Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
•A feature-based emotion recognition model is proposed for EEG-based BCI.•The approach combines statistical-based feature selection methods and SVM emotion classifiers.•The model is based on Valence/Arousal dimensions for emotion classification.•Our combined approach outperformed other recognition m...
Saved in:
Published in | Expert systems with applications Vol. 47; pp. 35 - 41 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A feature-based emotion recognition model is proposed for EEG-based BCI.•The approach combines statistical-based feature selection methods and SVM emotion classifiers.•The model is based on Valence/Arousal dimensions for emotion classification.•Our combined approach outperformed other recognition methods.
Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions classes mainly due to signal’s features and noise, EEG constraints and subject-dependent issues. In order to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-based Brain–Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types and incorporates additional features which are relevant for signal pre-processing and recognition classification tasks, based on a dimensional model of emotions: Valenceand Arousal. It aims to improve the accuracy of the emotion classification task by combining mutual information based feature selection methods and kernel classifiers. Experiments using our approach for emotion classification which combines efficient feature selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the approach when compared with state-of-the-art computational methods. |
---|---|
AbstractList | •A feature-based emotion recognition model is proposed for EEG-based BCI.•The approach combines statistical-based feature selection methods and SVM emotion classifiers.•The model is based on Valence/Arousal dimensions for emotion classification.•Our combined approach outperformed other recognition methods.
Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions classes mainly due to signal’s features and noise, EEG constraints and subject-dependent issues. In order to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-based Brain–Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types and incorporates additional features which are relevant for signal pre-processing and recognition classification tasks, based on a dimensional model of emotions: Valenceand Arousal. It aims to improve the accuracy of the emotion classification task by combining mutual information based feature selection methods and kernel classifiers. Experiments using our approach for emotion classification which combines efficient feature selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the approach when compared with state-of-the-art computational methods. Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions classes mainly due to signal's features and noise, EEG constraints and subject-dependent issues. In order to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-based Brain-Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types and incorporates additional features which are relevant for signal pre-processing and recognition classification tasks, based on a dimensional model of emotions: Valence and Arousal. It aims to improve the accuracy of the emotion classification task by combining mutual information based feature selection methods and kernel classifiers. Experiments using our approach for emotion classification which combines efficient feature selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the approach when compared with state-of-the-art computational methods. |
Author | Atkinson, John Campos, Daniel |
Author_xml | – sequence: 1 givenname: John surname: Atkinson fullname: Atkinson, John email: atkinson@inf.udec.cl organization: Department of Computer Sciences, Faculty of Engineering, Universidad de Concepcion, Concepcion, Chile – sequence: 2 givenname: Daniel surname: Campos fullname: Campos, Daniel email: dancamposf@inf.udec.cl organization: Artificial Intelligence Laboratory, Department of Computer Sciences, Universidad de Concepcion, Chile |
BookMark | eNp9kEFPwyAYhomZidv0D3ji6KUTWiht4kWXOZcs8aJnQunXhdnChG5m_166efKwE-TN-xDeZ4JG1llA6J6SGSU0f9zOIPyoWUooj8GMsPIKjWkhsiQXZTZCY1JykTAq2A2ahLAlhApCxBipVbfz7mDsBr_MV0mlAtQYOtcbZ7EH7TbWnO7VEWvXVcYO1cViiRtQ_d4DDtCCPlWUrfEXeAst1q0KwTQGfLhF141qA9z9nVP0-br4mL8l6_flav68TnRWln3CGNfxf1SVgnElICcVTXNW1RVvuK5TkhUAvOQxEUKklYaSVEVdM8oKplOeTdHD-d2453sPoZedCRraVllw-yBpkXKWZ6woYjU9V7V3IXho5M6bTvmjpEQOPuVWDj7l4HPIos8IFf8gbXo1DO-9Mu1l9OmMQtx_iFJk0AashtpExb2snbmE_wJ3mpPU |
CitedBy_id | crossref_primary_10_1007_s11571_021_09756_0 crossref_primary_10_1109_ACCESS_2020_2978163 crossref_primary_10_1007_s11042_023_16744_5 crossref_primary_10_3390_s19071738 crossref_primary_10_1016_j_jnca_2019_102423 crossref_primary_10_1109_TAFFC_2023_3318321 crossref_primary_10_3390_brainsci14040364 crossref_primary_10_1038_s41598_024_63180_y crossref_primary_10_6002_ect_MESOT2018_L42 crossref_primary_10_1016_j_asoc_2024_111491 crossref_primary_10_1109_ACCESS_2019_2914872 crossref_primary_10_1016_j_compbiomed_2021_104696 crossref_primary_10_1080_0952813X_2023_2301367 crossref_primary_10_1109_TII_2020_2983979 crossref_primary_10_3390_s21155092 crossref_primary_10_3390_app14062228 crossref_primary_10_1016_j_inffus_2018_10_009 crossref_primary_10_1016_j_bioana_2024_05_003 crossref_primary_10_1016_j_rineng_2023_101027 crossref_primary_10_1038_s41598_024_75263_x crossref_primary_10_1186_s13673_019_0201_x crossref_primary_10_4018_IJSSCI_2018010102 crossref_primary_10_1016_j_compbiomed_2020_103875 crossref_primary_10_52547_joc_15_2_139 crossref_primary_10_1016_j_bspc_2024_107435 crossref_primary_10_1016_j_bspc_2024_106224 crossref_primary_10_1109_JBHI_2022_3148109 crossref_primary_10_1109_ACCESS_2020_2974009 crossref_primary_10_1111_coin_12562 crossref_primary_10_1109_ACCESS_2020_3035539 crossref_primary_10_3390_s20185083 crossref_primary_10_1016_j_eswa_2017_01_040 crossref_primary_10_3390_app10051619 crossref_primary_10_3390_s19214736 crossref_primary_10_3389_fninf_2022_997282 crossref_primary_10_3390_s22134939 crossref_primary_10_1109_TNSRE_2021_3111689 crossref_primary_10_3390_e23080984 crossref_primary_10_3390_electronics13234797 crossref_primary_10_1016_j_compbiomed_2022_105606 crossref_primary_10_3389_fncom_2021_741086 crossref_primary_10_1016_j_bspc_2024_106795 crossref_primary_10_1016_j_compbiomed_2024_108329 crossref_primary_10_1186_s12993_018_0149_4 crossref_primary_10_3390_s19071631 crossref_primary_10_1007_s11517_021_02452_5 crossref_primary_10_1142_S0218126624500166 crossref_primary_10_1088_1742_6596_1230_1_012008 crossref_primary_10_1007_s00521_022_07822_0 crossref_primary_10_1016_j_eswa_2018_11_026 crossref_primary_10_1016_j_future_2021_08_018 crossref_primary_10_3389_fpsyg_2022_899983 crossref_primary_10_1002_jdn_10166 crossref_primary_10_1109_TAFFC_2017_2714671 crossref_primary_10_1145_3663669 crossref_primary_10_1016_j_neucom_2023_126260 crossref_primary_10_3390_s21103414 crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_1016_j_cmpb_2016_12_005 crossref_primary_10_3390_e24091187 crossref_primary_10_3389_fnbot_2017_00019 crossref_primary_10_1016_j_future_2021_01_010 crossref_primary_10_1109_ACCESS_2021_3096430 crossref_primary_10_1145_3666002 crossref_primary_10_1016_j_inffus_2022_03_009 crossref_primary_10_1080_10255842_2024_2371036 crossref_primary_10_1016_j_bspc_2024_106131 crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1016_j_aei_2022_101868 crossref_primary_10_1109_ACCESS_2025_3525996 crossref_primary_10_1007_s12652_018_1065_z crossref_primary_10_1007_s11042_018_5885_9 crossref_primary_10_1007_s11042_022_13149_8 crossref_primary_10_1007_s13246_020_00895_y crossref_primary_10_1109_TBCAS_2021_3089132 crossref_primary_10_1016_j_bspc_2024_107473 crossref_primary_10_1109_TAFFC_2018_2840973 crossref_primary_10_1109_TAFFC_2019_2916015 crossref_primary_10_3390_s20236727 crossref_primary_10_3390_s23052455 crossref_primary_10_1016_j_jksuci_2020_10_007 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1016_j_jneumeth_2023_109879 crossref_primary_10_1109_ACCESS_2021_3091487 crossref_primary_10_1109_JBHI_2020_3032678 crossref_primary_10_4018_IJCINI_371401 crossref_primary_10_1007_s00530_021_00786_6 crossref_primary_10_1016_j_cogr_2021_04_001 crossref_primary_10_1016_j_eswa_2021_115605 crossref_primary_10_1007_s10339_019_00924_z crossref_primary_10_28978_nesciences_328851 crossref_primary_10_3389_fnins_2022_985709 crossref_primary_10_1016_j_trf_2022_01_010 crossref_primary_10_1109_TAFFC_2019_2936198 crossref_primary_10_17350_HJSE19030000277 crossref_primary_10_1109_ACCESS_2017_2724555 crossref_primary_10_1016_j_bspc_2022_104006 crossref_primary_10_1109_TIM_2020_3011817 crossref_primary_10_3390_s20247083 crossref_primary_10_1016_j_dsp_2018_07_003 crossref_primary_10_1016_j_jestch_2021_03_012 crossref_primary_10_3934_mbe_2023120 crossref_primary_10_1109_TAFFC_2023_3329526 crossref_primary_10_1088_1741_2552_ac49a7 crossref_primary_10_1142_S0129065720500112 crossref_primary_10_1109_JBHI_2022_3210158 crossref_primary_10_1016_j_bspc_2022_104140 crossref_primary_10_4188_jte_66_109 crossref_primary_10_1155_2023_9223599 crossref_primary_10_1016_j_bspc_2024_106249 crossref_primary_10_1016_j_cmpb_2020_105571 crossref_primary_10_1016_j_compbiolchem_2018_11_017 crossref_primary_10_1016_j_physa_2022_127700 crossref_primary_10_1016_j_bspc_2024_107337 crossref_primary_10_1016_j_eswa_2017_07_033 crossref_primary_10_1155_2018_9750904 crossref_primary_10_1007_s11042_023_17911_4 crossref_primary_10_1007_s11831_016_9194_z crossref_primary_10_1109_JIOT_2024_3458976 crossref_primary_10_1109_TCDS_2021_3082803 crossref_primary_10_3390_s18082739 crossref_primary_10_1016_j_inffus_2019_06_021 crossref_primary_10_1016_j_eswa_2020_113768 crossref_primary_10_1109_TCDS_2020_2976112 crossref_primary_10_1007_s13369_025_10034_y crossref_primary_10_1007_s11760_019_01455_y crossref_primary_10_1016_j_mehy_2019_03_025 crossref_primary_10_1109_TFUZZ_2019_2900859 crossref_primary_10_3390_make4040053 crossref_primary_10_3390_s20164543 crossref_primary_10_1109_ACCESS_2020_2999133 crossref_primary_10_1109_JSEN_2021_3070373 crossref_primary_10_12677_CSA_2022_1210228 crossref_primary_10_1177_03611981211041594 crossref_primary_10_1109_TAFFC_2019_2942587 crossref_primary_10_4015_S1016237218500266 crossref_primary_10_1007_s40815_023_01597_9 crossref_primary_10_3389_fnhum_2024_1334721 crossref_primary_10_3390_bioengineering9060231 crossref_primary_10_1016_j_measurement_2024_115940 crossref_primary_10_1186_s40708_020_00111_3 crossref_primary_10_2174_0126662558279390240105064917 crossref_primary_10_1016_j_aei_2019_101028 crossref_primary_10_1016_j_neunet_2019_04_003 crossref_primary_10_1142_S0219622019500238 crossref_primary_10_3390_ijerph20043487 crossref_primary_10_1109_THMS_2022_3225633 crossref_primary_10_1016_j_bspc_2021_102755 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1109_THMS_2023_3275626 crossref_primary_10_1016_j_bspc_2023_105907 crossref_primary_10_3389_fnhum_2018_00267 crossref_primary_10_1142_S0129065722500411 crossref_primary_10_4236_jbm_2023_114022 crossref_primary_10_1016_j_bspc_2024_106276 crossref_primary_10_1109_TAFFC_2023_3319397 crossref_primary_10_1016_j_eswa_2020_114516 crossref_primary_10_26599_BSA_2020_9050026 crossref_primary_10_3389_fnins_2025_1512799 crossref_primary_10_1145_3524499 crossref_primary_10_1007_s11042_023_17142_7 crossref_primary_10_1016_j_bspc_2024_107369 crossref_primary_10_1016_j_compbiomed_2022_105327 crossref_primary_10_1016_j_medengphy_2018_07_009 crossref_primary_10_1007_s11571_017_9460_2 crossref_primary_10_1016_j_eswa_2020_114195 crossref_primary_10_3390_app142210511 crossref_primary_10_3390_s21175746 crossref_primary_10_1109_TCDS_2022_3149953 crossref_primary_10_1109_TIM_2022_3147876 crossref_primary_10_1016_j_inffus_2023_102208 crossref_primary_10_1016_j_asoc_2018_01_001 crossref_primary_10_1016_j_bspc_2025_107674 crossref_primary_10_1109_ACCESS_2023_3245830 crossref_primary_10_1016_j_bspc_2023_105690 crossref_primary_10_1080_10255842_2022_2143714 crossref_primary_10_1109_ACCESS_2019_2962085 crossref_primary_10_1016_j_jneumeth_2020_108599 crossref_primary_10_1109_ACCESS_2021_3051281 crossref_primary_10_1109_TIM_2022_3165280 crossref_primary_10_3389_fnins_2024_1305284 crossref_primary_10_1109_TNNLS_2023_3265730 crossref_primary_10_1016_j_vrih_2022_01_002 crossref_primary_10_3389_fphy_2021_806647 crossref_primary_10_1007_s11676_023_01683_6 crossref_primary_10_3390_bioengineering11080821 crossref_primary_10_3390_electronics12234717 crossref_primary_10_7717_peerj_cs_2610 crossref_primary_10_3389_fncom_2021_684373 crossref_primary_10_3390_sym12010021 crossref_primary_10_1109_COMST_2024_3387124 crossref_primary_10_1016_j_bspc_2020_101918 crossref_primary_10_1109_TNSRE_2023_3323509 crossref_primary_10_3390_s22093248 crossref_primary_10_1155_2024_6091523 crossref_primary_10_3390_make3040042 crossref_primary_10_1016_j_ergon_2019_02_006 crossref_primary_10_3389_frobt_2020_00125 crossref_primary_10_1016_j_bspc_2023_105045 crossref_primary_10_1016_j_jad_2024_06_042 crossref_primary_10_3389_fpsyg_2021_771591 crossref_primary_10_1016_j_eswa_2020_114011 crossref_primary_10_1109_TCSS_2024_3406988 crossref_primary_10_1109_ACCESS_2021_3102042 crossref_primary_10_1109_TNNLS_2020_3008938 crossref_primary_10_7717_peerj_cs_944 crossref_primary_10_3389_fnhum_2023_1280241 crossref_primary_10_1093_iwc_iwy018 crossref_primary_10_1016_j_jksuci_2021_08_021 crossref_primary_10_1109_TAFFC_2022_3169001 crossref_primary_10_3389_fnins_2021_689791 crossref_primary_10_1109_TIM_2022_3165741 crossref_primary_10_1049_iet_smt_2018_5237 crossref_primary_10_3390_sym11050683 crossref_primary_10_1017_S0263574721000382 crossref_primary_10_1016_j_cmpb_2022_106646 crossref_primary_10_1007_s40708_017_0069_3 crossref_primary_10_1007_s11042_020_08714_y crossref_primary_10_1109_TAFFC_2021_3068496 crossref_primary_10_1007_s11042_023_16941_2 crossref_primary_10_1016_j_jksuci_2019_11_003 crossref_primary_10_1080_10447318_2020_1819668 crossref_primary_10_1007_s42452_019_1579_9 crossref_primary_10_1016_j_bspc_2025_107576 crossref_primary_10_1109_TNNLS_2023_3238519 crossref_primary_10_1016_j_bspc_2021_103249 crossref_primary_10_26599_TST_2022_9010038 crossref_primary_10_3390_app7121239 crossref_primary_10_1088_1741_2560_13_4_046022 crossref_primary_10_1016_j_future_2021_12_001 crossref_primary_10_36548_jaicn_2022_2_003 crossref_primary_10_1007_s13755_019_0076_2 crossref_primary_10_1016_j_compbiomed_2023_107135 crossref_primary_10_1016_j_eswa_2022_119429 crossref_primary_10_3389_fnins_2020_00087 crossref_primary_10_1007_s00521_024_09479_3 crossref_primary_10_37394_232014_2021_17_4 crossref_primary_10_1109_TSMC_2020_2969686 crossref_primary_10_1109_MNET_001_1900070 crossref_primary_10_3390_electronics9010142 crossref_primary_10_1109_ACCESS_2023_3263670 crossref_primary_10_3389_fncom_2021_732763 crossref_primary_10_3390_s19132999 crossref_primary_10_3233_THC_174836 crossref_primary_10_3390_brainsci11111397 crossref_primary_10_1016_j_compbiomed_2021_104757 crossref_primary_10_1007_s11277_019_06328_8 crossref_primary_10_1007_s12553_019_00394_5 crossref_primary_10_1016_j_bspc_2021_102991 crossref_primary_10_1016_j_compbiomed_2021_105048 crossref_primary_10_1016_j_measurement_2022_111738 crossref_primary_10_1016_j_bspc_2021_102743 crossref_primary_10_1007_s11063_022_11120_0 crossref_primary_10_1109_ACCESS_2019_2908285 crossref_primary_10_3390_s22239282 crossref_primary_10_1007_s10111_017_0450_2 crossref_primary_10_1016_j_inffus_2023_102129 crossref_primary_10_1007_s00521_022_07292_4 crossref_primary_10_3390_brainsci11111392 crossref_primary_10_1155_2020_6056383 crossref_primary_10_1007_s11042_023_14671_z crossref_primary_10_1016_j_measurement_2019_107003 crossref_primary_10_1155_2021_6618833 crossref_primary_10_3390_math8030413 crossref_primary_10_1016_j_bbe_2020_02_002 crossref_primary_10_1109_ACCESS_2020_2980893 crossref_primary_10_1016_j_bspc_2024_106768 crossref_primary_10_1109_TCDS_2018_2868121 crossref_primary_10_1016_j_eswa_2018_06_014 crossref_primary_10_1016_j_inffus_2020_01_011 crossref_primary_10_1007_s13534_023_00316_5 crossref_primary_10_46300_9106_2021_15_46 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_3389_fnhum_2024_1471634 crossref_primary_10_1007_s13042_017_0772_7 crossref_primary_10_1007_s00521_022_07643_1 |
Cites_doi | 10.1109/T-AFFC.2011.15 10.1109/T-AFFC.2010.7 10.1007/s11517-011-0828-x 10.1109/T-AFFC.2010.12 10.1109/T-AFFC.2011.4 10.1109/T-AFFC.2010.1 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2015.10.049 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 41 |
ExternalDocumentID | 10_1016_j_eswa_2015_10_049 S0957417415007538 |
GrantInformation_xml | – fundername: FONDECYT grantid: 1130035 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c399t-445c4171a9745a7e60b1264bdb5f5cd2038ee5954bd7772bce90b8dd41484c253 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 11 15:08:17 EDT 2025 Tue Jul 01 03:12:26 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Fri Feb 23 02:29:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Emotion recognition Feature selection Brain–Computer Interfaces EEG Emotion classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-445c4171a9745a7e60b1264bdb5f5cd2038ee5954bd7772bce90b8dd41484c253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825463488 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1825463488 crossref_primary_10_1016_j_eswa_2015_10_049 crossref_citationtrail_10_1016_j_eswa_2015_10_049 elsevier_sciencedirect_doi_10_1016_j_eswa_2015_10_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 2016-04-00 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yisi, Sourina, Minh (bib0012) 2010 Wu, Courtney, Lance, Narayanan, Dawson, Kelvin, Parsons (bib0011) 2010; 1 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi (bib0005) 2012; 3 Wang, Xu, Wang, Yang, Guo, Yan (bib0009) 2011; vol. 1 Polat, Cataltepe (bib0007) 2012 Sourina, Wang, Liu, Nguyen (bib0008) 2011 AlMejrad (bib0001) 2010; 44 Zhang, Yang, Huang (bib0013) 2008; vol. 2 Calvo, D’Mello (bib0003) 2010; 1 Wright (bib0010) 2010 Brunner, Vidaurre, Billinger, Neuper (bib0002) 2011; 49 Giakoumis, Tzovaras, Moustakas, Hassapis (bib0004) 2011; 2 Petrantonakis, Hadjileontiadis (bib0006) 2010; 1 Brunner (10.1016/j.eswa.2015.10.049_bib0002) 2011; 49 Polat (10.1016/j.eswa.2015.10.049_bib0007) 2012 Wang (10.1016/j.eswa.2015.10.049_bib0009) 2011; vol. 1 Wu (10.1016/j.eswa.2015.10.049_bib0011) 2010; 1 AlMejrad (10.1016/j.eswa.2015.10.049_bib0001) 2010; 44 Koelstra (10.1016/j.eswa.2015.10.049_bib0005) 2012; 3 Sourina (10.1016/j.eswa.2015.10.049_bib0008) 2011 Calvo (10.1016/j.eswa.2015.10.049_bib0003) 2010; 1 Yisi (10.1016/j.eswa.2015.10.049_bib0012) 2010 Petrantonakis (10.1016/j.eswa.2015.10.049_bib0006) 2010; 1 Zhang (10.1016/j.eswa.2015.10.049_bib0013) 2008; vol. 2 Wright (10.1016/j.eswa.2015.10.049_bib0010) 2010 Giakoumis (10.1016/j.eswa.2015.10.049_bib0004) 2011; 2 |
References_xml | – start-page: 262 year: 2010 end-page: 269 ident: bib0012 article-title: Real-time EEG-based human emotion recognition and visualization publication-title: Proceedings of international conference on cyberworlds (CW) – volume: vol. 1 start-page: 580 year: 2011 end-page: 583 ident: bib0009 article-title: GA-SVM based feature selection and parameters optimization for BCI research publication-title: Proceedings of seventh international conference on natural computation (ICNC) – volume: 44 start-page: 640 year: 2010 end-page: 659 ident: bib0001 article-title: Human emotions detection using brain wave signals: a challenging publication-title: European Journal of Scientific Research – volume: 1 start-page: 81 year: 2010 end-page: 97 ident: bib0006 article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis publication-title: IEEE Transactions on Affective Computing – volume: vol. 2 start-page: 435 year: 2008 end-page: 439 ident: bib0013 article-title: Feature extraction of eeg signals using power spectral entropy publication-title: Proceedings of international conference on biomedical engineering and informatics, 2008. BMEI – volume: 1 start-page: 18 year: 2010 end-page: 37 ident: bib0003 article-title: Affect detection: an interdisciplinary review of models, methods, and their applications publication-title: IEEE Transactions on Affective Computing – volume: 2 start-page: 119 year: 2011 end-page: 133 ident: bib0004 article-title: Automatic recognition of boredom in video games using novel biosignal moment-based features publication-title: IEEE Transactions on Affective Computing – year: 2010 ident: bib0010 publication-title: Emotional instant messaging with the epoc headset, – volume: 49 start-page: 1337 year: 2011 end-page: 1346 ident: bib0002 article-title: A comparison of univariate, vector, bilinear autoregressive, and band power features for brain–computer interfaces publication-title: Medical & Biological Engineering & Computing – start-page: 82 year: 2011 end-page: 90 ident: bib0008 article-title: A real-time fractal-based brain state recognition from eeg and its applications publication-title: Biosignals – volume: 1 start-page: 109 year: 2010 end-page: 118 ident: bib0011 article-title: Optimal arousal identification and classification for affective computing using physiological signals: virtual reality stroop task publication-title: IEEE Transactions on Affective Computing – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: bib0005 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Transactions on Affective Computing – start-page: 1 year: 2012 end-page: 4 ident: bib0007 article-title: Feature selection and classification on brain computer interface (BCI) data publication-title: Proceedings of signal processing and communications applications conference (SIU) – year: 2010 ident: 10.1016/j.eswa.2015.10.049_bib0010 – start-page: 262 year: 2010 ident: 10.1016/j.eswa.2015.10.049_bib0012 article-title: Real-time EEG-based human emotion recognition and visualization – start-page: 1 year: 2012 ident: 10.1016/j.eswa.2015.10.049_bib0007 article-title: Feature selection and classification on brain computer interface (BCI) data – volume: 3 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.eswa.2015.10.049_bib0005 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2011.15 – volume: 1 start-page: 81 issue: 2 year: 2010 ident: 10.1016/j.eswa.2015.10.049_bib0006 article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2010.7 – volume: 44 start-page: 640 year: 2010 ident: 10.1016/j.eswa.2015.10.049_bib0001 article-title: Human emotions detection using brain wave signals: a challenging publication-title: European Journal of Scientific Research – start-page: 82 year: 2011 ident: 10.1016/j.eswa.2015.10.049_bib0008 article-title: A real-time fractal-based brain state recognition from eeg and its applications – volume: vol. 1 start-page: 580 year: 2011 ident: 10.1016/j.eswa.2015.10.049_bib0009 article-title: GA-SVM based feature selection and parameters optimization for BCI research – volume: 49 start-page: 1337 issue: 11 year: 2011 ident: 10.1016/j.eswa.2015.10.049_bib0002 article-title: A comparison of univariate, vector, bilinear autoregressive, and band power features for brain–computer interfaces publication-title: Medical & Biological Engineering & Computing doi: 10.1007/s11517-011-0828-x – volume: 1 start-page: 109 issue: 2 year: 2010 ident: 10.1016/j.eswa.2015.10.049_bib0011 article-title: Optimal arousal identification and classification for affective computing using physiological signals: virtual reality stroop task publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2010.12 – volume: 2 start-page: 119 year: 2011 ident: 10.1016/j.eswa.2015.10.049_bib0004 article-title: Automatic recognition of boredom in video games using novel biosignal moment-based features publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2011.4 – volume: vol. 2 start-page: 435 year: 2008 ident: 10.1016/j.eswa.2015.10.049_bib0013 article-title: Feature extraction of eeg signals using power spectral entropy – volume: 1 start-page: 18 issue: 1 year: 2010 ident: 10.1016/j.eswa.2015.10.049_bib0003 article-title: Affect detection: an interdisciplinary review of models, methods, and their applications publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2010.1 |
SSID | ssj0017007 |
Score | 2.6305313 |
Snippet | •A feature-based emotion recognition model is proposed for EEG-based BCI.•The approach combines statistical-based feature selection methods and SVM emotion... Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35 |
SubjectTerms | Brain–Computer Interfaces Classification Classifiers Computation EEG Electroencephalography Emotion classification Emotion recognition Emotions Feature recognition Feature selection Recognition Tasks |
Title | Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers |
URI | https://dx.doi.org/10.1016/j.eswa.2015.10.049 https://www.proquest.com/docview/1825463488 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRIniTbfeRbHaPtbS2ir1oobewySZQLdvSB-LF3-7MPgqK9OAtG5JlM0lmvslO5iPkNtI68IXHwcnxA4eFXuQkFko2CFUYaG5s7ig-D8P-iD2O-bhGOtVdGAyrLHV_odNzbV3WtEpptuaTSesFwAGYQ7SIaPcCvPDLmMBV3vzahHlg-jlR5NsTDrYuL84UMV5m-YG5hzzexAgvzKf5t3H6paZz29M7JPslaKTt4ruOSM1kx-SgImSg5f48IcnmiIDedwYOWqiUmoKoh25ChaCsPikMWOXkELTbfaDW5Ak-6TKnxcEmSZbSd7PIzJRqRNgTi6TZp2TU6752-k7JoeBogB4rhzGuYdheAn4DT4QJXeUBBlKp4pbr1HeDyBgec6gRALSVNrGrojRl4CYx7fPgjOxks8ycE8pjq5UWsMOtYCkADatdDvgAMASLlTB14lXCk7pMMI48F1NZRZK9SRS4RIFjHXSrk7tNn3mRXmNra17NifyxSCTo_639bqoJlLB78JdIkpnZeim9gg8AtNjFP999SfbgKSyCea7IzmqxNteAU1aqkS_EBtltD576w28FhObF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPI7GhtEljJ-kIVUsLbRdaqZsVO7ZUqNKqDyEWfjt3eUkg1IEplmNH8dm--y4530fIXaCUW_cdDk5O3bWY5wRWaKBkXE96ruLaJI5if-B1Rux5zMcl0szPwmBYZab7U52eaOusppZJszafTGqvAA7AHKJFRLvnBltkm8EFaQyqX0WcB-af89OEe76FzbOTM2mQl15-YPIhh1cxxAsTav5tnX7p6cT4tA_IXoYa6UP6YoekpOMjsp8zMtBsgx6TsPhGQB-bXQtNVER1ytRDi1ghKMtPCiOWCTsEbbWeqNFJhk-6THhxsEkYR_RdL2I9pQoh9sQga_YJGbVbw2bHykgULAXYY2UxxhUM2wnBceChrz1bOgCCZCS54Sqq226gNW9wqPEBaUulG7YMooiBn8RUnbunpBzPYn1GKG8YJZUPW9z4LAKkYZTNASAAiGAN6esKcXLhCZVlGEeii6nIQ8neBApcoMCxDrpVyH3RZ57m19jYmudzIn6sEgEGYGO_23wCBWwf_CcSxnq2XgonJQQANXb-z2ffkJ3OsN8Tve7g5YLswh0vjey5JOXVYq2vALSs5HWyKL8BXDHoUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+BCI-based+emotion+recognition+by+combining+EEG+feature+selection+and+kernel+classifiers&rft.jtitle=Expert+systems+with+applications&rft.au=Atkinson%2C+John&rft.au=Campos%2C+Daniel&rft.date=2016-04-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=47&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1016%2Fj.eswa.2015.10.049&rft.externalDocID=S0957417415007538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |