A rank-based high-dimensional test for equality of mean vectors
The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the one-dimensional data are not normally distributed. The new rank-based nonparametric tests for equality of mean vectors are proposed in the high-dimensional...
Saved in:
Published in | Computational statistics & data analysis Vol. 173; p. 107495 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the one-dimensional data are not normally distributed. The new rank-based nonparametric tests for equality of mean vectors are proposed in the high-dimensional settings. To overcome the technical challenges in data sorting, the new statistics are constructed by taking the sum of the Wilcoxon signed-rank or Wilcoxon-Mann-Whitney test statistics from each dimension of the data. The asymptotic properties of the proposed test statistics are investigated under the null and local alternative hypotheses. Simulation studies show that the new tests perform as well as the state-of-the-art methods when the high-dimensional data are normally distributed, but they turn out to be more powerful when the normality assumption is violated. Finally, the new testing methods are also applied to a human peripheral blood mononuclear cells gene expression data set for demonstrating their usefulness in practice. |
---|---|
AbstractList | The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the one-dimensional data are not normally distributed. The new rank-based nonparametric tests for equality of mean vectors are proposed in the high-dimensional settings. To overcome the technical challenges in data sorting, the new statistics are constructed by taking the sum of the Wilcoxon signed-rank or Wilcoxon-Mann-Whitney test statistics from each dimension of the data. The asymptotic properties of the proposed test statistics are investigated under the null and local alternative hypotheses. Simulation studies show that the new tests perform as well as the state-of-the-art methods when the high-dimensional data are normally distributed, but they turn out to be more powerful when the normality assumption is violated. Finally, the new testing methods are also applied to a human peripheral blood mononuclear cells gene expression data set for demonstrating their usefulness in practice. |
ArticleNumber | 107495 |
Author | Xu, Wangli Ouyang, Yanyan Liu, Jiamin Tong, Tiejun |
Author_xml | – sequence: 1 givenname: Yanyan surname: Ouyang fullname: Ouyang, Yanyan organization: Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, PR China – sequence: 2 givenname: Jiamin surname: Liu fullname: Liu, Jiamin organization: Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, PR China – sequence: 3 givenname: Tiejun surname: Tong fullname: Tong, Tiejun organization: Department of Mathematics, Hong Kong Baptist University, Hong Kong – sequence: 4 givenname: Wangli orcidid: 0000-0003-4983-9950 surname: Xu fullname: Xu, Wangli email: wlxu@ruc.edu.cn organization: Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, PR China |
BookMark | eNp9kE1LAzEQhoNUsFb_gKccvWxNstlNAoKU4hcUvOg5pMmsTd0mbbIt9N-7ZT156GlgeJ9h3ucajUIMgNAdJVNKaP2wntrszJQRxvqF4Kq6QGMqBStEWbERGvchUSguyit0nfOaEMK4kGP0NMPJhJ9iaTI4vPLfq8L5DYTsYzAt7iB3uIkJw25vWt8dcWzwBkzAB7BdTPkGXTamzXD7Nyfo6-X5c_5WLD5e3-ezRWFLpbqidkBroJRKS0vFlTNEccfBGSVkbZbCWl41XEpDQTRAJLW2dEtKOWPc1a6coPvh7jbF3b7_Sm98ttC2JkDcZ83qmihFeVn1UTlEbYo5J2i09Z3p-kJdMr7VlOiTM73WJ2f65EwPznqU_UO3yW9MOp6HHgcI-v4HD0ln6yFYcD71krSL_hz-C9H4hts |
CitedBy_id | crossref_primary_10_1016_j_asoc_2022_109936 crossref_primary_10_1016_j_spl_2024_110226 crossref_primary_10_20965_jaciii_2025_p0379 |
Cites_doi | 10.1111/j.1541-0420.2006.00533.x 10.1214/16-AOS1512 10.1214/13-AOS1161 10.1111/j.1467-9892.2010.00679.x 10.1198/jasa.2011.ap10599 10.1214/09-AOS716 10.1016/j.jmva.2006.11.002 10.1093/bioinformatics/btm583 10.1080/01621459.2017.1371024 10.1214/19-AOS1869 10.1080/01621459.2014.988215 10.1016/j.jmva.2015.08.022 10.3150/17-BEJ939 10.1080/01621459.2014.934826 10.1080/03610926.2011.581786 10.14490/jjss.37.53 10.1111/biom.12984 10.1007/s12020-007-0007-x 10.1214/19-AOS1904 10.1016/j.csda.2016.01.006 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.csda.2022.107495 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1872-7352 |
ExternalDocumentID | 10_1016_j_csda_2022_107495 S0167947322000755 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c399t-6de16e1118c13949da094d4eda9786ab7cc45f488a1e7fe081cc3db114224d6d3 |
IEDL.DBID | .~1 |
ISSN | 0167-9473 |
IngestDate | Fri Jul 11 07:52:19 EDT 2025 Tue Jul 01 02:24:37 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Fri Feb 23 02:40:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-dimensional data Wilcoxon signed-rank test Equality of means Wilcoxon-Mann-Whitney test |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-6de16e1118c13949da094d4eda9786ab7cc45f488a1e7fe081cc3db114224d6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4983-9950 |
PQID | 2660991435 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2660991435 crossref_citationtrail_10_1016_j_csda_2022_107495 crossref_primary_10_1016_j_csda_2022_107495 elsevier_sciencedirect_doi_10_1016_j_csda_2022_107495 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Computational statistics & data analysis |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chernozhukov, Chetverikov, Kato (br0060) 2013; 41 Li, Aue, Paul, Peng, Wang (br0120) 2020; 48 Srivastava (br0140) 2007; 37 Chen, Paul, Prentice, Wang (br0040) 2011; 106 Hu, Tong, Genton (br0110) 2019; 75 Brockwell, Davis (br0020) 2009 Mcmurry, Politis (br0130) 2010; 31 Yamada, Srivastava (br0200) 2012; 41 Wang, Shao (br0170) 2020; 48 Dan, Recknor, Reecy (br0070) 2008; 24 Wu, Wang, Cui, Maianu, Rhees, Rosinski, So, Willi, Osier, Hill (br0180) 2007; 31 Gregory, Carroll, Baladandayuthapani, Lahiri (br0090) 2015; 110 Bai, Saranadasa (br0010) 1996; 6 Chen, Qin (br0050) 2010; 38 Wang, Peng, Li (br0160) 2015; 110 Cai, Liu, Xia (br0030) 2013; 76 Zhao, Xu (br0230) 2016; 99 Dong, Pang, Tong, Genton (br0080) 2016; 143 Zhang, Cheng (br0220) 2018; 24 Wu, Genton, Stefanski (br0190) 2006; 62 Zhang, Wu (br0210) 2017; 45 Hall, Heyde (br0100) 1980 Srivastava, Du (br0150) 2008; 99 Zoh, Sarkar, Carroll, Mallick (br0240) 2018; 113 Zhang (10.1016/j.csda.2022.107495_br0210) 2017; 45 Cai (10.1016/j.csda.2022.107495_br0030) 2013; 76 Zhang (10.1016/j.csda.2022.107495_br0220) 2018; 24 Wu (10.1016/j.csda.2022.107495_br0180) 2007; 31 Dong (10.1016/j.csda.2022.107495_br0080) 2016; 143 Li (10.1016/j.csda.2022.107495_br0120) 2020; 48 Zoh (10.1016/j.csda.2022.107495_br0240) 2018; 113 Chernozhukov (10.1016/j.csda.2022.107495_br0060) 2013; 41 Wang (10.1016/j.csda.2022.107495_br0160) 2015; 110 Dan (10.1016/j.csda.2022.107495_br0070) 2008; 24 Bai (10.1016/j.csda.2022.107495_br0010) 1996; 6 Wu (10.1016/j.csda.2022.107495_br0190) 2006; 62 Zhao (10.1016/j.csda.2022.107495_br0230) 2016; 99 Wang (10.1016/j.csda.2022.107495_br0170) 2020; 48 Brockwell (10.1016/j.csda.2022.107495_br0020) 2009 Hall (10.1016/j.csda.2022.107495_br0100) 1980 Hu (10.1016/j.csda.2022.107495_br0110) 2019; 75 Srivastava (10.1016/j.csda.2022.107495_br0150) 2008; 99 Gregory (10.1016/j.csda.2022.107495_br0090) 2015; 110 Mcmurry (10.1016/j.csda.2022.107495_br0130) 2010; 31 Chen (10.1016/j.csda.2022.107495_br0040) 2011; 106 Chen (10.1016/j.csda.2022.107495_br0050) 2010; 38 Yamada (10.1016/j.csda.2022.107495_br0200) 2012; 41 Srivastava (10.1016/j.csda.2022.107495_br0140) 2007; 37 |
References_xml | – volume: 99 start-page: 386 year: 2008 end-page: 402 ident: br0150 article-title: A test for the mean vector with fewer observations than the dimension publication-title: J. Multivar. Anal. – volume: 113 start-page: 1733 year: 2018 end-page: 1741 ident: br0240 article-title: A powerful bayesian test for equality of means in high dimensions publication-title: J. Am. Stat. Assoc. – volume: 143 start-page: 127 year: 2016 end-page: 142 ident: br0080 article-title: Shrinkage-based diagonal Hotelling's tests for high-dimensional small sample size data publication-title: J. Multivar. Anal. – volume: 110 start-page: 1658 year: 2015 end-page: 1669 ident: br0160 article-title: A high-dimensional nonparametric multivariate test for mean vector publication-title: J. Am. Stat. Assoc. – volume: 76 start-page: 349 year: 2013 end-page: 372 ident: br0030 article-title: Two-sample test of high dimensional means under dependence publication-title: J. R. Stat. Soc., Ser. B – volume: 41 start-page: 2786 year: 2013 end-page: 2819 ident: br0060 article-title: Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors publication-title: Ann. Stat. – volume: 45 start-page: 1895 year: 2017 end-page: 1919 ident: br0210 article-title: Gaussian approximation for high dimensional time series publication-title: Ann. Stat. – volume: 106 start-page: 1345 year: 2011 end-page: 1360 ident: br0040 article-title: A regularized Hotelling's publication-title: J. Am. Stat. Assoc. – volume: 24 start-page: 2640 year: 2018 end-page: 2675 ident: br0220 article-title: Gaussian approximation for high dimensional vector under physical dependence publication-title: Bernoulli – volume: 38 start-page: 808 year: 2010 end-page: 835 ident: br0050 article-title: A two-sample test for high-dimensional data with applications to gene-set testing publication-title: Ann. Stat. – volume: 31 start-page: 5 year: 2007 end-page: 17 ident: br0180 article-title: The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle publication-title: Endocrine – volume: 62 start-page: 877 year: 2006 end-page: 885 ident: br0190 article-title: A multivariate two-sample mean test for small sample size and missing data publication-title: Biometrics – volume: 99 start-page: 91 year: 2016 end-page: 104 ident: br0230 article-title: A generalized likelihood ratio test for normal mean when publication-title: Comput. Stat. Data Anal. – volume: 41 start-page: 2602 year: 2012 end-page: 2615 ident: br0200 article-title: A test for multivariate analysis of variance in high dimension publication-title: Commun. Stat., Theory Methods – volume: 24 start-page: 192 year: 2008 end-page: 201 ident: br0070 article-title: Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis publication-title: Bioinformatics – volume: 75 start-page: 256 year: 2019 end-page: 267 ident: br0110 article-title: Diagonal likelihood ratio test for equality of mean vectors in high-dimensional data publication-title: Biometrics – volume: 48 start-page: 2728 year: 2020 end-page: 2758 ident: br0170 article-title: Hypothesis testing for high-dimensional time series via self-normalization publication-title: Ann. Stat. – volume: 48 start-page: 1815 year: 2020 end-page: 1847 ident: br0120 article-title: An adaptable generalization of Hotelling's publication-title: Ann. Stat. – year: 2009 ident: br0020 article-title: Time Series: Theory and Methods publication-title: Springer Series in Statistics – volume: 31 start-page: 471 year: 2010 end-page: 482 ident: br0130 article-title: Banded and tapered estimates for autocovariance matrices and the linear process bootstrap publication-title: J. Time Ser. Anal. – volume: 37 start-page: 53 year: 2007 end-page: 86 ident: br0140 article-title: Multivariate theory for analyzing high dimensional data publication-title: J. Japan Statist. Soc. – year: 1980 ident: br0100 article-title: Martingale Limit Theory and Its Application – volume: 6 start-page: 311 year: 1996 end-page: 329 ident: br0010 article-title: Effect of high dimension: by an example of a two sample problem publication-title: Stat. Sin. – volume: 110 start-page: 837 year: 2015 end-page: 849 ident: br0090 article-title: A two-sample test for equality of means in high dimension publication-title: J. Am. Stat. Assoc. – volume: 62 start-page: 877 year: 2006 ident: 10.1016/j.csda.2022.107495_br0190 article-title: A multivariate two-sample mean test for small sample size and missing data publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00533.x – volume: 45 start-page: 1895 year: 2017 ident: 10.1016/j.csda.2022.107495_br0210 article-title: Gaussian approximation for high dimensional time series publication-title: Ann. Stat. doi: 10.1214/16-AOS1512 – volume: 41 start-page: 2786 year: 2013 ident: 10.1016/j.csda.2022.107495_br0060 article-title: Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors publication-title: Ann. Stat. doi: 10.1214/13-AOS1161 – volume: 31 start-page: 471 year: 2010 ident: 10.1016/j.csda.2022.107495_br0130 article-title: Banded and tapered estimates for autocovariance matrices and the linear process bootstrap publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.2010.00679.x – volume: 106 start-page: 1345 year: 2011 ident: 10.1016/j.csda.2022.107495_br0040 article-title: A regularized Hotelling's T2 test for pathway analysis in proteomic studies publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2011.ap10599 – volume: 38 start-page: 808 year: 2010 ident: 10.1016/j.csda.2022.107495_br0050 article-title: A two-sample test for high-dimensional data with applications to gene-set testing publication-title: Ann. Stat. doi: 10.1214/09-AOS716 – volume: 99 start-page: 386 year: 2008 ident: 10.1016/j.csda.2022.107495_br0150 article-title: A test for the mean vector with fewer observations than the dimension publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2006.11.002 – volume: 24 start-page: 192 year: 2008 ident: 10.1016/j.csda.2022.107495_br0070 article-title: Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm583 – year: 2009 ident: 10.1016/j.csda.2022.107495_br0020 article-title: Time Series: Theory and Methods – volume: 113 start-page: 1733 year: 2018 ident: 10.1016/j.csda.2022.107495_br0240 article-title: A powerful bayesian test for equality of means in high dimensions publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1371024 – volume: 48 start-page: 1815 year: 2020 ident: 10.1016/j.csda.2022.107495_br0120 article-title: An adaptable generalization of Hotelling's T2 test in high dimension publication-title: Ann. Stat. doi: 10.1214/19-AOS1869 – volume: 110 start-page: 1658 year: 2015 ident: 10.1016/j.csda.2022.107495_br0160 article-title: A high-dimensional nonparametric multivariate test for mean vector publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2014.988215 – volume: 143 start-page: 127 year: 2016 ident: 10.1016/j.csda.2022.107495_br0080 article-title: Shrinkage-based diagonal Hotelling's tests for high-dimensional small sample size data publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2015.08.022 – volume: 76 start-page: 349 year: 2013 ident: 10.1016/j.csda.2022.107495_br0030 article-title: Two-sample test of high dimensional means under dependence publication-title: J. R. Stat. Soc., Ser. B – volume: 24 start-page: 2640 year: 2018 ident: 10.1016/j.csda.2022.107495_br0220 article-title: Gaussian approximation for high dimensional vector under physical dependence publication-title: Bernoulli doi: 10.3150/17-BEJ939 – volume: 110 start-page: 837 year: 2015 ident: 10.1016/j.csda.2022.107495_br0090 article-title: A two-sample test for equality of means in high dimension publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2014.934826 – volume: 41 start-page: 2602 year: 2012 ident: 10.1016/j.csda.2022.107495_br0200 article-title: A test for multivariate analysis of variance in high dimension publication-title: Commun. Stat., Theory Methods doi: 10.1080/03610926.2011.581786 – volume: 6 start-page: 311 year: 1996 ident: 10.1016/j.csda.2022.107495_br0010 article-title: Effect of high dimension: by an example of a two sample problem publication-title: Stat. Sin. – volume: 37 start-page: 53 year: 2007 ident: 10.1016/j.csda.2022.107495_br0140 article-title: Multivariate theory for analyzing high dimensional data publication-title: J. Japan Statist. Soc. doi: 10.14490/jjss.37.53 – year: 1980 ident: 10.1016/j.csda.2022.107495_br0100 – volume: 75 start-page: 256 year: 2019 ident: 10.1016/j.csda.2022.107495_br0110 article-title: Diagonal likelihood ratio test for equality of mean vectors in high-dimensional data publication-title: Biometrics doi: 10.1111/biom.12984 – volume: 31 start-page: 5 year: 2007 ident: 10.1016/j.csda.2022.107495_br0180 article-title: The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle publication-title: Endocrine doi: 10.1007/s12020-007-0007-x – volume: 48 start-page: 2728 year: 2020 ident: 10.1016/j.csda.2022.107495_br0170 article-title: Hypothesis testing for high-dimensional time series via self-normalization publication-title: Ann. Stat. doi: 10.1214/19-AOS1904 – volume: 99 start-page: 91 year: 2016 ident: 10.1016/j.csda.2022.107495_br0230 article-title: A generalized likelihood ratio test for normal mean when p is greater than n publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2016.01.006 |
SSID | ssj0002478 |
Score | 2.3721814 |
Snippet | The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107495 |
SubjectTerms | data analysis data collection Equality of means gene expression High-dimensional data humans statistics Wilcoxon signed-rank test Wilcoxon-Mann-Whitney test |
Title | A rank-based high-dimensional test for equality of mean vectors |
URI | https://dx.doi.org/10.1016/j.csda.2022.107495 https://www.proquest.com/docview/2660991435 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3oQf-L8MSJ4k2xrmqbtScZwTMd2UIe7hTRJYaLdcJ3gxb_dvKadKLKDp9KSlPKSfO9L-t73ELpMQq5iHVPCfRUTpignkqqEUK6jpM1kHFFIcB6OeH_M7ibBpIa6VS4MhFWW2O8wvUDr8kmrtGZrPp22HiCAPmahnZGF44NEc8ZCmOXNz-8wD8ocGoO-N7QuE2dcjJdaaNAeorQJcYlQY-Jv5_QLpgvf09tFOyVpxB33XXuoZrJ9tD1cKa4uDtB1B0P5dQJeSWMQISYahPud6Aa2hDLHlp9i47IoP_Asxa9GZvi9OLZfHKJx7-ax2ydlcQSiLKfICdfG48YiVaQsiWOxlnajppnR0u4LuUxCpViQ2uUpPROmxnp-pXydFKmzTHPtH6GNbJaZY4SjdihlpGXos4D5UkqP8th4oV2dSRLItI68yipClcrhUMDiRVQhYs8CLCnAksJZso6uVn3mTjdjbeugMrb4MfrCAvvafhfVyAi7LOBfh8zMbLkQlndY7gtk8OSf7z5FW3Dn4snO0Eb-tjTnloDkSaOYYQ202bkd9EdwHdw_Db4A-fraVQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3RmJDbonjOMmEEKIqj3ahlbpZju1KRZAiGpBY-O3cxUkRCHVgTewoOvvuPifffUfIaRZLk9qUMxmalAnDJdPcZIxLm2TnQqcJxwLnTle2--J2EA3myFVdC4O0yir2-5heRuvqSrOyZvNlNGo-IIE-FTHsyDLxRfNkUYD7YhuDxuc3z4MLH45R4BuHV5UznuRlJhbFhzhvIDERm0z8nZ1-xeky-bTWyGqFGumlf7F1MufyDbLSmUquTjbJxSXF_usM05KlqELMLCr3e9UNCoiyoABQqfNllB90PKTPTuf0vfxuP9ki_dZ176rNqu4IzACoKJi0LpAOQlViAMWJ1Go4qVnhrIaDodRZbIyIhuCfOnDx0EHqNya0WVk7K6y04TZZyMe52yE0OY-1TqyOQxGJUGsdcJm6IAb3zLJID3dJUFtFmUo6HDtYPKmaI_ao0JIKLam8JXfJ2XTOixfOmDk6qo2tfiy_gsg-c95JvTIK_AJ_dujcjd8mCoAHgF9Eg3v_fPYxWWr3Ovfq_qZ7t0-W8Y4nlx2QheL1zR0CGimyo3K3fQFF49pA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rank-based+high-dimensional+test+for+equality+of+mean+vectors&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Ouyang%2C+Yanyan&rft.au=Liu%2C+Jiamin&rft.au=Tong%2C+Tiejun&rft.au=Xu%2C+Wangli&rft.date=2022-09-01&rft.issn=0167-9473&rft.volume=173+p.107495-&rft_id=info:doi/10.1016%2Fj.csda.2022.107495&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |