Eigenvalue-Domain Neural Network Demodulator for Eigenvalue-Modulated Signal

Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical app...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 39; no. 13; pp. 4307 - 4317
Main Authors Mishina, Ken, Sato, Shingo, Yoshida, Yuki, Hisano, Daisuke, Maruta, Akihiro
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical applications involving use of such systems are limited by the occurrence of fiber loss and amplified noise that induce eigenvalue distortion. Thus, several time-domain neural-network-based approaches have been proposed and demonstrated to enhance receiver sensitivity toward eigenvalue-modulated signals. However, despite the substantial improvement in power margin realized using time-domain neural-network-based demodulators compared to their conventional counterparts, these devices require rigorous training for each transmission distance owing to changes in time-domain pulses during transmission. This paper presents a method for demodulation of eigenvalue-modulated signals using an eigenvalue-domain neural network and demonstrates its utility through simulation and experimental results. Simulation results obtained in this study reveal that the proposed demodulator demonstrates superior generalization performance compared to its time-domain counterpart with regard to the transmission distance. Moreover, experimental results demonstrate successful demodulation over distances from zero to 3000 km without training for each distance.
AbstractList Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical applications involving use of such systems are limited by the occurrence of fiber loss and amplified noise that induce eigenvalue distortion. Thus, several time-domain neural-network-based approaches have been proposed and demonstrated to enhance receiver sensitivity toward eigenvalue-modulated signals. However, despite the substantial improvement in power margin realized using time-domain neural-network-based demodulators compared to their conventional counterparts, these devices require rigorous training for each transmission distance owing to changes in time-domain pulses during transmission. This paper presents a method for demodulation of eigenvalue-modulated signals using an eigenvalue-domain neural network and demonstrates its utility through simulation and experimental results. Simulation results obtained in this study reveal that the proposed demodulator demonstrates superior generalization performance compared to its time-domain counterpart with regard to the transmission distance. Moreover, experimental results demonstrate successful demodulation over distances from zero to 3000 km without training for each distance.
Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical applications involving use of such systems are limited by the occurrence of fiber loss and amplified noise that induce eigenvalue distortion. Thus, several time-domain neural-network-based approaches have been proposed and demonstrated to enhance receiver sensitivity toward eigenvalue-modulated signals. However, despite the substantial improvement in power margin realized using time-domain neural-network-based demodulators compared to their conventional counterparts, these devices require rigorous training for each transmission distance owing to changes in time-domain pulses during transmission. This paper presents a method for demodulation of eigenvalue-modulated signals using an eigenvalue-domain neural network and demonstrates its utility through simulation and experimental results. Simulation results obtained in this study reveal that the proposed demodulator demonstrates superior generalization performance compared to its time-domain counterpart with regard to the transmission distance. Moreover, experimental results demonstrate successful demodulation over distances from zero to 3000 km without training for each distance.
Author Sato, Shingo
Mishina, Ken
Yoshida, Yuki
Maruta, Akihiro
Hisano, Daisuke
Author_xml – sequence: 1
  givenname: Ken
  orcidid: 0000-0001-9460-3870
  surname: Mishina
  fullname: Mishina, Ken
  email: mishina@comm.eng.osaka-u.ac.jp
  organization: Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
– sequence: 2
  givenname: Shingo
  surname: Sato
  fullname: Sato, Shingo
  email: s_sato@pn.comm.eng.osaka-u.ac.jp
  organization: Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
– sequence: 3
  givenname: Yuki
  orcidid: 0000-0003-4706-1954
  surname: Yoshida
  fullname: Yoshida, Yuki
  email: yuki@nict.go.jp
  organization: National Institute of Information, and Communications Technology (NICT), Koganei, Tokyo, Japan
– sequence: 4
  givenname: Daisuke
  orcidid: 0000-0002-5766-3812
  surname: Hisano
  fullname: Hisano, Daisuke
  email: hisano@comm.eng.osaka-u.ac.jp
  organization: Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
– sequence: 5
  givenname: Akihiro
  orcidid: 0000-0001-7503-5097
  surname: Maruta
  fullname: Maruta, Akihiro
  email: maruta@comm.eng.osaka-u.ac.jp
  organization: Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
BookMark eNp9kE1Lw0AQhhepYK3eBS8Bz6mzH9nNHqWtX0Q9WM9h3UzK1jRbN4nivzclRcSDh-E9zPsMw3NMRrWvkZAzClNKQV_eZ8spA0anHJRQQhyQMU2SNGaM8hEZg-I8ThUTR-S4adYAVIhUjUm2cCusP0zVYTz3G-Pq6BG7YKo-2k8f3qI5bnzRVab1ISr7-QU8DAssome3qk11Qg5LUzV4us8JebleLGe3cfZ0cze7ymLLtW5jCUxRKKkqC0BdpkzaV2qZspaXWhUS0SpIMVEChDWFUMwWGgWVYKQs0oRPyMVwdxv8e4dNm699F_oHmpwlQjAte75vyaFlg2-agGVuXWta5-s2GFflFPKdubw3l-_M5XtzPQh_wG1wGxO-_kPOB8Qh4k9dCwpcKv4N4QB6xQ
CODEN JLTEDG
CitedBy_id crossref_primary_10_1109_JLT_2021_3114427
crossref_primary_10_1364_AOP_484119
crossref_primary_10_1364_OE_465574
crossref_primary_10_1016_j_optcom_2023_129809
crossref_primary_10_1109_JLT_2023_3290484
crossref_primary_10_1007_s10694_024_01662_1
crossref_primary_10_1016_j_cnsns_2023_107311
crossref_primary_10_1038_s41598_021_02252_9
crossref_primary_10_1016_j_chaos_2023_114391
crossref_primary_10_1016_j_optcom_2023_129857
crossref_primary_10_1016_j_ijleo_2023_170769
crossref_primary_10_1109_JLT_2023_3247775
crossref_primary_10_1016_j_ijleo_2023_171036
Cites_doi 10.1109/TIT.2014.2321151
10.1109/LPT.2019.2911600
10.1364/OECC_PS.2013.WR2_5
10.1109/JLT.2019.2917996
10.1109/JLT.2016.2551638
10.1364/OPTICA.4.000307
10.1109/LPT.2015.2432793
10.1364/OL.394115
10.1109/50.219570
10.1587/comex.2019GCL0026
10.1109/TIT.2014.2321155
10.1364/OE.394971
10.1364/OL.15.001443
10.1137/1.9781611970883
10.1364/OFC.2020.W3D.1
10.1364/OE.25.020286
10.1109/LPT.2018.2831693
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2021.3074744
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 4317
ExternalDocumentID 10_1109_JLT_2021_3074744
9410367
Genre orig-research
GrantInformation_xml – fundername: Grants-in-Aid for Scientific Research
– fundername: Japan Society for the Promotion of Science
  grantid: JP19H02140
  funderid: 10.13039/501100001691
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
5VS
AAYOK
AAYXX
AETIX
AFFNX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
RIG
VH1
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c399t-602710f17fd0e9f826cb1c27cc3f97d6eec708e57404cad472cd9e4160a66d853
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:15:28 EDT 2025
Tue Jul 01 01:02:00 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Aug 27 02:26:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-602710f17fd0e9f826cb1c27cc3f97d6eec708e57404cad472cd9e4160a66d853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5766-3812
0000-0001-9460-3870
0000-0003-4706-1954
0000-0001-7503-5097
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9410367
PQID 2544296708
PQPubID 85485
PageCount 11
ParticipantIDs proquest_journals_2544296708
crossref_primary_10_1109_JLT_2021_3074744
ieee_primary_9410367
crossref_citationtrail_10_1109_JLT_2021_3074744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
zhang (ref14) 2019; 9
ref11
aref (ref10) 0
ref2
ref1
ref17
ref18
kingma (ref26) 0
ref24
mishina (ref19) 0; 1
ref20
matsuda (ref8) 0
ref22
ref21
kodama (ref23) 0
g (ref25) 2019
ref7
goodfellow (ref27) 2016
ref9
ref4
ref3
ref6
ref5
buelow (ref16) 0
References_xml – ident: ref5
  doi: 10.1109/TIT.2014.2321151
– ident: ref13
  doi: 10.1109/LPT.2019.2911600
– ident: ref7
  doi: 10.1364/OECC_PS.2013.WR2_5
– ident: ref15
  doi: 10.1109/JLT.2019.2917996
– year: 2016
  ident: ref27
  article-title: Deep Learning
– ident: ref9
  doi: 10.1109/JLT.2016.2551638
– ident: ref3
  doi: 10.1364/OPTICA.4.000307
– start-page: 1
  year: 0
  ident: ref26
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Representation
– start-page: 409
  year: 0
  ident: ref10
  article-title: Design of 2-soliton spectral phase modulated pulses over lumped amplified link
  publication-title: Proc 42nd Eur Conf Opt Commun
– ident: ref11
  doi: 10.1109/LPT.2015.2432793
– ident: ref22
  doi: 10.1364/OL.394115
– ident: ref1
  doi: 10.1109/50.219570
– ident: ref18
  doi: 10.1587/comex.2019GCL0026
– ident: ref6
  doi: 10.1109/TIT.2014.2321155
– volume: 1
  year: 0
  ident: ref19
  article-title: Experimental demonstration of neural network based demodulation for on-off encoded eigenvalue modulation
  publication-title: Proc 45th Eur Conf Opt Commun
– ident: ref21
  doi: 10.1364/OE.394971
– ident: ref24
  doi: 10.1364/OL.15.001443
– start-page: 1016
  year: 0
  ident: ref8
  article-title: Design of eigenvalue multiplexed multi-level modulation optical transmission system
  publication-title: Proc 19th OptoElectron Commun Conf /Australian Conf Opt Fibre Technol
– ident: ref2
  doi: 10.1137/1.9781611970883
– ident: ref20
  doi: 10.1364/OFC.2020.W3D.1
– start-page: 412
  year: 0
  ident: ref16
  article-title: Transmission of waveforms determined by 7 eigenvalues with PSK-Modulated spectral amplitudes
  publication-title: Proc 42nd Eur Conf Opt Commun
– year: 2019
  ident: ref25
  publication-title: Nonlinear Fiber Optics
– ident: ref12
  doi: 10.1364/OE.25.020286
– volume: 9
  start-page: 1
  year: 2019
  ident: ref14
  article-title: Correlated eigen-values of multi-soliton optical communications
  publication-title: Sci Rep
– year: 0
  ident: ref23
  article-title: Hyper multilevel modulation based on optical eigenvalue multiplexing
  publication-title: Proc Photon Switching Comput
– ident: ref4
  doi: 10.1109/TIT.2014.2321151
– ident: ref17
  doi: 10.1109/LPT.2018.2831693
SSID ssj0014487
Score 2.4780343
Snippet Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4307
SubjectTerms artificial neural networks
Communications systems
Demodulation
Demodulators
Eigenvalues
Eigenvalues and eigenfunctions
Encoding
fiber nonlinear optics
machine learning
Neural networks
Nonlinear optics
Optical communication
Optical fiber communication
Optical modulation
Optical pulses
optical solitons
Schrodinger equation
Sensitivity enhancement
Time domain analysis
Training
Title Eigenvalue-Domain Neural Network Demodulator for Eigenvalue-Modulated Signal
URI https://ieeexplore.ieee.org/document/9410367
https://www.proquest.com/docview/2544296708
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYYEhIX3ojxUg9ckOiWtGnaHBFjmibGaZN2q9rERRNsRWy78Otx0m7iJcStUuM0ifPwVzufAa4sJZmJVORjgjaFWYh-VgSJH6ksCVGhkM4VM3iUvZHoj6PxBtys78Igogs-w5Z9dL58U-ql_VXWVoLThhs3oEHArbqrtfYYEMxwV6PjMKQVHoiVS5Kpdv9hSEAw4K3QssUL8eUIcjlVfmzE7nTp7sJg1a4qqOS5tVzkLf3-jbLxvw3fg53azPRuq3mxDxs4O4Dd2uT06gU9P4AtFwGq54fwcG95OS33N_qdcppNZp4l7qBKHqtIca-D09LYbF_lm0emrvdJYFC9sFVPnujDRzDq3g_ven6dasHXZKEsfEnolLOCx4VhqArCHDrnOoi1DgsVG4moY5ZgFAsmdGZEHGhDiuSSZVIaOvKPYXNWzvAEPJ6TUceipBDcdlvnimeagE4ikaATM01or0Y_1TUPuU2H8ZI6PMJUSvpKrb7SWl9NuF5LvFYcHH-UPbTDvy5Xj3wTzlcKTutFOk8tO1ugJHXs9HepM9i2dVfRueewuXhb4gXZIIv80k2-DzU71gI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07b9swED4EKYJ2aV4t6jRtNLRDB9kkRVHikCGoEziJ7ckBsqkSeQqCNlYQ2yja39K_0v_WI0Ub6QPdAmQTID5E3ofjne74HcA7R0lmU53GmKMrYZZgXNYij1Nd5glqlMqHYkZjNbiQZ5fp5Rr8WN2FQUSffIZd9-hj-bYxC_errKclJ4WbhRTKc_z2lRy02eFpn6T5XoiT48nHQRxqCMSGjt55rMjt4qzmWW0Z6pqMaVNxIzJjklpnViGajOWYZpJJU1qZCWPpC7lipVI2dzUhSME_ITsjFe3tsFWMghwbfxk7SxLSKUIug6BM986GE3I9Be8mjp9eyt8OPV_F5S_V78-zk034udyJNo3lc3cxr7rm-x8kkY91q7bgeTCko6MW-duwhtMd2AxGdRRU1mwHNnyOq5ntwvDYMY86dnOM-81NeT2NHDUJDTJuc-GjPt401tUza-4iMuajex1G7Qs39PUVTfwCLh5kdS9hfdpM8RVEvCKzlaV5LbnbZlNpXhpy5XKF5Bwy24HeUtqFCUzrruDHl8J7XEwXhI_C4aMI-OjAh1WP25Zl5D9td524V-2CpDuwvwRUEdTQrHD8c0IrWtjev3sdwNPBZDQshqfj89fwzM3T5iLvw_r8boFvyOKaV2898CP49NDw-QVhhjN1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenvalue-Domain+Neural+Network+Demodulator+for+Eigenvalue-Modulated+Signal&rft.jtitle=Journal+of+lightwave+technology&rft.au=Mishina%2C+Ken&rft.au=Sato%2C+Shingo&rft.au=Yoshida%2C+Yuki&rft.au=Hisano%2C+Daisuke&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=39&rft.issue=13&rft.spage=4307&rft_id=info:doi/10.1109%2FJLT.2021.3074744&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon