CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion
In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework to produce robust and omnidirectional quadruped locomotion. The agent learns to directly modulate the intrinsic oscillator...
Saved in:
Published in | IEEE robotics and automation letters Vol. 7; no. 4; pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2022.3218167 |
Cover
Loading…
Abstract | In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework to produce robust and omnidirectional quadruped locomotion. The agent learns to directly modulate the intrinsic oscillator setpoints (amplitude and frequency) and coordinate rhythmic behavior among different oscillators. This approach also allows the use of DRL to explore questions related to neuroscience, namely the role of descending pathways, interoscillator couplings, and sensory feedback in gait generation. We train our policies in simulation and perform a sim-to-real transfer to the Unitree A1 quadruped, where we observe robust behavior to disturbances unseen during training, most notably to a dynamically added 13.75 kg load representing 115% of the nominal quadruped mass. We test several different observation spaces based on proprioceptive sensing and show that our framework is deployable with no domain randomization and very little feedback, where along with the oscillator states, it is possible to provide only contact booleans in the observation space. |
---|---|
AbstractList | In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework to produce robust and omnidirectional quadruped locomotion. The agent learns to directly modulate the intrinsic oscillator setpoints (amplitude and frequency) and coordinate rhythmic behavior among different oscillators. This approach also allows the use of DRL to explore questions related to neuroscience, namely the role of descending pathways, interoscillator couplings, and sensory feedback in gait generation. We train our policies in simulation and perform a sim-to-real transfer to the Unitree A1 quadruped, where we observe robust behavior to disturbances unseen during training, most notably to a dynamically added 13.75 kg load representing 115% of the nominal quadruped mass. We test several different observation spaces based on proprioceptive sensing and show that our framework is deployable with no domain randomization and very little feedback, where along with the oscillator states, it is possible to provide only contact booleans in the observation space. |
Author | Ijspeert, Auke Bellegarda, Guillaume |
Author_xml | – sequence: 1 givenname: Guillaume orcidid: 0000-0001-5809-3340 surname: Bellegarda fullname: Bellegarda, Guillaume organization: BioRobotics LaboratoryEcole Polytechnique Federale de Lausanne (EPFL) – sequence: 2 givenname: Auke orcidid: 0000-0003-1417-9980 surname: Ijspeert fullname: Ijspeert, Auke organization: BioRobotics LaboratoryEcole Polytechnique Federale de Lausanne (EPFL) |
BookMark | eNp9kM9LwzAUx4MoOOfugpeC587kJU0ab6PqFArOoeeQdq_SsSUzzQ7-97ZsiHjw9N7h-3k_Phfk1HmHhFwxOmWM6ttyOZsCBZhyYDmT6oSMgCuVciXl6a_-nEy6bk0pZRkorrMRuS8W83RZ3iUl2uBa95EU6GKwm2RhY8Tgkjk6DDb60CWND8nr3q7CfoerpPS13_rYendJzhq76XByrGPy_vjwVjyl5cv8uZiVac21jqlQSmoBCjLJoW6aDECzGoUQuqKVqhtVUcEtq7RQXOZWCpkjz0BQ3qAGysfk5jB3F_znHrto1n4fXL_SwEDkUoLoU_KQqoPvuoCNqdtohzv7v9qNYdQM0kwvzQzSzFFaD9I_4C60Wxu-_kOuD0iLiD9xrTnkec6_AfO3dhg |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1109_LRA_2024_3399999 crossref_primary_10_1016_j_robot_2024_104799 crossref_primary_10_1126_scirobotics_adp1956 crossref_primary_10_1016_j_oceaneng_2023_116259 crossref_primary_10_1038_s41592_024_02497_y crossref_primary_10_3390_app131911045 crossref_primary_10_1109_LRA_2024_3376151 crossref_primary_10_1177_02783649241312698 crossref_primary_10_1109_TCDS_2023_3250393 crossref_primary_10_1109_LRA_2024_3388842 crossref_primary_10_1007_s10846_023_02047_2 crossref_primary_10_1016_j_neucom_2024_127378 crossref_primary_10_3390_s24113675 crossref_primary_10_1109_LRA_2023_3234773 crossref_primary_10_3390_act13060215 crossref_primary_10_1038_s41598_024_84060_5 crossref_primary_10_1038_s42256_023_00701_w crossref_primary_10_1088_1748_3190_adb8b1 crossref_primary_10_1002_oca_3181 crossref_primary_10_1109_LRA_2024_3474550 crossref_primary_10_1038_s41586_024_07382_4 crossref_primary_10_1109_TRO_2023_3286046 crossref_primary_10_1038_s41467_024_47443_w crossref_primary_10_1080_01691864_2024_2442718 crossref_primary_10_1038_s41467_024_50131_4 crossref_primary_10_1049_cth2_12604 crossref_primary_10_1038_s41598_025_94408_0 crossref_primary_10_1126_scirobotics_adg0279 crossref_primary_10_1016_j_neucom_2024_129328 crossref_primary_10_1061_JAEEEZ_ASENG_5619 crossref_primary_10_1126_scirobotics_adi2243 crossref_primary_10_1080_01691864_2024_2336255 crossref_primary_10_1242_jeb_245784 |
Cites_doi | 10.1126/scirobotics.aau5872 10.1109/LRA.2021.3136645 10.1109/ROBOT.2008.4543306 10.3389/fnbot.2013.00005 10.1126/science.1138353 10.1016/j.neunet.2008.03.014 10.1109/ICRA.2013.6630926 10.1109/IROS.2013.6696839 10.1109/IROS40897.2019.8967995 10.1152/jn.00065.2005 10.1109/IROS51168.2021.9636393 10.15607/RSS.2021.XVII.011 10.1177/0278364903022003004 10.3389/fnbot.2017.00029 10.1109/ICRA.2013.6631040 10.1109/LRA.2022.3145495 10.1109/MEX.1986.4307016 10.1126/scirobotics.abf6354 10.1098/rsif.2012.0669 10.1126/scirobotics.abc5986 10.1109/IROS.2018.8594448 10.1109/IROS.2013.6696353 10.1177/0278364913489205 10.15607/RSS.2018.XIV.010 10.1177/0278364914532150 10.1109/LRA.2018.2794620 10.1038/s41598-017-00348-9 10.1126/scirobotics.abk2822 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LRA.2022.3218167 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 8 |
ExternalDocumentID | 10_1109_LRA_2022_3218167 9932888 |
Genre | orig-research |
GrantInformation_xml | – fundername: Swiss National Science Foundation (SNSF) grantid: 197237 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c399t-4776942725632cff52291ce4449b0b7cf7b043a1b947368a6468e352403fe9203 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Sun Jun 29 13:17:10 EDT 2025 Tue Jul 01 03:54:17 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Wed Aug 27 02:29:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-4776942725632cff52291ce4449b0b7cf7b043a1b947368a6468e352403fe9203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5809-3340 0000-0003-1417-9980 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/192906 |
PQID | 2736886624 |
PQPubID | 4437225 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_LRA_2022_3218167 crossref_primary_10_1109_LRA_2022_3218167 proquest_journals_2736886624 ieee_primary_9932888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref14 makoviychuk (ref44) 2021 ref33 ref11 ref10 ref2 ref1 yang (ref23) 2021 yang (ref34) 0 ref17 hansen (ref41) 2016 ref38 ref16 ref19 ref18 bellegarda (ref30) 2020 rudin (ref25) 0 peng (ref21) 2020 margolis (ref27) 0 (ref45) 0 ref24 schulman (ref46) 2017 kim (ref6) 2019 iscen (ref32) 0 ref20 ref42 ref43 chen (ref28) 2022 ref29 ref8 sutton (ref39) 1998 ref7 ref9 fu (ref22) 0 ref4 bellegarda (ref31) 2021 kasaei (ref36) 2021 ref3 ref5 yu (ref26) 0 ref40 |
References_xml | – year: 2022 ident: ref28 article-title: Learning torque control for quadrupedal locomotion – ident: ref10 doi: 10.1126/scirobotics.aau5872 – ident: ref33 doi: 10.1109/LRA.2021.3136645 – ident: ref14 doi: 10.1109/ROBOT.2008.4543306 – ident: ref35 doi: 10.3389/fnbot.2013.00005 – ident: ref40 doi: 10.1126/science.1138353 – ident: ref1 doi: 10.1016/j.neunet.2008.03.014 – ident: ref15 doi: 10.1109/ICRA.2013.6630926 – ident: ref17 doi: 10.1109/IROS.2013.6696839 – year: 0 ident: ref45 – start-page: 916 year: 0 ident: ref32 article-title: Policies modulating trajectory generators publication-title: Proc Conf Robot Learn – ident: ref29 doi: 10.1109/IROS40897.2019.8967995 – ident: ref43 doi: 10.1152/jn.00065.2005 – year: 2021 ident: ref31 article-title: Robust high-speed running for quadruped robots via deep reinforcement learning – year: 1998 ident: ref39 publication-title: Reinforcement Learning An Introduction Adaptive Computations and Machine Learning – ident: ref7 doi: 10.1109/IROS51168.2021.9636393 – ident: ref11 doi: 10.15607/RSS.2021.XVII.011 – year: 2021 ident: ref44 article-title: Isaac gym: High performance gpu-based physics simulation for robot learning – ident: ref2 doi: 10.1177/0278364903022003004 – year: 0 ident: ref22 article-title: Minimizing energy consumption leads to the emergence of gaits in legged robots publication-title: Proc 5th Annu Conf Robot Learn – year: 2020 ident: ref30 article-title: Robust quadruped jumping via deep reinforcement learning – year: 2017 ident: ref46 article-title: Proximal policy optimization algorithms publication-title: CoRR – start-page: 91 year: 0 ident: ref25 article-title: Learning to walk in minutes using massively parallel deep reinforcement learning publication-title: Proc 5th Annu Conf Robot Learn – ident: ref42 doi: 10.3389/fnbot.2017.00029 – year: 2019 ident: ref6 article-title: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control – ident: ref16 doi: 10.1109/ICRA.2013.6631040 – ident: ref37 doi: 10.1109/LRA.2022.3145495 – year: 0 ident: ref27 article-title: Learning to jump from pixels publication-title: Proc 5th Annu Conf Robot Learn – year: 2020 ident: ref21 article-title: Learning agile robotic locomotion skills by imitating animals – ident: ref20 doi: 10.1109/MEX.1986.4307016 – start-page: 1291 year: 0 ident: ref26 article-title: Visual-locomotion: Learning to walk on complex terrains with vision publication-title: Proc 5th Annu Conf Robot Learn – ident: ref38 doi: 10.1126/scirobotics.abf6354 – year: 2021 ident: ref23 article-title: Learning vision-guided quadrupedal locomotion end-to-end with cross-modal transformers – year: 2021 ident: ref36 article-title: A CPG-based agile and versatile locomotion framework using proximal symmetry loss – ident: ref3 doi: 10.1098/rsif.2012.0669 – ident: ref12 doi: 10.1126/scirobotics.abc5986 – ident: ref5 doi: 10.1109/IROS.2018.8594448 – year: 2016 ident: ref41 article-title: The CMA evolution strategy: A tutorial – ident: ref19 doi: 10.1109/IROS.2013.6696353 – ident: ref13 doi: 10.1177/0278364913489205 – ident: ref9 doi: 10.15607/RSS.2018.XIV.010 – ident: ref18 doi: 10.1177/0278364914532150 – ident: ref8 doi: 10.1109/LRA.2018.2794620 – start-page: 773 year: 0 ident: ref34 article-title: Fast and efficient locomotion via learned gait transitions publication-title: Proc 5th Annu Conf Robot Learn – ident: ref4 doi: 10.1038/s41598-017-00348-9 – ident: ref24 doi: 10.1126/scirobotics.abk2822 |
SSID | ssj0001527395 |
Score | 2.5305798 |
Snippet | In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Bioinspired Robot Learning Deep learning Foot Generators Legged locomotion Legged Robots Locomotion Machine Learning for Robot Control Oscillators Quadrupedal robots Railroad car couplings Reinforcement learning Robot sensing systems Robustness Sensory feedback |
Title | CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion |
URI | https://ieeexplore.ieee.org/document/9932888 https://www.proquest.com/docview/2736886624 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21TDDwVRDlSx5YkEjr2I5TsyFoqVCLSkUltih2bAZQg6BZGPjt2E7aIkCILcPZcnxO7t3Zfg_gRKRUUxmFgTGKBSxKeSDjjAU0suZCMhVKz_Z5y_sTdvMQPdTgbHEXRmvtD5_plnv0e_lZrgpXKmvbWEpsxlaHuk3cyrtay3qKYxIT0XwnEov2YHxh8z9CWtSFMS8kv4w8Xkrlx__XB5XeBgznwynPkjy1iplsqfdvTI3_He8mrFfoEl2Uy2ELanq6DWtfOAcbcHU5ug7Gg3NUMas-oqrAi0aeanOKSiZqp8KDLKJFd0WavRYvOkODXOWl6s8OTHrd-8t-UEkpBMoikFnA4pgLRmILcChRxljUJUKlGWNCYumoiSRmNA2lYDHlnZQz3tEWmzFMjRYE011YmeZTvQco7SiNM-Ok_FLGeSQxyWKjQ22Mu5eOm9CeT3OiKp5xJ3fxnPh8A4vEOiZxjkkqxzThdNHipeTY-MO24eZ5YVdNcRMO555Mqo_wLSHuVTqcE7b_e6sDWHV9l2fzDmFl9lroI4sxZvIY6sOP7rFfYp9Lj84E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbAgkdaxHadmQ-VRIK0AtRJbFDs2A6hF0Cz8emwnbREgxJbBlh2fk_vu7Ps-gCORUU1lFAbGKBawKOOBjHMW0Mg2F5KpUHq2zy5v99nNY_Q4AyeTWhittb98puvu0Z_l50NVuFRZw_pSYiO2WZiPXDFuWa01zag4LjERjc8isWgkD2c2AiSkTp0j81LyU9_jxVR-_IG9W7lcgc54QuVtkud6MZJ19fGNq_G_M16F5QpforNyQ6zBjB6sw9IX1sENOG_dXQUPySmquFWfUJXiRXeebHOASi5qp8ODLKZF90WWvxWvOkfJUA1L3Z9N6F9e9FrtoBJTCJTFIKOAxTEXjMQW4lCijLG4S4RKM8aExNKRE0nMaBZKwWLKmxlnvKktOmOYGi0IplswNxgO9DagrKk0zo0T88sY55HEJI-NDrUxrjId16AxXuZUVUzjTvDiJfURBxapNUzqDJNWhqnB8aTHa8my8UfbDbfOk3bVEtdgb2zJtPoM31PiXqXJOWE7v_c6hIV2r5OkyXX3dhcW3TjlTb09mBu9FXrfIo6RPPAb7RNVutAb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CPG-RL%3A+Learning+Central+Pattern+Generators+for+Quadruped+Locomotion&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Bellegarda%2C+Guillaume&rft.au=Ijspeert%2C+Auke&rft.date=2022-10-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=7&rft.issue=4&rft.spage=12547&rft.epage=12554&rft_id=info:doi/10.1109%2FLRA.2022.3218167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2022_3218167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |