The Importance of Water Transport in High Conductivity and High-Power Alkaline Fuel Cells
High ionic conductivity membranes can be used to minimize ohmic losses in electrochemical devices such as fuel cells, flow batteries, and electrolyzers. Very high hydroxide conductivity was achieved through the synthesis of a norbornene-based tetrablock copolymer with an ion-exchange capacity of 3.8...
Saved in:
Published in | Journal of the Electrochemical Society Vol. 167; no. 5; pp. 54501 - 54511 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Electrochemical Society
09.10.2019
|
Online Access | Get full text |
ISSN | 0013-4651 1945-7111 |
DOI | 10.1149/2.0022005JES |
Cover
Loading…
Abstract | High ionic conductivity membranes can be used to minimize ohmic losses in electrochemical devices such as fuel cells, flow batteries, and electrolyzers. Very high hydroxide conductivity was achieved through the synthesis of a norbornene-based tetrablock copolymer with an ion-exchange capacity of 3.88 meq/g. The membranes were cast with a thin polymer reinforcement layer and lightly cross-linked with N,N,N′,N′-tetramethyl-1,6-hexanediamine. The norbornene polymer had a hydroxide conductivity of 212 mS/cm at 80°C. Light cross-linking helped to control the water uptake and provide mechanical stability while balancing the bound (i.e. waters of hydration) vs. free water in the films. The films showed excellent chemical stability with <1.5% conductivity loss after soaking in 1 M NaOH for 1000 h at 80°C. The aged films were analyzed by FT-IR before and after aging to confirm their chemical stability. A H2/O2 alkaline polymer electrolyte fuel cell was fabricated and was able to achieve a peak power density of 3.5 W/cm2 with a maximum current density of 9.7 A/cm2 at 0.15 V at 80°C. The exceptionally high current and power densities were achieved by balancing and optimizing water removal and transport from the hydrogen negative electrode to the oxygen positive electrode. High water transport and thinness are critical aspects of the membrane in extending the power and current density of the cells to new record values. |
---|---|
AbstractList | High ionic conductivity membranes can be used to minimize ohmic losses in electrochemical devices such as fuel cells, flow batteries, and electrolyzers. Very high hydroxide conductivity was achieved through the synthesis of a norbornene-based tetrablock copolymer with an ion-exchange capacity of 3.88 meq/g. The membranes were cast with a thin polymer reinforcement layer and lightly cross-linked with N,N,N′,N′-tetramethyl-1,6-hexanediamine. The norbornene polymer had a hydroxide conductivity of 212 mS/cm at 80°C. Light cross-linking helped to control the water uptake and provide mechanical stability while balancing the bound (i.e. waters of hydration) vs. free water in the films. The films showed excellent chemical stability with <1.5% conductivity loss after soaking in 1 M NaOH for 1000 h at 80°C. The aged films were analyzed by FT-IR before and after aging to confirm their chemical stability. A H2/O2 alkaline polymer electrolyte fuel cell was fabricated and was able to achieve a peak power density of 3.5 W/cm2 with a maximum current density of 9.7 A/cm2 at 0.15 V at 80°C. The exceptionally high current and power densities were achieved by balancing and optimizing water removal and transport from the hydrogen negative electrode to the oxygen positive electrode. High water transport and thinness are critical aspects of the membrane in extending the power and current density of the cells to new record values. |
Author | Hassan, Noor Ul Mustain, William E. Huang, Garrett Gu, Taoli Brooks-Starks, Ahmon H. Bahar, Bamdad Kohl, Paul A. Mandal, Mrinmay Peng, Xiong |
Author_xml | – sequence: 1 givenname: Mrinmay orcidid: 0000-0002-3404-9588 surname: Mandal fullname: Mandal, Mrinmay organization: Georgia Institute of Technology School of Chemical and Biomolecular Engineering, , USA – sequence: 2 givenname: Garrett orcidid: 0000-0003-0100-4161 surname: Huang fullname: Huang, Garrett organization: Georgia Institute of Technology School of Chemical and Biomolecular Engineering, , USA – sequence: 3 givenname: Noor Ul surname: Hassan fullname: Hassan, Noor Ul organization: University of South Carolina Department of Chemical Engineering, , USA – sequence: 4 givenname: Xiong surname: Peng fullname: Peng, Xiong organization: University of South Carolina Department of Chemical Engineering, , USA – sequence: 5 givenname: Taoli surname: Gu fullname: Gu, Taoli organization: Xergy Inc., Harrington , USA – sequence: 6 givenname: Ahmon H. surname: Brooks-Starks fullname: Brooks-Starks, Ahmon H. organization: California State Polytechnic University Chemical & Materials Engineering Department, , USA – sequence: 7 givenname: Bamdad surname: Bahar fullname: Bahar, Bamdad organization: Xergy Inc., Harrington , USA – sequence: 8 givenname: William E. orcidid: 0000-0001-7804-6410 surname: Mustain fullname: Mustain, William E. organization: University of South Carolina Department of Chemical Engineering, , USA – sequence: 9 givenname: Paul A. orcidid: 0000-0001-6267-3647 surname: Kohl fullname: Kohl, Paul A. organization: Georgia Institute of Technology School of Chemical and Biomolecular Engineering, , USA |
BackLink | https://www.osti.gov/biblio/1577386$$D View this record in Osti.gov |
BookMark | eNp1kEFLAzEUhINUsFZv_oDgyYNb85LdTfdYSmsrBQUr4mnJJlmbuk1Kkir9926tIIieHm_4ZmDmFHWssxqhCyB9gLS4oX1CKCUkuxs_HqEuFGmWcADooC4hwJI0z-AEnYawal8YpLyLXhZLjWfrjfNRWKmxq_GziNrjhRc27GVsLJ6a1yUeOau2Mpp3E3dYWPWlJg_uo6WHzZtojNV4stUNHummCWfouBZN0Offt4eeJuPFaJrM729no-E8kawoYpKBqGQNdVplPFdaSKYGXCtV5zVlCohgbR_CKi0KzlVV1anSkuU0pVDQggLroctDrgvRlEGaqOVSOmu1jCVknLNB3kLXB0h6F4LXdbnxZi38rgRS7rcrafmzXYvTX3gbK6JxNnphmv9MVweTcZty5bbetrX_Rj8BLaJ_jQ |
CitedBy_id | crossref_primary_10_1021_acscatal_2c01880 crossref_primary_10_1016_j_synthmet_2023_117385 crossref_primary_10_1016_j_xcrp_2021_100377 crossref_primary_10_1039_D2EE01818G crossref_primary_10_1021_acsaem_2c03682 crossref_primary_10_1039_D0SE00288G crossref_primary_10_1016_j_jechem_2021_06_013 crossref_primary_10_1021_acsaem_0c01998 crossref_primary_10_1016_j_memsci_2022_120341 crossref_primary_10_1021_acsaem_0c00145 crossref_primary_10_1149_1945_7111_abe08a crossref_primary_10_1016_j_ijoes_2023_100288 crossref_primary_10_1016_j_jpowsour_2022_231141 crossref_primary_10_1002_ange_202304778 crossref_primary_10_1038_s41467_024_47809_0 crossref_primary_10_1016_j_ijhydene_2020_05_026 crossref_primary_10_1039_D1TA10868A crossref_primary_10_1016_j_jcis_2023_11_039 crossref_primary_10_1016_j_apcatb_2022_121733 crossref_primary_10_1002_celc_202001074 crossref_primary_10_1002_adma_202410106 crossref_primary_10_3390_polym16243534 crossref_primary_10_1016_j_ijhydene_2020_03_013 crossref_primary_10_1016_j_electacta_2022_140001 crossref_primary_10_1016_j_cej_2023_144328 crossref_primary_10_1002_anie_202013395 crossref_primary_10_1039_D0EE01133A crossref_primary_10_1016_j_coelec_2022_101132 crossref_primary_10_1016_j_memsci_2025_123743 crossref_primary_10_1039_D2TA00196A crossref_primary_10_1002_celc_202000798 crossref_primary_10_1002_aenm_202203488 crossref_primary_10_1016_j_memsci_2024_123057 crossref_primary_10_1016_j_apcatb_2024_124319 crossref_primary_10_1016_j_nocx_2021_100073 crossref_primary_10_1149_1945_7111_ad0a7e crossref_primary_10_1177_21582440241281634 crossref_primary_10_1002_anie_202306754 crossref_primary_10_1021_acsenergylett_2c01038 crossref_primary_10_3390_en16083425 crossref_primary_10_1016_j_polymer_2021_123433 crossref_primary_10_1021_acsaem_2c02092 crossref_primary_10_1021_jacs_2c02594 crossref_primary_10_1038_s41560_019_0530_z crossref_primary_10_1016_j_memsci_2024_123519 crossref_primary_10_1016_j_xcrp_2022_100912 crossref_primary_10_1039_D2SE00690A crossref_primary_10_1016_j_ijhydene_2021_02_203 crossref_primary_10_2139_ssrn_4005784 crossref_primary_10_1021_acsaem_1c01783 crossref_primary_10_1016_j_mtsust_2024_100709 crossref_primary_10_1007_s10965_022_03115_1 crossref_primary_10_1016_j_jpowsour_2022_230997 crossref_primary_10_1039_D0TA04756B crossref_primary_10_3390_polym12112758 crossref_primary_10_1016_j_ijhydene_2023_05_287 crossref_primary_10_1002_advs_202303914 crossref_primary_10_1016_j_memsci_2023_121945 crossref_primary_10_1038_s41929_023_01007_1 crossref_primary_10_1002_adfm_202307041 crossref_primary_10_1016_j_jpowsour_2022_232097 crossref_primary_10_1016_j_memsci_2022_120676 crossref_primary_10_1038_s41563_022_01197_2 crossref_primary_10_1149_1945_7111_abde7b crossref_primary_10_1149_1945_7111_ac6446 crossref_primary_10_1021_acsami_0c00506 crossref_primary_10_1039_D1TA10178A crossref_primary_10_1016_j_apcatb_2023_122375 crossref_primary_10_1016_j_jpowsour_2020_228350 crossref_primary_10_1016_j_memsci_2023_121916 crossref_primary_10_1016_j_jcis_2024_03_117 crossref_primary_10_1002_app_54495 crossref_primary_10_1016_j_powera_2020_100023 crossref_primary_10_1038_s41467_020_17370_7 crossref_primary_10_3390_polym12092114 crossref_primary_10_1016_j_ijhydene_2024_09_012 crossref_primary_10_1002_ange_202013395 crossref_primary_10_1021_acscatal_9b03892 crossref_primary_10_1039_D3EE01394D crossref_primary_10_1002_advs_202306988 crossref_primary_10_1021_acsapm_4c03896 crossref_primary_10_1039_D0RA06484J crossref_primary_10_1021_acsapm_4c01353 crossref_primary_10_1002_ange_202306754 crossref_primary_10_1149_1945_7111_ac5f1d crossref_primary_10_1016_j_cej_2024_152846 crossref_primary_10_1039_D0RA06852G crossref_primary_10_1016_j_jechem_2023_11_008 crossref_primary_10_1002_advs_202102637 crossref_primary_10_1002_cssc_202400825 crossref_primary_10_1016_j_memsci_2021_119966 crossref_primary_10_1002_aenm_202001986 crossref_primary_10_3390_membranes11020102 crossref_primary_10_1016_j_enconman_2022_116203 crossref_primary_10_2139_ssrn_3974811 crossref_primary_10_1016_j_memsci_2024_122830 crossref_primary_10_1021_acsaem_1c00681 crossref_primary_10_1002_celc_202001329 crossref_primary_10_1002_aic_17133 crossref_primary_10_2139_ssrn_4105375 crossref_primary_10_1002_anie_202304778 crossref_primary_10_1016_j_cej_2025_161203 crossref_primary_10_1039_D3CS00186E crossref_primary_10_1016_j_joule_2024_02_011 crossref_primary_10_1016_j_memsci_2021_119335 crossref_primary_10_1016_j_cej_2021_131737 crossref_primary_10_1021_acs_macromol_1c00598 crossref_primary_10_1021_acsapm_9b01182 crossref_primary_10_1039_D2TA08726J crossref_primary_10_1002_advs_202100284 crossref_primary_10_1016_j_memsci_2024_122747 crossref_primary_10_1038_s41929_023_01016_0 crossref_primary_10_1016_j_cartre_2025_100451 crossref_primary_10_1149_1945_7111_abcde3 crossref_primary_10_1038_s41560_021_00878_7 crossref_primary_10_1002_aenm_202200934 crossref_primary_10_1016_j_electacta_2024_144996 crossref_primary_10_1002_adfm_202305231 crossref_primary_10_1021_acsapm_4c03952 crossref_primary_10_3390_su142316001 crossref_primary_10_1038_s41560_022_00978_y crossref_primary_10_1039_D3EE01768K crossref_primary_10_1149_1945_7111_ac4b81 crossref_primary_10_1039_D3TA07065D crossref_primary_10_1021_acsenergylett_3c01402 crossref_primary_10_1002_er_5874 crossref_primary_10_1038_s41467_021_22612_3 crossref_primary_10_1002_ange_202418324 crossref_primary_10_3390_membranes13070669 crossref_primary_10_1021_acs_chemrev_1c00331 crossref_primary_10_1039_D0TA05807F crossref_primary_10_3390_membranes14040085 crossref_primary_10_1016_j_egyr_2023_05_276 crossref_primary_10_1016_j_jpowsour_2023_233833 crossref_primary_10_1016_j_memsci_2023_121352 crossref_primary_10_1021_acsaem_4c02929 crossref_primary_10_3390_membranes11060425 crossref_primary_10_1021_acscatal_0c03973 crossref_primary_10_1039_D2TA05681J crossref_primary_10_1002_anie_202418324 crossref_primary_10_1038_s41560_023_01385_7 crossref_primary_10_1039_D4TA07753A crossref_primary_10_1002_adma_202006292 |
Cites_doi | 10.1021/cm102957g 10.1016/j.memsci.2017.05.063 10.1038/35104620 10.1039/C4TA00558A 10.1021/cr020730k 10.1039/C6TA06653D 10.1039/C8TA04783A 10.1021/ma402254h 10.1149/2.0171907jes 10.1021/acs.macromol.5b00926 10.1002/polb.23395 10.1002/1615-6854(200105)1:1%3c5::AID-FUCE5%3e3.0.CO;2-G 10.1039/C8TA04310H 10.1039/C3EE43275K 10.1021/acs.macromol.5b01302 10.1016/j.jpowsour.2017.05.006 10.1016/j.memsci.2018.01.055 10.1002/app.30131 10.1021/jacs.5b11951 10.1021/acsaem.8b00387 10.1002/pola.29020 10.1021/acsaem.8b02051 10.1021/nl501537p 10.1002/adfm.200901314 10.1039/C9EE01334B 10.1073/pnas.0810041106 10.1021/acsmacrolett.7b00148 10.1039/C4TA03300K 10.1016/j.jpowsour.2018.04.064 10.1039/C9EE00331B 10.1039/C8EE00122G 10.1149/2.0041814jes 10.1021/acsaem.8b00294 10.1080/00222340802561649 10.1021/acsaem.8b02052 10.1039/C6TA01905F 10.1039/C5PY01911G 10.1039/C8TA00753E 10.1016/j.memsci.2018.10.041 10.1021/am301557w 10.1002/cssc.201702330 10.1039/C6EE03079C 10.1021/ma400995n 10.1039/C2EE02552C 10.1016/j.memsci.2014.01.068 10.1039/c2ee22050d 10.1021/ja5080689 10.1021/jp311987v 10.1149/2.1301910jes 10.1021/ma0209287 10.1002/ange.201812662 10.1149/2.0141713jes 10.1021/acs.macromol.7b00401 10.1149/2.077306jes 10.1021/jp301762h 10.1021/acs.macromol.8b02756 10.1039/C4EE01303D 10.1016/j.memsci.2018.03.080 10.1016/j.memsci.2011.04.043 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by ECS. |
Copyright_xml | – notice: The Author(s) 2019. Published by ECS. |
DBID | O3W TSCCA AAYXX CITATION OTOTI |
DOI | 10.1149/2.0022005JES |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
DocumentTitleAlternate | The Importance of Water Transport in High Conductivity and High-Power Alkaline Fuel Cells |
EISSN | 1945-7111 |
ExternalDocumentID | 1577386 10_1149_2_0022005JES 054501 |
GrantInformation_xml | – fundername: Departmen of Energy – fundername: Department of Energy | ARPA-E | Small Business Innovative Research and Small Business Technology Transfer (SBIR/STTR) funderid: http://dx.doi.org/10.13039/100007001 |
GroupedDBID | -~X .DC 0R~ 29L 5GY AATNI ABDNZ ABJNI ACBEA ACHIP ADNWM AENEX AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CJUJL CS3 DU5 EBS F5P IOP JGOPE KOT MV1 N5L NFQFE NHB O3W REC RHI RNS ROL RPA TAE TN5 TSCCA UPT WH7 YQT ~02 .-4 41~ 6TJ 9M8 AAYXX ABEFU ACYGS ADEQX AI. CITATION EJD H13 H~9 IZVLO MVM VH1 VOH VQP XJT XOL YXB ZY4 OTOTI |
ID | FETCH-LOGICAL-c399t-51abcf1f4b576deac3d87eddf6f23d10a300503bea977dbbf4dec362421929213 |
IEDL.DBID | O3W |
ISSN | 0013-4651 |
IngestDate | Mon Oct 02 04:06:07 EDT 2023 Tue Jul 01 01:05:21 EDT 2025 Thu Apr 24 22:53:54 EDT 2025 Wed Aug 21 03:33:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-51abcf1f4b576deac3d87eddf6f23d10a300503bea977dbbf4dec362421929213 |
Notes | 054501 USDOE |
ORCID | 0000-0001-6267-3647 0000-0002-3404-9588 0000-0001-7804-6410 0000-0003-0100-4161 0000000178046410 0000000162673647 0000000234049588 0000000301004161 |
OpenAccessLink | https://iopscience.iop.org/article/10.1149/2.0022005JES |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1149_2_0022005JES iop_journals_10_1149_2_0022005JES crossref_citationtrail_10_1149_2_0022005JES osti_scitechconnect_1577386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-09 |
PublicationDateYYYYMMDD | 2019-10-09 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the Electrochemical Society |
PublicationTitleAlternate | J. Electrochem. Soc |
PublicationYear | 2019 |
Publisher | The Electrochemical Society |
Publisher_xml | – name: The Electrochemical Society |
References | 2019100910550536000_167.5.054501.33 2019100910550536000_167.5.054501.34 2019100910550536000_167.5.054501.31 2019100910550536000_167.5.054501.32 2019100910550536000_167.5.054501.30 2019100910550536000_167.5.054501.39 2019100910550536000_167.5.054501.37 2019100910550536000_167.5.054501.38 2019100910550536000_167.5.054501.35 2019100910550536000_167.5.054501.36 2019100910550536000_167.5.054501.44 2019100910550536000_167.5.054501.45 2019100910550536000_167.5.054501.42 2019100910550536000_167.5.054501.43 2019100910550536000_167.5.054501.40 2019100910550536000_167.5.054501.41 2019100910550536000_167.5.054501.48 2019100910550536000_167.5.054501.49 2019100910550536000_167.5.054501.46 2019100910550536000_167.5.054501.47 2019100910550536000_167.5.054501.11 2019100910550536000_167.5.054501.55 2019100910550536000_167.5.054501.12 2019100910550536000_167.5.054501.56 2019100910550536000_167.5.054501.53 2019100910550536000_167.5.054501.10 2019100910550536000_167.5.054501.51 2019100910550536000_167.5.054501.52 2019100910550536000_167.5.054501.50 Li (2019100910550536000_167.5.054501.54) 2019; 131 2019100910550536000_167.5.054501.19 2019100910550536000_167.5.054501.17 2019100910550536000_167.5.054501.18 2019100910550536000_167.5.054501.7 2019100910550536000_167.5.054501.15 2019100910550536000_167.5.054501.59 2019100910550536000_167.5.054501.6 2019100910550536000_167.5.054501.16 2019100910550536000_167.5.054501.9 2019100910550536000_167.5.054501.13 2019100910550536000_167.5.054501.57 2019100910550536000_167.5.054501.8 2019100910550536000_167.5.054501.14 2019100910550536000_167.5.054501.58 2019100910550536000_167.5.054501.3 2019100910550536000_167.5.054501.2 2019100910550536000_167.5.054501.5 2019100910550536000_167.5.054501.4 2019100910550536000_167.5.054501.1 2019100910550536000_167.5.054501.22 2019100910550536000_167.5.054501.23 2019100910550536000_167.5.054501.20 2019100910550536000_167.5.054501.21 Ahlfield (2019100910550536000_167.5.054501.60) 1648; 164 2019100910550536000_167.5.054501.28 2019100910550536000_167.5.054501.29 2019100910550536000_167.5.054501.26 2019100910550536000_167.5.054501.27 2019100910550536000_167.5.054501.24 2019100910550536000_167.5.054501.25 |
References_xml | – ident: 2019100910550536000_167.5.054501.48 doi: 10.1021/cm102957g – ident: 2019100910550536000_167.5.054501.35 doi: 10.1016/j.memsci.2017.05.063 – ident: 2019100910550536000_167.5.054501.7 doi: 10.1038/35104620 – ident: 2019100910550536000_167.5.054501.45 doi: 10.1039/C4TA00558A – volume: 164 start-page: F year: 1648 ident: 2019100910550536000_167.5.054501.60 publication-title: J. Electrochem. Soc. – ident: 2019100910550536000_167.5.054501.6 doi: 10.1021/cr020730k – ident: 2019100910550536000_167.5.054501.14 doi: 10.1039/C6TA06653D – ident: 2019100910550536000_167.5.054501.56 doi: 10.1039/C8TA04783A – ident: 2019100910550536000_167.5.054501.2 doi: 10.1021/ma402254h – ident: 2019100910550536000_167.5.054501.32 doi: 10.1149/2.0171907jes – ident: 2019100910550536000_167.5.054501.20 doi: 10.1021/acs.macromol.5b00926 – ident: 2019100910550536000_167.5.054501.11 doi: 10.1002/polb.23395 – ident: 2019100910550536000_167.5.054501.5 doi: 10.1002/1615-6854(200105)1:1%3c5::AID-FUCE5%3e3.0.CO;2-G – ident: 2019100910550536000_167.5.054501.28 doi: 10.1039/C8TA04310H – ident: 2019100910550536000_167.5.054501.33 doi: 10.1039/C3EE43275K – ident: 2019100910550536000_167.5.054501.46 doi: 10.1021/acs.macromol.5b01302 – ident: 2019100910550536000_167.5.054501.31 doi: 10.1016/j.jpowsour.2017.05.006 – ident: 2019100910550536000_167.5.054501.50 doi: 10.1016/j.memsci.2018.01.055 – ident: 2019100910550536000_167.5.054501.44 doi: 10.1002/app.30131 – ident: 2019100910550536000_167.5.054501.49 doi: 10.1021/jacs.5b11951 – ident: 2019100910550536000_167.5.054501.8 doi: 10.1021/acsaem.8b00387 – ident: 2019100910550536000_167.5.054501.29 doi: 10.1002/pola.29020 – ident: 2019100910550536000_167.5.054501.23 doi: 10.1021/acsaem.8b02051 – ident: 2019100910550536000_167.5.054501.17 doi: 10.1021/nl501537p – ident: 2019100910550536000_167.5.054501.47 doi: 10.1002/adfm.200901314 – ident: 2019100910550536000_167.5.054501.39 doi: 10.1039/C9EE01334B – ident: 2019100910550536000_167.5.054501.9 doi: 10.1073/pnas.0810041106 – ident: 2019100910550536000_167.5.054501.26 doi: 10.1021/acsmacrolett.7b00148 – ident: 2019100910550536000_167.5.054501.13 doi: 10.1039/C4TA03300K – ident: 2019100910550536000_167.5.054501.34 doi: 10.1016/j.jpowsour.2018.04.064 – ident: 2019100910550536000_167.5.054501.55 doi: 10.1039/C9EE00331B – ident: 2019100910550536000_167.5.054501.30 doi: 10.1039/C8EE00122G – ident: 2019100910550536000_167.5.054501.52 doi: 10.1149/2.0041814jes – ident: 2019100910550536000_167.5.054501.59 doi: 10.1021/acsaem.8b00294 – ident: 2019100910550536000_167.5.054501.42 doi: 10.1080/00222340802561649 – ident: 2019100910550536000_167.5.054501.22 doi: 10.1021/acsaem.8b02052 – ident: 2019100910550536000_167.5.054501.27 doi: 10.1039/C6TA01905F – ident: 2019100910550536000_167.5.054501.57 doi: 10.1039/C5PY01911G – ident: 2019100910550536000_167.5.054501.25 doi: 10.1039/C8TA00753E – ident: 2019100910550536000_167.5.054501.21 doi: 10.1016/j.memsci.2018.10.041 – ident: 2019100910550536000_167.5.054501.53 doi: 10.1021/am301557w – ident: 2019100910550536000_167.5.054501.38 doi: 10.1002/cssc.201702330 – ident: 2019100910550536000_167.5.054501.36 doi: 10.1039/C6EE03079C – ident: 2019100910550536000_167.5.054501.19 doi: 10.1021/ma400995n – ident: 2019100910550536000_167.5.054501.10 doi: 10.1039/C2EE02552C – ident: 2019100910550536000_167.5.054501.37 doi: 10.1016/j.memsci.2014.01.068 – ident: 2019100910550536000_167.5.054501.3 doi: 10.1039/c2ee22050d – ident: 2019100910550536000_167.5.054501.18 doi: 10.1021/ja5080689 – ident: 2019100910550536000_167.5.054501.16 doi: 10.1021/jp311987v – ident: 2019100910550536000_167.5.054501.24 doi: 10.1149/2.1301910jes – ident: 2019100910550536000_167.5.054501.40 doi: 10.1021/ma0209287 – volume: 131 start-page: 1456 year: 2019 ident: 2019100910550536000_167.5.054501.54 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201812662 – ident: 2019100910550536000_167.5.054501.15 doi: 10.1149/2.0141713jes – ident: 2019100910550536000_167.5.054501.51 doi: 10.1021/acs.macromol.7b00401 – ident: 2019100910550536000_167.5.054501.12 doi: 10.1149/2.077306jes – ident: 2019100910550536000_167.5.054501.43 doi: 10.1021/jp301762h – ident: 2019100910550536000_167.5.054501.58 doi: 10.1021/acs.macromol.8b02756 – ident: 2019100910550536000_167.5.054501.4 doi: 10.1039/C4EE01303D – ident: 2019100910550536000_167.5.054501.41 doi: 10.1016/j.memsci.2018.03.080 – ident: 2019100910550536000_167.5.054501.1 doi: 10.1016/j.memsci.2011.04.043 |
SSID | ssj0011847 |
Score | 2.6475964 |
Snippet | High ionic conductivity membranes can be used to minimize ohmic losses in electrochemical devices such as fuel cells, flow batteries, and electrolyzers. Very... |
SourceID | osti crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 54501 |
Title | The Importance of Water Transport in High Conductivity and High-Power Alkaline Fuel Cells |
URI | https://iopscience.iop.org/article/10.1149/2.0022005JES https://www.osti.gov/biblio/1577386 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uPqgPolNxTkcEfZJo2_Qrj6NsbAPdQMfmU2k-CmJtx9b9_17abk5h4Fsp16ZcLne_pHe_Q-jOjphjKd8gUnmK2K5BCfMil3iOxRmTEqKQrh1-fnH7E3s4c2bV0UVRC5PNK9f_CJclUXCpworYlj1phk1LH4YMu681tE9919emPaLTze8D2LZ46yz3P0_8ij81GAN8cQaraSuq9E7QcQUHcacc_BTtqbSBDoJ1F7YGOtoiDDxD7zCrePBVYGb4eJzFeApgcYE3HOX4I8U6dwMHWaqpXIveEDhKZXGXjHVTNNxJPiMNL3FvpRIcqCRZnqNJr_sW9EnVHIEIwBQ5ccyIi9iMbQ47Bgnuk0rfU1LGbmxRaRoRLaheuIoA4Umu8_GUoLoaBDAds0x6gepplqpLhJkFAgZXgAQF7NY496QpbA7IIna4pGYTPaxVFoqKOVw3sEjCsqqZhVb4o-Amut9Iz0vGjB1yt6D9sFoyyx0yLT03IZiEprQVOvdH5KHpeLpX6dU_3tBChwBxWJF-x65RPV-s1A3AiJy3UW0wGrcLw_kGRQfB5g |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60gseDR1W8XUGfJG2SzeHik1SLrVdBixWEkD0CYkxKTV_89c4madWCIL6FMMkuO7sz3yQz3wAcOiFzbXViGlL5ynA8kxrMDz3Dd23OmJTohXTt8M2td9l12j23NwWn41qYtF-a_hpeFkTBxRKWxLasrhk2bf0xpH1xX-_LaBpmXOrRvHrvrjP-hYChiz_KdJ946ocPmsZx0B6neKK-eZbmEjyP5lQklLzWhhmviY8JusZ_TnoZFkvESc4K0RWYUkkV5hqjRm9VWPjGSbgKT7hxSOsth-U4FEkj8oh4dEDGNOjkJSE6PYQ00kSzxebtJ0iYyPyu0dF918hZ_BpqBEuaQxWThorj9zXoNi8eGpdG2X_BEAhbMsO1Qi4iK3I4BiUSLTSVJ76SMvIim0rLDGnOJsNViCBScp3ypwTVBScIG5lt0XWoJGmiNoAwGwVMrhBsCgwIOfelJRyO4CVyuaTWJhyPNBKIkpxc98iIg6JwmgV28LWAm3A0lu4XpBy_yB2gPoLyVL7_IrOtVR-gAjVrrtDpRSILLNfX7VC3_vCGfZjtnDeD69bt1TbMI6BiebIf24FKNhiqXQQtGd_LN-cnOF7kRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Importance+of+Water+Transport+in+High+Conductivity+and+High-Power+Alkaline+Fuel+Cells&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.au=Mandal%2C+Mrinmay&rft.au=Huang%2C+Garrett&rft.au=Hassan%2C+Noor+Ul&rft.au=Peng%2C+Xiong&rft.date=2019-10-09&rft.issn=0013-4651&rft.eissn=1945-7111&rft.volume=167&rft.issue=5&rft.spage=54501&rft_id=info:doi/10.1149%2F2.0022005JES&rft.externalDBID=n%2Fa&rft.externalDocID=10_1149_2_0022005JES |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4651&client=summon |