Eigenvalue-Domain Neural Network Demodulator for Eigenvalue-Modulated Signal
Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical app...
Saved in:
Published in | Journal of lightwave technology Vol. 39; no. 13; pp. 4307 - 4317 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical applications involving use of such systems are limited by the occurrence of fiber loss and amplified noise that induce eigenvalue distortion. Thus, several time-domain neural-network-based approaches have been proposed and demonstrated to enhance receiver sensitivity toward eigenvalue-modulated signals. However, despite the substantial improvement in power margin realized using time-domain neural-network-based demodulators compared to their conventional counterparts, these devices require rigorous training for each transmission distance owing to changes in time-domain pulses during transmission. This paper presents a method for demodulation of eigenvalue-modulated signals using an eigenvalue-domain neural network and demonstrates its utility through simulation and experimental results. Simulation results obtained in this study reveal that the proposed demodulator demonstrates superior generalization performance compared to its time-domain counterpart with regard to the transmission distance. Moreover, experimental results demonstrate successful demodulation over distances from zero to 3000 km without training for each distance. |
---|---|
AbstractList | Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical applications involving use of such systems are limited by the occurrence of fiber loss and amplified noise that induce eigenvalue distortion. Thus, several time-domain neural-network-based approaches have been proposed and demonstrated to enhance receiver sensitivity toward eigenvalue-modulated signals. However, despite the substantial improvement in power margin realized using time-domain neural-network-based demodulators compared to their conventional counterparts, these devices require rigorous training for each transmission distance owing to changes in time-domain pulses during transmission. This paper presents a method for demodulation of eigenvalue-modulated signals using an eigenvalue-domain neural network and demonstrates its utility through simulation and experimental results. Simulation results obtained in this study reveal that the proposed demodulator demonstrates superior generalization performance compared to its time-domain counterpart with regard to the transmission distance. Moreover, experimental results demonstrate successful demodulation over distances from zero to 3000 km without training for each distance. Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue associated with the nonlinear Schrödinger equation remains invariant during fiber-based nonlinear dispersive transmission. However, practical applications involving use of such systems are limited by the occurrence of fiber loss and amplified noise that induce eigenvalue distortion. Thus, several time-domain neural-network-based approaches have been proposed and demonstrated to enhance receiver sensitivity toward eigenvalue-modulated signals. However, despite the substantial improvement in power margin realized using time-domain neural-network-based demodulators compared to their conventional counterparts, these devices require rigorous training for each transmission distance owing to changes in time-domain pulses during transmission. This paper presents a method for demodulation of eigenvalue-modulated signals using an eigenvalue-domain neural network and demonstrates its utility through simulation and experimental results. Simulation results obtained in this study reveal that the proposed demodulator demonstrates superior generalization performance compared to its time-domain counterpart with regard to the transmission distance. Moreover, experimental results demonstrate successful demodulation over distances from zero to 3000 km without training for each distance. |
Author | Sato, Shingo Mishina, Ken Yoshida, Yuki Maruta, Akihiro Hisano, Daisuke |
Author_xml | – sequence: 1 givenname: Ken orcidid: 0000-0001-9460-3870 surname: Mishina fullname: Mishina, Ken email: mishina@comm.eng.osaka-u.ac.jp organization: Graduate School of Engineering, Osaka University, Suita, Osaka, Japan – sequence: 2 givenname: Shingo surname: Sato fullname: Sato, Shingo email: s_sato@pn.comm.eng.osaka-u.ac.jp organization: Graduate School of Engineering, Osaka University, Suita, Osaka, Japan – sequence: 3 givenname: Yuki orcidid: 0000-0003-4706-1954 surname: Yoshida fullname: Yoshida, Yuki email: yuki@nict.go.jp organization: National Institute of Information, and Communications Technology (NICT), Koganei, Tokyo, Japan – sequence: 4 givenname: Daisuke orcidid: 0000-0002-5766-3812 surname: Hisano fullname: Hisano, Daisuke email: hisano@comm.eng.osaka-u.ac.jp organization: Graduate School of Engineering, Osaka University, Suita, Osaka, Japan – sequence: 5 givenname: Akihiro orcidid: 0000-0001-7503-5097 surname: Maruta fullname: Maruta, Akihiro email: maruta@comm.eng.osaka-u.ac.jp organization: Graduate School of Engineering, Osaka University, Suita, Osaka, Japan |
BookMark | eNp9kE1Lw0AQhhepYK3eBS8Bz6mzH9nNHqWtX0Q9WM9h3UzK1jRbN4nivzclRcSDh-E9zPsMw3NMRrWvkZAzClNKQV_eZ8spA0anHJRQQhyQMU2SNGaM8hEZg-I8ThUTR-S4adYAVIhUjUm2cCusP0zVYTz3G-Pq6BG7YKo-2k8f3qI5bnzRVab1ISr7-QU8DAssome3qk11Qg5LUzV4us8JebleLGe3cfZ0cze7ymLLtW5jCUxRKKkqC0BdpkzaV2qZspaXWhUS0SpIMVEChDWFUMwWGgWVYKQs0oRPyMVwdxv8e4dNm699F_oHmpwlQjAte75vyaFlg2-agGVuXWta5-s2GFflFPKdubw3l-_M5XtzPQh_wG1wGxO-_kPOB8Qh4k9dCwpcKv4N4QB6xQ |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_1109_JLT_2021_3114427 crossref_primary_10_1364_AOP_484119 crossref_primary_10_1364_OE_465574 crossref_primary_10_1016_j_optcom_2023_129809 crossref_primary_10_1109_JLT_2023_3290484 crossref_primary_10_1007_s10694_024_01662_1 crossref_primary_10_1016_j_cnsns_2023_107311 crossref_primary_10_1038_s41598_021_02252_9 crossref_primary_10_1016_j_chaos_2023_114391 crossref_primary_10_1016_j_optcom_2023_129857 crossref_primary_10_1016_j_ijleo_2023_170769 crossref_primary_10_1109_JLT_2023_3247775 crossref_primary_10_1016_j_ijleo_2023_171036 |
Cites_doi | 10.1109/TIT.2014.2321151 10.1109/LPT.2019.2911600 10.1364/OECC_PS.2013.WR2_5 10.1109/JLT.2019.2917996 10.1109/JLT.2016.2551638 10.1364/OPTICA.4.000307 10.1109/LPT.2015.2432793 10.1364/OL.394115 10.1109/50.219570 10.1587/comex.2019GCL0026 10.1109/TIT.2014.2321155 10.1364/OE.394971 10.1364/OL.15.001443 10.1137/1.9781611970883 10.1364/OFC.2020.W3D.1 10.1364/OE.25.020286 10.1109/LPT.2018.2831693 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2021.3074744 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 4317 |
ExternalDocumentID | 10_1109_JLT_2021_3074744 9410367 |
Genre | orig-research |
GrantInformation_xml | – fundername: Grants-in-Aid for Scientific Research – fundername: Japan Society for the Promotion of Science grantid: JP19H02140 funderid: 10.13039/501100001691 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS ESBDL HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA 5VS AAYOK AAYXX AETIX AFFNX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IBMZZ ICLAB IFJZH RIG VH1 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c399t-602710f17fd0e9f826cb1c27cc3f97d6eec708e57404cad472cd9e4160a66d853 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 10:15:28 EDT 2025 Tue Jul 01 01:02:00 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Aug 27 02:26:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-602710f17fd0e9f826cb1c27cc3f97d6eec708e57404cad472cd9e4160a66d853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5766-3812 0000-0001-9460-3870 0000-0003-4706-1954 0000-0001-7503-5097 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9410367 |
PQID | 2544296708 |
PQPubID | 85485 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2544296708 crossref_primary_10_1109_JLT_2021_3074744 ieee_primary_9410367 crossref_citationtrail_10_1109_JLT_2021_3074744 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 zhang (ref14) 2019; 9 ref11 aref (ref10) 0 ref2 ref1 ref17 ref18 kingma (ref26) 0 ref24 mishina (ref19) 0; 1 ref20 matsuda (ref8) 0 ref22 ref21 kodama (ref23) 0 g (ref25) 2019 ref7 goodfellow (ref27) 2016 ref9 ref4 ref3 ref6 ref5 buelow (ref16) 0 |
References_xml | – ident: ref5 doi: 10.1109/TIT.2014.2321151 – ident: ref13 doi: 10.1109/LPT.2019.2911600 – ident: ref7 doi: 10.1364/OECC_PS.2013.WR2_5 – ident: ref15 doi: 10.1109/JLT.2019.2917996 – year: 2016 ident: ref27 article-title: Deep Learning – ident: ref9 doi: 10.1109/JLT.2016.2551638 – ident: ref3 doi: 10.1364/OPTICA.4.000307 – start-page: 1 year: 0 ident: ref26 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Representation – start-page: 409 year: 0 ident: ref10 article-title: Design of 2-soliton spectral phase modulated pulses over lumped amplified link publication-title: Proc 42nd Eur Conf Opt Commun – ident: ref11 doi: 10.1109/LPT.2015.2432793 – ident: ref22 doi: 10.1364/OL.394115 – ident: ref1 doi: 10.1109/50.219570 – ident: ref18 doi: 10.1587/comex.2019GCL0026 – ident: ref6 doi: 10.1109/TIT.2014.2321155 – volume: 1 year: 0 ident: ref19 article-title: Experimental demonstration of neural network based demodulation for on-off encoded eigenvalue modulation publication-title: Proc 45th Eur Conf Opt Commun – ident: ref21 doi: 10.1364/OE.394971 – ident: ref24 doi: 10.1364/OL.15.001443 – start-page: 1016 year: 0 ident: ref8 article-title: Design of eigenvalue multiplexed multi-level modulation optical transmission system publication-title: Proc 19th OptoElectron Commun Conf /Australian Conf Opt Fibre Technol – ident: ref2 doi: 10.1137/1.9781611970883 – ident: ref20 doi: 10.1364/OFC.2020.W3D.1 – start-page: 412 year: 0 ident: ref16 article-title: Transmission of waveforms determined by 7 eigenvalues with PSK-Modulated spectral amplitudes publication-title: Proc 42nd Eur Conf Opt Commun – year: 2019 ident: ref25 publication-title: Nonlinear Fiber Optics – ident: ref12 doi: 10.1364/OE.25.020286 – volume: 9 start-page: 1 year: 2019 ident: ref14 article-title: Correlated eigen-values of multi-soliton optical communications publication-title: Sci Rep – year: 0 ident: ref23 article-title: Hyper multilevel modulation based on optical eigenvalue multiplexing publication-title: Proc Photon Switching Comput – ident: ref4 doi: 10.1109/TIT.2014.2321151 – ident: ref17 doi: 10.1109/LPT.2018.2831693 |
SSID | ssj0014487 |
Score | 2.4780343 |
Snippet | Optical eigenvalue communication is a promising technique for overcoming the Kerr nonlinear limit in optical communication systems. The optical eigenvalue... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4307 |
SubjectTerms | artificial neural networks Communications systems Demodulation Demodulators Eigenvalues Eigenvalues and eigenfunctions Encoding fiber nonlinear optics machine learning Neural networks Nonlinear optics Optical communication Optical fiber communication Optical modulation Optical pulses optical solitons Schrodinger equation Sensitivity enhancement Time domain analysis Training |
Title | Eigenvalue-Domain Neural Network Demodulator for Eigenvalue-Modulated Signal |
URI | https://ieeexplore.ieee.org/document/9410367 https://www.proquest.com/docview/2544296708 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYYEhIX3ojxUg9ckOiWtGnaHBFjmibGaZN2q9rERRNsRWy78Otx0m7iJcStUuM0ifPwVzufAa4sJZmJVORjgjaFWYh-VgSJH6ksCVGhkM4VM3iUvZHoj6PxBtys78Igogs-w5Z9dL58U-ql_VXWVoLThhs3oEHArbqrtfYYEMxwV6PjMKQVHoiVS5Kpdv9hSEAw4K3QssUL8eUIcjlVfmzE7nTp7sJg1a4qqOS5tVzkLf3-jbLxvw3fg53azPRuq3mxDxs4O4Dd2uT06gU9P4AtFwGq54fwcG95OS33N_qdcppNZp4l7qBKHqtIca-D09LYbF_lm0emrvdJYFC9sFVPnujDRzDq3g_ven6dasHXZKEsfEnolLOCx4VhqArCHDrnOoi1DgsVG4moY5ZgFAsmdGZEHGhDiuSSZVIaOvKPYXNWzvAEPJ6TUceipBDcdlvnimeagE4ikaATM01or0Y_1TUPuU2H8ZI6PMJUSvpKrb7SWl9NuF5LvFYcHH-UPbTDvy5Xj3wTzlcKTutFOk8tO1ugJHXs9HepM9i2dVfRueewuXhb4gXZIIv80k2-DzU71gI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07b9swED4EKYJ2aV4t6jRtNLRDB9kkRVHikCGoEziJ7ckBsqkSeQqCNlYQ2yja39K_0v_WI0Ub6QPdAmQTID5E3ofjne74HcA7R0lmU53GmKMrYZZgXNYij1Nd5glqlMqHYkZjNbiQZ5fp5Rr8WN2FQUSffIZd9-hj-bYxC_errKclJ4WbhRTKc_z2lRy02eFpn6T5XoiT48nHQRxqCMSGjt55rMjt4qzmWW0Z6pqMaVNxIzJjklpnViGajOWYZpJJU1qZCWPpC7lipVI2dzUhSME_ITsjFe3tsFWMghwbfxk7SxLSKUIug6BM986GE3I9Be8mjp9eyt8OPV_F5S_V78-zk034udyJNo3lc3cxr7rm-x8kkY91q7bgeTCko6MW-duwhtMd2AxGdRRU1mwHNnyOq5ntwvDYMY86dnOM-81NeT2NHDUJDTJuc-GjPt401tUza-4iMuajex1G7Qs39PUVTfwCLh5kdS9hfdpM8RVEvCKzlaV5LbnbZlNpXhpy5XKF5Bwy24HeUtqFCUzrruDHl8J7XEwXhI_C4aMI-OjAh1WP25Zl5D9td524V-2CpDuwvwRUEdTQrHD8c0IrWtjev3sdwNPBZDQshqfj89fwzM3T5iLvw_r8boFvyOKaV2898CP49NDw-QVhhjN1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenvalue-Domain+Neural+Network+Demodulator+for+Eigenvalue-Modulated+Signal&rft.jtitle=Journal+of+lightwave+technology&rft.au=Mishina%2C+Ken&rft.au=Sato%2C+Shingo&rft.au=Yoshida%2C+Yuki&rft.au=Hisano%2C+Daisuke&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=39&rft.issue=13&rft.spage=4307&rft_id=info:doi/10.1109%2FJLT.2021.3074744&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |