Influence of Atomic Magnetometer’s Orientation on Its Frequency Response
Due to the high sensitivity and room temperature operation of atomic magnetometers, they have significant applications in many fields. An emerging area is the highly sensitive biomagnetic measurement in magnetically unshielded environments, which is crucial for medical diagnostics. However, in magne...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 5; p. 1364 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.02.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the high sensitivity and room temperature operation of atomic magnetometers, they have significant applications in many fields. An emerging area is the highly sensitive biomagnetic measurement in magnetically unshielded environments, which is crucial for medical diagnostics. However, in magnetically unshielded environments, atomic magnetometers often encounter situations where their orientation deviates from the optimal operating posture, and there has been insufficient research on the frequency response information of atomic magnetometers under such conditions. Addressing this issue, we modeled the atomic magnetometer using the Bloch equations and obtained approximate analytical solutions for the frequency response of the atomic magnetometer in different orientations, which were experimentally verified using a Bell–Bloom magnetometer. We found that although the magnetic resonance spectrum of the magnetometer is influenced by the orientation of the magnetometer, the frequency response of the magnetometer can be made independent of its orientation by judiciously selecting the demodulation components used for the operation of the magnetometer. This finding is important for biomagnetic detection in magnetically unshielded environments where orientation-robust measurements of AC magnetic signals are required. |
---|---|
AbstractList | Due to the high sensitivity and room temperature operation of atomic magnetometers, they have significant applications in many fields. An emerging area is the highly sensitive biomagnetic measurement in magnetically unshielded environments, which is crucial for medical diagnostics. However, in magnetically unshielded environments, atomic magnetometers often encounter situations where their orientation deviates from the optimal operating posture, and there has been insufficient research on the frequency response information of atomic magnetometers under such conditions. Addressing this issue, we modeled the atomic magnetometer using the Bloch equations and obtained approximate analytical solutions for the frequency response of the atomic magnetometer in different orientations, which were experimentally verified using a Bell-Bloom magnetometer. We found that although the magnetic resonance spectrum of the magnetometer is influenced by the orientation of the magnetometer, the frequency response of the magnetometer can be made independent of its orientation by judiciously selecting the demodulation components used for the operation of the magnetometer. This finding is important for biomagnetic detection in magnetically unshielded environments where orientation-robust measurements of AC magnetic signals are required. Due to the high sensitivity and room temperature operation of atomic magnetometers, they have significant applications in many fields. An emerging area is the highly sensitive biomagnetic measurement in magnetically unshielded environments, which is crucial for medical diagnostics. However, in magnetically unshielded environments, atomic magnetometers often encounter situations where their orientation deviates from the optimal operating posture, and there has been insufficient research on the frequency response information of atomic magnetometers under such conditions. Addressing this issue, we modeled the atomic magnetometer using the Bloch equations and obtained approximate analytical solutions for the frequency response of the atomic magnetometer in different orientations, which were experimentally verified using a Bell-Bloom magnetometer. We found that although the magnetic resonance spectrum of the magnetometer is influenced by the orientation of the magnetometer, the frequency response of the magnetometer can be made independent of its orientation by judiciously selecting the demodulation components used for the operation of the magnetometer. This finding is important for biomagnetic detection in magnetically unshielded environments where orientation-robust measurements of AC magnetic signals are required.Due to the high sensitivity and room temperature operation of atomic magnetometers, they have significant applications in many fields. An emerging area is the highly sensitive biomagnetic measurement in magnetically unshielded environments, which is crucial for medical diagnostics. However, in magnetically unshielded environments, atomic magnetometers often encounter situations where their orientation deviates from the optimal operating posture, and there has been insufficient research on the frequency response information of atomic magnetometers under such conditions. Addressing this issue, we modeled the atomic magnetometer using the Bloch equations and obtained approximate analytical solutions for the frequency response of the atomic magnetometer in different orientations, which were experimentally verified using a Bell-Bloom magnetometer. We found that although the magnetic resonance spectrum of the magnetometer is influenced by the orientation of the magnetometer, the frequency response of the magnetometer can be made independent of its orientation by judiciously selecting the demodulation components used for the operation of the magnetometer. This finding is important for biomagnetic detection in magnetically unshielded environments where orientation-robust measurements of AC magnetic signals are required. |
Audience | Academic |
Author | Zhang, Rui |
AuthorAffiliation | National Innovation Institute of Defense Technology, AMS, Beijing 100071, China; dr.ruizhang@163.com |
AuthorAffiliation_xml | – name: National Innovation Institute of Defense Technology, AMS, Beijing 100071, China; dr.ruizhang@163.com |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0003-0512-3280 surname: Zhang fullname: Zhang, Rui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40096183$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUstuUzEQtVAr2gYW_AC6EhtYpPh1_VihqKKQqqgS6t6a-M4Njm7sYN8gddff6O_xJTikRC2WJY_Gx2d85swZOYopIiFvGD0XwtKPhbe0ZULJF-SUSS6nhnN69CQ-IWelrCjlQgjzkpxISq1iRpySq3nshy1Gj03qm9mY1sE332AZsYY4Yv59_1CamxwwjjCGFJu652NpLjP-3L27a75j2aRY8BU57mEo-PrxnJDby8-3F1-n1zdf5hez66kX1o5TRRe6LkVFz-XCeqao7xdW6E5rhA6AtRxRg_agNZcKqDReePDW9NihmJD5nrZLsHKbHNaQ71yC4P4mUl46yGPwAzpoGYrWG2MQpWId2JaB5hxboSgqXrk-7bk228UaO19FZhiekT6_ieGHW6ZfjjFLeStYZXj_yJBT7UcZ3ToUj8MAEdO2OMG04bY1dFfs3X_QVdrmWFu1QykhjZa6os73qCVUBSH2qRau6qHDak31vQ81PzO1thG2dnFC3j7VcPj8P48r4MMe4HMqJWN_gDDqdvPjDvMj_gC4pba9 |
Cites_doi | 10.1103/PhysRevApplied.15.014004 10.1063/1.4935096 10.1038/s41398-024-03047-y 10.1103/RevModPhys.74.1153 10.1103/PhysRevApplied.18.L021001 10.3390/app10207031 10.3390/s23115318 10.1007/s00340-021-07673-y 10.1002/9783527629503 10.1103/PhysRevApplied.18.014015 10.1007/BF00862370 10.1126/sciadv.aba8792 10.1016/j.neuroimage.2019.05.063 10.1063/1.4894158 10.1103/PhysRevLett.130.143201 10.1038/s42254-023-00558-3 10.1109/FCS.2016.7546759 10.1103/PhysRevLett.89.130801 10.1103/PhysRevApplied.14.064067 10.1103/PhysRevA.99.013420 10.1088/0026-1394/37/3/6 10.1007/s00340-003-1120-z 10.1038/nphys566 10.1103/PhysRevResearch.2.013213 10.1103/PhysRevA.75.051407 10.1103/PhysRevApplied.22.014005 10.1109/FCS.2018.8597470 10.1103/PhysRevLett.105.193601 10.1109/INERTIAL51137.2021.9430474 10.1103/PhysRevApplied.14.011002 10.1109/FCS.2019.8856020 10.1103/PhysRevA.79.023406 10.1103/PhysRevA.103.063103 10.20944/preprints202307.0364.v1 10.1063/1.4902028 10.1364/OE.11.000904 10.3390/s23094218 10.20944/preprints202411.0058.v1 10.3390/s20061569 10.1364/JOSAB.24.002357 10.1134/S1063784206070176 10.1088/1361-6463/ab541a 10.3390/s21165568 10.1088/0256-307X/32/9/098503 10.1103/PhysRevLett.110.160802 10.3390/s20154241 10.1007/s11214-010-9676-5 10.1007/s11214-004-1432-2 10.1103/PhysRevLett.120.033202 10.1063/1.4932528 10.1126/sciadv.adg1746 10.1364/JOSAB.22.000077 10.1103/PhysRevApplied.11.014029 10.1364/OE.16.011423 10.1103/PhysRevLett.130.153601 10.1364/PRJ.519409 10.1103/PhysRevA.105.043109 10.1063/1.5026238 10.1116/5.0025186 10.1016/j.sna.2024.115842 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the author. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the author. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25051364 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_a51e35c888ee461da951a722e5360e62 PMC11902531 A831383960 40096183 10_3390_s25051364 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grants 224 No.12104512 – fundername: National Natural Science Foundation of China grantid: 12104512 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c399t-60b7777603f24b9c160cfb937d77eadaa152ee7a7ca77246a048c3cac98fede3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:24:42 EDT 2025 Thu Aug 21 18:34:23 EDT 2025 Fri Jul 11 09:25:03 EDT 2025 Fri Jul 25 21:27:40 EDT 2025 Tue Jun 10 20:58:43 EDT 2025 Thu Mar 20 02:21:29 EDT 2025 Tue Jul 01 05:32:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | orientation atomic magnetometer frequency response |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-60b7777603f24b9c160cfb937d77eadaa152ee7a7ca77246a048c3cac98fede3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0512-3280 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25051364 |
PMID | 40096183 |
PQID | 3176348747 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a51e35c888ee461da951a722e5360e62 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11902531 proquest_miscellaneous_3178295802 proquest_journals_3176348747 gale_infotracacademiconefile_A831383960 pubmed_primary_40096183 crossref_primary_10_3390_s25051364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250223 |
PublicationDateYYYYMMDD | 2025-02-23 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250223 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bison (ref_47) 2005; 22 Wu (ref_28) 2015; 86 ref_13 Lucivero (ref_16) 2021; 15 Jensen (ref_37) 2009; 79 ref_57 ref_55 Tian (ref_31) 2024; 12 Brickwedde (ref_49) 2024; 14 ref_53 Afach (ref_65) 2014; 116 Bao (ref_39) 2022; 105 Wilson (ref_58) 2020; 2 ref_18 Dougherty (ref_5) 2004; 114 ref_59 Olsen (ref_6) 2010; 155 Aleksandrov (ref_35) 1985; 28 Belfi (ref_48) 2007; 24 Li (ref_60) 2020; 14 Kiehl (ref_42) 2024; 22 ref_61 Bison (ref_44) 2003; 76 Bao (ref_23) 2018; 120 Lee (ref_25) 2021; 103 Romalis (ref_33) 2010; 105 ref_67 Budker (ref_10) 2002; 74 ref_20 Oelsner (ref_24) 2019; 99 ref_63 Zhivun (ref_69) 2014; 105 Budker (ref_11) 2007; 3 ref_29 ref_26 Sheng (ref_15) 2013; 110 Yu (ref_34) 2022; 18 Aleksandrov (ref_27) 2006; 51 Bison (ref_45) 2003; 11 Xiao (ref_68) 2023; 130 Fenici (ref_46) 2004; 48 Xiao (ref_52) 2023; 9 Zhang (ref_50) 2020; 6 ref_30 Tian (ref_32) 2024; 379 Huang (ref_54) 2015; 107 Allred (ref_14) 2002; 89 Lucivero (ref_17) 2022; 18 Tierney (ref_19) 2019; 199 Limes (ref_51) 2020; 14 Fu (ref_22) 2020; 2 Seltzer (ref_38) 2007; 75 Aslam (ref_21) 2023; 5 ref_43 ref_1 Shifrin (ref_36) 2000; 37 Acosta (ref_40) 2008; 16 ref_3 Bevilacqua (ref_62) 2021; 127 ref_2 Kitching (ref_12) 2018; 5 Huang (ref_64) 2015; 32 ref_9 ref_8 Yang (ref_56) 2019; 53 ref_4 ref_7 Zhang (ref_41) 2023; 130 Bevilacqua (ref_66) 2019; 11 |
References_xml | – volume: 15 start-page: 014004 year: 2021 ident: ref_16 article-title: Femtotesla Direct Magnetic Gradiometer Using a Single Multipass Cell publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.014004 – ident: ref_26 – volume: 107 start-page: 182403 year: 2015 ident: ref_54 article-title: Three-axis atomic magnetometer based on spin precession modulation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4935096 – volume: 48 start-page: 192 year: 2004 ident: ref_46 article-title: Comparison of Magnetocardiographic Mapping with SQUID-based and Laser-pumped Magnetometers in Normal Subjects publication-title: Biomed. Tech. – volume: 14 start-page: 341 year: 2024 ident: ref_49 article-title: Applications of OPM-MEG for translational neuroscience: A perspective publication-title: Transl. Psychiatry doi: 10.1038/s41398-024-03047-y – volume: 74 start-page: 1153 year: 2002 ident: ref_10 article-title: Resonant nonlinear magneto-optical effects in atoms publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.1153 – volume: 18 start-page: L021001 year: 2022 ident: ref_17 article-title: Femtotesla Nearly-Quantum-Noise-Limited Pulsed Gradiometer at Earth-Scale Fields publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.L021001 – ident: ref_59 doi: 10.3390/app10207031 – ident: ref_8 doi: 10.3390/s23115318 – volume: 127 start-page: 128 year: 2021 ident: ref_62 article-title: Spin dynamic response to a time dependent field publication-title: Appl. Phys. B doi: 10.1007/s00340-021-07673-y – ident: ref_63 doi: 10.1002/9783527629503 – ident: ref_1 – volume: 18 start-page: 014015 year: 2022 ident: ref_34 article-title: Light-Shift-Free and Dead-Zone-Free Atomic-Orientation-Based Scalar Magnetometry Using a Single Amplitude-Modulated Beam publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.014015 – volume: 28 start-page: 312 year: 1985 ident: ref_35 article-title: Precision atomic-resonance magnetometers for geomagnetic measurements publication-title: Meas. Tech. doi: 10.1007/BF00862370 – volume: 6 start-page: eaba8792 year: 2020 ident: ref_50 article-title: Recording brain activities in unshielded Earth’s field with optically pumped atomic magnetometers publication-title: Sci. Adv. doi: 10.1126/sciadv.aba8792 – volume: 199 start-page: 598 year: 2019 ident: ref_19 article-title: Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.05.063 – volume: 116 start-page: 084510 year: 2014 ident: ref_65 article-title: Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute publication-title: J. Appl. Phys. doi: 10.1063/1.4894158 – volume: 130 start-page: 143201 year: 2023 ident: ref_68 article-title: Femtotesla Atomic Magnetometer Employing Diffusion Optical Pumping to Search for Exotic Spin-Dependent Interactions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.143201 – volume: 5 start-page: 157 year: 2023 ident: ref_21 article-title: Quantum sensors for biomedical applications publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00558-3 – ident: ref_4 – ident: ref_29 doi: 10.1109/FCS.2016.7546759 – volume: 89 start-page: 130801 year: 2002 ident: ref_14 article-title: High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.130801 – volume: 14 start-page: 064067 year: 2020 ident: ref_60 article-title: Continuous High-Sensitivity and High-Bandwidth Atomic Magnetometer publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.064067 – volume: 99 start-page: 013420 year: 2019 ident: ref_24 article-title: Sources of heading errors in optically pumped magnetometers operated in the Earth’s magnetic field publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.013420 – volume: 37 start-page: 219 year: 2000 ident: ref_36 article-title: Magnetic flux density standard for geomagnetometers publication-title: Metrologia doi: 10.1088/0026-1394/37/3/6 – ident: ref_13 – volume: 76 start-page: 325 year: 2003 ident: ref_44 article-title: A laser-pumped magnetometer for the mapping of human cardiomagnetic fields publication-title: Appl. Phys. B doi: 10.1007/s00340-003-1120-z – volume: 3 start-page: 227 year: 2007 ident: ref_11 article-title: Optical magnetometry publication-title: Nat. Phys. doi: 10.1038/nphys566 – volume: 2 start-page: 013213 year: 2020 ident: ref_58 article-title: Wide-bandwidth atomic magnetometry via instantaneous-phase retrieval publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.013213 – volume: 75 start-page: 051407(R) year: 2007 ident: ref_38 article-title: Synchronous optical pumping of quantum revival beats for atomic magnetometry publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.051407 – ident: ref_3 – volume: 22 start-page: 014005 year: 2024 ident: ref_42 article-title: Correcting heading errors in optically pumped magnetometers through microwave interrogation publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.22.014005 – ident: ref_55 doi: 10.1109/FCS.2018.8597470 – volume: 105 start-page: 193601 year: 2010 ident: ref_33 article-title: Dead-Zone-Free Atomic Magnetometry with Simultaneous Excitation of Orientation and Alignment Resonances publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.193601 – ident: ref_61 doi: 10.1109/INERTIAL51137.2021.9430474 – volume: 14 start-page: 011002 year: 2020 ident: ref_51 article-title: Portable Magnetometry for Detection of Biomagnetism in Ambient Environments publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.011002 – ident: ref_57 doi: 10.1109/FCS.2019.8856020 – volume: 79 start-page: 023406 year: 2009 ident: ref_37 article-title: Cancellation of nonlinear Zeeman shifts with light shifts publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.023406 – volume: 103 start-page: 063103 year: 2021 ident: ref_25 article-title: Heading errors in all-optical alkali-metal-vapor magnetometers in geomagnetic fields publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.063103 – ident: ref_30 doi: 10.20944/preprints202307.0364.v1 – volume: 105 start-page: 192406 year: 2014 ident: ref_69 article-title: Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields publication-title: Appl. Phys. Lett. doi: 10.1063/1.4902028 – ident: ref_18 – volume: 11 start-page: 904 year: 2003 ident: ref_45 article-title: Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor publication-title: Opt. Express doi: 10.1364/OE.11.000904 – ident: ref_53 doi: 10.3390/s23094218 – ident: ref_9 doi: 10.20944/preprints202411.0058.v1 – ident: ref_20 doi: 10.3390/s20061569 – volume: 24 start-page: 2357 year: 2007 ident: ref_48 article-title: Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.24.002357 – volume: 51 start-page: 919 year: 2006 ident: ref_27 article-title: Magnetometer based on a pair of symmetric transitions in the 87Rb hyperfine structure publication-title: Tech. Phys. doi: 10.1134/S1063784206070176 – volume: 53 start-page: 065002 year: 2019 ident: ref_56 article-title: High bandwidth three-axis magnetometer based on optically polarized 85Rb under unshielded environment publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab541a – ident: ref_7 doi: 10.3390/s21165568 – volume: 32 start-page: 098503 year: 2015 ident: ref_64 article-title: Close-Loop Bell–Bloom Magnetometer with Amplitude Modulation * publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/32/9/098503 – volume: 110 start-page: 160802 year: 2013 ident: ref_15 article-title: Subfemtotesla Scalar Atomic Magnetometry Using Multipass Cells publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.160802 – ident: ref_2 – ident: ref_67 doi: 10.3390/s20154241 – volume: 155 start-page: 65 year: 2010 ident: ref_6 article-title: Measuring the Earth’s Magnetic Field from Space: Concepts of Past, Present and Future Missions publication-title: Space Sci. Rev. doi: 10.1007/s11214-010-9676-5 – volume: 114 start-page: 331 year: 2004 ident: ref_5 article-title: The Cassini Magnetic Field Investigation publication-title: Space Sci. Rev. doi: 10.1007/s11214-004-1432-2 – volume: 120 start-page: 033202 year: 2018 ident: ref_23 article-title: Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.033202 – volume: 86 start-page: 103105 year: 2015 ident: ref_28 article-title: A dead-zone free 4He atomic magnetometer with intensity-modulated linearly polarized light and a liquid crystal polarization rotator publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4932528 – volume: 9 start-page: eadg1746 year: 2023 ident: ref_52 article-title: A movable unshielded magnetocardiography system publication-title: Sci. Adv. doi: 10.1126/sciadv.adg1746 – volume: 22 start-page: 77 year: 2005 ident: ref_47 article-title: Optimization and performance of an optical cardiomagnetometer publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.22.000077 – volume: 11 start-page: 014029 year: 2019 ident: ref_66 article-title: Self-Adaptive Loop for External-Disturbance Reduction in a Differential Measurement Setup publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.014029 – volume: 16 start-page: 11423 year: 2008 ident: ref_40 article-title: Production and detection of atomic hexadecapole at Earth’s magnetic field publication-title: Opt. Express doi: 10.1364/OE.16.011423 – volume: 130 start-page: 153601 year: 2023 ident: ref_41 article-title: Heading-Error-Free Optical Atomic Magnetometry in the Earth-Field Range publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.153601 – volume: 12 start-page: 1093 year: 2024 ident: ref_31 article-title: Dead-zone-free atomic magnetometer based on hybrid Poincaré beams publication-title: Photonics Res. doi: 10.1364/PRJ.519409 – volume: 105 start-page: 043109 year: 2022 ident: ref_39 article-title: All-optical spin locking in alkali-metal-vapor magnetometers publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.043109 – ident: ref_43 – volume: 5 start-page: 031302 year: 2018 ident: ref_12 article-title: Chip-scale atomic devices publication-title: Appl. Phys. Rev. doi: 10.1063/1.5026238 – volume: 2 start-page: 044702 year: 2020 ident: ref_22 article-title: Sensitive magnetometry in challenging environments publication-title: AVS Quantum Sci. doi: 10.1116/5.0025186 – volume: 379 start-page: 115842 year: 2024 ident: ref_32 article-title: Dead-zone suppression method of NMOR atomic magnetometers based on alignment and orientation polarization publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2024.115842 |
SSID | ssj0023338 |
Score | 2.4409835 |
Snippet | Due to the high sensitivity and room temperature operation of atomic magnetometers, they have significant applications in many fields. An emerging area is the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1364 |
SubjectTerms | atomic magnetometer Electrons frequency response Light Magnetic fields Nuclear magnetic resonance spectroscopy orientation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB0hTuVQ0RZoKCAXVeIUkWQcJzkuiBUgFaQKJG6W44wLlyzaDQdu_Y3-Xr-k4zi72qgHLo1yiGJLsWc8mffk8QzAN0uOgbJhQ8oQY5nXeVwazGKHhaOqVK4KAbI36vJeXj_kD2ulvnxMWEgPHAR3avKUMLdM1IikShvDkMAUWUY5qoTC35d93pJMDVQLmXmFPELIpP504R19ikqOvE-fpP_fX_GaLxrHSa45nuk2vB8Qo5iEkX6ADWo_wtZaHsFPcH21LDUiZk5MOn_SWHw3P1viRx_v8ufX74W4nT8NB41awfdVtxDTeYikfhU_Qqws7cDd9OLu_DIeiiTElrFFF6ukLvhSCbpM1pVNVWJdzaCjKQpeJcawgyYqTGENA2mpDJusRWtsVTpqCHdhs5219BmEU7VLZG2qWhnu0zDXyUwjGT_lrFCXRHC8lJ1-DqkwNFMIL2C9EnAEZ16qqw4-e3X_gnWqB53qt3QawYnXifY2xoLnwYajAjxOn61KT0pMmVkz-YrgYKk2PRjfQjMkUshETBYRfF01s9n4vRDT0uyl71PyxMqEP7YXtLwaswx1cDCCcqT_0aTGLe3TY5-aO039ti2m-_9DDF_gXearDfsD9HgAm938hQ4ZAnX1Ub_a_wIm4wWc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9UwDLdgXOAwsfGvY6AMIXGq1jRp2p7QA-3tjzSQ0JB2i9LUGbu022t32I2vwdfjk-A0feVVSFQ9VG2kOnYc_5w4NsB7i46AsiFFSoWIZVZlcWFEGjuROywL5coQIPtFnXyXZ5fZ5bjg1o1hles5cZio69b6NfJDsnNKELqW-ceb29hXjfK7q2MJjYfwiJOl8SFdxfJ4crgE-V8hm5Ag1_6w8-aeCyVnNmhI1f_vhLxhkebRkhvmZ_kUtkfcyBZB0DvwAJtdeLKRTfAZnJ2uC46w1rFF788bs3Nz1SA9-qiX3z9_dezr6no8btQwuk_7ji1XIZ76nn0LEbP4HC6WRxefT-KxVEJsCWH0sUqqnC6VCJfKqrRcJdZVBD3qPKexYgyZacTc5NYQnJbKkOJaYY0tC4c1ihew1bQNvgLmVOUSWZmyUoba1OTxpKaWhKIyEqtLIni35p2-CQkxNDkSnsF6YnAEnzxXpwY-h_Xwol1d6VEltMk4isySC44oFa8NgT2TpylmQiWo0gg-eJlor2nEeCI2HBggOn3OKr0oBCf_mlywCPbXYtOjCnb674CJ4GD6TMrjd0RMg-3d0KagjhUJ_exlkPJEswzVcEQExUz-s07NvzTXP4YE3Zz7zVvB9_5P12t4nPpqwv6AvNiHrX51h28I4vTV22Ec_wFAuv3B priority: 102 providerName: ProQuest |
Title | Influence of Atomic Magnetometer’s Orientation on Its Frequency Response |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40096183 https://www.proquest.com/docview/3176348747 https://www.proquest.com/docview/3178295802 https://pubmed.ncbi.nlm.nih.gov/PMC11902531 https://doaj.org/article/a51e35c888ee461da951a722e5360e62 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_68bI-jK1bW29d0MagT15tS5bshzHS0TQdtBulhbwJWZbaQnE2x4X1v9_Jsk3M9rBgQrAVLN_pcr9fdB8AH7WxCJQVGlJCacjSIg0zRZPQUmFNnnGb-wDZSz6_Yd8W6WID-h6bnQBX_6R2rp_UTf3w6fevpy9o8J8d40TKfrxybjymnG3CNjok4RoZXLBhMwEn0Ta0djldIfrDyBcYGn915Jba6v1__0avOalxAOWaR5q9gOcdlCRTr_uXsGGqXdhZKzD4CubnfQ8SsrRk2rgUZHKhbiuDH10gzNGKfK_vu_yjiuBx3qzIrPYB1k_kyofQmtdwPTu9_joPu94JoUbI0YQ8KgS-eERtwopcxzzStkAsUgqBi0cp9NvGCCW0QnzNuEJL1lQrnWfWlIbuwVa1rMwBEMsLG7FC5QVXOKZECpSokiGsSlHPNgrgQy85-dNXyJDILJx45SDeAE6cTIcBrqh1e2JZ38rORqRKY0NTjZzcGMbjUiH6UyJJTEp5ZHgSwJHTiHSLAcWOk_UZBDhPV8RKTjMaI-FGThbAYa802S8piUiJU-RnTATwfriM1uS2SFRllo_tmAwfLIvwZvtex8OcmW-PQwPIRtofPdT4SnV_11bsjmO3m0vjN_9x47fwLHE9hl3aPD2EraZ-NO8Q-DTFBDbFQuB7NjubwPbJ6eWPq0n7J8KkXfB_AFkkBY4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAThUPEtKAYNAnKImtuMkB4SWx7LbFxJapN4sx7FLL0nZpEK98Rt8BD_FlzCOk7ArJG6NcohiK5nMwzMTzwPghTYWDWWFgkQZC3lSJGGmGA0tS63JM2FzHyB7LGZf-P5JcrIBv4ZcGBdWOayJ3UJd1tr9I99DPScYWtc8fXP-LXRdo9zu6tBCw7PFgbn8ji5b83r-Hun7ktLph8W7Wdh3FQg1KuM2FFGR4iEiZikvch2LSNsCtXSZpohWpVCjGZOqVCu0PLlQyOOaaaXzzJrSMHzsNbjOGSpyl5g-_Tj6dwzdPV-8CAejvcZZFzETfE3ldZ0B_l3_VxTgenDmirab3oat3kwlE89Xd2DDVHfh1krxwnuwPx_6m5Dakknr0pvJkTqtDF66IJvfP3425NPyrM9uqgie87Yh06UP374kn32ArrkPi6vA4QPYrOrKPARiRWEjXqi8EArnlOhgUVVyNNoS5CIbBfB8wJ089_U3JPotDsFyRHAAbx1WxwmuZHZ3o16eyl4CpUpiwxKNHr8xXMSlQttSpZSahInICBrAK0cT6QQbEY_A-vwEhNOVyJKTjMXozqPHF8DuQDbZS3wj__JnAM_GYZRVtwGjKlNfdHMy_LAswpdteyqPMHPffIcFkK3Rf-2j1keqs69dPfA4dnvFLN75P1xP4cZscXQoD-fHB4_gJnWNjF1uPtuFzXZ5YR6jddUWTzqeJiCvWIb-AKdbO1I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbpVAFD6pt4nRhfG3olVHo3FFLszAAAtjbm1velu9Nk1NupsMw0ztBuqFxnTna_govo5P4hkG8BITdyUsCExgOD-c8zHnB-C10gYdZYmKRBnzoziP_VQy6huWGJ2l3GQuQHbJ979EB6fx6Qb86nNhbFhl_01sP9RFpew_8inaOc7Qu46SqenCIo525-8vvvm2g5Rdae3baTgROdRX3xG-1e8Wu8jrN5TO904-7PtdhwFfoWFufB7kCW48YIZGeaZCHiiTo8UukgRJLCVaN60TmSiJXmjEJcq7YkqqLDW60AxvewM2EwuKJrC5s7c8Oh7QHkPw50oZMZYF09r6GiHj0cgAtn0C_rUGa-ZwHKq5Zvvmd-FO57SSmZOye7Chy_twe62U4QM4WPTdTkhlyKyxyc7kkzwrNR7akJvfP37W5PPqvMt1Kgnui6Ym85UL5r4ixy5cVz-Ek-ug4iOYlFWpHwMxPDdBlMss5xLHFAi3qCwidOFilCkTePCqp524cNU4BKIYS2AxENiDHUvVYYAtoN2eqFZnotNHIeNQs1gh_tc64mEh0dOUCaU6ZjzQnHrw1vJEWDVHwuNkXbYCztMWzBKzlIUI7hH_ebDds010-l-Lv9LqwcvhMmquXY6Rpa4u2zEpvlga4MO2HJeHOUeuFQ_zIB3xf_RS4yvl-de2OngY2pVjFj75_7xewE3UH_FxsTx8Creo7WpsE_XZNkya1aV-hq5Wkz_vhJqAuGY1-gNCwUDk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Atomic+Magnetometer%27s+Orientation+on+Its+Frequency+Response&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Rui&rft.date=2025-02-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=5&rft_id=info:doi/10.3390%2Fs25051364&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |