Dual Polarization Full-Field Signal Waveform Reconstruction Using Intensity Only Measurements for Coherent Communications

Conventional optical coherent receivers capture the full electrical field, including amplitude and phase, of a signal waveform by measuring its interference against a stable continuous-wave local oscillator (LO). In optical coherent communications, powerful digital signal processing (DSP) techniques...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 38; no. 9; pp. 2587 - 2597
Main Authors Chen, Haoshuo, Fontaine, Nicolas K., Gene, Joan M., Ryf, Roland, Neilson, David T., Raybon, Gregory
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2020.2978052

Cover

Abstract Conventional optical coherent receivers capture the full electrical field, including amplitude and phase, of a signal waveform by measuring its interference against a stable continuous-wave local oscillator (LO). In optical coherent communications, powerful digital signal processing (DSP) techniques operating on the full electrical field can effectively undo transmission impairments such as chromatic dispersion (CD) and polarization mode dispersion (PMD). Simpler direct detection techniques do not have access to the full electrical field and therefore lack the ability to compensate for these impairments. We present a full-field measurement technique using only direct detection that does not require any beating with a strong carrier LO. Rather, phase retrieval algorithms based on alternating projections that makes use of dispersive elements are discussed, allowing to recover the optical phase from intensity-only measurements. In this demonstration, the phase retrieval algorithm is a modified Gerchberg-Saxton (GS) algorithm that achieves a simulated optical signal-to-noise ratio (OSNR) penalty of less than 4 dB compared to theory at a bit-error rate of 2<inline-formula><tex-math notation="LaTeX">\;\times 10^{-2}</tex-math></inline-formula>. Based on the proposed phase retrieval scheme, we experimentally demonstrate signal detection and subsequent standard 2 × 2 multiple-input-multiple-output (MIMO) equalization of a polarization-multiplexed 30-Gbaud QPSK transmitted over a 520-km standard single-mode fiber (SMF) span.
AbstractList Conventional optical coherent receivers capture the full electrical field, including amplitude and phase, of a signal waveform by measuring its interference against a stable continuous-wave local oscillator (LO). In optical coherent communications, powerful digital signal processing (DSP) techniques operating on the full electrical field can effectively undo transmission impairments such as chromatic dispersion (CD) and polarization mode dispersion (PMD). Simpler direct detection techniques do not have access to the full electrical field and therefore lack the ability to compensate for these impairments. We present a full-field measurement technique using only direct detection that does not require any beating with a strong carrier LO. Rather, phase retrieval algorithms based on alternating projections that makes use of dispersive elements are discussed, allowing to recover the optical phase from intensity-only measurements. In this demonstration, the phase retrieval algorithm is a modified Gerchberg–Saxton (GS) algorithm that achieves a simulated optical signal-to-noise ratio (OSNR) penalty of less than 4 dB compared to theory at a bit-error rate of 2[Formula Omitted]. Based on the proposed phase retrieval scheme, we experimentally demonstrate signal detection and subsequent standard 2 × 2 multiple-input-multiple-output (MIMO) equalization of a polarization-multiplexed 30-Gbaud QPSK transmitted over a 520-km standard single-mode fiber (SMF) span.
Conventional optical coherent receivers capture the full electrical field, including amplitude and phase, of a signal waveform by measuring its interference against a stable continuous-wave local oscillator (LO). In optical coherent communications, powerful digital signal processing (DSP) techniques operating on the full electrical field can effectively undo transmission impairments such as chromatic dispersion (CD) and polarization mode dispersion (PMD). Simpler direct detection techniques do not have access to the full electrical field and therefore lack the ability to compensate for these impairments. We present a full-field measurement technique using only direct detection that does not require any beating with a strong carrier LO. Rather, phase retrieval algorithms based on alternating projections that makes use of dispersive elements are discussed, allowing to recover the optical phase from intensity-only measurements. In this demonstration, the phase retrieval algorithm is a modified Gerchberg-Saxton (GS) algorithm that achieves a simulated optical signal-to-noise ratio (OSNR) penalty of less than 4 dB compared to theory at a bit-error rate of 2<inline-formula><tex-math notation="LaTeX">\;\times 10^{-2}</tex-math></inline-formula>. Based on the proposed phase retrieval scheme, we experimentally demonstrate signal detection and subsequent standard 2 × 2 multiple-input-multiple-output (MIMO) equalization of a polarization-multiplexed 30-Gbaud QPSK transmitted over a 520-km standard single-mode fiber (SMF) span.
Author Ryf, Roland
Gene, Joan M.
Neilson, David T.
Raybon, Gregory
Chen, Haoshuo
Fontaine, Nicolas K.
Author_xml – sequence: 1
  givenname: Haoshuo
  orcidid: 0000-0002-6637-9346
  surname: Chen
  fullname: Chen, Haoshuo
  email: haoshuo.chen@nokia-bell-labs.com
  organization: Nokia Bell Labs, Holmdel, NJ, USA
– sequence: 2
  givenname: Nicolas K.
  surname: Fontaine
  fullname: Fontaine, Nicolas K.
  email: nicolas.fontaine@nokia-bell-labs.com
  organization: Nokia Bell Labs, Holmdel, NJ, USA
– sequence: 3
  givenname: Joan M.
  surname: Gene
  fullname: Gene, Joan M.
  email: joan.gene@nokia-bell-labs.com
  organization: Nokia Bell Labs, Holmdel, NJ, USA
– sequence: 4
  givenname: Roland
  orcidid: 0000-0002-8883-5349
  surname: Ryf
  fullname: Ryf, Roland
  email: roland.ryf@nokia.com
  organization: Nokia Bell Labs, Holmdel, NJ, USA
– sequence: 5
  givenname: David T.
  surname: Neilson
  fullname: Neilson, David T.
  email: david.neilson@nokia-bell-labs.com
  organization: Nokia Bell Labs, Holmdel, NJ, USA
– sequence: 6
  givenname: Gregory
  surname: Raybon
  fullname: Raybon, Gregory
  email: gregory.raybon@nokia-bell-labs.com
  organization: Nokia Bell Labs, Holmdel, NJ, USA
BookMark eNp9kM1LAzEQxYNUsK3eBS8Bz1vzsdtkj1KtVioVbfG4hGy2puwmNckK619v-oEHD15mJuS9Gd5vAHrGGgXAJUYjjFF-8zRfjggiaERyxlFGTkAfZxlPCMG0B_qIUZpwRtIzMPB-gxBOU876oLtrRQ1fbC2c_hZBWwOnbV0nU63qEr7ptYnf7-JLVdY18FVJa3xwrdwrV16bNZyZoIzXoYMLU3fwWQnfOtUoEzyMLjixH8rFVxyapjVa7s_4c3Baidqri2MfgtX0fjl5TOaLh9nkdp5ImuchydIcyzLDGJdMoIpgzkrKuKSS40pQnlWVJEwiyXnKUoXGrIpdEhnTY5lROgTXh71bZz9b5UOxsa2LsXxB0sgBUUZJVKGDSjrrvVNVsXW6Ea4rMCp2gIsIuNgBLo6Ao2X8xyJ12GcLTuj6P-PVwaiVUr93ckRTFMsPLyiLYg
CODEN JLTEDG
CitedBy_id crossref_primary_10_1364_OE_438149
crossref_primary_10_1109_JLT_2023_3235278
crossref_primary_10_1109_JLT_2023_3243917
crossref_primary_10_1109_JLT_2023_3263640
crossref_primary_10_1016_j_yofte_2024_103811
crossref_primary_10_1364_OE_448826
crossref_primary_10_1364_OE_421603
crossref_primary_10_1109_JLT_2022_3143522
crossref_primary_10_1109_JLT_2023_3280517
crossref_primary_10_1109_JLT_2024_3409062
crossref_primary_10_1364_OE_557632
crossref_primary_10_1109_JLT_2022_3202570
crossref_primary_10_1109_JLT_2022_3179838
crossref_primary_10_1109_JLT_2021_3063689
crossref_primary_10_1109_JLT_2021_3093910
crossref_primary_10_1109_JPHOT_2020_3018863
crossref_primary_10_1364_OL_433349
crossref_primary_10_3390_photonics11010054
crossref_primary_10_1364_OE_522673
crossref_primary_10_1109_JLT_2021_3114235
crossref_primary_10_1364_OE_453635
crossref_primary_10_1109_JLT_2023_3333801
crossref_primary_10_1364_PRJ_498624
crossref_primary_10_1109_JLT_2022_3202086
crossref_primary_10_1364_OL_409034
crossref_primary_10_1109_JPHOT_2024_3371500
crossref_primary_10_1364_JOCN_499341
crossref_primary_10_3390_photonics10091001
crossref_primary_10_1109_JLT_2020_2995640
crossref_primary_10_1109_JLT_2023_3335394
crossref_primary_10_1109_JLT_2024_3350090
crossref_primary_10_1109_JPROC_2022_3197188
crossref_primary_10_1109_JLT_2023_3258479
crossref_primary_10_1109_JLT_2022_3191415
crossref_primary_10_1109_JLT_2022_3211869
Cites_doi 10.1364/OL.39.000598
10.1364/OFC.2018.Th4C.3
10.1109/ECOC.2010.5621201
10.1364/OFC.2018.Tu2D.7
10.1364/OE.19.010359
10.1364/AO.21.002758
10.1109/JLT.2018.2796306
10.1364/JOSAA.3.001897
10.1109/JLT.2018.2791100
10.1109/LPT.2013.2257729
10.1364/OE.26.003368
10.1364/CLEO_SI.2018.STu3C.5
10.1109/TMTT.1982.1131283
10.1109/JLT.2018.2811755
10.1109/ICASSP.2012.6287939
10.1364/OFC.2019.Th4A.3
10.1109/JLT.2011.2174336
10.1109/JLT.2007.912055
10.1364/OE.26.015887
10.1364/OE.20.011241
10.1364/OE.16.000792
10.1109/JLT.2015.2508040
10.1364/OE.22.000943
10.1109/ACCESS.2018.2878886
10.1109/JLT.2009.2039464
10.1109/JLT.2015.2463719
10.1038/lsa.2017.141
10.1364/OE.15.002120
10.1364/OE.18.001510
10.1364/OL.24.001555
10.1109/JLT.2015.2510034
10.1109/JLT.2018.2793460
10.1364/OE.23.000224
10.1002/0470855509
10.1038/s41467-019-09840-4
10.1109/LPT.2004.840999
10.1364/OE.22.031582
10.1109/MSP.2014.2352673
10.1364/OE.26.021390
10.1364/OE.16.000753
10.1364/OL.30.003237
10.1364/OPEX.14.000474
10.1117/12.736360
10.1364/OFC.2019.Th2A.38
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2020.2978052
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 2597
ExternalDocumentID 10_1109_JLT_2020_2978052
9034090
Genre orig-research
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c399t-5491cd5111d7a0f2187d378c3c81fa385ffc27c0c88474e067f474c2c1551c533
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:17:32 EDT 2025
Tue Jul 01 01:01:54 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Aug 27 02:39:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-5491cd5111d7a0f2187d378c3c81fa385ffc27c0c88474e067f474c2c1551c533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8883-5349
0000-0002-6637-9346
OpenAccessLink http://hdl.handle.net/2117/330833
PQID 2400103732
PQPubID 85485
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_JLT_2020_2978052
ieee_primary_9034090
proquest_journals_2400103732
crossref_primary_10_1109_JLT_2020_2978052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
gerchberg (ref29) 1972; 35
ref46
ref45
ref23
chen (ref34) 2019
ref48
ref26
ref47
ref25
ref20
ref42
chen (ref24) 2019
ref41
ref22
ref44
ref21
ref43
ref28
jaganathan (ref27) 2015
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref21
  doi: 10.1364/OL.39.000598
– ident: ref41
  doi: 10.1364/OFC.2018.Th4C.3
– ident: ref12
  doi: 10.1109/ECOC.2010.5621201
– ident: ref23
  doi: 10.1364/OFC.2018.Tu2D.7
– year: 2019
  ident: ref34
  article-title: Mode-multiplexed full-field reconstruction using direct and phase retrieval detection
– ident: ref25
  doi: 10.1364/OE.19.010359
– ident: ref30
  doi: 10.1364/AO.21.002758
– ident: ref6
  doi: 10.1109/JLT.2018.2796306
– ident: ref31
  doi: 10.1364/JOSAA.3.001897
– ident: ref28
  doi: 10.1109/JLT.2018.2791100
– volume: 35
  start-page: 237
  year: 1972
  ident: ref29
  article-title: A practical algorithm for the determination of phase from image and diffraction plane pictures
  publication-title: Optik
– ident: ref32
  doi: 10.1109/LPT.2013.2257729
– ident: ref9
  doi: 10.1364/OE.26.003368
– ident: ref22
  doi: 10.1364/CLEO_SI.2018.STu3C.5
– ident: ref47
  doi: 10.1109/TMTT.1982.1131283
– ident: ref16
  doi: 10.1109/JLT.2018.2811755
– ident: ref14
  doi: 10.1109/ICASSP.2012.6287939
– ident: ref18
  doi: 10.1364/OFC.2019.Th4A.3
– ident: ref38
  doi: 10.1109/JLT.2011.2174336
– ident: ref11
  doi: 10.1109/JLT.2007.912055
– ident: ref8
  doi: 10.1364/OE.26.015887
– ident: ref43
  doi: 10.1364/OE.20.011241
– ident: ref10
  doi: 10.1364/OE.16.000792
– ident: ref40
  doi: 10.1109/JLT.2015.2508040
– ident: ref48
  doi: 10.1364/OE.22.000943
– ident: ref15
  doi: 10.1109/ACCESS.2018.2878886
– ident: ref2
  doi: 10.1109/JLT.2009.2039464
– ident: ref1
  doi: 10.1109/JLT.2015.2463719
– year: 2019
  ident: ref24
  article-title: Full-field, carrier-less, polarization-diversity, direct detection receiver based on phase retrieval
– ident: ref46
  doi: 10.1038/lsa.2017.141
– ident: ref5
  doi: 10.1364/OE.15.002120
– ident: ref45
  doi: 10.1364/OE.18.001510
– ident: ref42
  doi: 10.1364/OL.24.001555
– ident: ref4
  doi: 10.1109/JLT.2015.2510034
– ident: ref7
  doi: 10.1109/JLT.2018.2793460
– ident: ref35
  doi: 10.1364/OE.23.000224
– ident: ref39
  doi: 10.1002/0470855509
– ident: ref37
  doi: 10.1038/s41467-019-09840-4
– year: 2015
  ident: ref27
  article-title: Phase retrieval: An overview of recent developments
  publication-title: arXiv 1510 07713
– ident: ref33
  doi: 10.1109/LPT.2004.840999
– ident: ref36
  doi: 10.1364/OE.22.031582
– ident: ref26
  doi: 10.1109/MSP.2014.2352673
– ident: ref17
  doi: 10.1364/OE.26.021390
– ident: ref3
  doi: 10.1364/OE.16.000753
– ident: ref20
  doi: 10.1364/OL.30.003237
– ident: ref44
  doi: 10.1364/OPEX.14.000474
– ident: ref13
  doi: 10.1117/12.736360
– ident: ref19
  doi: 10.1364/OFC.2019.Th2A.38
SSID ssj0014487
Score 2.5810785
Snippet Conventional optical coherent receivers capture the full electrical field, including amplitude and phase, of a signal waveform by measuring its interference...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2587
SubjectTerms Algorithms
Bit error rate
Coherence
Coherent communication
Computer simulation
Continuous radiation
Digital signal processing
Dispersion
Dual polarization (waves)
Equalization
Measurement techniques
Noise levels
Optical communication
Optical noise
Optical receivers
Phase measurement
Phase retrieval
Phase shift keying
polarization division multiplexing
Polarization mode dispersion
Signal detection
Signal processing
Signal to noise ratio
Waveforms
Title Dual Polarization Full-Field Signal Waveform Reconstruction Using Intensity Only Measurements for Coherent Communications
URI https://ieeexplore.ieee.org/document/9034090
https://www.proquest.com/docview/2400103732
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED6mIPji1CnOX-TBF8FuWdMt6aOoY4hTwQ33Vro0FXF0Qjdh_vXepdnGVMSn5iGXFi7pfV_y3QXgLERyY1RsvBjDlxcYIzyVtrjnN2Kpmi2ZxraAafe-1ekHt4PmoAQXi1wYY4wVn5kaNe1ZfjLWU9oqq4dcIB1Bgr6G06zI1VqcGCDNsKnRUuDbpB_MjyR5WL-96yER9HnNLyr4r4Qge6fKjx-xjS7tMnTn31WISt5q08mwpj-_lWz874dvw5aDmeyymBc7UDLZLpQd5GRuQee7sGEVoDqvwOx6igaPxHRdaiYjeuq1SeLGnl5faLzn-MMQymXEWpe1Z5kVHjAnh5_M2EM2mrHucvsxZ2jFKBWEikGxlayUfA_67ZveVcdz9zJ4GuHMxENK2dAJIrVGImOeIkiQiZBKC60aaSxUM021LzXXCkNfYDAepvjUviZ4phFf7sN6Ns7MATC0D8JhICVPBDaUEjwYGqRQcYAdVbMK9bmrIu2KltPdGaPIkhceRujciJwbOedW4Xxh8V4U7Pijb4V8tejn3FSF4_lsiNyKziPS2lJOpfAPf7c6gk0auxBDHsM6usCcIGCZDE_tTP0CJ67mrg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5EEb34FuszBy-C26abbJM9ilqqtipY0duyzWZFlCpsK9Rf70w2rfhAPG0Omc3CJDvfl3wzAdiPkdxYndogxfAVSGtFoPMGD8J6qnTUUHnqCph2LhutW3l-H91PweEkF8Za68RntkpNd5afvZghbZXVYi6QjiBBn8G4L6MyW2tyZoBEwyVHK4HjqVCODyV5XDtvd5EKhrwaljX8vwQhd6vKj1-xiy_NReiMv6yUlTxVh4Ne1bx_K9r4309fggUPNNlROTOWYcr2V2DRg07ml3SxArNOA2qKVRidDNHgmriuT85kRFCDJonc2M3jA73vLn2zhHMZ8dbP6rPMSQ-YF8QPRuyq_zxinc8NyIKhFaNkECoHxb7kpRRrcNs87R63An8zQ2AQ0AwCJJV1kyFWq2cq5TnCBJUJpY0wup6nQkd5bkJluNEY_KTFiJjj04SGAJpBhLkO0_2Xvt0AhvYy7kmleCawobXgsmeRRKUSO-qoArWxqxLjy5bT7RnPiaMvPE7QuQk5N_HOrcDBxOK1LNnxR99V8tWkn3dTBbbHsyHxa7pISG1LWZUi3Pzdag_mWt1OO2mfXV5swTyNU0ojt2Ea3WF3EL4Mertu1n4AYV3p-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Polarization+Full-Field+Signal+Waveform+Reconstruction+Using+Intensity+Only+Measurements+for+Coherent+Communications&rft.jtitle=Journal+of+lightwave+technology&rft.au=Chen%2C+Haoshuo&rft.au=Fontaine%2C+Nicolas+K.&rft.au=Gene%2C+Joan+M.&rft.au=Ryf%2C+Roland&rft.date=2020-05-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=38&rft.issue=9&rft.spage=2587&rft.epage=2597&rft_id=info:doi/10.1109%2FJLT.2020.2978052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2020_2978052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon