A rank-based high-dimensional test for equality of mean vectors

The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the one-dimensional data are not normally distributed. The new rank-based nonparametric tests for equality of mean vectors are proposed in the high-dimensional...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 173; p. 107495
Main Authors Ouyang, Yanyan, Liu, Jiamin, Tong, Tiejun, Xu, Wangli
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the one-dimensional data are not normally distributed. The new rank-based nonparametric tests for equality of mean vectors are proposed in the high-dimensional settings. To overcome the technical challenges in data sorting, the new statistics are constructed by taking the sum of the Wilcoxon signed-rank or Wilcoxon-Mann-Whitney test statistics from each dimension of the data. The asymptotic properties of the proposed test statistics are investigated under the null and local alternative hypotheses. Simulation studies show that the new tests perform as well as the state-of-the-art methods when the high-dimensional data are normally distributed, but they turn out to be more powerful when the normality assumption is violated. Finally, the new testing methods are also applied to a human peripheral blood mononuclear cells gene expression data set for demonstrating their usefulness in practice.
AbstractList The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the one-dimensional data are not normally distributed. The new rank-based nonparametric tests for equality of mean vectors are proposed in the high-dimensional settings. To overcome the technical challenges in data sorting, the new statistics are constructed by taking the sum of the Wilcoxon signed-rank or Wilcoxon-Mann-Whitney test statistics from each dimension of the data. The asymptotic properties of the proposed test statistics are investigated under the null and local alternative hypotheses. Simulation studies show that the new tests perform as well as the state-of-the-art methods when the high-dimensional data are normally distributed, but they turn out to be more powerful when the normality assumption is violated. Finally, the new testing methods are also applied to a human peripheral blood mononuclear cells gene expression data set for demonstrating their usefulness in practice.
ArticleNumber 107495
Author Xu, Wangli
Ouyang, Yanyan
Liu, Jiamin
Tong, Tiejun
Author_xml – sequence: 1
  givenname: Yanyan
  surname: Ouyang
  fullname: Ouyang, Yanyan
  organization: Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, PR China
– sequence: 2
  givenname: Jiamin
  surname: Liu
  fullname: Liu, Jiamin
  organization: Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, PR China
– sequence: 3
  givenname: Tiejun
  surname: Tong
  fullname: Tong, Tiejun
  organization: Department of Mathematics, Hong Kong Baptist University, Hong Kong
– sequence: 4
  givenname: Wangli
  orcidid: 0000-0003-4983-9950
  surname: Xu
  fullname: Xu, Wangli
  email: wlxu@ruc.edu.cn
  organization: Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, 100872, PR China
BookMark eNp9kE1LAzEQhoNUsFb_gKccvWxNstlNAoKU4hcUvOg5pMmsTd0mbbIt9N-7ZT156GlgeJ9h3ucajUIMgNAdJVNKaP2wntrszJQRxvqF4Kq6QGMqBStEWbERGvchUSguyit0nfOaEMK4kGP0NMPJhJ9iaTI4vPLfq8L5DYTsYzAt7iB3uIkJw25vWt8dcWzwBkzAB7BdTPkGXTamzXD7Nyfo6-X5c_5WLD5e3-ezRWFLpbqidkBroJRKS0vFlTNEccfBGSVkbZbCWl41XEpDQTRAJLW2dEtKOWPc1a6coPvh7jbF3b7_Sm98ttC2JkDcZ83qmihFeVn1UTlEbYo5J2i09Z3p-kJdMr7VlOiTM73WJ2f65EwPznqU_UO3yW9MOp6HHgcI-v4HD0ln6yFYcD71krSL_hz-C9H4hts
CitedBy_id crossref_primary_10_1016_j_asoc_2022_109936
crossref_primary_10_1016_j_spl_2024_110226
crossref_primary_10_20965_jaciii_2025_p0379
Cites_doi 10.1111/j.1541-0420.2006.00533.x
10.1214/16-AOS1512
10.1214/13-AOS1161
10.1111/j.1467-9892.2010.00679.x
10.1198/jasa.2011.ap10599
10.1214/09-AOS716
10.1016/j.jmva.2006.11.002
10.1093/bioinformatics/btm583
10.1080/01621459.2017.1371024
10.1214/19-AOS1869
10.1080/01621459.2014.988215
10.1016/j.jmva.2015.08.022
10.3150/17-BEJ939
10.1080/01621459.2014.934826
10.1080/03610926.2011.581786
10.14490/jjss.37.53
10.1111/biom.12984
10.1007/s12020-007-0007-x
10.1214/19-AOS1904
10.1016/j.csda.2016.01.006
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.csda.2022.107495
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
ExternalDocumentID 10_1016_j_csda_2022_107495
S0167947322000755
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c399t-6de16e1118c13949da094d4eda9786ab7cc45f488a1e7fe081cc3db114224d6d3
IEDL.DBID .~1
ISSN 0167-9473
IngestDate Fri Jul 11 07:52:19 EDT 2025
Tue Jul 01 02:24:37 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Fri Feb 23 02:40:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-dimensional data
Wilcoxon signed-rank test
Equality of means
Wilcoxon-Mann-Whitney test
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-6de16e1118c13949da094d4eda9786ab7cc45f488a1e7fe081cc3db114224d6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4983-9950
PQID 2660991435
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2660991435
crossref_citationtrail_10_1016_j_csda_2022_107495
crossref_primary_10_1016_j_csda_2022_107495
elsevier_sciencedirect_doi_10_1016_j_csda_2022_107495
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chernozhukov, Chetverikov, Kato (br0060) 2013; 41
Li, Aue, Paul, Peng, Wang (br0120) 2020; 48
Srivastava (br0140) 2007; 37
Chen, Paul, Prentice, Wang (br0040) 2011; 106
Hu, Tong, Genton (br0110) 2019; 75
Brockwell, Davis (br0020) 2009
Mcmurry, Politis (br0130) 2010; 31
Yamada, Srivastava (br0200) 2012; 41
Wang, Shao (br0170) 2020; 48
Dan, Recknor, Reecy (br0070) 2008; 24
Wu, Wang, Cui, Maianu, Rhees, Rosinski, So, Willi, Osier, Hill (br0180) 2007; 31
Gregory, Carroll, Baladandayuthapani, Lahiri (br0090) 2015; 110
Bai, Saranadasa (br0010) 1996; 6
Chen, Qin (br0050) 2010; 38
Wang, Peng, Li (br0160) 2015; 110
Cai, Liu, Xia (br0030) 2013; 76
Zhao, Xu (br0230) 2016; 99
Dong, Pang, Tong, Genton (br0080) 2016; 143
Zhang, Cheng (br0220) 2018; 24
Wu, Genton, Stefanski (br0190) 2006; 62
Zhang, Wu (br0210) 2017; 45
Hall, Heyde (br0100) 1980
Srivastava, Du (br0150) 2008; 99
Zoh, Sarkar, Carroll, Mallick (br0240) 2018; 113
Zhang (10.1016/j.csda.2022.107495_br0210) 2017; 45
Cai (10.1016/j.csda.2022.107495_br0030) 2013; 76
Zhang (10.1016/j.csda.2022.107495_br0220) 2018; 24
Wu (10.1016/j.csda.2022.107495_br0180) 2007; 31
Dong (10.1016/j.csda.2022.107495_br0080) 2016; 143
Li (10.1016/j.csda.2022.107495_br0120) 2020; 48
Zoh (10.1016/j.csda.2022.107495_br0240) 2018; 113
Chernozhukov (10.1016/j.csda.2022.107495_br0060) 2013; 41
Wang (10.1016/j.csda.2022.107495_br0160) 2015; 110
Dan (10.1016/j.csda.2022.107495_br0070) 2008; 24
Bai (10.1016/j.csda.2022.107495_br0010) 1996; 6
Wu (10.1016/j.csda.2022.107495_br0190) 2006; 62
Zhao (10.1016/j.csda.2022.107495_br0230) 2016; 99
Wang (10.1016/j.csda.2022.107495_br0170) 2020; 48
Brockwell (10.1016/j.csda.2022.107495_br0020) 2009
Hall (10.1016/j.csda.2022.107495_br0100) 1980
Hu (10.1016/j.csda.2022.107495_br0110) 2019; 75
Srivastava (10.1016/j.csda.2022.107495_br0150) 2008; 99
Gregory (10.1016/j.csda.2022.107495_br0090) 2015; 110
Mcmurry (10.1016/j.csda.2022.107495_br0130) 2010; 31
Chen (10.1016/j.csda.2022.107495_br0040) 2011; 106
Chen (10.1016/j.csda.2022.107495_br0050) 2010; 38
Yamada (10.1016/j.csda.2022.107495_br0200) 2012; 41
Srivastava (10.1016/j.csda.2022.107495_br0140) 2007; 37
References_xml – volume: 99
  start-page: 386
  year: 2008
  end-page: 402
  ident: br0150
  article-title: A test for the mean vector with fewer observations than the dimension
  publication-title: J. Multivar. Anal.
– volume: 113
  start-page: 1733
  year: 2018
  end-page: 1741
  ident: br0240
  article-title: A powerful bayesian test for equality of means in high dimensions
  publication-title: J. Am. Stat. Assoc.
– volume: 143
  start-page: 127
  year: 2016
  end-page: 142
  ident: br0080
  article-title: Shrinkage-based diagonal Hotelling's tests for high-dimensional small sample size data
  publication-title: J. Multivar. Anal.
– volume: 110
  start-page: 1658
  year: 2015
  end-page: 1669
  ident: br0160
  article-title: A high-dimensional nonparametric multivariate test for mean vector
  publication-title: J. Am. Stat. Assoc.
– volume: 76
  start-page: 349
  year: 2013
  end-page: 372
  ident: br0030
  article-title: Two-sample test of high dimensional means under dependence
  publication-title: J. R. Stat. Soc., Ser. B
– volume: 41
  start-page: 2786
  year: 2013
  end-page: 2819
  ident: br0060
  article-title: Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors
  publication-title: Ann. Stat.
– volume: 45
  start-page: 1895
  year: 2017
  end-page: 1919
  ident: br0210
  article-title: Gaussian approximation for high dimensional time series
  publication-title: Ann. Stat.
– volume: 106
  start-page: 1345
  year: 2011
  end-page: 1360
  ident: br0040
  article-title: A regularized Hotelling's
  publication-title: J. Am. Stat. Assoc.
– volume: 24
  start-page: 2640
  year: 2018
  end-page: 2675
  ident: br0220
  article-title: Gaussian approximation for high dimensional vector under physical dependence
  publication-title: Bernoulli
– volume: 38
  start-page: 808
  year: 2010
  end-page: 835
  ident: br0050
  article-title: A two-sample test for high-dimensional data with applications to gene-set testing
  publication-title: Ann. Stat.
– volume: 31
  start-page: 5
  year: 2007
  end-page: 17
  ident: br0180
  article-title: The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle
  publication-title: Endocrine
– volume: 62
  start-page: 877
  year: 2006
  end-page: 885
  ident: br0190
  article-title: A multivariate two-sample mean test for small sample size and missing data
  publication-title: Biometrics
– volume: 99
  start-page: 91
  year: 2016
  end-page: 104
  ident: br0230
  article-title: A generalized likelihood ratio test for normal mean when
  publication-title: Comput. Stat. Data Anal.
– volume: 41
  start-page: 2602
  year: 2012
  end-page: 2615
  ident: br0200
  article-title: A test for multivariate analysis of variance in high dimension
  publication-title: Commun. Stat., Theory Methods
– volume: 24
  start-page: 192
  year: 2008
  end-page: 201
  ident: br0070
  article-title: Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis
  publication-title: Bioinformatics
– volume: 75
  start-page: 256
  year: 2019
  end-page: 267
  ident: br0110
  article-title: Diagonal likelihood ratio test for equality of mean vectors in high-dimensional data
  publication-title: Biometrics
– volume: 48
  start-page: 2728
  year: 2020
  end-page: 2758
  ident: br0170
  article-title: Hypothesis testing for high-dimensional time series via self-normalization
  publication-title: Ann. Stat.
– volume: 48
  start-page: 1815
  year: 2020
  end-page: 1847
  ident: br0120
  article-title: An adaptable generalization of Hotelling's
  publication-title: Ann. Stat.
– year: 2009
  ident: br0020
  article-title: Time Series: Theory and Methods
  publication-title: Springer Series in Statistics
– volume: 31
  start-page: 471
  year: 2010
  end-page: 482
  ident: br0130
  article-title: Banded and tapered estimates for autocovariance matrices and the linear process bootstrap
  publication-title: J. Time Ser. Anal.
– volume: 37
  start-page: 53
  year: 2007
  end-page: 86
  ident: br0140
  article-title: Multivariate theory for analyzing high dimensional data
  publication-title: J. Japan Statist. Soc.
– year: 1980
  ident: br0100
  article-title: Martingale Limit Theory and Its Application
– volume: 6
  start-page: 311
  year: 1996
  end-page: 329
  ident: br0010
  article-title: Effect of high dimension: by an example of a two sample problem
  publication-title: Stat. Sin.
– volume: 110
  start-page: 837
  year: 2015
  end-page: 849
  ident: br0090
  article-title: A two-sample test for equality of means in high dimension
  publication-title: J. Am. Stat. Assoc.
– volume: 62
  start-page: 877
  year: 2006
  ident: 10.1016/j.csda.2022.107495_br0190
  article-title: A multivariate two-sample mean test for small sample size and missing data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00533.x
– volume: 45
  start-page: 1895
  year: 2017
  ident: 10.1016/j.csda.2022.107495_br0210
  article-title: Gaussian approximation for high dimensional time series
  publication-title: Ann. Stat.
  doi: 10.1214/16-AOS1512
– volume: 41
  start-page: 2786
  year: 2013
  ident: 10.1016/j.csda.2022.107495_br0060
  article-title: Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1161
– volume: 31
  start-page: 471
  year: 2010
  ident: 10.1016/j.csda.2022.107495_br0130
  article-title: Banded and tapered estimates for autocovariance matrices and the linear process bootstrap
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.2010.00679.x
– volume: 106
  start-page: 1345
  year: 2011
  ident: 10.1016/j.csda.2022.107495_br0040
  article-title: A regularized Hotelling's T2 test for pathway analysis in proteomic studies
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2011.ap10599
– volume: 38
  start-page: 808
  year: 2010
  ident: 10.1016/j.csda.2022.107495_br0050
  article-title: A two-sample test for high-dimensional data with applications to gene-set testing
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS716
– volume: 99
  start-page: 386
  year: 2008
  ident: 10.1016/j.csda.2022.107495_br0150
  article-title: A test for the mean vector with fewer observations than the dimension
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2006.11.002
– volume: 24
  start-page: 192
  year: 2008
  ident: 10.1016/j.csda.2022.107495_br0070
  article-title: Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm583
– year: 2009
  ident: 10.1016/j.csda.2022.107495_br0020
  article-title: Time Series: Theory and Methods
– volume: 113
  start-page: 1733
  year: 2018
  ident: 10.1016/j.csda.2022.107495_br0240
  article-title: A powerful bayesian test for equality of means in high dimensions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1371024
– volume: 48
  start-page: 1815
  year: 2020
  ident: 10.1016/j.csda.2022.107495_br0120
  article-title: An adaptable generalization of Hotelling's T2 test in high dimension
  publication-title: Ann. Stat.
  doi: 10.1214/19-AOS1869
– volume: 110
  start-page: 1658
  year: 2015
  ident: 10.1016/j.csda.2022.107495_br0160
  article-title: A high-dimensional nonparametric multivariate test for mean vector
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2014.988215
– volume: 143
  start-page: 127
  year: 2016
  ident: 10.1016/j.csda.2022.107495_br0080
  article-title: Shrinkage-based diagonal Hotelling's tests for high-dimensional small sample size data
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2015.08.022
– volume: 76
  start-page: 349
  year: 2013
  ident: 10.1016/j.csda.2022.107495_br0030
  article-title: Two-sample test of high dimensional means under dependence
  publication-title: J. R. Stat. Soc., Ser. B
– volume: 24
  start-page: 2640
  year: 2018
  ident: 10.1016/j.csda.2022.107495_br0220
  article-title: Gaussian approximation for high dimensional vector under physical dependence
  publication-title: Bernoulli
  doi: 10.3150/17-BEJ939
– volume: 110
  start-page: 837
  year: 2015
  ident: 10.1016/j.csda.2022.107495_br0090
  article-title: A two-sample test for equality of means in high dimension
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2014.934826
– volume: 41
  start-page: 2602
  year: 2012
  ident: 10.1016/j.csda.2022.107495_br0200
  article-title: A test for multivariate analysis of variance in high dimension
  publication-title: Commun. Stat., Theory Methods
  doi: 10.1080/03610926.2011.581786
– volume: 6
  start-page: 311
  year: 1996
  ident: 10.1016/j.csda.2022.107495_br0010
  article-title: Effect of high dimension: by an example of a two sample problem
  publication-title: Stat. Sin.
– volume: 37
  start-page: 53
  year: 2007
  ident: 10.1016/j.csda.2022.107495_br0140
  article-title: Multivariate theory for analyzing high dimensional data
  publication-title: J. Japan Statist. Soc.
  doi: 10.14490/jjss.37.53
– year: 1980
  ident: 10.1016/j.csda.2022.107495_br0100
– volume: 75
  start-page: 256
  year: 2019
  ident: 10.1016/j.csda.2022.107495_br0110
  article-title: Diagonal likelihood ratio test for equality of mean vectors in high-dimensional data
  publication-title: Biometrics
  doi: 10.1111/biom.12984
– volume: 31
  start-page: 5
  year: 2007
  ident: 10.1016/j.csda.2022.107495_br0180
  article-title: The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle
  publication-title: Endocrine
  doi: 10.1007/s12020-007-0007-x
– volume: 48
  start-page: 2728
  year: 2020
  ident: 10.1016/j.csda.2022.107495_br0170
  article-title: Hypothesis testing for high-dimensional time series via self-normalization
  publication-title: Ann. Stat.
  doi: 10.1214/19-AOS1904
– volume: 99
  start-page: 91
  year: 2016
  ident: 10.1016/j.csda.2022.107495_br0230
  article-title: A generalized likelihood ratio test for normal mean when p is greater than n
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2016.01.006
SSID ssj0002478
Score 2.3721814
Snippet The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly used rank-based methods for one- and two-sample tests when the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107495
SubjectTerms data analysis
data collection
Equality of means
gene expression
High-dimensional data
humans
statistics
Wilcoxon signed-rank test
Wilcoxon-Mann-Whitney test
Title A rank-based high-dimensional test for equality of mean vectors
URI https://dx.doi.org/10.1016/j.csda.2022.107495
https://www.proquest.com/docview/2660991435
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3oQf-L8MSJ4k2xrmqbtScZwTMd2UIe7hTRJYaLdcJ3gxb_dvKadKLKDp9KSlPKSfO9L-t73ELpMQq5iHVPCfRUTpignkqqEUK6jpM1kHFFIcB6OeH_M7ibBpIa6VS4MhFWW2O8wvUDr8kmrtGZrPp22HiCAPmahnZGF44NEc8ZCmOXNz-8wD8ocGoO-N7QuE2dcjJdaaNAeorQJcYlQY-Jv5_QLpgvf09tFOyVpxB33XXuoZrJ9tD1cKa4uDtB1B0P5dQJeSWMQISYahPud6Aa2hDLHlp9i47IoP_Asxa9GZvi9OLZfHKJx7-ax2ydlcQSiLKfICdfG48YiVaQsiWOxlnajppnR0u4LuUxCpViQ2uUpPROmxnp-pXydFKmzTHPtH6GNbJaZY4SjdihlpGXos4D5UkqP8th4oV2dSRLItI68yipClcrhUMDiRVQhYs8CLCnAksJZso6uVn3mTjdjbeugMrb4MfrCAvvafhfVyAi7LOBfh8zMbLkQlndY7gtk8OSf7z5FW3Dn4snO0Eb-tjTnloDkSaOYYQ202bkd9EdwHdw_Db4A-fraVQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3RmJDbonjOMmEEKIqj3ahlbpZju1KRZAiGpBY-O3cxUkRCHVgTewoOvvuPifffUfIaRZLk9qUMxmalAnDJdPcZIxLm2TnQqcJxwLnTle2--J2EA3myFVdC4O0yir2-5heRuvqSrOyZvNlNGo-IIE-FTHsyDLxRfNkUYD7YhuDxuc3z4MLH45R4BuHV5UznuRlJhbFhzhvIDERm0z8nZ1-xeky-bTWyGqFGumlf7F1MufyDbLSmUquTjbJxSXF_usM05KlqELMLCr3e9UNCoiyoABQqfNllB90PKTPTuf0vfxuP9ki_dZ176rNqu4IzACoKJi0LpAOQlViAMWJ1Go4qVnhrIaDodRZbIyIhuCfOnDx0EHqNya0WVk7K6y04TZZyMe52yE0OY-1TqyOQxGJUGsdcJm6IAb3zLJID3dJUFtFmUo6HDtYPKmaI_ao0JIKLam8JXfJ2XTOixfOmDk6qo2tfiy_gsg-c95JvTIK_AJ_dujcjd8mCoAHgF9Eg3v_fPYxWWr3Ovfq_qZ7t0-W8Y4nlx2QheL1zR0CGimyo3K3fQFF49pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rank-based+high-dimensional+test+for+equality+of+mean+vectors&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Ouyang%2C+Yanyan&rft.au=Liu%2C+Jiamin&rft.au=Tong%2C+Tiejun&rft.au=Xu%2C+Wangli&rft.date=2022-09-01&rft.issn=0167-9473&rft.volume=173+p.107495-&rft_id=info:doi/10.1016%2Fj.csda.2022.107495&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon