Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers

•A feature-based emotion recognition model is proposed for EEG-based BCI.•The approach combines statistical-based feature selection methods and SVM emotion classifiers.•The model is based on Valence/Arousal dimensions for emotion classification.•Our combined approach outperformed other recognition m...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 47; pp. 35 - 41
Main Authors Atkinson, John, Campos, Daniel
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A feature-based emotion recognition model is proposed for EEG-based BCI.•The approach combines statistical-based feature selection methods and SVM emotion classifiers.•The model is based on Valence/Arousal dimensions for emotion classification.•Our combined approach outperformed other recognition methods. Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions classes mainly due to signal’s features and noise, EEG constraints and subject-dependent issues. In order to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-based Brain–Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types and incorporates additional features which are relevant for signal pre-processing and recognition classification tasks, based on a dimensional model of emotions: Valenceand Arousal. It aims to improve the accuracy of the emotion classification task by combining mutual information based feature selection methods and kernel classifiers. Experiments using our approach for emotion classification which combines efficient feature selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the approach when compared with state-of-the-art computational methods.
AbstractList •A feature-based emotion recognition model is proposed for EEG-based BCI.•The approach combines statistical-based feature selection methods and SVM emotion classifiers.•The model is based on Valence/Arousal dimensions for emotion classification.•Our combined approach outperformed other recognition methods. Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions classes mainly due to signal’s features and noise, EEG constraints and subject-dependent issues. In order to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-based Brain–Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types and incorporates additional features which are relevant for signal pre-processing and recognition classification tasks, based on a dimensional model of emotions: Valenceand Arousal. It aims to improve the accuracy of the emotion classification task by combining mutual information based feature selection methods and kernel classifiers. Experiments using our approach for emotion classification which combines efficient feature selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the approach when compared with state-of-the-art computational methods.
Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions classes mainly due to signal's features and noise, EEG constraints and subject-dependent issues. In order to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-based Brain-Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types and incorporates additional features which are relevant for signal pre-processing and recognition classification tasks, based on a dimensional model of emotions: Valence and Arousal. It aims to improve the accuracy of the emotion classification task by combining mutual information based feature selection methods and kernel classifiers. Experiments using our approach for emotion classification which combines efficient feature selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the approach when compared with state-of-the-art computational methods.
Author Atkinson, John
Campos, Daniel
Author_xml – sequence: 1
  givenname: John
  surname: Atkinson
  fullname: Atkinson, John
  email: atkinson@inf.udec.cl
  organization: Department of Computer Sciences, Faculty of Engineering, Universidad de Concepcion, Concepcion, Chile
– sequence: 2
  givenname: Daniel
  surname: Campos
  fullname: Campos, Daniel
  email: dancamposf@inf.udec.cl
  organization: Artificial Intelligence Laboratory, Department of Computer Sciences, Universidad de Concepcion, Chile
BookMark eNp9kEFPwyAYhomZidv0D3ji6KUTWiht4kWXOZcs8aJnQunXhdnChG5m_166efKwE-TN-xDeZ4JG1llA6J6SGSU0f9zOIPyoWUooj8GMsPIKjWkhsiQXZTZCY1JykTAq2A2ahLAlhApCxBipVbfz7mDsBr_MV0mlAtQYOtcbZ7EH7TbWnO7VEWvXVcYO1cViiRtQ_d4DDtCCPlWUrfEXeAst1q0KwTQGfLhF141qA9z9nVP0-br4mL8l6_flav68TnRWln3CGNfxf1SVgnElICcVTXNW1RVvuK5TkhUAvOQxEUKklYaSVEVdM8oKplOeTdHD-d2453sPoZedCRraVllw-yBpkXKWZ6woYjU9V7V3IXho5M6bTvmjpEQOPuVWDj7l4HPIos8IFf8gbXo1DO-9Mu1l9OmMQtx_iFJk0AashtpExb2snbmE_wJ3mpPU
CitedBy_id crossref_primary_10_1007_s11571_021_09756_0
crossref_primary_10_1109_ACCESS_2020_2978163
crossref_primary_10_1007_s11042_023_16744_5
crossref_primary_10_3390_s19071738
crossref_primary_10_1016_j_jnca_2019_102423
crossref_primary_10_1109_TAFFC_2023_3318321
crossref_primary_10_3390_brainsci14040364
crossref_primary_10_1038_s41598_024_63180_y
crossref_primary_10_6002_ect_MESOT2018_L42
crossref_primary_10_1016_j_asoc_2024_111491
crossref_primary_10_1109_ACCESS_2019_2914872
crossref_primary_10_1016_j_compbiomed_2021_104696
crossref_primary_10_1080_0952813X_2023_2301367
crossref_primary_10_1109_TII_2020_2983979
crossref_primary_10_3390_s21155092
crossref_primary_10_3390_app14062228
crossref_primary_10_1016_j_inffus_2018_10_009
crossref_primary_10_1016_j_bioana_2024_05_003
crossref_primary_10_1016_j_rineng_2023_101027
crossref_primary_10_1038_s41598_024_75263_x
crossref_primary_10_1186_s13673_019_0201_x
crossref_primary_10_4018_IJSSCI_2018010102
crossref_primary_10_1016_j_compbiomed_2020_103875
crossref_primary_10_52547_joc_15_2_139
crossref_primary_10_1016_j_bspc_2024_107435
crossref_primary_10_1016_j_bspc_2024_106224
crossref_primary_10_1109_JBHI_2022_3148109
crossref_primary_10_1109_ACCESS_2020_2974009
crossref_primary_10_1111_coin_12562
crossref_primary_10_1109_ACCESS_2020_3035539
crossref_primary_10_3390_s20185083
crossref_primary_10_1016_j_eswa_2017_01_040
crossref_primary_10_3390_app10051619
crossref_primary_10_3390_s19214736
crossref_primary_10_3389_fninf_2022_997282
crossref_primary_10_3390_s22134939
crossref_primary_10_1109_TNSRE_2021_3111689
crossref_primary_10_3390_e23080984
crossref_primary_10_3390_electronics13234797
crossref_primary_10_1016_j_compbiomed_2022_105606
crossref_primary_10_3389_fncom_2021_741086
crossref_primary_10_1016_j_bspc_2024_106795
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1186_s12993_018_0149_4
crossref_primary_10_3390_s19071631
crossref_primary_10_1007_s11517_021_02452_5
crossref_primary_10_1142_S0218126624500166
crossref_primary_10_1088_1742_6596_1230_1_012008
crossref_primary_10_1007_s00521_022_07822_0
crossref_primary_10_1016_j_eswa_2018_11_026
crossref_primary_10_1016_j_future_2021_08_018
crossref_primary_10_3389_fpsyg_2022_899983
crossref_primary_10_1002_jdn_10166
crossref_primary_10_1109_TAFFC_2017_2714671
crossref_primary_10_1145_3663669
crossref_primary_10_1016_j_neucom_2023_126260
crossref_primary_10_3390_s21103414
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_1016_j_cmpb_2016_12_005
crossref_primary_10_3390_e24091187
crossref_primary_10_3389_fnbot_2017_00019
crossref_primary_10_1016_j_future_2021_01_010
crossref_primary_10_1109_ACCESS_2021_3096430
crossref_primary_10_1145_3666002
crossref_primary_10_1016_j_inffus_2022_03_009
crossref_primary_10_1080_10255842_2024_2371036
crossref_primary_10_1016_j_bspc_2024_106131
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1016_j_aei_2022_101868
crossref_primary_10_1109_ACCESS_2025_3525996
crossref_primary_10_1007_s12652_018_1065_z
crossref_primary_10_1007_s11042_018_5885_9
crossref_primary_10_1007_s11042_022_13149_8
crossref_primary_10_1007_s13246_020_00895_y
crossref_primary_10_1109_TBCAS_2021_3089132
crossref_primary_10_1016_j_bspc_2024_107473
crossref_primary_10_1109_TAFFC_2018_2840973
crossref_primary_10_1109_TAFFC_2019_2916015
crossref_primary_10_3390_s20236727
crossref_primary_10_3390_s23052455
crossref_primary_10_1016_j_jksuci_2020_10_007
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1016_j_jneumeth_2023_109879
crossref_primary_10_1109_ACCESS_2021_3091487
crossref_primary_10_1109_JBHI_2020_3032678
crossref_primary_10_4018_IJCINI_371401
crossref_primary_10_1007_s00530_021_00786_6
crossref_primary_10_1016_j_cogr_2021_04_001
crossref_primary_10_1016_j_eswa_2021_115605
crossref_primary_10_1007_s10339_019_00924_z
crossref_primary_10_28978_nesciences_328851
crossref_primary_10_3389_fnins_2022_985709
crossref_primary_10_1016_j_trf_2022_01_010
crossref_primary_10_1109_TAFFC_2019_2936198
crossref_primary_10_17350_HJSE19030000277
crossref_primary_10_1109_ACCESS_2017_2724555
crossref_primary_10_1016_j_bspc_2022_104006
crossref_primary_10_1109_TIM_2020_3011817
crossref_primary_10_3390_s20247083
crossref_primary_10_1016_j_dsp_2018_07_003
crossref_primary_10_1016_j_jestch_2021_03_012
crossref_primary_10_3934_mbe_2023120
crossref_primary_10_1109_TAFFC_2023_3329526
crossref_primary_10_1088_1741_2552_ac49a7
crossref_primary_10_1142_S0129065720500112
crossref_primary_10_1109_JBHI_2022_3210158
crossref_primary_10_1016_j_bspc_2022_104140
crossref_primary_10_4188_jte_66_109
crossref_primary_10_1155_2023_9223599
crossref_primary_10_1016_j_bspc_2024_106249
crossref_primary_10_1016_j_cmpb_2020_105571
crossref_primary_10_1016_j_compbiolchem_2018_11_017
crossref_primary_10_1016_j_physa_2022_127700
crossref_primary_10_1016_j_bspc_2024_107337
crossref_primary_10_1016_j_eswa_2017_07_033
crossref_primary_10_1155_2018_9750904
crossref_primary_10_1007_s11042_023_17911_4
crossref_primary_10_1007_s11831_016_9194_z
crossref_primary_10_1109_JIOT_2024_3458976
crossref_primary_10_1109_TCDS_2021_3082803
crossref_primary_10_3390_s18082739
crossref_primary_10_1016_j_inffus_2019_06_021
crossref_primary_10_1016_j_eswa_2020_113768
crossref_primary_10_1109_TCDS_2020_2976112
crossref_primary_10_1007_s13369_025_10034_y
crossref_primary_10_1007_s11760_019_01455_y
crossref_primary_10_1016_j_mehy_2019_03_025
crossref_primary_10_1109_TFUZZ_2019_2900859
crossref_primary_10_3390_make4040053
crossref_primary_10_3390_s20164543
crossref_primary_10_1109_ACCESS_2020_2999133
crossref_primary_10_1109_JSEN_2021_3070373
crossref_primary_10_12677_CSA_2022_1210228
crossref_primary_10_1177_03611981211041594
crossref_primary_10_1109_TAFFC_2019_2942587
crossref_primary_10_4015_S1016237218500266
crossref_primary_10_1007_s40815_023_01597_9
crossref_primary_10_3389_fnhum_2024_1334721
crossref_primary_10_3390_bioengineering9060231
crossref_primary_10_1016_j_measurement_2024_115940
crossref_primary_10_1186_s40708_020_00111_3
crossref_primary_10_2174_0126662558279390240105064917
crossref_primary_10_1016_j_aei_2019_101028
crossref_primary_10_1016_j_neunet_2019_04_003
crossref_primary_10_1142_S0219622019500238
crossref_primary_10_3390_ijerph20043487
crossref_primary_10_1109_THMS_2022_3225633
crossref_primary_10_1016_j_bspc_2021_102755
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1109_THMS_2023_3275626
crossref_primary_10_1016_j_bspc_2023_105907
crossref_primary_10_3389_fnhum_2018_00267
crossref_primary_10_1142_S0129065722500411
crossref_primary_10_4236_jbm_2023_114022
crossref_primary_10_1016_j_bspc_2024_106276
crossref_primary_10_1109_TAFFC_2023_3319397
crossref_primary_10_1016_j_eswa_2020_114516
crossref_primary_10_26599_BSA_2020_9050026
crossref_primary_10_3389_fnins_2025_1512799
crossref_primary_10_1145_3524499
crossref_primary_10_1007_s11042_023_17142_7
crossref_primary_10_1016_j_bspc_2024_107369
crossref_primary_10_1016_j_compbiomed_2022_105327
crossref_primary_10_1016_j_medengphy_2018_07_009
crossref_primary_10_1007_s11571_017_9460_2
crossref_primary_10_1016_j_eswa_2020_114195
crossref_primary_10_3390_app142210511
crossref_primary_10_3390_s21175746
crossref_primary_10_1109_TCDS_2022_3149953
crossref_primary_10_1109_TIM_2022_3147876
crossref_primary_10_1016_j_inffus_2023_102208
crossref_primary_10_1016_j_asoc_2018_01_001
crossref_primary_10_1016_j_bspc_2025_107674
crossref_primary_10_1109_ACCESS_2023_3245830
crossref_primary_10_1016_j_bspc_2023_105690
crossref_primary_10_1080_10255842_2022_2143714
crossref_primary_10_1109_ACCESS_2019_2962085
crossref_primary_10_1016_j_jneumeth_2020_108599
crossref_primary_10_1109_ACCESS_2021_3051281
crossref_primary_10_1109_TIM_2022_3165280
crossref_primary_10_3389_fnins_2024_1305284
crossref_primary_10_1109_TNNLS_2023_3265730
crossref_primary_10_1016_j_vrih_2022_01_002
crossref_primary_10_3389_fphy_2021_806647
crossref_primary_10_1007_s11676_023_01683_6
crossref_primary_10_3390_bioengineering11080821
crossref_primary_10_3390_electronics12234717
crossref_primary_10_7717_peerj_cs_2610
crossref_primary_10_3389_fncom_2021_684373
crossref_primary_10_3390_sym12010021
crossref_primary_10_1109_COMST_2024_3387124
crossref_primary_10_1016_j_bspc_2020_101918
crossref_primary_10_1109_TNSRE_2023_3323509
crossref_primary_10_3390_s22093248
crossref_primary_10_1155_2024_6091523
crossref_primary_10_3390_make3040042
crossref_primary_10_1016_j_ergon_2019_02_006
crossref_primary_10_3389_frobt_2020_00125
crossref_primary_10_1016_j_bspc_2023_105045
crossref_primary_10_1016_j_jad_2024_06_042
crossref_primary_10_3389_fpsyg_2021_771591
crossref_primary_10_1016_j_eswa_2020_114011
crossref_primary_10_1109_TCSS_2024_3406988
crossref_primary_10_1109_ACCESS_2021_3102042
crossref_primary_10_1109_TNNLS_2020_3008938
crossref_primary_10_7717_peerj_cs_944
crossref_primary_10_3389_fnhum_2023_1280241
crossref_primary_10_1093_iwc_iwy018
crossref_primary_10_1016_j_jksuci_2021_08_021
crossref_primary_10_1109_TAFFC_2022_3169001
crossref_primary_10_3389_fnins_2021_689791
crossref_primary_10_1109_TIM_2022_3165741
crossref_primary_10_1049_iet_smt_2018_5237
crossref_primary_10_3390_sym11050683
crossref_primary_10_1017_S0263574721000382
crossref_primary_10_1016_j_cmpb_2022_106646
crossref_primary_10_1007_s40708_017_0069_3
crossref_primary_10_1007_s11042_020_08714_y
crossref_primary_10_1109_TAFFC_2021_3068496
crossref_primary_10_1007_s11042_023_16941_2
crossref_primary_10_1016_j_jksuci_2019_11_003
crossref_primary_10_1080_10447318_2020_1819668
crossref_primary_10_1007_s42452_019_1579_9
crossref_primary_10_1016_j_bspc_2025_107576
crossref_primary_10_1109_TNNLS_2023_3238519
crossref_primary_10_1016_j_bspc_2021_103249
crossref_primary_10_26599_TST_2022_9010038
crossref_primary_10_3390_app7121239
crossref_primary_10_1088_1741_2560_13_4_046022
crossref_primary_10_1016_j_future_2021_12_001
crossref_primary_10_36548_jaicn_2022_2_003
crossref_primary_10_1007_s13755_019_0076_2
crossref_primary_10_1016_j_compbiomed_2023_107135
crossref_primary_10_1016_j_eswa_2022_119429
crossref_primary_10_3389_fnins_2020_00087
crossref_primary_10_1007_s00521_024_09479_3
crossref_primary_10_37394_232014_2021_17_4
crossref_primary_10_1109_TSMC_2020_2969686
crossref_primary_10_1109_MNET_001_1900070
crossref_primary_10_3390_electronics9010142
crossref_primary_10_1109_ACCESS_2023_3263670
crossref_primary_10_3389_fncom_2021_732763
crossref_primary_10_3390_s19132999
crossref_primary_10_3233_THC_174836
crossref_primary_10_3390_brainsci11111397
crossref_primary_10_1016_j_compbiomed_2021_104757
crossref_primary_10_1007_s11277_019_06328_8
crossref_primary_10_1007_s12553_019_00394_5
crossref_primary_10_1016_j_bspc_2021_102991
crossref_primary_10_1016_j_compbiomed_2021_105048
crossref_primary_10_1016_j_measurement_2022_111738
crossref_primary_10_1016_j_bspc_2021_102743
crossref_primary_10_1007_s11063_022_11120_0
crossref_primary_10_1109_ACCESS_2019_2908285
crossref_primary_10_3390_s22239282
crossref_primary_10_1007_s10111_017_0450_2
crossref_primary_10_1016_j_inffus_2023_102129
crossref_primary_10_1007_s00521_022_07292_4
crossref_primary_10_3390_brainsci11111392
crossref_primary_10_1155_2020_6056383
crossref_primary_10_1007_s11042_023_14671_z
crossref_primary_10_1016_j_measurement_2019_107003
crossref_primary_10_1155_2021_6618833
crossref_primary_10_3390_math8030413
crossref_primary_10_1016_j_bbe_2020_02_002
crossref_primary_10_1109_ACCESS_2020_2980893
crossref_primary_10_1016_j_bspc_2024_106768
crossref_primary_10_1109_TCDS_2018_2868121
crossref_primary_10_1016_j_eswa_2018_06_014
crossref_primary_10_1016_j_inffus_2020_01_011
crossref_primary_10_1007_s13534_023_00316_5
crossref_primary_10_46300_9106_2021_15_46
crossref_primary_10_1016_j_heliyon_2024_e31485
crossref_primary_10_3389_fnhum_2024_1471634
crossref_primary_10_1007_s13042_017_0772_7
crossref_primary_10_1007_s00521_022_07643_1
Cites_doi 10.1109/T-AFFC.2011.15
10.1109/T-AFFC.2010.7
10.1007/s11517-011-0828-x
10.1109/T-AFFC.2010.12
10.1109/T-AFFC.2011.4
10.1109/T-AFFC.2010.1
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2015.10.049
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 41
ExternalDocumentID 10_1016_j_eswa_2015_10_049
S0957417415007538
GrantInformation_xml – fundername: FONDECYT
  grantid: 1130035
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-445c4171a9745a7e60b1264bdb5f5cd2038ee5954bd7772bce90b8dd41484c253
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 11 15:08:17 EDT 2025
Tue Jul 01 03:12:26 EDT 2025
Thu Apr 24 22:54:32 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Feature selection
Brain–Computer Interfaces
EEG
Emotion classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-445c4171a9745a7e60b1264bdb5f5cd2038ee5954bd7772bce90b8dd41484c253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825463488
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1825463488
crossref_primary_10_1016_j_eswa_2015_10_049
crossref_citationtrail_10_1016_j_eswa_2015_10_049
elsevier_sciencedirect_doi_10_1016_j_eswa_2015_10_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
2016-04-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yisi, Sourina, Minh (bib0012) 2010
Wu, Courtney, Lance, Narayanan, Dawson, Kelvin, Parsons (bib0011) 2010; 1
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi (bib0005) 2012; 3
Wang, Xu, Wang, Yang, Guo, Yan (bib0009) 2011; vol. 1
Polat, Cataltepe (bib0007) 2012
Sourina, Wang, Liu, Nguyen (bib0008) 2011
AlMejrad (bib0001) 2010; 44
Zhang, Yang, Huang (bib0013) 2008; vol. 2
Calvo, D’Mello (bib0003) 2010; 1
Wright (bib0010) 2010
Brunner, Vidaurre, Billinger, Neuper (bib0002) 2011; 49
Giakoumis, Tzovaras, Moustakas, Hassapis (bib0004) 2011; 2
Petrantonakis, Hadjileontiadis (bib0006) 2010; 1
Brunner (10.1016/j.eswa.2015.10.049_bib0002) 2011; 49
Polat (10.1016/j.eswa.2015.10.049_bib0007) 2012
Wang (10.1016/j.eswa.2015.10.049_bib0009) 2011; vol. 1
Wu (10.1016/j.eswa.2015.10.049_bib0011) 2010; 1
AlMejrad (10.1016/j.eswa.2015.10.049_bib0001) 2010; 44
Koelstra (10.1016/j.eswa.2015.10.049_bib0005) 2012; 3
Sourina (10.1016/j.eswa.2015.10.049_bib0008) 2011
Calvo (10.1016/j.eswa.2015.10.049_bib0003) 2010; 1
Yisi (10.1016/j.eswa.2015.10.049_bib0012) 2010
Petrantonakis (10.1016/j.eswa.2015.10.049_bib0006) 2010; 1
Zhang (10.1016/j.eswa.2015.10.049_bib0013) 2008; vol. 2
Wright (10.1016/j.eswa.2015.10.049_bib0010) 2010
Giakoumis (10.1016/j.eswa.2015.10.049_bib0004) 2011; 2
References_xml – start-page: 262
  year: 2010
  end-page: 269
  ident: bib0012
  article-title: Real-time EEG-based human emotion recognition and visualization
  publication-title: Proceedings of international conference on cyberworlds (CW)
– volume: vol. 1
  start-page: 580
  year: 2011
  end-page: 583
  ident: bib0009
  article-title: GA-SVM based feature selection and parameters optimization for BCI research
  publication-title: Proceedings of seventh international conference on natural computation (ICNC)
– volume: 44
  start-page: 640
  year: 2010
  end-page: 659
  ident: bib0001
  article-title: Human emotions detection using brain wave signals: a challenging
  publication-title: European Journal of Scientific Research
– volume: 1
  start-page: 81
  year: 2010
  end-page: 97
  ident: bib0006
  article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis
  publication-title: IEEE Transactions on Affective Computing
– volume: vol. 2
  start-page: 435
  year: 2008
  end-page: 439
  ident: bib0013
  article-title: Feature extraction of eeg signals using power spectral entropy
  publication-title: Proceedings of international conference on biomedical engineering and informatics, 2008. BMEI
– volume: 1
  start-page: 18
  year: 2010
  end-page: 37
  ident: bib0003
  article-title: Affect detection: an interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Transactions on Affective Computing
– volume: 2
  start-page: 119
  year: 2011
  end-page: 133
  ident: bib0004
  article-title: Automatic recognition of boredom in video games using novel biosignal moment-based features
  publication-title: IEEE Transactions on Affective Computing
– year: 2010
  ident: bib0010
  publication-title: Emotional instant messaging with the epoc headset,
– volume: 49
  start-page: 1337
  year: 2011
  end-page: 1346
  ident: bib0002
  article-title: A comparison of univariate, vector, bilinear autoregressive, and band power features for brain–computer interfaces
  publication-title: Medical & Biological Engineering & Computing
– start-page: 82
  year: 2011
  end-page: 90
  ident: bib0008
  article-title: A real-time fractal-based brain state recognition from eeg and its applications
  publication-title: Biosignals
– volume: 1
  start-page: 109
  year: 2010
  end-page: 118
  ident: bib0011
  article-title: Optimal arousal identification and classification for affective computing using physiological signals: virtual reality stroop task
  publication-title: IEEE Transactions on Affective Computing
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: bib0005
  article-title: Deap: a database for emotion analysis; using physiological signals
  publication-title: IEEE Transactions on Affective Computing
– start-page: 1
  year: 2012
  end-page: 4
  ident: bib0007
  article-title: Feature selection and classification on brain computer interface (BCI) data
  publication-title: Proceedings of signal processing and communications applications conference (SIU)
– year: 2010
  ident: 10.1016/j.eswa.2015.10.049_bib0010
– start-page: 262
  year: 2010
  ident: 10.1016/j.eswa.2015.10.049_bib0012
  article-title: Real-time EEG-based human emotion recognition and visualization
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2015.10.049_bib0007
  article-title: Feature selection and classification on brain computer interface (BCI) data
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2015.10.049_bib0005
  article-title: Deap: a database for emotion analysis; using physiological signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.15
– volume: 1
  start-page: 81
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2015.10.049_bib0006
  article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2010.7
– volume: 44
  start-page: 640
  year: 2010
  ident: 10.1016/j.eswa.2015.10.049_bib0001
  article-title: Human emotions detection using brain wave signals: a challenging
  publication-title: European Journal of Scientific Research
– start-page: 82
  year: 2011
  ident: 10.1016/j.eswa.2015.10.049_bib0008
  article-title: A real-time fractal-based brain state recognition from eeg and its applications
– volume: vol. 1
  start-page: 580
  year: 2011
  ident: 10.1016/j.eswa.2015.10.049_bib0009
  article-title: GA-SVM based feature selection and parameters optimization for BCI research
– volume: 49
  start-page: 1337
  issue: 11
  year: 2011
  ident: 10.1016/j.eswa.2015.10.049_bib0002
  article-title: A comparison of univariate, vector, bilinear autoregressive, and band power features for brain–computer interfaces
  publication-title: Medical & Biological Engineering & Computing
  doi: 10.1007/s11517-011-0828-x
– volume: 1
  start-page: 109
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2015.10.049_bib0011
  article-title: Optimal arousal identification and classification for affective computing using physiological signals: virtual reality stroop task
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2010.12
– volume: 2
  start-page: 119
  year: 2011
  ident: 10.1016/j.eswa.2015.10.049_bib0004
  article-title: Automatic recognition of boredom in video games using novel biosignal moment-based features
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.4
– volume: vol. 2
  start-page: 435
  year: 2008
  ident: 10.1016/j.eswa.2015.10.049_bib0013
  article-title: Feature extraction of eeg signals using power spectral entropy
– volume: 1
  start-page: 18
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2015.10.049_bib0003
  article-title: Affect detection: an interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2010.1
SSID ssj0017007
Score 2.6305313
Snippet •A feature-based emotion recognition model is proposed for EEG-based BCI.•The approach combines statistical-based feature selection methods and SVM emotion...
Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Brain–Computer Interfaces
Classification
Classifiers
Computation
EEG
Electroencephalography
Emotion classification
Emotion recognition
Emotions
Feature recognition
Feature selection
Recognition
Tasks
Title Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
URI https://dx.doi.org/10.1016/j.eswa.2015.10.049
https://www.proquest.com/docview/1825463488
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRIniTbfeRbHaPtbS2ir1oobewySZQLdvSB-LF3-7MPgqK9OAtG5JlM0lmvslO5iPkNtI68IXHwcnxA4eFXuQkFko2CFUYaG5s7ig-D8P-iD2O-bhGOtVdGAyrLHV_odNzbV3WtEpptuaTSesFwAGYQ7SIaPcCvPDLmMBV3vzahHlg-jlR5NsTDrYuL84UMV5m-YG5hzzexAgvzKf5t3H6paZz29M7JPslaKTt4ruOSM1kx-SgImSg5f48IcnmiIDedwYOWqiUmoKoh25ChaCsPikMWOXkELTbfaDW5Ak-6TKnxcEmSZbSd7PIzJRqRNgTi6TZp2TU6752-k7JoeBogB4rhzGuYdheAn4DT4QJXeUBBlKp4pbr1HeDyBgec6gRALSVNrGrojRl4CYx7fPgjOxks8ycE8pjq5UWsMOtYCkADatdDvgAMASLlTB14lXCk7pMMI48F1NZRZK9SRS4RIFjHXSrk7tNn3mRXmNra17NifyxSCTo_639bqoJlLB78JdIkpnZeim9gg8AtNjFP999SfbgKSyCea7IzmqxNteAU1aqkS_EBtltD576w28FhObF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPI7GhtEljJ-kIVUsLbRdaqZsVO7ZUqNKqDyEWfjt3eUkg1IEplmNH8dm--y4530fIXaCUW_cdDk5O3bWY5wRWaKBkXE96ruLaJI5if-B1Rux5zMcl0szPwmBYZab7U52eaOusppZJszafTGqvAA7AHKJFRLvnBltkm8EFaQyqX0WcB-af89OEe76FzbOTM2mQl15-YPIhh1cxxAsTav5tnX7p6cT4tA_IXoYa6UP6YoekpOMjsp8zMtBsgx6TsPhGQB-bXQtNVER1ytRDi1ghKMtPCiOWCTsEbbWeqNFJhk-6THhxsEkYR_RdL2I9pQoh9sQga_YJGbVbw2bHykgULAXYY2UxxhUM2wnBceChrz1bOgCCZCS54Sqq226gNW9wqPEBaUulG7YMooiBn8RUnbunpBzPYn1GKG8YJZUPW9z4LAKkYZTNASAAiGAN6esKcXLhCZVlGEeii6nIQ8neBApcoMCxDrpVyH3RZ57m19jYmudzIn6sEgEGYGO_23wCBWwf_CcSxnq2XgonJQQANXb-z2ffkJ3OsN8Tve7g5YLswh0vjey5JOXVYq2vALSs5HWyKL8BXDHoUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+BCI-based+emotion+recognition+by+combining+EEG+feature+selection+and+kernel+classifiers&rft.jtitle=Expert+systems+with+applications&rft.au=Atkinson%2C+John&rft.au=Campos%2C+Daniel&rft.date=2016-04-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=47&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1016%2Fj.eswa.2015.10.049&rft.externalDocID=S0957417415007538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon