-title: Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives publication-title: Nat. Prod. Res. doi: 10.1080/14786419.2012.696257 – volume: 31 start-page: 560 year: 2018 ident: 10.1016/j.pmpp.2021.101754_bib77 article-title: Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-11-17-0273-R – year: 2017 ident: 10.1016/j.pmpp.2021.101754_bib73 article-title: Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato publication-title: PeerJ doi: 10.7717/peerj.3107 – volume: 13 start-page: 238 year: 1999 ident: 10.1016/j.pmpp.2021.101754_bib43 article-title: Recent research on pyrrole alkaloids – volume: 10 start-page: 901 year: 2019 ident: 10.1016/j.pmpp.2021.101754_bib130 article-title: Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00901 – volume: 10 start-page: 293 year: 2010 ident: 10.1016/j.pmpp.2021.101754_bib39 article-title: Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria publication-title: J. Soil Sci. Plant Nutr. doi: 10.4067/S0718-95162010000100006 – volume: 6 start-page: 32266 year: 2016 ident: 10.1016/j.pmpp.2021.101754_bib121 article-title: Novel synthesized 2, 4-DAPG analogues: antifungal activity, mechanism and toxicology publication-title: Sci. Rep. doi: 10.1038/srep32266 – volume: 55 start-page: 7 year: 2012 ident: 10.1016/j.pmpp.2021.101754_bib71 article-title: Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.03.003 – volume: 148 start-page: 1996 year: 2008 ident: 10.1016/j.pmpp.2021.101754_bib53 article-title: Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response publication-title: Plant Physiol. doi: 10.1104/pp.108.127878 |
SSID | ssj0009411 |
Score | 2.6679142 |
SecondaryResourceType | review_article |
Snippet | Biocontrol strains from the genera Bacillus and Pseudomonas and their bioactive secondary metabolites may be considered beneficial for plant health, since they... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101754 |
SubjectTerms | antibiosis antimicrobial properties Antimicrobials Bacillus Bacillus (bacteria) Beneficial microorganisms Biocontrol biological control biomass cell walls chitinase disease control ethylene growth promotion host plants immune system iturin jasmonic acid mycelium Nematoda phenazines plant growth plant pathogenic fungi plant pathology polyketides proteinases Pseudomonas salicylic acid secondary metabolites species richness sporulation surfactin virulence |
Title | Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms - A review |
URI | https://dx.doi.org/10.1016/j.pmpp.2021.101754 https://www.proquest.com/docview/2636449206 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pi9UwEA7L6kEPoqvi-mOJ4E3ie22TtDm-XVyeiougC3sL0yaVLu_1lW274MW_wD_amTRVFNyDx5ZkKJnJN5Nm5hvGXmlwGlKvhFFOCQS8pQDj8eBaupqa1FRlaAf08Uyvz-X7C3Wxx07mWhhKq4zYP2F6QOv4ZhFXc9E1zeIz7g-F0TL6n-D4qaJcypys_M3332keRoYevDRY0OhYODPleHXbjjgr0yTQDSn5L-f0F0wH33N6n92LQSNfTd_1gO359oDdXX29isQZ_oDdPt5hmPftIftBbYgGAXHZvePHUDWbzdhzaB3_1PvR7dD2gJ6HZtsEJiaUThUO14FflTct70gKj9c3vB-7mDDb8usG-ETdRPrlMdedbz3VEDf9tueCr_hUEvOInZ--_XKyFrHlgqgwUhlEnqSIjkVSaWeMU1meQoI-HTDMcpDXpsx8Umg89jhY1kVW14mBGvLMp7r0gPDwmO23u9Y_YbxG4KyM1JAvpVQmA1UleWmKDFElL7Q8ZMm81raKfOTUFmNj58SzS0v6saQfO-nnkL3-Naeb2DhuHK1mFdo_bMqiu7hx3stZ3xY3G92gQOt3Y29TnWH8aNKlfvqfsp-xOykVUISfOM_Z_nA1-hcY1gzlUbDbI3Zr9e7D-uwnVXz4mg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VggQcEBQqytNIcEJmN07sxAcOW6Da0oeQaKXejBM7KGg3GzVJUS_8Av4Nf5Cx44BAogekHhPFluV5fON45huA50IboZnlVHLDKTq8KdXS4sE1N6VrUlPkvh3QwaGYHyfvT_jJGvwYa2FcWmXw_YNP9946vJmE3Zw0VTX5iPbBMVpG_PHAn4bMyj17_hXPbe3r3bco5BeM7bw7ejOnobUALRCRO5pGDL1AFhXCSGl4nDIdIXZpDCeMTkuZxzbKBIb3Rk_LLC7LSOpSp7FlIrcazQDnvQJXE3QXrm3Cq2-_80pk4pv-utVRt7xQqTMklTXLxpFkssjzG_HkX2j4Fy54sNu5DbdClEpmw0bcgTVbb8DN2efTwNRhN-Da9grjyvO78N31PeqoDnK2hmzrolos-pbo2pAPre3NCpVdu-euWlae-glndyUVZ57QlVQ1adwsJNwXkbZvQoZuTc4qTQauKKdQJCTXk6V1RctVu2wJJTMy1ODcg-NLEcQmrNer2t4HUqKnLmQidDpNEi5jzYsozWUWoxtLM5FsQTTutSoCAbrrw7FQY6bbF-Xko5x81CCfLXj5a0wz0H9c-DUfRaj-UGKF-HThuGejvBVat7uy0bVd9a1iIsaAVbKpePCfcz-F6_Ojg321v3u49xBuMFe94f8gPYL17rS3jzGm6vInXocJfLpso_kJTpEzfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant-associated+Bacillus+and+Pseudomonas+antimicrobial+activities+in+plant+disease+suppression+via+biological+control+mechanisms+-+A+review&rft.jtitle=Physiological+and+molecular+plant+pathology&rft.au=Dimki%C4%87%2C+Ivica&rft.au=Janakiev%2C+Tamara&rft.au=Petrovi%C4%87%2C+Marija&rft.au=Degrassi%2C+Giuliano&rft.date=2022-01-01&rft.issn=0885-5765&rft.volume=117+p.101754-&rft_id=info:doi/10.1016%2Fj.pmpp.2021.101754&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-5765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-5765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-5765&client=summon |