CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework to produce robust and omnidirectional quadruped locomotion. The agent learns to directly modulate the intrinsic oscillator...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 7; no. 4; pp. 1 - 8
Main Authors Bellegarda, Guillaume, Ijspeert, Auke
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2022.3218167

Cover

Loading…
Abstract In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework to produce robust and omnidirectional quadruped locomotion. The agent learns to directly modulate the intrinsic oscillator setpoints (amplitude and frequency) and coordinate rhythmic behavior among different oscillators. This approach also allows the use of DRL to explore questions related to neuroscience, namely the role of descending pathways, interoscillator couplings, and sensory feedback in gait generation. We train our policies in simulation and perform a sim-to-real transfer to the Unitree A1 quadruped, where we observe robust behavior to disturbances unseen during training, most notably to a dynamically added 13.75 kg load representing 115% of the nominal quadruped mass. We test several different observation spaces based on proprioceptive sensing and show that our framework is deployable with no domain randomization and very little feedback, where along with the oscillator states, it is possible to provide only contact booleans in the observation space.
AbstractList In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework to produce robust and omnidirectional quadruped locomotion. The agent learns to directly modulate the intrinsic oscillator setpoints (amplitude and frequency) and coordinate rhythmic behavior among different oscillators. This approach also allows the use of DRL to explore questions related to neuroscience, namely the role of descending pathways, interoscillator couplings, and sensory feedback in gait generation. We train our policies in simulation and perform a sim-to-real transfer to the Unitree A1 quadruped, where we observe robust behavior to disturbances unseen during training, most notably to a dynamically added 13.75 kg load representing 115% of the nominal quadruped mass. We test several different observation spaces based on proprioceptive sensing and show that our framework is deployable with no domain randomization and very little feedback, where along with the oscillator states, it is possible to provide only contact booleans in the observation space.
Author Ijspeert, Auke
Bellegarda, Guillaume
Author_xml – sequence: 1
  givenname: Guillaume
  orcidid: 0000-0001-5809-3340
  surname: Bellegarda
  fullname: Bellegarda, Guillaume
  organization: BioRobotics LaboratoryEcole Polytechnique Federale de Lausanne (EPFL)
– sequence: 2
  givenname: Auke
  orcidid: 0000-0003-1417-9980
  surname: Ijspeert
  fullname: Ijspeert, Auke
  organization: BioRobotics LaboratoryEcole Polytechnique Federale de Lausanne (EPFL)
BookMark eNp9kM9LwzAUx4MoOOfugpeC587kJU0ab6PqFArOoeeQdq_SsSUzzQ7-97ZsiHjw9N7h-3k_Phfk1HmHhFwxOmWM6ttyOZsCBZhyYDmT6oSMgCuVciXl6a_-nEy6bk0pZRkorrMRuS8W83RZ3iUl2uBa95EU6GKwm2RhY8Tgkjk6DDb60CWND8nr3q7CfoerpPS13_rYendJzhq76XByrGPy_vjwVjyl5cv8uZiVac21jqlQSmoBCjLJoW6aDECzGoUQuqKVqhtVUcEtq7RQXOZWCpkjz0BQ3qAGysfk5jB3F_znHrto1n4fXL_SwEDkUoLoU_KQqoPvuoCNqdtohzv7v9qNYdQM0kwvzQzSzFFaD9I_4C60Wxu-_kOuD0iLiD9xrTnkec6_AfO3dhg
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_LRA_2024_3399999
crossref_primary_10_1016_j_robot_2024_104799
crossref_primary_10_1126_scirobotics_adp1956
crossref_primary_10_1016_j_oceaneng_2023_116259
crossref_primary_10_1038_s41592_024_02497_y
crossref_primary_10_3390_app131911045
crossref_primary_10_1109_LRA_2024_3376151
crossref_primary_10_1177_02783649241312698
crossref_primary_10_1109_TCDS_2023_3250393
crossref_primary_10_1109_LRA_2024_3388842
crossref_primary_10_1007_s10846_023_02047_2
crossref_primary_10_1016_j_neucom_2024_127378
crossref_primary_10_3390_s24113675
crossref_primary_10_1109_LRA_2023_3234773
crossref_primary_10_3390_act13060215
crossref_primary_10_1038_s41598_024_84060_5
crossref_primary_10_1038_s42256_023_00701_w
crossref_primary_10_1088_1748_3190_adb8b1
crossref_primary_10_1002_oca_3181
crossref_primary_10_1109_LRA_2024_3474550
crossref_primary_10_1038_s41586_024_07382_4
crossref_primary_10_1109_TRO_2023_3286046
crossref_primary_10_1038_s41467_024_47443_w
crossref_primary_10_1080_01691864_2024_2442718
crossref_primary_10_1038_s41467_024_50131_4
crossref_primary_10_1049_cth2_12604
crossref_primary_10_1038_s41598_025_94408_0
crossref_primary_10_1126_scirobotics_adg0279
crossref_primary_10_1016_j_neucom_2024_129328
crossref_primary_10_1061_JAEEEZ_ASENG_5619
crossref_primary_10_1126_scirobotics_adi2243
crossref_primary_10_1080_01691864_2024_2336255
crossref_primary_10_1242_jeb_245784
Cites_doi 10.1126/scirobotics.aau5872
10.1109/LRA.2021.3136645
10.1109/ROBOT.2008.4543306
10.3389/fnbot.2013.00005
10.1126/science.1138353
10.1016/j.neunet.2008.03.014
10.1109/ICRA.2013.6630926
10.1109/IROS.2013.6696839
10.1109/IROS40897.2019.8967995
10.1152/jn.00065.2005
10.1109/IROS51168.2021.9636393
10.15607/RSS.2021.XVII.011
10.1177/0278364903022003004
10.3389/fnbot.2017.00029
10.1109/ICRA.2013.6631040
10.1109/LRA.2022.3145495
10.1109/MEX.1986.4307016
10.1126/scirobotics.abf6354
10.1098/rsif.2012.0669
10.1126/scirobotics.abc5986
10.1109/IROS.2018.8594448
10.1109/IROS.2013.6696353
10.1177/0278364913489205
10.15607/RSS.2018.XIV.010
10.1177/0278364914532150
10.1109/LRA.2018.2794620
10.1038/s41598-017-00348-9
10.1126/scirobotics.abk2822
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2022.3218167
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 8
ExternalDocumentID 10_1109_LRA_2022_3218167
9932888
Genre orig-research
GrantInformation_xml – fundername: Swiss National Science Foundation (SNSF)
  grantid: 197237
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-4776942725632cff52291ce4449b0b7cf7b043a1b947368a6468e352403fe9203
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Sun Jun 29 13:17:10 EDT 2025
Tue Jul 01 03:54:17 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Wed Aug 27 02:29:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-4776942725632cff52291ce4449b0b7cf7b043a1b947368a6468e352403fe9203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5809-3340
0000-0003-1417-9980
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/192906
PQID 2736886624
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2022_3218167
crossref_primary_10_1109_LRA_2022_3218167
proquest_journals_2736886624
ieee_primary_9932888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref14
makoviychuk (ref44) 2021
ref33
ref11
ref10
ref2
ref1
yang (ref23) 2021
yang (ref34) 0
ref17
hansen (ref41) 2016
ref38
ref16
ref19
ref18
bellegarda (ref30) 2020
rudin (ref25) 0
peng (ref21) 2020
margolis (ref27) 0
(ref45) 0
ref24
schulman (ref46) 2017
kim (ref6) 2019
iscen (ref32) 0
ref20
ref42
ref43
chen (ref28) 2022
ref29
ref8
sutton (ref39) 1998
ref7
ref9
fu (ref22) 0
ref4
bellegarda (ref31) 2021
kasaei (ref36) 2021
ref3
ref5
yu (ref26) 0
ref40
References_xml – year: 2022
  ident: ref28
  article-title: Learning torque control for quadrupedal locomotion
– ident: ref10
  doi: 10.1126/scirobotics.aau5872
– ident: ref33
  doi: 10.1109/LRA.2021.3136645
– ident: ref14
  doi: 10.1109/ROBOT.2008.4543306
– ident: ref35
  doi: 10.3389/fnbot.2013.00005
– ident: ref40
  doi: 10.1126/science.1138353
– ident: ref1
  doi: 10.1016/j.neunet.2008.03.014
– ident: ref15
  doi: 10.1109/ICRA.2013.6630926
– ident: ref17
  doi: 10.1109/IROS.2013.6696839
– year: 0
  ident: ref45
– start-page: 916
  year: 0
  ident: ref32
  article-title: Policies modulating trajectory generators
  publication-title: Proc Conf Robot Learn
– ident: ref29
  doi: 10.1109/IROS40897.2019.8967995
– ident: ref43
  doi: 10.1152/jn.00065.2005
– year: 2021
  ident: ref31
  article-title: Robust high-speed running for quadruped robots via deep reinforcement learning
– year: 1998
  ident: ref39
  publication-title: Reinforcement Learning An Introduction Adaptive Computations and Machine Learning
– ident: ref7
  doi: 10.1109/IROS51168.2021.9636393
– ident: ref11
  doi: 10.15607/RSS.2021.XVII.011
– year: 2021
  ident: ref44
  article-title: Isaac gym: High performance gpu-based physics simulation for robot learning
– ident: ref2
  doi: 10.1177/0278364903022003004
– year: 0
  ident: ref22
  article-title: Minimizing energy consumption leads to the emergence of gaits in legged robots
  publication-title: Proc 5th Annu Conf Robot Learn
– year: 2020
  ident: ref30
  article-title: Robust quadruped jumping via deep reinforcement learning
– year: 2017
  ident: ref46
  article-title: Proximal policy optimization algorithms
  publication-title: CoRR
– start-page: 91
  year: 0
  ident: ref25
  article-title: Learning to walk in minutes using massively parallel deep reinforcement learning
  publication-title: Proc 5th Annu Conf Robot Learn
– ident: ref42
  doi: 10.3389/fnbot.2017.00029
– year: 2019
  ident: ref6
  article-title: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control
– ident: ref16
  doi: 10.1109/ICRA.2013.6631040
– ident: ref37
  doi: 10.1109/LRA.2022.3145495
– year: 0
  ident: ref27
  article-title: Learning to jump from pixels
  publication-title: Proc 5th Annu Conf Robot Learn
– year: 2020
  ident: ref21
  article-title: Learning agile robotic locomotion skills by imitating animals
– ident: ref20
  doi: 10.1109/MEX.1986.4307016
– start-page: 1291
  year: 0
  ident: ref26
  article-title: Visual-locomotion: Learning to walk on complex terrains with vision
  publication-title: Proc 5th Annu Conf Robot Learn
– ident: ref38
  doi: 10.1126/scirobotics.abf6354
– year: 2021
  ident: ref23
  article-title: Learning vision-guided quadrupedal locomotion end-to-end with cross-modal transformers
– year: 2021
  ident: ref36
  article-title: A CPG-based agile and versatile locomotion framework using proximal symmetry loss
– ident: ref3
  doi: 10.1098/rsif.2012.0669
– ident: ref12
  doi: 10.1126/scirobotics.abc5986
– ident: ref5
  doi: 10.1109/IROS.2018.8594448
– year: 2016
  ident: ref41
  article-title: The CMA evolution strategy: A tutorial
– ident: ref19
  doi: 10.1109/IROS.2013.6696353
– ident: ref13
  doi: 10.1177/0278364913489205
– ident: ref9
  doi: 10.15607/RSS.2018.XIV.010
– ident: ref18
  doi: 10.1177/0278364914532150
– ident: ref8
  doi: 10.1109/LRA.2018.2794620
– start-page: 773
  year: 0
  ident: ref34
  article-title: Fast and efficient locomotion via learned gait transitions
  publication-title: Proc 5th Annu Conf Robot Learn
– ident: ref4
  doi: 10.1038/s41598-017-00348-9
– ident: ref24
  doi: 10.1126/scirobotics.abk2822
SSID ssj0001527395
Score 2.5305798
Snippet In this letter, we present a method for integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Bioinspired Robot Learning
Deep learning
Foot
Generators
Legged locomotion
Legged Robots
Locomotion
Machine Learning for Robot Control
Oscillators
Quadrupedal robots
Railroad car couplings
Reinforcement learning
Robot sensing systems
Robustness
Sensory feedback
Title CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion
URI https://ieeexplore.ieee.org/document/9932888
https://www.proquest.com/docview/2736886624
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21TDDwVRDlSx5YkEjr2I5TsyFoqVCLSkUltih2bAZQg6BZGPjt2E7aIkCILcPZcnxO7t3Zfg_gRKRUUxmFgTGKBSxKeSDjjAU0suZCMhVKz_Z5y_sTdvMQPdTgbHEXRmvtD5_plnv0e_lZrgpXKmvbWEpsxlaHuk3cyrtay3qKYxIT0XwnEov2YHxh8z9CWtSFMS8kv4w8Xkrlx__XB5XeBgznwynPkjy1iplsqfdvTI3_He8mrFfoEl2Uy2ELanq6DWtfOAcbcHU5ug7Gg3NUMas-oqrAi0aeanOKSiZqp8KDLKJFd0WavRYvOkODXOWl6s8OTHrd-8t-UEkpBMoikFnA4pgLRmILcChRxljUJUKlGWNCYumoiSRmNA2lYDHlnZQz3tEWmzFMjRYE011YmeZTvQco7SiNM-Ok_FLGeSQxyWKjQ22Mu5eOm9CeT3OiKp5xJ3fxnPh8A4vEOiZxjkkqxzThdNHipeTY-MO24eZ5YVdNcRMO555Mqo_wLSHuVTqcE7b_e6sDWHV9l2fzDmFl9lroI4sxZvIY6sOP7rFfYp9Lj84E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbAgkdaxHadmQ-VRIK0AtRJbFDs2A6hF0Cz8emwnbREgxJbBlh2fk_vu7Ps-gCORUU1lFAbGKBawKOOBjHMW0Mg2F5KpUHq2zy5v99nNY_Q4AyeTWhittb98puvu0Z_l50NVuFRZw_pSYiO2WZiPXDFuWa01zag4LjERjc8isWgkD2c2AiSkTp0j81LyU9_jxVR-_IG9W7lcgc54QuVtkud6MZJ19fGNq_G_M16F5QpforNyQ6zBjB6sw9IX1sENOG_dXQUPySmquFWfUJXiRXeebHOASi5qp8ODLKZF90WWvxWvOkfJUA1L3Z9N6F9e9FrtoBJTCJTFIKOAxTEXjMQW4lCijLG4S4RKM8aExNKRE0nMaBZKwWLKmxlnvKktOmOYGi0IplswNxgO9DagrKk0zo0T88sY55HEJI-NDrUxrjId16AxXuZUVUzjTvDiJfURBxapNUzqDJNWhqnB8aTHa8my8UfbDbfOk3bVEtdgb2zJtPoM31PiXqXJOWE7v_c6hIV2r5OkyXX3dhcW3TjlTb09mBu9FXrfIo6RPPAb7RNVutAb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CPG-RL%3A+Learning+Central+Pattern+Generators+for+Quadruped+Locomotion&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Bellegarda%2C+Guillaume&rft.au=Ijspeert%2C+Auke&rft.date=2022-10-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=7&rft.issue=4&rft.spage=12547&rft.epage=12554&rft_id=info:doi/10.1109%2FLRA.2022.3218167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2022_3218167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon