ADABase: A Multimodal Dataset for Cognitive Load Estimation
Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component of driver-state estimation to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on 51 subjects, whil...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 1; p. 340 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component of driver-state estimation to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on 51 subjects, while continuously measuring signals from multiple modalities, based on physiological measurements such as ECG, EDA, EMG, PPG, respiration rate, skin temperature and eye tracker data, as well as behavioral measurements such as action units extracted from facial videos, performance metrics like reaction time and subjective feedback using questionnaires, we create ADABase (Autonomous Driving Cognitive Load Assessment Database) As a reference method to induce cognitive load onto subjects, we use the well-established n-back test, in addition to our novel simulator-based k-drive test, motivated by real-world semi-autonomously vehicles. We extract expert features of all measurements and find significant changes in multiple modalities. Ultimately we train and evaluate machine learning algorithms using single and multimodal inputs to distinguish cognitive load levels. We carefully evaluate model behavior and study feature importance. In summary, we introduce a novel cognitive load test, create a cognitive load database, validate changes using statistical tests, introduce novel classification and regression tasks for machine learning and train and evaluate machine learning models. |
---|---|
AbstractList | Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component of driver-state estimation to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on 51 subjects, while continuously measuring signals from multiple modalities, based on physiological measurements such as ECG, EDA, EMG, PPG, respiration rate, skin temperature and eye tracker data, as well as behavioral measurements such as action units extracted from facial videos, performance metrics like reaction time and subjective feedback using questionnaires, we create ADABase (Autonomous Driving Cognitive Load Assessment Database) As a reference method to induce cognitive load onto subjects, we use the well-established n-back test, in addition to our novel simulator-based k-drive test, motivated by real-world semi-autonomously vehicles. We extract expert features of all measurements and find significant changes in multiple modalities. Ultimately we train and evaluate machine learning algorithms using single and multimodal inputs to distinguish cognitive load levels. We carefully evaluate model behavior and study feature importance. In summary, we introduce a novel cognitive load test, create a cognitive load database, validate changes using statistical tests, introduce novel classification and regression tasks for machine learning and train and evaluate machine learning models.Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component of driver-state estimation to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on 51 subjects, while continuously measuring signals from multiple modalities, based on physiological measurements such as ECG, EDA, EMG, PPG, respiration rate, skin temperature and eye tracker data, as well as behavioral measurements such as action units extracted from facial videos, performance metrics like reaction time and subjective feedback using questionnaires, we create ADABase (Autonomous Driving Cognitive Load Assessment Database) As a reference method to induce cognitive load onto subjects, we use the well-established n-back test, in addition to our novel simulator-based k-drive test, motivated by real-world semi-autonomously vehicles. We extract expert features of all measurements and find significant changes in multiple modalities. Ultimately we train and evaluate machine learning algorithms using single and multimodal inputs to distinguish cognitive load levels. We carefully evaluate model behavior and study feature importance. In summary, we introduce a novel cognitive load test, create a cognitive load database, validate changes using statistical tests, introduce novel classification and regression tasks for machine learning and train and evaluate machine learning models. Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component of driver-state estimation to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on 51 subjects, while continuously measuring signals from multiple modalities, based on physiological measurements such as ECG, EDA, EMG, PPG, respiration rate, skin temperature and eye tracker data, as well as behavioral measurements such as action units extracted from facial videos, performance metrics like reaction time and subjective feedback using questionnaires, we create ADABase ( A utonomous D riving Cognitive Load A ssessment Data base ) As a reference method to induce cognitive load onto subjects, we use the well-established n -back test, in addition to our novel simulator-based k -drive test, motivated by real-world semi-autonomously vehicles. We extract expert features of all measurements and find significant changes in multiple modalities. Ultimately we train and evaluate machine learning algorithms using single and multimodal inputs to distinguish cognitive load levels. We carefully evaluate model behavior and study feature importance. In summary, we introduce a novel cognitive load test, create a cognitive load database, validate changes using statistical tests, introduce novel classification and regression tasks for machine learning and train and evaluate machine learning models. Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component of driver-state estimation to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on 51 subjects, while continuously measuring signals from multiple modalities, based on measurements such as ECG, EDA, EMG, PPG, respiration rate, skin temperature and eye tracker data, as well as measurements such as action units extracted from facial videos, metrics like reaction time and feedback using questionnaires, we create ( utonomous riving Cognitive Load ssessment Data ) As a reference method to induce cognitive load onto subjects, we use the well-established -back test, in addition to our novel simulator-based -drive test, motivated by real-world semi-autonomously vehicles. We extract expert features of all measurements and find significant changes in multiple modalities. Ultimately we train and evaluate machine learning algorithms using single and multimodal inputs to distinguish cognitive load levels. We carefully evaluate model behavior and study feature importance. In summary, we introduce a novel cognitive load test, create a cognitive load database, validate changes using statistical tests, introduce novel classification and regression tasks for machine learning and train and evaluate machine learning models. Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component of driver-state estimation to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on 51 subjects, while continuously measuring signals from multiple modalities, based on physiological measurements such as ECG, EDA, EMG, PPG, respiration rate, skin temperature and eye tracker data, as well as behavioral measurements such as action units extracted from facial videos, performance metrics like reaction time and subjective feedback using questionnaires, we create ADABase (Autonomous Driving Cognitive Load Assessment Database) As a reference method to induce cognitive load onto subjects, we use the well-established n-back test, in addition to our novel simulator-based k-drive test, motivated by real-world semi-autonomously vehicles. We extract expert features of all measurements and find significant changes in multiple modalities. Ultimately we train and evaluate machine learning algorithms using single and multimodal inputs to distinguish cognitive load levels. We carefully evaluate model behavior and study feature importance. In summary, we introduce a novel cognitive load test, create a cognitive load database, validate changes using statistical tests, introduce novel classification and regression tasks for machine learning and train and evaluate machine learning models. |
Author | Deuschel, Jessica Holzer, Nina Eskofier, Bjoern M. Yang, Seung Hee Oppelt, Maximilian P. Foltyn, Andreas Lang, Nadine R. |
AuthorAffiliation | 1 Department Digital Health Systems, Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, 91058 Erlangen, Germany 3 Department Sensory Perception and Analytics, Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, 91058 Erlangen, Germany 4 Artificial Intelligence in Biomedical Speech Processing Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen Nuremberg, 91052 Erlangen, Germany 2 Machine Learning and Data Analytics Lab (MaD Lab), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen Nuremberg, 91052 Erlangen, Germany |
AuthorAffiliation_xml | – name: 3 Department Sensory Perception and Analytics, Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, 91058 Erlangen, Germany – name: 1 Department Digital Health Systems, Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, 91058 Erlangen, Germany – name: 2 Machine Learning and Data Analytics Lab (MaD Lab), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen Nuremberg, 91052 Erlangen, Germany – name: 4 Artificial Intelligence in Biomedical Speech Processing Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen Nuremberg, 91052 Erlangen, Germany |
Author_xml | – sequence: 1 givenname: Maximilian P. surname: Oppelt fullname: Oppelt, Maximilian P. – sequence: 2 givenname: Andreas surname: Foltyn fullname: Foltyn, Andreas – sequence: 3 givenname: Jessica surname: Deuschel fullname: Deuschel, Jessica – sequence: 4 givenname: Nadine R. surname: Lang fullname: Lang, Nadine R. – sequence: 5 givenname: Nina surname: Holzer fullname: Holzer, Nina – sequence: 6 givenname: Bjoern M. orcidid: 0000-0002-0417-0336 surname: Eskofier fullname: Eskofier, Bjoern M. – sequence: 7 givenname: Seung Hee surname: Yang fullname: Yang, Seung Hee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36616939$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFvFCEUx4mpse3qwS9gJvFiD2uBxzCDJibbbdUma7zombwBZmUzO1Rgmvjtpbt10zaeII8fv_fgf0qOxjA6Ql4z-h5A0fPEgTIKgj4jJ0xwMW85p0cP9sfkNKUNpRwA2hfkGKRkUoE6IR8Xl4sLTO5Dtai-TUP222BxqC4xl2Ku-hCrZViPPvtbV60C2uoqFQizD-NL8rzHIblX9-uM_Px89WP5db76_uV6uVjNDSiV5zVXWGOPqjO8A4FUtpYLVTd1j8y0rAXJuLGt7Zhh0tTSKOgbZURtOwVdDzNyvffagBt9E0v7-EcH9HpXCHGtMWZvBqe5VRYa7DrRMwG2dJaNkY0TTenMHC-uT3vXzdRtnTVuzBGHR9LHJ6P_pdfhVquWgxK0CN7dC2L4PbmU9dYn44YBRxempHkjWWEFlQV9-wTdhCmO5at2FKfNXR4z8ubhRIdR_mVUgLM9YGJIKbr-gDCq7_LXh_wLe_6ENT7vwiqP8cN_bvwFhFKurw |
CitedBy_id | crossref_primary_10_3390_s23146597 crossref_primary_10_1080_00140139_2024_2379949 crossref_primary_10_1007_s11571_024_10160_7 crossref_primary_10_3389_fpubh_2023_1195961 crossref_primary_10_1007_s11760_025_03931_0 crossref_primary_10_3389_fcomp_2024_1371181 crossref_primary_10_1051_shsconf_202418901008 crossref_primary_10_1111_ejn_16201 crossref_primary_10_3390_mti9010006 |
Cites_doi | 10.1016/j.dss.2014.02.007 10.1037/e577632012-009 10.1109/ICPR.2008.4761904 10.1016/j.apergo.2018.06.006 10.3389/fpsyg.2014.01344 10.1177/0018720812442086 10.1109/T-AFFC.2011.15 10.1037/0022-3514.54.6.1063 10.1016/j.trf.2005.04.012 10.1145/3173574.3173856 10.3389/fnins.2020.549524 10.3389/feduc.2021.647097 10.1145/3242969.3242985 10.1109/TITS.2005.848368 10.1145/2750858.2807526 10.2307/2136404 10.1109/TAFFC.2019.2927337 10.1109/COGINF.2010.5599796 10.1145/3173574.3174226 10.1109/TITS.2014.2324414 10.3389/fpsyg.2012.00179 10.3389/fphys.2020.00779 10.1016/j.trf.2022.11.013 10.1109/ICDAR.2013.225 10.1080/09658211003702171 10.1016/j.apergo.2010.08.005 10.1177/0018720820929928 10.1109/BIBE.2017.00-12 10.16910/jemr.13.6.1 10.1207/S15326985EP3801_8 10.1037/t27734-000 10.1109/TAFFC.2018.2884461 10.1109/CVPR46437.2021.00753 10.1145/3448111 10.1109/FG47880.2020.00129 10.1080/00140130310001629766 10.1126/science.1736359 10.1037/0022-0663.84.4.429 10.1159/000119003 10.1145/1322192.1322246 10.1145/1864349.1864395 10.1109/eTELEMED.2009.35 10.1109/TAFFC.2015.2392932 10.1121/1.4979340 10.1109/CVPR42600.2020.00525 10.1037/e363942004-001 10.1111/j.1469-8986.2008.00645.x 10.1016/j.psyneuen.2018.07.009 10.1080/001401398186937 10.1109/JBHI.2018.2883751 10.1007/s00779-020-01455-7 10.1007/BF02481078 10.1002/wcs.1222 10.1109/TAFFC.2016.2625250 10.1109/TAFFC.2016.2584042 10.1109/BIA48344.2019.8967457 10.1007/978-3-319-31700-7 10.1007/978-3-319-97909-0_46 10.1109/TAFFC.2017.2731763 10.1145/355017.355028 10.3389/fphys.2018.00727 10.1111/spc3.12057 10.1145/2960413 10.21437/Interspeech.2014-104 10.1145/3530796 10.1111/j.2517-6161.1974.tb00994.x 10.1046/j.1365-2842.1998.00242.x 10.20944/preprints202105.0070.v1 10.1155/2016/8146809 10.1145/2541016.2541083 10.1109/ICASSP.2008.4518041 10.1109/CBMI.2018.8516497 10.1016/S0166-4115(08)62386-9 10.1155/S1110865704406192 10.1371/journal.pone.0043571 10.1177/2331216518800869 10.3390/s20082308 10.1145/2667317.2667320 10.1016/j.aap.2006.09.005 10.1007/978-1-4419-8126-4 10.3389/fphys.2017.00255 10.16910/jemr.14.2.4 10.1080/00140139.2011.604431 10.1177/03611981221090937 10.1037/h0043688 10.1109/THMS.2019.2917194 10.1007/s10648-017-9404-8 10.1145/1979742.1979819 10.1007/978-3-030-70296-0_86 10.1109/TITS.2021.3135266 10.1093/iwc/iwt032 10.1026/0012-1924.51.4.195 10.1016/B978-044451020-4/50031-1 10.1038/sdata.2017.110 10.1177/0018720817690639 10.1109/PerComWorkshops51409.2021.9430936 10.3390/app10113843 10.1007/s42761-023-00191-4 10.1109/ACCESS.2020.2986810 10.1145/1943403.1943454 10.1159/000118611 10.3758/s13428-013-0422-2 10.1016/j.jneumeth.2006.11.017 10.1023/A:1022193728205 10.1016/j.apergo.2017.11.010 10.1145/3329189.3329231 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23010340 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2d9d37abb4f143d29a67c67e47b341e2 PMC9823940 36616939 10_3390_s23010340 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Bavarian Ministry of Economic Affairs, Regional Development and Energy through the Center for Analytics Data Applications (ADA-Center) within the framework of "BAYERN DIGITAL II" grantid: 20-3410-2-9-8 – fundername: Federal Ministry of Education and Research grantid: 16FMD01K, 16FMD02 and 16FMD03 – fundername: Federal Ministry of Education and Research grantid: 16FMD01K; 16FMD02; 16FMD03 – fundername: Bavarian Ministry of Economic Affairs, Regional Development and Energy through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II” grantid: 20-3410-2-9-8 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c399t-529a5afa9bc2b34a068d249575fa1c8183612cd8db1c16c56c93f79c45db93bf3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:58 EDT 2025 Thu Aug 21 18:38:10 EDT 2025 Fri Jul 11 06:52:13 EDT 2025 Fri Jul 25 20:00:33 EDT 2025 Mon Jul 21 06:00:00 EDT 2025 Tue Jul 01 01:19:40 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | cognitive load machine learning affective computing multimodal dataset autonomous driving |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-529a5afa9bc2b34a068d249575fa1c8183612cd8db1c16c56c93f79c45db93bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Main contributing author. |
ORCID | 0000-0002-0417-0336 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23010340 |
PMID | 36616939 |
PQID | 2761207233 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2d9d37abb4f143d29a67c67e47b341e2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9823940 proquest_miscellaneous_2761982406 proquest_journals_2761207233 pubmed_primary_36616939 crossref_primary_10_3390_s23010340 crossref_citationtrail_10_3390_s23010340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221228 |
PublicationDateYYYYMMDD | 2022-12-28 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221228 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_93 Korbach (ref_114) 2018; 30 ref_90 Kirchner (ref_58) 1958; 55 ref_12 Abadi (ref_42) 2021; 12 ref_99 ref_98 Johansson (ref_3) 2005; 8 ref_97 He (ref_118) 2022; 2676 Crundall (ref_31) 1998; 41 ref_96 Sandi (ref_123) 2013; 4 ref_95 Woody (ref_34) 2018; 97 Li (ref_102) 2015; 16 ref_19 ref_16 Zu (ref_18) 2021; 6 Wilson (ref_117) 2021; 5 Smyth (ref_63) 2013; 7 Grassmann (ref_77) 2016; 2016 Abadi (ref_38) 2015; 6 ref_25 ref_24 ref_120 ref_22 ref_21 ref_122 Lisetti (ref_35) 2004; 2004 ref_121 ref_124 Banks (ref_7) 2018; 68 ref_28 ref_27 ref_26 Hussain (ref_45) 2014; 26 Winn (ref_92) 2018; 22 Wang (ref_112) 2014; 62 Smets (ref_82) 2019; 23 McCloy (ref_91) 2017; 141 Rammstedt (ref_57) 2005; 51 ref_72 ref_71 ref_70 Foy (ref_81) 2018; 73 Zhao (ref_104) 2018; 9 Cohen (ref_67) 1983; 24 ref_74 Koelstra (ref_37) 2012; 3 Li (ref_73) 2022; 23 ref_80 McEvoy (ref_2) 2007; 39 Huttunen (ref_23) 2011; 42 ref_89 ref_88 ref_87 ref_85 Healey (ref_51) 2005; 6 Stone (ref_107) 1974; 36 Kirschbaum (ref_62) 1989; 22 Schleifer (ref_83) 2008; 45 ref_50 Hall (ref_105) 1985; 37 Broadbent (ref_113) 2023; 92 He (ref_49) 2019; 49 ref_56 ref_55 ref_54 ref_52 Paxion (ref_5) 2014; 5 Jaeggi (ref_20) 2010; 18 Georgsson (ref_15) 2020; 16 Paas (ref_14) 1992; 84 ref_61 ref_60 Veltman (ref_64) 1993; 28 Markkula (ref_6) 2017; 59 Biondi (ref_76) 2021; 63 Hart (ref_17) 1988; 52 ref_66 ref_65 Paas (ref_11) 2003; 38 Seitz (ref_115) 2022; 58 Peirce (ref_59) 2007; 162 Mehler (ref_53) 2012; 54 ref_119 Leyman (ref_75) 2004; 47 ref_36 ref_32 ref_111 Sweller (ref_10) 1998; 10 Dalmaijer (ref_86) 2014; 46 ref_110 ref_30 Albuquerque (ref_116) 2020; 14 Reimer (ref_79) 2011; 54 ref_39 Watson (ref_68) 1988; 54 Stoeve (ref_94) 2022; 5 ref_103 Subramanian (ref_40) 2018; 9 ref_108 ref_109 ref_47 Baddeley (ref_9) 1992; 255 Gjoreski (ref_106) 2020; 8 ref_44 ref_43 ref_100 ref_41 ref_1 Nourbakhsh (ref_13) 2017; 7 Giannakakis (ref_33) 2019; 13 ref_48 Costa (ref_78) 2017; 8 (ref_84) 1998; 25 Martinez (ref_101) 2019; 10 ref_8 ref_4 Budidha (ref_69) 2020; 11 Taamneh (ref_46) 2017; 4 Yuce (ref_29) 2017; 8 |
References_xml | – volume: 62 start-page: 1 year: 2014 ident: ref_112 article-title: An Eye-Tracking Study of Website Complexity from Cognitive Load Perspective publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2014.02.007 – ident: ref_74 – ident: ref_16 doi: 10.1037/e577632012-009 – ident: ref_36 doi: 10.1109/ICPR.2008.4761904 – volume: 73 start-page: 90 year: 2018 ident: ref_81 article-title: Mental workload is reflected in driver behaviour, physiology, eye movements and prefrontal cortex activation publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2018.06.006 – volume: 5 start-page: 1344 year: 2014 ident: ref_5 article-title: Mental workload and driving publication-title: Front. Psychol. doi: 10.3389/fpsyg.2014.01344 – ident: ref_100 – volume: 54 start-page: 396 year: 2012 ident: ref_53 article-title: Sensitivity of Physiological Measures for Detecting Systematic Variations in Cognitive Demand From a Working Memory Task: An On-Road Study Across Three Age Groups publication-title: Hum. Factors: J. Hum. Factors Ergon. Soc. doi: 10.1177/0018720812442086 – ident: ref_88 – volume: 3 start-page: 18 year: 2012 ident: ref_37 article-title: DEAP: A Database for Emotion Analysis; Using Physiological Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 54 start-page: 1063 year: 1988 ident: ref_68 article-title: Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales publication-title: J. Pers. Soc. Psychol. doi: 10.1037/0022-3514.54.6.1063 – ident: ref_108 – volume: 8 start-page: 97 year: 2005 ident: ref_3 article-title: Effects of Visual and Cognitive load in real and simulated motorway driving publication-title: Transp. Res. Part F Traffic Psychol. Behav. doi: 10.1016/j.trf.2005.04.012 – volume: 58 start-page: 35 year: 2022 ident: ref_115 article-title: Biosignal-Based Recognition of Cognitive Load: A Systematic Review of Public Datasets and Classifiers publication-title: Inf. Syst. Neurosci. – ident: ref_93 doi: 10.1145/3173574.3173856 – volume: 14 start-page: 549524 year: 2020 ident: ref_116 article-title: WAUC: A Multi-Modal Database for Mental Workload Assessment Under Physical Activity publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.549524 – ident: ref_4 – volume: 6 start-page: 647097 year: 2021 ident: ref_18 article-title: Subjective Measure of Cognitive Load Depends on Participants’ Content Knowledge Level publication-title: Front. Educ. doi: 10.3389/feduc.2021.647097 – ident: ref_43 doi: 10.1145/3242969.3242985 – ident: ref_120 – volume: 6 start-page: 156 year: 2005 ident: ref_51 article-title: Detecting Stress During Real-World Driving Tasks Using Physiological Sensors publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2005.848368 – ident: ref_48 – ident: ref_39 doi: 10.1145/2750858.2807526 – volume: 24 start-page: 385 year: 1983 ident: ref_67 article-title: A Global Measure of Perceived Stress publication-title: J. Health Soc. Behav. doi: 10.2307/2136404 – volume: 13 start-page: 440 year: 2019 ident: ref_33 article-title: Review on psychological stress detection using biosignals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2019.2927337 – ident: ref_124 doi: 10.1109/COGINF.2010.5599796 – ident: ref_52 doi: 10.1145/3173574.3174226 – volume: 16 start-page: 51 year: 2015 ident: ref_102 article-title: Predicting Perceived Visual and Cognitive Distractions of Drivers With Multimodal Features publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2324414 – ident: ref_122 doi: 10.3389/fpsyg.2012.00179 – volume: 11 start-page: 779 year: 2020 ident: ref_69 article-title: Heart Rate Variability (HRV) and Pulse Rate Variability (PRV) for the Assessment of Autonomic Responses publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00779 – volume: 92 start-page: 121 year: 2023 ident: ref_113 article-title: Cognitive Load, Working Memory Capacity and Driving Performance: A Preliminary fNIRS and Eye Tracking Study publication-title: Transp. Res. Part F Traffic Psychol. Behav. doi: 10.1016/j.trf.2022.11.013 – ident: ref_26 doi: 10.1109/ICDAR.2013.225 – volume: 18 start-page: 394 year: 2010 ident: ref_20 article-title: The concurrent validity of the N-Back task as a working memory measure publication-title: Memory doi: 10.1080/09658211003702171 – volume: 42 start-page: 348 year: 2011 ident: ref_23 article-title: Effect of cognitive load on speech prosody in aviation: Evidence from military simulator flights publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2010.08.005 – volume: 63 start-page: 813 year: 2021 ident: ref_76 article-title: Overloaded and at Work: Investigating the Effect of Cognitive Workload on Assembly Task Performance publication-title: Hum. Factors J. Hum. Factors Ergon. Soc. doi: 10.1177/0018720820929928 – ident: ref_72 doi: 10.1109/BIBE.2017.00-12 – ident: ref_90 doi: 10.16910/jemr.13.6.1 – ident: ref_121 – volume: 38 start-page: 63 year: 2003 ident: ref_11 article-title: Cognitive Load Measurement as a Means to Advance Cognitive Load Theory publication-title: Educ. Psychol. doi: 10.1207/S15326985EP3801_8 – ident: ref_99 doi: 10.1037/t27734-000 – volume: 12 start-page: 479 year: 2021 ident: ref_42 article-title: AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2884461 – ident: ref_97 doi: 10.1109/CVPR46437.2021.00753 – volume: 5 start-page: 1 year: 2021 ident: ref_117 article-title: Objective Measures of Cognitive Load Using Deep Multi-Modal Learning: A Use-Case in Aviation publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3448111 – ident: ref_103 doi: 10.1109/FG47880.2020.00129 – volume: 47 start-page: 625 year: 2004 ident: ref_75 article-title: Cervicobrachial muscle response to cognitive load in a dual-task scenario publication-title: Ergonomics doi: 10.1080/00140130310001629766 – volume: 255 start-page: 556 year: 1992 ident: ref_9 article-title: Working Memory publication-title: Science doi: 10.1126/science.1736359 – volume: 84 start-page: 429 year: 1992 ident: ref_14 article-title: Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach publication-title: J. Educ. Psychol. doi: 10.1037/0022-0663.84.4.429 – volume: 28 start-page: 72 year: 1993 ident: ref_64 article-title: Indices of mental workload in a complex task environment publication-title: Neuropsychobiology doi: 10.1159/000119003 – ident: ref_50 – volume: 16 start-page: 8 year: 2020 ident: ref_15 article-title: NASA RTLX as a Novel Assessment Tool for Determining Cognitive Load and User Acceptance of Expert and User-based Usability Evaluation Methods publication-title: Eur. J. Biomed. Inform. – ident: ref_25 doi: 10.1145/1322192.1322246 – ident: ref_44 doi: 10.1145/1864349.1864395 – ident: ref_70 doi: 10.1109/eTELEMED.2009.35 – volume: 6 start-page: 209 year: 2015 ident: ref_38 article-title: DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2015.2392932 – volume: 141 start-page: 2440 year: 2017 ident: ref_91 article-title: Pupillometry shows the effort of auditory attention switching publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4979340 – ident: ref_96 doi: 10.1109/CVPR42600.2020.00525 – ident: ref_1 doi: 10.1037/e363942004-001 – volume: 45 start-page: 356 year: 2008 ident: ref_83 article-title: Mental stress and trapezius muscle activation under psychomotor challenge: A focus on EMG gaps during computer work publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2008.00645.x – volume: 97 start-page: 149 year: 2018 ident: ref_34 article-title: Social-evaluative threat, cognitive load, and the cortisol and cardiovascular stress response publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2018.07.009 – volume: 41 start-page: 448 year: 1998 ident: ref_31 article-title: Effects of experience and processing demands on visual information acquisition in drivers publication-title: Ergonomics doi: 10.1080/001401398186937 – volume: 23 start-page: 463 year: 2019 ident: ref_82 article-title: Into the Wild: The Challenges of Physiological Stress Detection in Laboratory and Ambulatory Settings publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2883751 – ident: ref_109 – ident: ref_119 doi: 10.1007/s00779-020-01455-7 – volume: 37 start-page: 27 year: 1985 ident: ref_105 article-title: Limit theorems for the median deviation publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF02481078 – volume: 4 start-page: 245 year: 2013 ident: ref_123 article-title: Stress and cognition publication-title: Wires Cogn. Sci. doi: 10.1002/wcs.1222 – ident: ref_55 – volume: 9 start-page: 147 year: 2018 ident: ref_40 article-title: ASCERTAIN: Emotion and Personality Recognition Using Commercial Sensors publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2016.2625250 – volume: 8 start-page: 161 year: 2017 ident: ref_29 article-title: Action Units and Their Cross-Correlations for Prediction of Cognitive Load during Driving publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2016.2584042 – ident: ref_47 doi: 10.1109/BIA48344.2019.8967457 – ident: ref_12 doi: 10.1007/978-3-319-31700-7 – ident: ref_98 doi: 10.1007/978-3-319-97909-0_46 – volume: 10 start-page: 325 year: 2019 ident: ref_101 article-title: Automatic Analysis of Facial Actions: A Survey publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2731763 – ident: ref_87 doi: 10.1145/355017.355028 – volume: 9 start-page: 727 year: 2018 ident: ref_104 article-title: SQI Quality Evaluation Mechanism of Single-Lead ECG Signal Based on Simple Heuristic Fusion and Fuzzy Comprehensive Evaluation publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00727 – volume: 7 start-page: 605 year: 2013 ident: ref_63 article-title: Salivary Cortisol as a Biomarker in Social Science Research: Salivary Cortisol in Social Science Research publication-title: Soc. Personal. Psychol. Compass doi: 10.1111/spc3.12057 – volume: 7 start-page: 1 year: 2017 ident: ref_13 article-title: Detecting Users’ Cognitive Load by Galvanic Skin Response with Affective Interference publication-title: ACM Trans. Interact. Intell. Syst. doi: 10.1145/2960413 – ident: ref_22 doi: 10.21437/Interspeech.2014-104 – volume: 5 start-page: 1 year: 2022 ident: ref_94 article-title: Eye Tracking-Based Stress Classification of Athletes in Virtual Reality publication-title: Proc. Acm Comput. Graph. Interact. Tech. doi: 10.1145/3530796 – volume: 36 start-page: 111 year: 1974 ident: ref_107 article-title: Cross-Validatory Choice and Assessment of Statistical Predictions publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 25 start-page: 365 year: 1998 ident: ref_84 article-title: Detection of onset and termination of muscle activity in surface electromyograms publication-title: J. Oral Rehabil. doi: 10.1046/j.1365-2842.1998.00242.x – ident: ref_8 – ident: ref_71 doi: 10.20944/preprints202105.0070.v1 – volume: 2016 start-page: 1 year: 2016 ident: ref_77 article-title: Respiratory Changes in Response to Cognitive Load: A Systematic Review publication-title: Neural Plast. doi: 10.1155/2016/8146809 – ident: ref_27 doi: 10.1145/2541016.2541083 – ident: ref_24 doi: 10.1109/ICASSP.2008.4518041 – ident: ref_28 doi: 10.1109/CBMI.2018.8516497 – volume: 52 start-page: 139 year: 1988 ident: ref_17 article-title: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research publication-title: Adv. Psychol. doi: 10.1016/S0166-4115(08)62386-9 – volume: 2004 start-page: 929414 year: 2004 ident: ref_35 article-title: Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/S1110865704406192 – ident: ref_80 doi: 10.1371/journal.pone.0043571 – volume: 22 start-page: 233121651880086 year: 2018 ident: ref_92 article-title: Best Practices and Advice for Using Pupillometry to Measure Listening Effort: An Introduction for Those Who Want to Get Started publication-title: Trends Hear. doi: 10.1177/2331216518800869 – ident: ref_41 doi: 10.3390/s20082308 – ident: ref_66 – ident: ref_54 doi: 10.1145/2667317.2667320 – volume: 39 start-page: 475 year: 2007 ident: ref_2 article-title: The prevalence of, and factors associated with, serious crashes involving a distracting activity publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2006.09.005 – ident: ref_19 doi: 10.1007/978-1-4419-8126-4 – volume: 8 start-page: 255 year: 2017 ident: ref_78 article-title: Heart Rate Fragmentation: A New Approach to the Analysis of Cardiac Interbeat Interval Dynamics publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00255 – ident: ref_111 doi: 10.16910/jemr.14.2.4 – volume: 54 start-page: 932 year: 2011 ident: ref_79 article-title: The impact of cognitive workload on physiological arousal in young adult drivers: A field study and simulation validation publication-title: Ergonomics doi: 10.1080/00140139.2011.604431 – volume: 2676 start-page: 670 year: 2022 ident: ref_118 article-title: Classification of Driver Cognitive Load: Exploring the Benefits of Fusing Eye-Tracking and Physiological Measures publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.1177/03611981221090937 – volume: 55 start-page: 352 year: 1958 ident: ref_58 article-title: Age differences in short-term retention of rapidly changing information publication-title: J. Exp. Psychol. doi: 10.1037/h0043688 – volume: 49 start-page: 362 year: 2019 ident: ref_49 article-title: High Cognitive Load Assessment in Drivers Through Wireless Electroencephalography and the Validation of a Modified N -Back Task publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2019.2917194 – volume: 30 start-page: 503 year: 2018 ident: ref_114 article-title: Differentiating Different Types of Cognitive Load: A Comparison of Different Measures publication-title: Educ. Psychol. Rev. doi: 10.1007/s10648-017-9404-8 – ident: ref_32 doi: 10.1145/1979742.1979819 – ident: ref_110 doi: 10.1007/978-3-030-70296-0_86 – volume: 23 start-page: 14954 year: 2022 ident: ref_73 article-title: Sensitivity of Electrodermal Activity Features for Driver Arousal Measurement in Cognitive Load: The Application in Automated Driving Systems publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3135266 – ident: ref_21 – volume: 26 start-page: 256 year: 2014 ident: ref_45 article-title: Automatic Cognitive Load Detection from Face, Physiology, Task Performance and Fusion During Affective Interference publication-title: Interact. Comput. doi: 10.1093/iwc/iwt032 – volume: 51 start-page: 195 year: 2005 ident: ref_57 article-title: Kurzversion des Big Five Inventory (BFI-K) publication-title: Diagnostica doi: 10.1026/0012-1924.51.4.195 – ident: ref_89 doi: 10.1016/B978-044451020-4/50031-1 – volume: 4 start-page: 170110 year: 2017 ident: ref_46 article-title: A multimodal dataset for various forms of distracted driving publication-title: Sci. Data doi: 10.1038/sdata.2017.110 – ident: ref_85 – volume: 59 start-page: 734 year: 2017 ident: ref_6 article-title: Effects of Cognitive Load on Driving Performance: The Cognitive Control Hypothesis publication-title: Hum. Factors J. Hum. Factors Ergon. Soc. doi: 10.1177/0018720817690639 – ident: ref_61 doi: 10.1109/PerComWorkshops51409.2021.9430936 – ident: ref_56 doi: 10.3390/app10113843 – ident: ref_95 doi: 10.1007/s42761-023-00191-4 – volume: 8 start-page: 70590 year: 2020 ident: ref_106 article-title: Machine Learning and End-to-End Deep Learning for Monitoring Driver Distractions From Physiological and Visual Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986810 – ident: ref_30 doi: 10.1145/1943403.1943454 – volume: 22 start-page: 150 year: 1989 ident: ref_62 article-title: Salivary Cortisol in Psychobiological Research: An Overview publication-title: Neuropsychobiology doi: 10.1159/000118611 – volume: 46 start-page: 913 year: 2014 ident: ref_86 article-title: PyGaze: An Open-Source, Cross-Platform Toolbox for Minimal-Effort Programming of Eyetracking Experiments publication-title: Behav. Res. doi: 10.3758/s13428-013-0422-2 – ident: ref_60 – volume: 162 start-page: 8 year: 2007 ident: ref_59 article-title: PsychoPy-Psychophysics software in Python publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.11.017 – volume: 10 start-page: 251 year: 1998 ident: ref_10 article-title: Cognitive Architecture and Instructional Design publication-title: Educ. Psychol. Rev. doi: 10.1023/A:1022193728205 – volume: 68 start-page: 138 year: 2018 ident: ref_7 article-title: Is partially automated driving a bad idea? Observations from an on-road study publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2017.11.010 – ident: ref_65 doi: 10.1145/3329189.3329231 |
SSID | ssj0023338 |
Score | 2.444948 |
Snippet | Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 340 |
SubjectTerms | affective computing Artificial intelligence Automation Automobile Driving - psychology autonomous driving Business metrics Cognition Cognitive load Datasets Emotions Humans Machine Learning multimodal dataset Physiology Reaction Time Vehicles Workload Workloads |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEJ4YT3owvsVX0HjwQoS2UKondNcYo57cZG-kD4gmCsbF_--UAtk1Jl68toW087Wdb2AeAGeRimXJuAhSEiUBK0kRpEKjqZKakBS4RVzphMen5G7C7qfxdK7Ul_UJc-mBneAuiBGGcqkUK1G1GyJkwnXCC8YVXsBFe_uizuuNqc7Uomh5uTxCFI36ixkS7Sik9gvHnPZpk_T_xix_OkjOaZzbdVjrqKKfuSluwFJRbcLqXALBLbjKRtk16qFLP_PbUNr32uAjI9lgY-MjIfVvev8g_6GWxh_jkXbRitswuR0_39wFXTmEQCOLaNBkFBIFK4XSBNcuwyQ1tnI0j0sZaVS8FNmKNqlRkY4SHSda0JILzWKjBFUl3YHlqq6KPfBThEJS6_VCNNNcpiUzJDQRM0gQlOQenPdiynWXK9yWrHjL0WawEs0HiXpwOgz9cAkyfht0bWU9DLA5rdsGRDrvkM7_QtqDwx6pvDtos5xwXHTIEXAPToZuPCL2v4esivrLjRGppS4e7Dpgh5lQ5CeJoMIDvgD5wlQXe6rXlzYNN77SlpXf_4-1HcAKsXEVkY2VP4Tl5vOrOEK206jjdmN_AyNe-4Y priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuMABAeWRllah6oFLRPxIbMMBLY9lhdqeQOIW-ZHQSpBsd7P_v-Mkm-6iVa-2E9kzHs839jwAvhGT6IILFUlK0ogXNI-ksmiqSBfTHLdIWzrhx8909MQfnpPn7sJt2rlVzs_E5qB2lfV35OcU7W0aC8rY1fhP5KtG-dfVroTGOmwS1DTepUsO73uDi6H91WYTYmjan08RbpOY-XuOBR3UpOpfhS_fu0ku6J3hLux0gDEctBzeg7W83IfthTSCH-BycDu4Rm10EQ7CJqD2rXL4ya2usbEOEZaGN3MvofB7pV14h4LdxiwewNPw7vFmFHVFESKLWKJGw1FpJK9WxlLDuI5T6Xz9aJEUmlhUvwzpZJ10hliS2iS1ihVCWZ44o5gp2CFslFWZH0MokSGaed8XarkVWhbc0dgR7hAmGC0COJuTKbNdxnBfuOI1Q8vBUzTrKRrA137ouE2TsWrQtad1P8Bntm4aqslL1glKRp1yTGhjeIFQzuFqU2FTkXOBqyU5DeBkzqmsE7dp9m9zBHDad6Og-NcPXebVrB2jpAcwARy1jO1nwhClpIqpAMQSy5emutxT_v7VJOPGX_ri8h__P61PsEV93ATxsfAnsFFPZvlnRDO1-dJs2b8SNvLc priority: 102 providerName: ProQuest |
Title | ADABase: A Multimodal Dataset for Cognitive Load Estimation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36616939 https://www.proquest.com/docview/2761207233 https://www.proquest.com/docview/2761982406 https://pubmed.ncbi.nlm.nih.gov/PMC9823940 https://doaj.org/article/2d9d37abb4f143d29a67c67e47b341e2 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gIHRHkGyiqtOHAJxI_ENghVu-1uK0QrVHWlvUV-JIBUEtimEvx7xnmpQXvoJQc_EnvG1nwTe-YDeENMogsuVCQpSSNe0DySyqKrIl1Mc1wiLXXC2Xl6uuSfV8lqC3qOzU6A1xtdO88ntVxfvfvz--8hbvhP3uNEl_39NcJoEjOOnvsOGiThiQzO-HCYQBlrCK19TBcOicZtgqFx15FZarL3b4Kc_9-cvGWKFo_gYYchw2mr9F3YysvH8OBWZsEn8HF6PJ2hgfoQTsMmxvZn5bDLsa6xsA4RqYZH_cWh8EulXTjHvd6GMT6F5WJ-eXQadTwJkUV4UaMvqTRKXCtjqWFcx6l0nlJaJIUmFi0yQxhjnXSGWJLaJLWKFUJZnjijmCnYM9guqzJ_AaFEHWnmr8NQy63QsuCOxo5wh8jBaBHA215Mme2SiHsui6sMnQkv0WyQaAAHQ9NfbeaMTY1mXtZDA5_suimo1t-ybu9k1CnHhDaGF4juHM42FTYVORc4W5LTAPZ6TWX9AsqowEnHApUfwP5QjXvHH4joMq9u2jZKekwTwPNWscNIGAKXVDEVgBipfDTUcU3543uTnxtf6fnmX97hu6_gPvXxFMTHyO_Bdr2-yV8jyqnNBO6JlcCnXJxMYGc2P_96MWn-GEya1f0PW8X8hQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDcpBQICiUvU-JE4pkJo2-2ypdueWqm34FdaJJqUbirEn-I3dpwXu6ji1qvtOPZ47PnGngfAO6ITVXAho4ySNOIFdVEmDaoqmY2pQxZpUyfsH6TTI_71ODlegT-9L4w3q-zPxOagtpXxd-QbFPVtGgvK2Ofzn5HPGuVfV_sUGi1b7Lnfv1Blm3_aHeP6vqd0snO4PY26rAKRQWFco-YlFY5PSW2oZlzFaWZ9AmaRFIoYlF8Mf2RsZjUxJDVJaiQrhDQ8sVoyXTDs9xbc5gwlufdMn3wZFDyG-l4bvQgr4405wnsSM3-vsiDzmtQA1-HZf80yF-Tc5AHc7wBqOGo56iGsuPIR3FsIW_gYNkfj0RZKv4_hKGwceM8qi5-MVY2FdYgwONzurZLCWaVsuIMHSesj-QSOboRcT2G1rEr3HMIMGUAxb2tDDTdCZQW3NLaEW4QlWokAPvRkyk0XodwnyviRo6biKZoPFA3g7dD0vA3LcV2jLU_roYGPpN0UVBcnebcxc2qlZUJpzQuEjhZnmwqTCscFzpY4GsB6v1J5t73n-V9mDODNUI0b07-2qNJVl20bmXnAFMCzdmGHkTBERalkMgCxtORLQ12uKb-fNsG_sUufzH7t_8N6DXemh_uzfLZ7sPcC7lLvs0G8H_46rNYXl-4lIqlav2rYN4RvN71frgDZ7DAV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTWiAgkLhEm9hOHFNVaLe7q5aWVYWo1FvqV2glSNpuKsRf49cxzotdVHHr1XYcZzzj-SaeB8DbSMUyZ1wEKYmSgOXEBqnQaKqkJiQWWaQpnfB5nuwesU_H8fEa_O5iYZxbZXcm1ge1KbX7Rz4kaG-TkBNKh3nrFnE4mX08vwhcBSl309qV02hYZN_--onm22J7b4J7_Y6Q2fTrzm7QVhgINCrmCq0wIXGtUihNFGUyTFLjijHzOJeRRl1G8aXapEZFOkp0nGhBcy40i40SVOUU570F69xZRQNYH0_nh196c4-i9dfkMqJUhMMFgv0opO4vy5IGrAsFXIdu_3XSXNJ6s_twr4Wr_qjhrwewZouHcHcpieEj2BpNRmPUhR_8kV-H8_4oDT4ykRU2Vj6CYn-n81HyD0pp_CkeK03E5GM4uhGCPYFBURb2GfgpsoOkzvOGaKa5THNmSGgiZhCkKMk9eN-RKdNtvnJXNuN7hnaLo2jWU9SDN_3Q8yZJx3WDxo7W_QCXV7tuKC-_Za2YZsQIQ7lUiuUIJA1-bcJ1wi3j-LWRJR5sdjuVtcK-yP6ypgev-24UU3f3IgtbXjVjROrgkwdPm43tV0IRIyWCCg_4ypavLHW1pzg7rVOB45SutP3z_y_rFdxGWckO9ub7G3CHuACOyAXlb8KguryyLxBWVeply78-nNy0yPwB_xw1pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADABase%3A+A+Multimodal+Dataset+for+Cognitive+Load+Estimation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Oppelt%2C+Maximilian+P&rft.au=Foltyn%2C+Andreas&rft.au=Deuschel%2C+Jessica&rft.au=Lang%2C+Nadine+R&rft.date=2022-12-28&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=1&rft_id=info:doi/10.3390%2Fs23010340&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |